
Accepted Manuscript

Cambridge Large One

www.cambridge.org

Article-type
Keywords:
autonomous driving, verification, AI safety

*Author for correspondence. Email:
chengchao@njis.ac.cn

QUANTIVA: Quantitative Verification of
Autonomous Driving
Renjue Li,1,2 Tianhang Qin,1,2 Pengfei Yang,1,2 Cheng-Chao Huang,*,3 Youcheng Sun,4

and Lijun Zhang1,2

1SKLCS, Institute of Software, CAS, Beijing, 100190, China
2University of Chinese Academy of Sciences, Beijing, 100049, China
3Nanjing Institute of Software Technology, CAS, Nanjing, 211135, China
4The University of Manchester, Manchester, M13 9PL, UK

Abstract
We present a practical verification method for safety analysis of the autonomous driving system
(ADS). The main idea is to build a surrogate model that quantitatively depicts the behavior of
an ADS in the specified traffic scenario. The safety properties proved in the resulting surrogate
model apply to the original ADS with a probabilistic guarantee. Given the complexity of a
traffic scenario in autonomous driving, our approach further partitions the parameter space
of a traffic scenario for the ADS into safe sub-spaces with varying levels of guarantees and
unsafe sub-spaces with confirmed counter-examples. Innovatively, the partitioning is based on
a branching algorithm that features explainable AI methods. We demonstrate the utility of
the proposed approach by evaluating safety properties on the state-of-the-art ADS Interfuser,
with a variety of simulated traffic scenarios, and we show that our approach and existing ADS
testing work complement each other. We certify 5 safe scenarios from the verification results
and find out 3 sneaky behavior discrepancies in Interfuser which can hardly be detected by
safety testing approaches.

1. Introduction
Autonomous driving systems (ADS) are anticipated to revolutionize road traffic by en-
hancing efficiency and safety. However, ensuring the safety of such AI-enabled systems
is a critical challenge. An ADS relies on a variety of sensors, algorithms, and hardware
components that must work together to ensure safe and efficient driving. However, each
of these components can fail or malfunction, leading to incorrect or unexpected behaviors.
Additionally, environmental factors such as weather, traffic, and road conditions can also
affect the performance of the system. Another challenge in the reliability of autonomous
driving is ensuring that the system can handle corner cases. Corner cases refer to rare
scenarios that the system may encounter but are crucial for its safety, such as unexpected
behavior by other drivers, pedestrian crossings, or sudden changes in road conditions.
Ensuring that the system can handle these scenarios requires a rigorous testing process
that covers a wide range of possible scenarios and corner cases.

ADS Evaluation The ADS evaluation encompasses both component-level and system-
level assessments, using various metrics to gauge the performance and behavior of the
system or its components and determine whether they meet the specified design re-
quirements. Common component-level metrics include accuracy, precision, recall, and
Intersection over Union (IoU), while system-level metrics often focus on passenger experi-
ence, robustness, and system latency. Public datasets are essential to ADS evaluation, with
widely used datasets like nuScenes (Caesar et al. 2020), KITTI (Geiger, Lenz, and Urtasun
2012), CityScapes (Cordts et al. 2016), and ApolloScape (X. Huang et al. 2018) serving as
valuable benchmarks. Although real-world datasets can address some evaluation needs,
certain metrics—such as system latency and passenger experience—necessitate real-world
road testing for more comprehensive analysis. While ADS evaluations provide a solid
understanding of a system’s or component’s overall performance, their static nature limits
the ability to explore corner cases, which are crucial for thorough safety assessment.

Safety Assessment Testing is a critical approach to evaluating and improving the safety
of ADS. However, conducting thorough real-world testing of an ADS is impractical
due to the significant resources required to build scenarios and simulate real traffic. To

This peer-reviewed article has been
accepted for publication but not
yet copyedited or typeset, and so
may be subject to change during
the production process. The article
is considered published and may
be cited using its DOI.

© The Author(s), 2024. Published
by Cambridge University Press.
This is an Open Access article,
distributed under the terms of the
Creative Commons Attribution-
NonCommercial-NoDerivatives
licence (http://
creativecommons.org/licenses/by-
nc-nd/4.0/), which permits non-
commercial re-use, distribution,
and reproduction in any medium,
provided the original work is
unaltered and is properly cited.
The written permission of
Cambridge University Press must
be obtained for commercial re-use
or in order to create a derivative
work.

10.1017/cbp.2024.7

https://doi.org/10.1017/cbp.2024.7 Published online by Cambridge University Press

https://doi.org/10.1017/cbp.2024.7

Accepted Manuscript

2 Renjue Li et al.

address this challenge, driving simulators such as CARLA (Doso-
vitskiy et al. 2017) and BeamNG (BeamNG GmbH 2022)
have been developed, which enable testing in virtual simu-
lated environments and significantly reduce testing costs. Var-
ious testing approaches have been developed based on these
simulators to generate test cases and analyze different traf-
fic scenarios (Fremont et al. 2019). Search-based testing ap-
proaches (Abdessalem, Nejati, et al. 2018; Arcaini, Zhang,
and Ishikawa 2021; Calò et al. 2020; Borg et al. 2021; Gambi,
Mueller, and Fraser 2019; Gambi, Müller, and Fraser 2019;
H. Tian et al. 2022; Haq, Shin, and Briand 2022) are widely
used for the rigorous testing of ADS. These approaches are
designed to achieve comprehensive testing of the system by
exploring the search space to identify different scenarios in
which the system may fail. One of the main approaches is
the use of meta-heuristic search techniques such as genetic
algorithms and particle swarm optimization. These methods
can efficiently search for optimal test cases based on various
criteria, such as coverage, fault detection, and diversity. An-
other approach is model-based testing (Abdessalem et al. 2016;
Haq, Shin, and Briand 2022), where a model of the ADS is
used to generate test cases. These models can be crafted using
techniques such as finite-state machines, Petri nets, or hybrid
systems. The generated test cases can then be used to validate
the system’s behavior under different conditions. These testing
approaches have identified numerous unsafe testing cases, they
offer minimal safety guarantees for ADS.

Verification In contrast to traditional testing approaches, for-
mal verification aims to provide a mathematical proof of a
given property of a system. This involves formally modeling
the system and specifying the desired property in a formal
language. In the context of ADS, they can be modeled as Neu-
ral Network Controlled Systems (NNCS), which combine
neural networks with control systems to enable autonomous
decision-making and control. Previous works have explored
safety verification of NNCS based on reachability analysis.
These methods utilize techniques such as activation function
reduction (Ivanov et al. 2019), abstract interpretation (Tran
et al. 2020), and function approximation (Ivanov et al. 2020;
Ivanov et al. 2021; C. Huang et al. 2019; Fan et al. 2020; C.
Huang et al. 2022). However, these white-box methods have
limitations when applied to large systems like ADS. They often
suffer from inefficiency due to the complexity of the neural
network models. Therefore, there is a need for more efficient
verification techniques that can handle the scale and complexity
of ADS.

In this paper, we propose a formal verification framework
for ensuring safety properties of ADS. To illustrate our method-
ology more vividly, we describe it and perform experiments
in the context of self-driving cars, but it is applicable to a
wide range of autonomous systems (such as drones) and can
be extended to them without major modifications. Unlike tra-
ditional reachability analysis methods, our approach provides
quantified certificates of safety properties in a more efficient
and general black-box manner. To specify safety properties,

we adopt the concept of fitness functions. Inspired by pre-
vious work on learning linear models from deep neural net-
works (R. Li et al. 2022), we learn a fully connected neural
network (FNN) model that approximates the fitness function.
Unlike testing-based approaches, the learned FNN model can
be proven to be probably approximately correct (PAC), which
was not achievable with prior ADS testing methods. This
allows us to verify the safety property of a given ADS under
various traffic scenarios with a PAC guarantee. For example,
with 99.9% confidence, the ADS is collision-free with a prob-
ability of at least 99% in an emergency braking scenario. A
traffic scenario can include parameters such as vehicle velocity,
weather conditions, and more.

The core idea of our approach is to learn a surrogate model
that approximates the fitness function of the ADS with a mea-
surable difference gap. If the surrogate model is proven to
be safe, we can derive a probabilistic guarantee on the safety
property for the ADS in the same scenario. In cases where
the surrogate model fails to meet the safety property, we fur-
ther explore its parameter space by dividing the entire space
into cells based on specified parameters. We then analyze the
quantified level of safety in each of these cells. This allows us
to provide a quantitative verification framework that includes
the formal specification of safety properties, the learned surro-
gate model with its probabilistic guarantee, and the analysis
of safe and unsafe regions. Overall, our approach provides a
more efficient and rigorous method for verifying the safety of
ADS in various traffic scenarios, considering a wide range of
parameters.

Our approach demonstrates significant effectiveness and
advantages in verifying ADS. Firstly, compared to traditional
verification methods, our approach offers a more efficient veri-
fication process. By learning a surrogate model that approxi-
mates the original ADS fitness function, we can provide prob-
abilistic guarantees of ADS safety in a shorter timeframe. This
enables us to verify the safety of ADS in a wider range of traffic
scenarios, encompassing various parameters and conditions.
Secondly, our approach provides quantified safety proofs. By
learning the surrogate model of the fitness function, we can
derive safety probabilities of ADS in different traffic scenarios.
This quantified proof allows for a more accurate assessment of
ADS safety and provides decision-makers with more reliable
evidence. Furthermore, our approach is black-box, requiring
no knowledge of the internal structure and implementation
details of ADS. This makes our method more versatile and
applicable to different types of ADS. Whether the ADS is
based on deep learning or other technologies, our approach
can effectively verify its safety. Lastly, our approach also en-
ables analysis of safe and unsafe regions. By partitioning the
parameter space into different cells, we can further analyze
the safety levels within each cell. This analysis helps us better
understand the behavior of ADS under different parameter
combinations and provides guidance for improving the design
and implementation of ADS.

The contributions of this paper are threefold:

• We propose a noval verification framework for ensuring the

https://doi.org/10.1017/cbp.2024.7 Published online by Cambridge University Press

https://doi.org/10.1017/cbp.2024.7

Accepted Manuscript

Cambridge Large One 3

scenario-specific safety of ADS with a probabilistic guaran-
tee. To our best knowledge, it is the first of its kind designed
specifically for complex autonomous driving systems, pro-
viding an efficient and reliable approach for verifying ADS
safety in various traffic scenarios.

• Our framework provide a new technique to perform quan-
titative analysis of configuration parameters for ADS. It
helps identify potentially unsafe regions in the configura-
tion space that require attention and improvement.

• We apply our verification approach and configuration space
exploration method to a state-of-the-art ADS in five dif-
ferent traffic scenarios. The results validate the potential of
learning-based verification techniques and provide evidence
for the applicability of the framework in practical ADS.

2. Background
2.1 Autonomous driving systems
An autonomous driving system (ADS) is designed to assist or
replace human drivers in real traffic scenarios. The level of au-
tomation of an ADS can be categorized into six levels, ranging
from L0 to L5, as defined by the SAE standard. The ultimate
goal is to achieve a Level 5 ADS, which can independently
handle all driving tasks without any human intervention.

A modern ADS consists of various components, includ-
ing sensors, perception module, prediction module, planning
module, and control module. The sensors collect data from
the surrounding environment, while the perception module
processes this data to understand the current traffic situation.
The prediction module anticipates the future behavior of other
road users, and the planning module generates a safe and ef-
ficient trajectory for the vehicle. Finally, the control module
translates the planned trajectory into control signals to execute
the desired actions.

Ensuring on-road safety properties in different traffic sce-
narios, such as collision free, route completion, speed limitation,
lane keeping, etc., is of paramount importance for ADS. Espe-
cially, collision free is the key requirement among these prop-
erties, which evaluates the general safety by judging whether
a collision occurs.

2.2 CARLA & Scenairo Runner
We utilize the high-fidelity simulator CARLA, which is built
on Unreal Engine 4, to generate realistic traffic scenarios for
our research. CARLA offers real-time simulation capabilities
for sensors, dynamic physics, and traffic environments. It also
provides an extensive library of traffic blueprints, including
pedestrians, vehicles, and street signs, making it a popular
choice for developing modern autonomous driving systems
such as Transfuser (Chitta et al. 2022) and LAV (Chen and
Krähenbühl 2022).

In our study, we employ the Scenario Runner tool pro-
vided by CARLA to construct various traffic scenarios within
the simulator. The Scenario Runner utilizes a behavior tree
structure to encode the logic of each scenario. This tree con-
sists of non-leaf control nodes (such as Select, Sequence, and

Parallel) and leaf nodes representing specific behaviors. By ex-
ecuting the scenario based on the state of its behavior tree, we
can simulate and analyze the interactions and decision-making
processes of the autonomous driving system in different traffic
situations.

By leveraging the capabilities of CARLA and the Scenario
Runner, we can create a diverse range of realistic traffic sce-
narios to evaluate the performance and safety of autonomous
driving systems. This allows us to gain valuable insights and
make informed improvements to enhance the reliability and
effectiveness of these systems in real-world driving conditions.

2.3 PAC-model learning
PAC-model learning was first proposed in (R. Li et al. 2022) to
verify local robustness properties of deep neural networks. The
key idea behind PAC-model learning is to train a simplified
model using a subset of the original training data. This subset is
carefully selected to cover the critical regions of the input space
where the DNN is most sensitive to adversarial perturbations.
The learned model can provide robustness guarantees for the
DNN’s performance.

We state the PAC-model learning technique in a more
generalized way. Let ρ : Θ → R be a real-valued function with
the domain Θ ⊂ Rm a closed set. The purpose of PAC-model
learning is to learn a model f (θ;β) ∈ F whose difference from
ρ(θ) is uniformly bounded by a constant λ as small as possible,
where F is a parametric function space with parameter β ∈
Rn. Given a set of samples Θsample i.i.d from a probability
distribution P on Θ, the problem is reduced to an optimization
problem

min
λ,β

λ

s.t. |f (θ;β) – ρ(θ)| ≤ λ, ∀θ ∈ Θsample.
(1)

In general, the solution of (1) does not necessarily bound ρ
within λ. However, the following lemma shows, the optimal
solution of (1) does probably approximately correctly, if the
number of samples in Θsample reaches a threshold.

Lemma 1 ((Campi, Garatti, and Prandini 2009)) Let ϵ and
η be the pre-defined error rate and the significance level, respec-
tively. If (1) is feasible and has an optimal solution (λ∗,β∗), and
|Θsample| = K with

ϵ ≥ 2
K

(ln
1
η

+ n + 1), (2)

then with confidence at least 1 – η, the optimal λ∗ satisfies all the
constraints in Θ but only at most a fraction of probability measure ϵ,
i.e., P(|f (θ;β∗) – ρ(θ)| > λ∗) ≤ ϵ.

In (R. Li et al. 2022), the component-based learning tech-
nique is proposed to handle the situations when it is difficult
to solve (1). The idea is to first learn a function f (θ) without
the PAC guarantee, and then estimate the margin λ with the

https://doi.org/10.1017/cbp.2024.7 Published online by Cambridge University Press

https://doi.org/10.1017/cbp.2024.7

Accepted Manuscript

4 Renjue Li et al.

trigger distance

Scenario (i)

velocity

brake

Figure 1. Scenario (i) Emergency Braking: the ego drives along the
road while the leading NPC brakes. The configurationθ ∈ Θ consists
of several parameters such as NPC’s velocity, deceleration, trigger
distance, etc. A function ω measures the distance between the two
vehicles.

PAC guarantee. In this situation, the problem is reduced to
the optimation problem

min
λ∈R

λ

s.t. |f (θ) – ρ(θ)| ≤ λ, ∀θ ∈ Θsample,
(3)

and the number of samples K should satisfy

ϵ ≥ 2
K

(ln
1
η

+ 1) (4)

to establish the PAC guarantee, according to Lemma 1.
After obtaining the PAC model f with a margin λ, we can

derive properties of the black-box function ρ based on f and
λ. These derived properties hold for ρ with the same PAC
guarantee. In the following section, we will demonstrate how
to formally model autonomous driving scenarios and specify
safety properties within these scenarios. PAC-model learning
will play a crucial role in verifying these safety properties in
autonomous driving scenarios.

3. Scenario driven safety verification
In this section, we first formalize the autonomous driving sce-
nario (Section 3.1). Then, we introduce a model learning
based verification approach in Section 3.2. When the veri-
fication cannot conclude the safety property, in Section 3.6,
techniques are also proposed to partition the configuration
space into safe/unsafe regions.

3.1 Formalism of autonomous driving scenarios
An autonomous driving scenario comprises an autonomous
driving agent ego and other NPC agents in the simulator en-
vironment. Let θ = (θ1,, θm) ∈ [0, 1]m be a configuration
which consists of m normalized parameters defining the sce-
nario. Denoted by Θ ⊆ [0, 1]m a configuration space which
represents a certain range of configurations.

Denote by st ∈ S the status at step t of all agents in the
virtual world, including locations, speeds, accelerations, etc.
The simulator generates the next state st+1 according to the
current state st as well as the actions of both ego and NPCs at
step t. We call a sequence of states s0, s1, . . . , st⊥ a simulation
generated by the simulator, where s0 is the initial state and st⊥
is the final state satisfying some terminating conditions.

With the assumption that the behavior of the simulator and
NPCs is deterministic, the simulation s0, s1, . . . , st⊥ is uniquely

determined by the configuration θ and the behavior of ego.
Therefore, for a fixed ego, i.e. an ADS need to be verified,
each state st in a simulation can be considered as a function
st(θ). It is important to note that the assumption of the deter-
minacy here does not imply that the behavior or simulation
environment is entirely fixed. Instead, they are varying with
the aforementioned parameters. This assumption is made to es-
tablish a unified probability space by eliminating other sources
of randomness.

Safety properties
We are interested in the safety requirement of critical scenarios.
In traffic scenarios, many safety properties can be described
as a physical quantity (such as velocity, distance, angle, etc)
always satisfying a certain threshold during the entire driving
process. In autonomous driving scenarios, we define a function
ω to measure such physical quantity at a given state, and the
safety properties can be defined as follows.

Definition 1 (Safety Property) For a given configuration θ ∈
Θ, a quantitative measure ω : S → R and a threshold τ ∈ R, the
state sequence s0, s1, . . . , st⊥ is safe if

∀t ∈ {0, 1, . . . , t⊥} ω(st(θ)) ≥ τ. (5)

We introduce a fitness function ρ(θ) = min0≤i≤t⊥ ω(si(θ)), and
the property can be equivalently rewritten as ρ(θ) ≥ τ. For
instance, we can use the distance between two vehicles as
the quantitative measure ω, and the collision free property
requires that the distance is no smaller than a safe threshold
τ > 0.

We illustrate a scenario — Emergency Braking in Figure
1. The safety property is to guarantee the safe distance of
τ = 0.2 (m) between two vehicles. The problem is how to
verify that an ADS meets the safe requirement defined by
Equation (5), as a scenario can be initialised with all possible
configuration values.

3.2 Safety verification with PAC guarantee
In general, checking a safety property is challenging because
the fitness function ρ(θ) relies on the behavior models and the
simulator, which cannot be explicitly expressed. Additionally,
both the simulator and the ADS often operate as black boxes,
further complicating the analysis. To address this challenge,
we propose analyzing safety properties at two different levels:
PAC-model safety and PAC safety. PAC-model safety involves
constructing a surrogate model that approximates the behavior
of the original ADS. This surrogate model is trained using
PAC learning techniques, which provide a probabilistic guar-
antee of its performance. By analyzing the surrogate model,
we can assess the safety properties of the original ADS with a
certain level of confidence. On the other hand, PAC safety is a
statistical method that directly analyzes the sample behaviors of
the ADS. This approach involves collecting a set of sample be-
haviors and performing statistical analysis to evaluate the safety
properties. While this method does not rely on a surrogate
model, it still provides insights into the safety performance of
the ADS.

https://doi.org/10.1017/cbp.2024.7 Published online by Cambridge University Press

https://doi.org/10.1017/cbp.2024.7

Accepted Manuscript

Cambridge Large One 5

sampling old samples

learn & verify

incremental sampling
C.surrogateB. deviatedA.uniform

update dateset

space dividingexplanation

iterations

output
PAC - model safe
PAC safe
Unsafe

Surroagte models
SHAP & exploration
(Adversarial examples)

+

ADSScenario Property
input

Figure 2. The verification framework. We learn a surrogate model and
verify the property on it. The surrogate model is iteratively refined by
incremental sampling. The whole procedure is recursive by dividing
the configuration space.

PAC-model safety. We use a surrogate model f to approxi-
mate the original fitness function ρ. An illustrative example is
in Figure 3 for assisting the following discussion. By extract-
ing K samples in Θ, solving the absolute distance λ between
the surrogate model f and the original fitness function ρ can
be reduced to the optimization problem (3). As stated in Sec-
tion 2.3, when there are sufficient samples, i.e., Equation (4)
holds, the optimal absolute distance λ∗ we obtain satisfies the
PAC guarantee P(|f (θ) – ρ(θ)| > λ∗) ≤ ϵ with confidence
at least 1 – η. Intuitively, the PAC model f can effectively
approximate the fitness function ρ by given enough samples.
The surrogate model in this paper adopts an FNN with the
ReLU activation function, whose well-defined mathematical
structure with piecewise linearity allows it to be effectively
verified within a certain model size. Meanwhile, compared to
simpler models (e.g. affine function), it is more expressive to
model the nonlinearity characteristics of the fitness function.

Once obtaining the absolute distance evaluation λ∗, we
can utilize neural network verification tools such as Deep-
Poly (Singh et al. 2019) and MILP (Dutta et al. 2019) to deter-
mine whether it holds that

∀θ ∈ Θ f (θ) – λ∗ ≥ τ. (6)

Here, f (θ) – λ∗ serves as a probabilistic lower bound of the
fitness function ρ of the original model, and τ represents the
threshold for safety requirements. By verifying that Equa-
tion (6) holds, we can conclude that the ADS satisfies PAC-
model safety with an error rate of ϵ and a significance level
of η. This verification process allows us to ensure that the
ADS meets the required safety standards and provides a level
of confidence in its performance.

PAC-model safety refers to the existence of a PAC model f
as the surrogate model that, when combined with the induced
probability lower bound from the absolute distance estimation
λ∗, still guarantees safety. In other words, if we can construct
a PAC model and verify the system’s safety using this model

: min distanceω

τ

ρ (θ)

f (θ) λ*

Figure 3. We show the fitness function ρ and the learned surrogate
model f w.r.t. θ1 (NPC’s initial velocity), by fixing other parame-
ters. Here, ρ is bounded by f ± λ∗ with PAC guarantee. Note that
there exist velocity values that makes the lower bound smaller than
threshold τ (at bottom right corner), which violates Equation (6), i.e.
the ADS may break the collision free property.

and the probability lower bound from the margin, we can
trust that the system will also be safe in practical operation. By
using PAC-model safety, we can validate and test autonomous
driving systems in practical scenarios to ensure their safety
under various conditions. This approach helps us better under-
stand and assess the performance and reliability of autonomous
driving systems, providing guidance for further improvement
and optimization of the system.

PAC safety. If there is no sample in Θsample that violates the
safety property, i.e. ρ(θ) ≥ τ for all θ ∈ Θsample, but the
probabilistic lower bound f (θ) – λ∗ proves unsafe on Θ, we
may further lower the requirements and say that it satisfies a
weaker property — PAC safety, i.e. P(ρ(θ) ≥ τ) ≥ 1 – ϵ with
confidence at least 1 – η.

PAC safety is an statistical relaxation and extension of
the strict safety. Compared to PAC-model safety, it is much
weaker since it essentially only focuses on the input samples
but mostly ignores the behavioral nature of the original model.
For a detailed comparison, please refer to Section 2 & 5 of (R.
Li et al. 2022). Here we infer PAC safety instantly via the
samples used in the verification for PAC-model safety, since by
Lemma 1, the number of the samples is sufficient for estimating
a constant lower bound of ρ(θ) (Anderson and Sojoudi 2023).

3.3 Surrogate model learning
As mentioned above, we adopt model learning to approxi-
mate, with the PAC guarantee in Lemma 1, the original fitness
function ρ. The effectiveness of the verification procedure
relies heavily on the precision of the surrogate model, which
is indicated by the absolute distance evaluation λ∗. To obtain
a small λ∗, the surrogate model is trained iteratively. After
each training iteration, we calculate λ∗ and verify whether it is
PAC-model safe at this stage. If not, it means that the surrogate
model f is not sufficiently trained, and we need to perform
incremental sampling to improve its accuracy. We propose
the following three methods for incremental sampling:

• Uniform Sampling: In order to improve the diversity of the

https://doi.org/10.1017/cbp.2024.7 Published online by Cambridge University Press

https://doi.org/10.1017/cbp.2024.7

Accepted Manuscript

6 Renjue Li et al.

database, we sample extra configurations uniformly. These
new configurations (denoted by Θincu) are randomly se-
lected from the configuration space Θ, following a uniform
distribution. This helps to explore undiscovered areas of the
configuration space.

• Deviated Sampling: We examine the predictions of the cur-
rent surrogate model and identify the configurations with
the most deviated predictions, indicating the areas where
the surrogate model is most inaccurate. We then sample
additional configurations (denoted by Θincd

) in the neigh-
bourhood of these deviated samples (denoted by Θdevi) to
refine the learned model. The size of such neibourhood is
bounded by a constant a. In our settings, we sample one
additional sample near each deviated configuration θdevi
uniformly from the interval (θdevi – a, θdevi + a).

• Surrogate-Assisted Sampling: We can exploit the surrogate
model to generate extreme configurations that potentially
maximize or minimize the predictions. These extreme con-
figurations (denoted byΘsa) are more likely to be over-fitted
or adversarial examples. We achieve this by utilizing adver-
sarial attacks like PGD (Goodfellow, Shlens, and Szegedy
2015). We generate the extreme configurations using the
PGD attack for both optimization directions (maximiza-
tion and minimization). The generated configurations are
obtained by perturbing the original configurations in the di-
rection that maximizes or minimizes the surrogate model’s
predictions.

The configurations obtained through incremental sam-
pling are added to the current training set, and the surrogate
model is re-trained in the next iteration. If PAC-model safety
is not proven after a certain number of iterations, it indicates
that incremental sampling alone cannot significantly improve
the accuracy of the surrogate model f . In such cases, we em-
ploy a strategy of splitting the configuration space Θ, and the
verification procedure will proceed along different branches.

3.4 Explanation based branching
When the surrogate model is not precise enough or adversarial
examples have been found, the ADS can not prove PAC-model
safe. In such situations, we employ a strategy of splitting the
configuration space into smaller blocks to refine our surro-
gate model and improve the verification results. To determine
the branching parameter for the splitting, we utilize explana-
tion methods. Explanation methods are techniques that can
quantify the importance of different parameters for a specific
prediction. They provide insights into which parameters have
the most significant influence on the predictions and help us
understand the underlying relationships between parameters
and output predictions. By analyzing the explanation results,
we can gain a better understanding of the critical factors that
affect the safety of the ADS.

In our implementation, we utilize the SHAP values (Lund-
berg and Lee 2017) as the explanation tool. SHAP values
provide a measure of the contribution of each input feature
to the output of a model. In our case, the scenario configu-
rations in our settings are relatively low-dimensional, which

Algorithm 1 QUANTIVA
Require: fitness functionρ, configuration space Θ, sample legacyΘ,

error rate ϵ, significance level η, safety threshold τ, max refine
iterations niter, and max branching depth d.

Ensure: set of pairs (Θj, Pj), with Pj ∈ {SafePM, SafeP, Unsafe} in-
dicating the safety level satisfied in each configuration space Θj.

1: function VERIFY(Θ,Θ, d; ρ, ϵ, η, τ, niter)
2: Sampling Θ0 ⊂ Θ
3: Θ← Θ ∪ Θ0
4: for iter in {1 . . . niter} do
5: f ← DNNTraining({(θ, ρ(θ))}θ∈Θ)
6: Sampling Θsample ⊂ Θ ▷ |Θsample| = K satisfies Eq. (4)
7: λ∗ ← the solution of the optimization problem (3)
8: if ∀θ ∈ Θ f (θ) – λ∗ ≥ τ then ▷ DeepPoly and MILP
9: return {(Θ, SafePM)} ▷ PAC-model safe

10: else if iter < niter then
11: Θincu ,Θincd ,Θsa ← Incremental sampling on Θ
12: Θ← Θ ∪ Θincu ∪ Θincd ∪ Θsa

13: if d > 0 then
14: Calculate SHAP values SVi (i = 1, . . . , m)
15: i∗ ← arg maxi

∑
θ∈Θ

∣∣SVi(θ)
∣∣

16: Θ′, Θ′′← Bisecti∗ (Θ)
17: Θ′ ← Θ ∩ Θ′, Θ′′ ← Θ ∩ Θ′′

18: return VERIFY(Θ′,Θ′, d – 1) ∪ VERIFY(Θ′′,Θ′′, d – 1)
19: if No adversarial examples found in Θ then
20: return {(Θ, SafeP)} ▷ PAC safe
21: else
22: return {(Θ, Unsafe)} ▷ Unsafe

makes SHAP values a suitable choice for feature importance
analysis. The SHAP values, denoted as SVi(θ) (i = 1, 2, . . . , m),
represent the contribution of the i-th entry in the input con-
figuration θ. By calculating the absolute mean of the SHAP
values over the samples, we can determine the most important
parameter, denoted as i∗, which has the highest absolute mean
of SHAP values:

i∗ = arg max
i

∑
θ∈Θ

|SVi(θ)|.

Then we accordingly bisect the current configuration space
Θ, denoted by Bisecti∗ (Θ), into two sub-spaces Θ′ and Θ′′ by
evenly splitting the range of the i∗-th entry.

This bisection process allows us to focus on refining the
surrogate model in specific regions of the configuration space
that are deemed to be more critical for safety. By iteratively
refining the model and exploring different branches, we can
improve the accuracy of the surrogate model in those areas,
ultimately enhancing the precision of the verification proce-
dure.

3.5 Main algorithm
We name our verification method QUANTIVA. We present the
main algorithm of QUANTIVA in Algorithm 1. Given a safety
property ρ(θ) ≥ τwith the configuration space Θ, we maintain
a sample set Θ ⊂ Θ as the sample legacy for surrogate model
learning. At the beginning, we ensure that Θ has sufficient

https://doi.org/10.1017/cbp.2024.7 Published online by Cambridge University Press

https://doi.org/10.1017/cbp.2024.7

Accepted Manuscript

Cambridge Large One 7

samples by sampling a configuration set Θ0 and add it to Θ
(Line 2–3).

Now we start the iterative surrogate model learning. In
each iteration, we first learn an FNN f with the current setΘ of
samples (Line 5), and evaluate the absolute distance evaluation
λ∗ with the PAC guarantee (Line 6–7). If PAC-model safety is
proved, the algorithm terminates and return the result (Line 8–
9), or otherwise it executes incremental sampling introduced
in Section 3.3 and adds these samples to Θ for the next learning
iteration, until the number of iterations reaches a threshold
niter (Line 10–12).

Throughout the iterative surrogate model learning, we
cannot prove PAC-model safety, so we have to split the current
configuration space Θ if the current branching depth d is still
not 0. We calculate the mean absolute SHAP values of each
input dimension and choose the one with the largest to bisect
Θ into two sub-spaces Θ′ and Θ′′ (Line 13–16). Now we divide
the verification problem into two branches, and the output
of this verification procedure is the union of the verification
results of these two branches, initialized with the configura-
tion space Θ′ and Θ′′, the sample legacy Θ ∩ Θ′ and Θ ∩ Θ′′,
respectively, and the max branching depth both d – 1 (Line
17–18). For the branches where PAC-model safety cannot be
proved and the max branching depth d = 0, we output the
current verification result (Line 19–22).

The output of Algorithm 1 is a set of pairs (Θj, Pj) which
indicates the safety level on each block. The blocks with the
verification result NOT PAC-model safe must be in the branch-
ing depth d = 0, so these potentially risky sub-spaces are the
most fine-grained. That is to say, our verification of a safety
property on a set of parametric scenarios is not simply a binary
answer of being safe or not, but a detailed analysis report on
which sub-spaces are highly likely to be safe (PAC-model safe),
which have potential risks (PAC safe), and which are indeed
unsafe with counterexamples (unsafe). These potentially risky
blocks are small enough so that we may find valuable insights
in why they are risky and how we improve them.

3.6 Configuration space exploration
Since an ADS is a complex combination of many components
and algorithms, it is hard for them to behave safely in the
whole configuration space. When the verification result is
not PAC-model safe, it is meaningful to further analyse the
relationship between the unsafe behavior and the parameters,
which will provide an important reference for improving the
system. Thus, based on the parameters we care about, which
we call the associated parameters, we divide the configuration
space into cells, and in a quantitative way, an indicator ρ ∈
[0, +∞) can be computed to express how unsafe the model is
within each cell.

With two associated parameters θ1 ∈ [a1, b1] and θ2 ∈
[a2, b2], we can evenly split the two-dimensional parameter
space into an l-by-l grid where each rectangle has the size
b1–a1

l × b2–a2
l . Namely, the whole configuration space is divided

into l2 cells, denoted by Θ =
⋃

i,j=0,...,l–1 Θi,j.

For a cell Θi,j, we define the quantitative unsafe indicator

ρi,j := min{δ ≥ 0 | ∀θ ∈ Θi,j f (θ) – λ ≥ τ – δ}.

The quantitative unsafe indicator ρi,j can be computed by
MILP. Intuitively, each τ–ρi,j indicates the maximal threshold
such that the surrogate model is safe with all θ ∈ Θi,j. The
region Θsafe =

⋃
ρi,j=0 Θi,j is an under-approximation of the

configuration region where the surrogate is safe, and a larger
ρi,j implies that the ADS is more prone to unsafe behavior in
such scenarios within the corresponding configuration region.
In this work, we focus on the analysis for pairs of two associated
parameters since the results can be easily visualised by heat
map. It is straightforward to generalise this analysis to more
associated parameters.

4. Experiments
In this section, we evaluate QUANTIVA with the state-of-the-
art autonomous driving system Interfuser (Shao et al. 2023) 1.
We report the experiment results for answering the following
five research questions.

RQ1: Can QUANTIVA effectively quantify the safety of an
ADS in critical scenarios?

RQ2: Can QUANTIVA reveal abnormal behaviors of an ADS?
RQ3: What are the insights from the explanations by QUAN-

TIVA?
RQ4: What is efficiency and scalability of QUANTIVA?
RQ5: What is the relation between QUANTIVA safety verifi-

cation and existing testing approach for autonomous
driving?

4.1 Setup
QUANTIVA is implemented based on python 3.7.8 with Gurobi
(Gurobi Optimization, LLC 2023) as the MILP solver. We
use CARLA 0.9.10.1 to run Interfuser and build our traffic
scenarios. All the experiments are conducted on two servers
with AMD EYPC 7543 CPU, 128G RAM and 4 Nvidia RTX
3090. The detailed settings of our experiments are described
as follows.

Safety requirement. Here, we consider the safety property
of collision free. Note that it is relevant more complex among
kinds of safety properties aforementioned, since it usually in-
volves the relationship of more than one agents. We require a
safe road distance (0.2 m) between the ego and the NPCs in
various scenarios. Namely, we define the fitness function ρ(θ)
as the minimum distance between the ego and the NPCs at
every step of the simulations and require ρ(θ) ≥ 0.2 to hold.

Scenarios & parameters. By Scenario Runner, we build five
traffic scenarios for the property, shown in Figure 1 and Fig-
ure 4. Four of them have two variants each at different loca-
tions, labelled with “Case #1” and “Case #2”. These scenarios

1. Interfuser is ranked the 1st place in the CARLA Learderboard. We use
the examplery pretrained weights released by the authors.

https://doi.org/10.1017/cbp.2024.7 Published online by Cambridge University Press

https://doi.org/10.1017/cbp.2024.7

Accepted Manuscript

8 Renjue Li et al.

Scenario (v)

velocity

Scenario (ii)

Scenario (iii)

trigger distance

velocitytrigger distance

trigger distance

velocity

distancevelocity

trigger distance

Scenario (iv)

Figure 4. (ii) Follow Pedestrian: The ego car keeps a safe distance with the pedestrian in front. (iii) Cut-in with Obstacle: An NPC car in front of a
van tries to cut into the road where the ego car drives along. (iv) Pedestrian Crossing: A pedestrian crosses the road while the ego car enters
the junction. (v) Through Redlight: The ego car encounters a NPC car running the red light when crossing the junctions.

are based on key scenarios mentioned in industry standards (H.
Sun et al. 2022) and government documents (NHTSA 2007).
There are totally 12 parameters to determine the scenarios:
besides the parameters as detailed in Table 1, there are also
8 weather parameters in each scenario, including cloudness,
fog density, precipitation, precipitation deposits, sun altitude
angle, sun azimuth angle, wetness and wind intensity.

Table 1. The physical value corresponding to the range of parameters
in the safety property for each scenario.

velocity trig-dist init-dist brakeScenario Case
m/s m m [0, 1]

#1Emergency Braking
#2

2 ∼ 2.5 15 ∼ 20 15 ∼ 20 0.5 ∼ 1

#1Follow Pedstrain
#2

1 ∼ 2 15 ∼ 20 15 ∼ 20 —

#1 13 ∼ 15Cut-in with Obstacle
#2

4 ∼ 5
15 ∼ 17

15 ∼ 20 —

#1 2 ∼ 3 11 ∼ 15Pedestrian Crossing
#2 1 ∼ 2 8 ∼ 10

— —

Through Redlight #1 5.5 ∼ 6.5 15 ∼ 20 15 ∼ 20 —

Simulation We set CARLA to the synchronous mode when
conducting our scenario simulation. The time step we set is
0.05 seconds (each simulation step will forward the simulation
0.05 seconds). We build route scenarios defined by the Scenario
Runner. These scenarios spawn the ego vehicle at a given spot
and instruct the vehicle to reach a pre-defined position. The
termination of such route scenario is either the autonomous
vehicle reaching the goal or a time-out triggered. In our
experiments, the time-out is set as 10 minutes.

QUANTIVASettings For each scenario, an initial sample database
was given before running QUANTIVA. The total number re-
quirement of initial samples is 1000 in our experiments. We
add extra samples if the given database doesn’t meet the re-
quirement. The surrogate model is a 2-layer FNN with 50

neurons in each hidden layer. The error rate ϵ and the signifi-
cance level η of the model are 0.01 and 0.001 respectively. The
model is trained in 6 iterations of refinement by increasing
80 uniform samples, 10 surrogate-assisted samples (5 for each
direction) and 20 deviated samples after each iteration. The
initial max branching depth is set as d = 2.

4.2 Verification Results
We first apply QUANTIVA to evaluate the safety property on
the five traffic scenarios. We start the verification on the whole
configuration space and then branching the space according
to the SHAP value. The execution paths of the verification
form a tree, each of whose node corresponds to a configuration
(sub)space that needs to be verified. The result is depicted in
Fig. 5, in which we additionally record the absolute differ-
ence evaluation λ of the model and the number of adversarial
examples found in the verification procedure.

The verification shows that the ADS is PAC-model/PAC
safe in the scenarios (i) Emergency Braking, (ii) Follow Pedes-
trian and (iv.2) Pedestrian Crossing #2: It is verified to be PAC-
model safe in the scenarios (i.2) & (ii.2) with the whole config-
uration space; Especially, it further satisfies PAC-model safe in
the scenarios (i.1) & (ii.1) with the sub-spaces of SUN-ALT ≥
0.5 and SUN-ALT ≥ 0.5 ∧ VELOCITY ≤ 0.5, respectively.
In the rest scenarios, the ADS is verified to be unsafe since
adversarial examples are found in the verification procedure.
We also find it seems to be more dangerous in the scenarios
(iii.1) Cut-in #1 & (v.1) Through Redlight, where the number
of adversarial examples is enormous.

Note that we utilize the SHAP values to guide the branch-
ing in QUANTIVA. The branching can help to reduce the
absolute distance λ∗ between the surrogate model and the
ground truth. For instance, in scenario (i.1) Emergency Brak-
ing #1, the distance decreases from 8.21 to 1.32 after branch-
ing on the condition SUN-ALT ≥ 0.5. As mentioned before,
we can infer stronger safe property under smaller distance.
Moreover, such branching can divide the configuration space
into sub-spaces with different safety levels. In the scenario
(iv.1) Pedestrian Crossing #1, it is branched into two sub-
spaces containing 591/2933 and 144/2933 adversarial samples,

https://doi.org/10.1017/cbp.2024.7 Published online by Cambridge University Press

https://doi.org/10.1017/cbp.2024.7

Accepted Manuscript

Cambridge Large One 9

PAC-model safe unsafePAC safe

i.1 Emergency Braking i.2 Emergency Braking ii.1 Follow Pedestrian

ii.2 Follow Pedestrian

v.1 Through Redlight

iii.2 Cut-in with Obstacle

iv.1 Pedestrian Crossing iv.2 Pedestrian Crossing

iii.1 Cut-in with Obstacle

SUN-ALT

0 0.5 1

0 (9.74) 0 (1.32)

0 (8.21)ALL

INIT-DIST
0 (9.53) 0 (10.38)

0 0.5 1

0 (0.95)ALL

VELOCITY

0 0.5 1

2853 (5.23) 2483 (5.68)

2960 (5.23)ALL

SUN-ALT
2785 (5.23) 2929 (5.68)

0 0.5 1

TRIG-DIST
2762 (5.67) 2184 (1.90)

0 0.5 1

FOG-DENS

0 0.5 1

591 (4.44) 144 (2.42)

374 (4.25)ALL

SUN-ALT
172 (2.79) 943 (4.67)

0 0.5 1

PREC-DEP
8 (2.24) 227 (2.49)

0 0.5 1

VELOCITY

0 0.5 1

0 (13.64) 0 (20.90)

0 (20.58)ALL

PREC-DEP
0 (5.76) 0 (13.43)

TRIG-DIST
0 (19.11) 0 (20.66)

0 0.5 1 0 0.5 1

0 1

0 1

0 1

0 1

0 (1.26)ALL
0 1

TRIG-DIST

0 0.5 1

931 (2.51) 199 (2.21)

607 (2.22)ALL

SUN-ALT
467 (2.23) 1441 (0.51)

0 0.5 1

VELOCITY
375 (2.24) 1 (1.65)

0 0.5 1

0 1

TRIG-DIST

0 0.5 1

1748 (8.84) 1223 (6.82)

1731 (10.11)ALL

INIT-DIST
2143 (9.20) 1294 (9.10)

0 0.5 1

INIT-DIST
515 (16.74) 1926 (7.31)

0 0.5 1

0 1

SUN-ALT

0 0.5 1

0 (12.94) 0 (4.89)

0 (8.90)ALL

TRIG-DIST
0 (12.03) 0 (12.93)

VELOCITY
0 (2.60) 0 (4.82)

0 0.5 1 0 0.5 1

0 1

0 1

Figure 5. Verification result for each scenario formed as a tree according to the branching paths. Each λ and #adv indicate the absolute distance
between the surrogate model and the fitness function and the number of the adversarial examples found in such (sub)space, respectively.

respectively. It is evident that the second sub-space is safer
than the first one.

Answer RQ1: QUANTIVA adeptly identifies safe scenarios
and validates safety properties across varying levels. It
proficiently discerns the safer subspace from the hazardous
counterpart.

4.3 Abnormal Behaviors
From the verification results, we have observed that the abso-
lute distance λ is anomalously large in some scenarios. Such
occurrences prompt us to review these scenarios and analyze
the behavior of the ADS. We have successfully identified out-
liers in the samples and traced some abnormal behaviors of
Interfuser.

• Unexpected Stop: The autonomous vehicle halts in the middle
of the road, which occurs in scenarios (i.1) Emergency Brak-
ing #1, (ii.1) Follow Pedestrian #1, and (iv.2) Pedestrian
Crossing #2.

• Repetitive Braking: The autonomous vehicle repeatedly brakes
immediately after moving forward. This occurs in scenario
(iv.2) Pedestrian Crossing #2.

These abnormal behaviors violate the logic of normal driv-
ing, making the behavior of autonomous vehicles more difficult
to predict, and consequently increase the absolute distance be-
tween the surrogate model and the ground truth. We closely
scrutinize the intermediate output of Interfuser in these abnor-
mal scenarios and identify the root causes of these behaviors:

• Crude Redlight Logic: Interfuser halts the vehicle immedi-
ately if it senses a red light, even if the vehicle is unreason-
ably far from the junction. This is because Interfuser cannot
accurately predict the distance between the vehicle and the

junction. As a result, unexpected stops occur in scenarios657

(i.1) Emergency Braking #1 and (ii.1) Follow Pedestrian #1.
• Mistaken Detection: Interfuser can produce mistaken de-

tections of traffic lights, leading to incorrect decisions. In
scenario (iv.2) Pedestrian Crossing #2, it detects a nonexis-
tent red light and triggers braking. Coupled with the crude
redlight logic, this causes the vehicle to stop in the middle
of the road.

• Redundant Stopline Response: Interfuser can detect the sto-
pline multiple times and engage in unnecessary braking.
This triggers the repetitive braking in scenario (iv.2) Pedes-
trian Crossing #2.

It is difficult to detect these underlying defects through test-
ing since they actually make the ADS more conservative and,
as a result, appear to be more “safe”. QUANTIVA proposes a
surrogate model and further evaluates the absolute distance
λ∗ between the surrogate model and the ground truth, where
a large distance indicates a poorly learned model. Since the
traffic scenarios we verify belong to the same category, the
operation and outcome of an ADS should be similar and can
be learned easily. Such a poorly learned model becomes an
indicator of abnormal behavior in the ADS.

Answer RQ2: QUANTIVA facilitates the revelation of be-
havioral discrepancies within the ADS. The absolute dis-
tance between the surrogate model and the ground truth
serves as an indicator of such abnormal behavior.

4.4 Insights from explanation
The SHAP values of the top-3 important parameters for each
scenario are visualised in Figure 6, from which we can get
more explanations about the ADS as well as our verification
results. The pattern of SHAP values for most parameters is

https://doi.org/10.1017/cbp.2024.7 Published online by Cambridge University Press

https://doi.org/10.1017/cbp.2024.7

Accepted Manuscript

10 Renjue Li et al.

SUN-ALT

INIT-DIST

TRIG-DIST

INIT-DIST

SUN-ALT

PREC-DEP

SUN-ALT

TRIG-DIST

VELOCITY

VELOCITY

INIT-DIST

CLOUD

VELOCITY

TRIG-DIST

SUN-ALT

TRIG-DIST

VELOCITY

SUN-ALT

FOG-DENS

PREC-DEP

SUN-ALT

VELOCITY

SUN-ALT

TRIG-DIST

TRIG-DIST

INIT-DIST

SUN-ALT

Feature value

0.0

1.0

i.1 Emergency Braking i.2 Emergency Braking ii.1 Follow Pedestrian

ii.2 Follow Pedestrian #2

v.1 Through Redlight

iii.2 Cut-in with Obstacle

iv.1 Pedestrian Crossing iv.2 Pedestrian Crossing

iii.1 Cut-in with Obstacle
SHAP value SHAP value SHAP value

SHAP value SHAP value SHAP value

SHAP value SHAP value SHAP value

Figure 6. The visualisation of SHAP values for the surrogate model learned for the whole configuration space in each scenario (i.e. corresponding
to the root of each tree in the verification results).

FOG-DENS

PREC-DEP

0

0.25

0.25

0.5

0.5

0.75

0.75

1

1

FOG-DENS

SUN-ALT

0

0.25

0.25

0.5

0.5

0.75

0.75

1

1

SUN-ALT

PREC-DEP

0

0.25

0.25

0.5

0.5

0.75

0.75

1

1

FOG-DENS

PREC-DEP

0.5
0.25

0.75

0.5 0.75

1

1

S U B S A P C E
FOG-DENS

[0.5 , 1]

0

0.5

1.0

1.5

2.0

2.5

0.0
0 0

（a） （b） （c） （d）

Figure 7. By heatmap, the results of parameter space exploration
are illustrated for the Pedestrian Crossing #1. The grid marked with
brighter color implies that the ADS is more likely to violate the safety
property with the parameters in it.

spindle-shaped. This situation can be roughly understood as
the influence of the parameters on the fitness function is close
to a normal distribution, which is reasonable and common.
However, we note that effect of a small number of parameters
presents a bimodal shape showing two peaks concurrently at
where SHAP values are positive and negative. For example, we
consider the sun altitude angle (SUN-ALT) in #1 of scenario
(i), whose shap implies its influence on the fitness function is
polarized, either extreme positive or extreme negative. Here
we can draw two insights: (1) we might be able to obtained
more accurate sub-models if we divide the configuration space
at this parameter. In fact, our verification results confirmed this.
(2) We find a negative correlation of SUN-ALT with the value
of the fitness function, which implies that the safe distance is
more likely to be violated during the day, but satisfied at night—
this counter-intuitive phenomenon may point to incorrect
behavior or potential flaws of the ADS (see Section 4.3 for
detailed analysis).

As described above, we obtain explanations from the SHAP
values. For more insights, the exploration of the configuration
space is further conducted. For the scenario of pedestrian
crossing #1, we focus on three associated parameters FOG-
DENS, PREC-DEP, and SUN-ALT, which are the top-3
important parameters according to the SHAP values. The
analysis result is illustrated in Figure 7.

From the figure (a) and (b), we find that the ADS is more
likely to violate the safe distance when FOG-DENS is small.
Similarly, from the figure (c), we also find that the large SUN-

ALT may lead to unsafe behavior. These two conclusions are
counter-intuitive, but consistent with the verification results
(see the number of the adversarial examples in iv.1 of Figure 5).
The underlying reason may be that the decision-making of
the ADS in foggy weather is more conservative, as well as in
dark environments.

The figure (d) demonstrates the exploration result in the
sub-space of FOG-DENS ≥ 0.5, from which we find that the
safety of ADS is almost independent of FOG-DENS but highly
negatively correlated with PREC-DEP. It is also consistent
with the verification results — 8 versus 227 adversarial examples
in the two rightmost leaf nodes of the corresponding tree in
Fig 5. More interestingly, the figure (d) exhibits a completely
different pattern than that in the whole configuration space,
i.e. the figure (a). It implies that the behavior of the ADS in
different configuration sub-spaces may vary greatly, which
further illustrates the necessity of dividing the space during
surrogate model learning.

Answer RQ3: The embedded SHAP value within QUAN-
TIVA can be harnessed to yield deeper insights into ADS
behavior in specific scenarios. Also, exploring the config-
uration space can provide further quantitative analysis of
safety properties.

4.5 Efficiency
We investigate the efficiency of QUANTIVA in this section. We
measure the time consumed by different phases of QUANTIVA
individually and list the times in Table 2. It is evident that
the sampling process accounts for a significant proportion
of the total time. In our experiments, the average sampling
time across all scenarios is 389.68 hours, which takes about
99.98% of the total average time. This demonstrates that the
learning, verification, and explanation of the surrogate model
are relatively lightweight compared to the sampling process.
Considering that extensive sampling effort is also unavoid-
able in testing approaches, combining QUANTIVA with testing
shows promise. For instance, testing approaches can generate
additional samples for training the surrogate model in verifica-

https://doi.org/10.1017/cbp.2024.7 Published online by Cambridge University Press

https://doi.org/10.1017/cbp.2024.7

Accepted Manuscript

Cambridge Large One 11

tion. Meanwhile, QUANTIVA can serve as a criterion to assess
whether the tested scenario is safe enough and can be skipped.

We also record the time taken by three incremental sam-
pling approaches, namely uniform, deviated, and surrogate-
assisted sampling. The average time to sample by these ap-
proaches is 2.34, 2.51, and 2.43 minutes, respectively. Com-
pared to uniform sampling, the deviated and surrogate-assisted
sampling do not require significantly more time, but obtain
the configurations where the surrogate model is potentially
under-fitting. As a result, these two strategies can efficiently
improve the accuracy of our surrogate model.

Answer RQ4: Learning, verification, and explanation in
QUANTIVA are remarkably lightweight. The predominant
time consumption arises from inevitable sampling, prompt-
ing us to consider synergizing QUANTIVA with testing
approaches.

4.6 Testing
We have verified that the scenarios (i) Emergency Braking,
and (ii) Follow Pedestrian are at least PAC safe. To validate
our findings, we try to evaluate the safety in these scenarios
by genetic algorithms. Genetic algorithms are widely used in
prior ADS testing methods (H. Tian et al. 2022; Haq, Shin, and
Briand 2022). We implement a genetic algorithm tester with
uniform crossover and elitism. We mutate the parameters with
probability 0.2 and save top 10% configurations for elitism.
The size of the population is 100. The time budget of the
genetic algorithm is 14 days. We report the testing results in
Table. 3.

The testing results report no adversarial example in the
scenarios where the ADS is verified to be PAC-model safe. For
the scenarios (i.1) and (ii.1), there is also no adversarial example
found in the former, but 6 in the latter. Note that the sampling
in genetic algorithm is not uniform, but tends to search for
the samples that violate the safety property, which somehow
implies the rate of the parameters causing unsafe behavior
in scenarios (ii.1) is indeed less than 6

3150 , this confirms the
correctness of the PAC safety (with ϵ = 0.01) we have verified
in this scenarios.

Furthermore, by checking these adversarial examples, we
observe that none of them belongs to the configuration sub-
space (SUN-ALT ≥ 0.5 ∧ VELOCITY ≤ 0.5) verified to be
PAC-model safe (recall Figure 5). This situation is consistent
with our verification results, and shows that PAC-model safety
is indeed a higher-level safety property compared to PAC
safety.

Answer RQ5: The safety guarantee endorsed by QUAN-
TIVA aligns with the genetic testing outcomes, thereby
underscoring the promising potential of integrating QUAN-
TIVA with testing approaches.

J i tt e r

Figure 8. A comprehensive scenario under more complex traffic situ-
ations, which involves various traffic participants and intermittent
jitters of the ego vehicle.

4.7 Case study on comprehensive scenario
In previous experiments, the scenarios we used were derived
from critical situations outlined in standards or documentation.
These scenarios were typically highly abstract and focused on
isolated elements, meaning they involved fewer traffic compo-
nents. In this case study, we utilize a comprehensive scenario
with more complex traffic situations to demonstrate the per-
formance of our verification framework in a denser and more
intricate environment.

As shown in Figure 8, we created a multi-lane scenario
with heavy traffic. This scenario includes two pedestrians walk-
ing on the sidewalk, two vehicles, and a motorcycle driving
near the ego vehicle. Additionally, a vehicle in front of the ego
vehicle is changing lanes to the left. The two vehicles and the
motorcycle are controlled by an autonomous system with a
“god view” (i.e., it has access to map-level information such as
the positions of surrounding vehicles). Meanwhile, the control
of the tested vehicle is subject to intermittent jitters, affecting
both the throttle and steering. In addition to the parameters
aforementioned, such as the distance between the two vehi-
cles and the speed of the NPCs, this scenario also includes the
magnitude of the jitters, with throttle variations ranging from
0% to 40% and steering disturbances ranging from –10% to
10%.

In this more complex scenario, the sampling time increased
compared to simpler ones, with the average time per sample ris-
ing approximately from 2 minutes to 3 minutes. This increase
is due to the larger number of scene elements and more intri-
cate behaviors, resulting in a longer overall verification process.
However, the rise in complexity is not exponential, and no
dimensionality explosion occurs. QUANTIVA remains efficient
in evaluating the safety of the scenario through sampling.

Moreover, even in this more challenging setting, the neural
network-based surrogate model successfully approximated
the behavior of the autonomous system under test. Using
this surrogate model, our incremental sampling algorithm
identified 43 corner cases. Shapley value-based interpretability
analysis revealed that the most critical factor affecting safety
was the distance to the lane-changing vehicle, followed by its
speed. Finally, despite the increased complexity of the scenario,
the verification algorithm we designed—based on DeepPoly
and MILP—maintained high verification efficiency without a
significant increase in the size of the surrogate model.

https://doi.org/10.1017/cbp.2024.7 Published online by Cambridge University Press

https://doi.org/10.1017/cbp.2024.7

Accepted Manuscript

12 Renjue Li et al.

Table 2. The time consumed of each phase of the verification procedures.

Sampling

incrementalScenario
initial optimize

uniform deviated surrogate
total

Learn Verify SHAP Total

i.1 377838.94 795687.08 391878.46 103872.17 47061.29 1716337.94 90.71 8.50 119.38 1716556.53

i.2 153365.43 224824.01 0.00 0.00 0.00 378189.44 4.21 0.02 20.40 378214.07

ii.1 329266.30 904956.81 541916.57 146182.50 68376.64 1990698.82 168.73 8.50 185.81 1991061.86

ii.2 104927.12 151496.73 0.00 0.00 0.00 256423.85 4.29 0.02 20.93 256449.09

iii.1 327501.87 795209.55 409222.02 111062.20 54384.85 1697380.49 149.97 0.47 182.74 1697713.67

iii.2 314058.34 754401.42 389422.67 102686.55 47765.1 1608334.08 149.79 0.91 183.23 1608668.01

iv.1 269046.44 636166.72 322352.46 85421.28 42558.31 1355545.21 149.04 1.09 90.67 1355786.01

iv.2 359536.42 854357.44 439464.16 127608.07 61794.90 1842760.99 152.81 6.82 87.02 1843007.64

v.1 359426.40 829509.75 426371.19 107796.82 57014.79 1780118.95 164.28 0.52 198.80 1780482.55

AVG 80.09 (h) 183.54 (h) 90.14 (h) 24.22 (h) 11.70 (h) 389.68 (h) 114.87 2.98 120.89 389.75 (h)

Table 3. The testing results for the scenario i and ii, where we show
the number of generations, the minimum population fitness, and
the number of the adversarial examples found in the genetic testing.

Scenario Safety Rounds minρ(θ) #Adv. / All

i.1 PAC 45 1.972 0/4140

i.2 PAC-model 50 1.871 0/4590

ii.1 PAC 34 0.019 6/3150

ii.2 PAC-model 71 2.483 0/6480

5. Related Work

We discuss more results on testing, verification and probabilis-
tic approaches. Search-based testing is studied in (Dreossi et
al. 2019; Y. Sun et al. 2022; Zhong, Kaiser, and Ray 2023;
Abdessalem, Nejati, et al. 2018; Arcaini, Zhang, and Ishikawa
2021; Calò et al. 2020; Borg et al. 2021; Gambi, Mueller,
and Fraser 2019; Gambi, Müller, and Fraser 2019; H. Tian et
al. 2022; Haq, Shin, and Briand 2022; Abdessalem, Panichella,
et al. 2018; Klück et al. 2019; G. Li et al. 2020; Arcaini, Zhang,
and Ishikawa 2021; Gladisch et al. 2019; Ishikawa 2020; Luo et
al. 2022). These approaches utilise optimization methods like
genetic algorithm and evolution algorithm to search scean-
rio configurations that introduce abnormal ADS behaviors.
Such testing approaches cannot give safety guarantee if no
violations are found through the testing trails, while QUAN-
TIVA is a good complement which can reuse the testing sam-
ples and give safety guarantee of different levels. In (Tao et
al. 2019; Li, Tao, and Wotawa 2020; Klück et al. 2018; Gambi,
Huynh, and Fraser 2019a; Chandrasekaran et al. 2021; Zhou
et al. 2020; Zhang and Cai 2023; Nguyen, Huber, and Gambi
2021; Gambi, Huynh, and Fraser 2019b), domain knowledge
is leveraged to assist the corner case discovery. Metamorphic

testing approaches (M. Zhang et al. 2018; Y. Tian et al. 2018;
Han and Zhou 2020; Valle 2021; Deng et al. 2021) exploit
the metamorphic relations to find potential dangerous cases,
e.g., weather and time should not affect the control of the
autonomous vehicle. QUANTIVA follows such ideas and goes
deeper to the influence on the behavior regarding the pa-
rameters. Runtime verification methods (Zapridou, Bartocci,
and Katsaros 2020; Balakrishnan et al. 2021; An et al. 2020;
Alotaibi and Zedan 2010; Bogomolov et al. 2022) monitor the
ADS status and alarm the abnormal status to avoid disastrous
outcome. Compared with QUANTIVA, they only observe the
status during execution and cannot provide global safety guar-
antee. Besides, components of ADS are formally verified in
(Xu et al. 2019; Z. Zhang et al. 2022; Ivanov et al. 2019; Tran
et al. 2020; Ivanov et al. 2020; Ivanov et al. 2021; C. Huang
et al. 2019; Fan et al. 2020; C. Huang et al. 2022). These
methods work on a subset of a ADS, limited in evaluating the
ADS behaviors as a whole. We note that QUANTIVA is a proba-
bilistic verification approach, and similar works include (R. Li
et al. 2022; Anderson and Sojoudi 2023; Cardelli et al. 2019;
Mangal, Nori, and Orso 2019; Webb et al. 2019; Weng et
al. 2019). Our approach integrates multiple safety level and
can give a more comprehensive safety assessment.

6. Limitations
While we believe our work have made a step forward in veri-
fying ADS at the system-level, there are still some limitations
that warrant discussion here.

One key limitation of QUANTIVA is its efficacy, which can
vary based on the system’s complexity and the dimensionality
of the parameter space. When dealing with highly complex
scenarios or resource-intensive autonomous driving systems,
the sampling time may increase significantly, potentially ex-
tending the overall verification process.

https://doi.org/10.1017/cbp.2024.7 Published online by Cambridge University Press

https://doi.org/10.1017/cbp.2024.7

Accepted Manuscript

Cambridge Large One 13

Another significant limitation lies in the gap between sim-
ulation environments and real-world autonomous driving sce-
narios. At present, our method cannot be directly applied to
real-world settings due to the challenges of modeling real-
world environments solely through parameters. Furthermore,
performing uniform sampling in real-world conditions is diffi-
cult, if not impossible, making the direct deployment of this
framework impractical in real-world applications.

Lastly, our approach relies on black-box methods, which
approximate the behavior of autonomous driving systems in
various scenarios using surrogate models. However, if the sur-
rogate model fails to sufficiently capture the original system’s
behavior—due to limited expressiveness or insufficient sam-
pling and learning—the entire verification framework may
be unable to provide an accurate assessment, reducing the
reliability of its results.

In terms of future work, managing intricate systems with
expansive parameter spaces could be addressed by exploring
lightweight pre-branching techniques to mitigate complex-
ity. Additionally, the development of high-fidelity simulators
is crucial to bridging the simulation-reality gap. Recent ad-
vancements in real traffic scenario simulation, such as those
utilizing neural radiance fields (NeRF) (Tancik et al. 2022),
offer a promising direction toward achieving high-fidelity sim-
ulations. For surrogate models, we plan to investigate more
expressive models—such as behavior trees—to approximate
the behavior of ADS and scenario elements.

7. Conclusion
We introduce QUANTIVA, a novel approach to verify safety
properties of ADS at the scenario level. A safety property is
formally specified by a fitness function with scenario configu-
rations. A surrogate model is learned for approximating this fit-
ness function, and the safety property verified on the surrogate
model can be inherited to the ADS with specified confidence
and error rate. By introducing a divide-and-conquer design
to configuration space splitting, QUANTIVA gives fine-grained
analysis on which sub-spaces are potetially risky or even un-
safe. The experiments validate the utility of our approach with
promising results and vivid examples.

Author Contribution Statement Li, Yang, and Huang de-
signed the the study and drafted the work; Li and Qin de-
veloped the tool and conducted the experiments; Yang and
Huang performed the analyses; Sun and Zhang revised the
manuscript.

Funding Statement This research was supported by the CAS
Project for Young Scientists in Basic Research (Grant No.YSBR-
040).

Ethics Statements Ethical approval and consent are not rele-
vant to this article type.

Competing Interests None.

Data Availability Statement All the source codes and experi-
mental data are available at https://github.com/CAS-LRJ/ExpPAC
for non-commercial use.

Connections Reference Paoletti N, Woodcock J. How to
ensure safety of learning-enabled cyber-physical systems? Re-
search Directions: Cyber-Physical Systems. 1, e2, 1–2. https://
doi.org/10.1017/cbp.2023.2

References
Abdessalem, Raja Ben, Shiva Nejati, Lionel C. Briand, and Thomas Stifter.

2016. Testing advanced driver assistance systems using multi-objective
search and neural networks. In Proceedings of the 31st IEEE/ACM inter-
national conference on automated software engineering, ASE 2016, singapore,
september 3-7, 2016, edited by David Lo, Sven Apel, and Sarfraz Khurshid,
63–74. ACM.

. 2018. Testing vision-based control systems using learnable evolution-
ary algorithms. In ICSE, 1016–1026. ACM.

Abdessalem, Raja Ben, Annibale Panichella, Shiva Nejati, Lionel C. Briand,
and Thomas Stifter. 2018. Testing autonomous cars for feature inter-
action failures using many-objective search. In Proceedings of the 33rd
ACM/IEEE international conference on automated software engineering, ASE
2018, montpellier, france, september 3-7, 2018, edited by Marianne Huchard,
Christian Kästner, and Gordon Fraser, 143–154. ACM.

Alotaibi, Hind, and Hussein Zedan. 2010. Runtime verification of safety prop-
erties in multi-agents systems. In 10th international conference on intelligent
systems design and applications, ISDA 2010, november 29 - december 1, 2010,
cairo, egypt, 356–362. IEEE.

An, Dongdong, Jing Liu, Min Zhang, Xiaohong Chen, Mingsong Chen,
and Haiying Sun. 2020. Uncertainty modeling and runtime verification
for autonomous vehicles driving control: A machine learning-based
approach. J. Syst. Softw. 167:110617.

Anderson, Brendon G., and Somayeh Sojoudi. 2023. Data-driven certification
of neural networks with random input noise. IEEE Trans. Control. Netw.
Syst. 10 (1): 249–260.

Arcaini, Paolo, Xiao-Yi Zhang, and Fuyuki Ishikawa. 2021. Targeting patterns
of driving characteristics in testing autonomous driving systems. In 14th
IEEE conference on software testing, verification and validation, ICST 2021,
porto de galinhas, brazil, april 12-16, 2021, 295–305. IEEE.

Balakrishnan, Anand, Jyotirmoy Deshmukh, Bardh Hoxha, Tomoya Yam-
aguchi, and Georgios Fainekos. 2021. Percemon: online monitoring for
perception systems. In Runtime verification - 21st international conference,
RV 2021, virtual event, october 11-14, 2021, proceedings, edited by Lu Feng
and Dana Fisman, 12974:297–308. Lecture Notes in Computer Science.
Springer.

BeamNG GmbH. 2022. BeamNG.tech. https://www.beamng.tech/.

Bogomolov, Sergiy, Abdelrahman Hekal, Bardh Hoxha, and Tomoya Yam-
aguchi. 2022. Runtime assurance for autonomous driving with neural
reachability. In 25th IEEE international conference on intelligent transporta-
tion systems, ITSC 2022, macau, china, october 8-12, 2022, 2634–2641.
IEEE.

Borg, Markus, Raja Ben Abdessalem, Shiva Nejati, François-Xavier Jegeden,
and Donghwan Shin. 2021. Digital twins are not monozygotic–cross-
replicating adas testing in two industry-grade automotive simulators.
In ICST. IEEE.

Caesar, Holger, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin
Liong, Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and
Oscar Beijbom. 2020. Nuscenes: a multimodal dataset for autonomous
driving. In Cvpr.

https://doi.org/10.1017/cbp.2024.7 Published online by Cambridge University Press

https://doi.org/10.1017/cbp.2024.7

Accepted Manuscript

14 Renjue Li et al.

Calò, Alessandro, Paolo Arcaini, Shaukat Ali, Florian Hauer, and Fuyuki997

Ishikawa. 2020. Generating avoidable collision scenarios for testing998

autonomous driving systems. In ICST, 375–386. IEEE.999

Campi, Marco C., Simone Garatti, and Maria Prandini. 2009. The scenario
approach for systems and control design. Annu. Rev. Control.

Cardelli, Luca, Marta Kwiatkowska, Luca Laurenti, and Andrea Patane. 2019.
Robustness guarantees for bayesian inference with gaussian processes.
In The thirty-third AAAI conference on artificial intelligence, AAAI 2019,
the thirty-first innovative applications of artificial intelligence conference, IAAI
2019, the ninth AAAI symposium on educational advances in artificial intel-
ligence, EAAI 2019, honolulu, hawaii, usa, january 27 - february 1, 2019,
7759–7768. AAAI Press.

Chandrasekaran, Jaganmohan, Yu Lei, Raghu Kacker, and D. Richard Kuhn.
2021. A combinatorial approach to testing deep neural network-based
autonomous driving systems. In 14th IEEE international conference on
software testing, verification and validation workshops, ICST workshops 2021,
porto de galinhas, brazil, april 12-16, 2021, 57–66. IEEE.

Chen, Dian, and Philipp Krähenbühl. 2022. Learning from all vehicles. In
CVPR, 17222–17231.

Chitta, Kashyap, Aditya Prakash, Bernhard Jaeger, Zehao Yu, Katrin Renz,
and Andreas Geiger. 2022. Transfuser: imitation with transformer-based
sensor fusion for autonomous driving. PAMI.

Cordts, Marius, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus
Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt
Schiele. 2016. The cityscapes dataset for semantic urban scene under-
standing. In Proc. of the ieee conference on computer vision and pattern recog-
nition (cvpr).

Deng, Yao, Guannan Lou, James Xi Zheng, Tianyi Zhang, Miryung Kim,
Huai Liu, Chen Wang, and Tsong Yueh Chen. 2021. BMT: behavior
driven development-based metamorphic testing for autonomous driving
models. In 6th IEEE/ACM international workshop on metamorphic testing,
met@icse 2021, madrid, spain, june 2, 2021, 32–36. IEEE.

Dosovitskiy, Alexey, German Ros, Felipe Codevilla, Antonio Lopez, and
Vladlen Koltun. 2017. CARLA: An open urban driving simulator. In
Corl.

Dreossi, Tommaso, Daniel J. Fremont, Shromona Ghosh, Edward Kim, Hadi
Ravanbakhsh, Marcell Vazquez-Chanlatte, and Sanjit A. Seshia. 2019.
Verifai: A toolkit for the formal design and analysis of artificial intelligence-
based systems. In Computer aided verification - 31st international conference,
CAV 2019, new york city, ny, usa, july 15-18, 2019, proceedings, part I,
edited by Isil Dillig and Serdar Tasiran, 11561:432–442. Lecture Notes
in Computer Science. Springer.

Dutta, Souradeep, Xin Chen, Susmit Jha, Sriram Sankaranarayanan, and
Ashish Tiwari. 2019. Sherlock-a tool for verification of neural network
feedback systems: demo abstract. In Hscc, 262–263.

Fan, Jiameng, Chao Huang, Xin Chen, Wenchao Li, and Qi Zhu. 2020.
Reachnn*: a tool for reachability analysis of neural-network controlled
systems. In ATVA, 537–542. Springer.

Fremont, Daniel J, Tommaso Dreossi, Shromona Ghosh, Xiangyu Yue, Al-
berto L Sangiovanni-Vincentelli, and Sanjit A Seshia. 2019. Scenic: a
language for scenario specification and scene generation. In Pldi, 63–78.

Gambi, Alessio, Tri Huynh, and Gordon Fraser. 2019a. Automatically recon-
structing car crashes from police reports for testing self-driving cars.
In Proceedings of the 41st international conference on software engineering:
companion proceedings, ICSE 2019, montreal, qc, canada, may 25-31, 2019,
edited by Joanne M. Atlee, Tevfik Bultan, and Jon Whittle, 290–291.
IEEE / ACM.

. 2019b. Generating effective test cases for self-driving cars from police
reports. In Proceedings of the ACM joint meeting on european software engi-
neering conference and symposium on the foundations of software engineering,
ESEC/SIGSOFT FSE 2019, tallinn, estonia, august 26-30, 2019, edited
by Marlon Dumas, Dietmar Pfahl, Sven Apel, and Alessandra Russo,
257–267. ACM.

Gambi, Alessio, Marc Mueller, and Gordon Fraser. 2019. Automatically testing
self-driving cars with search-based procedural content generation. In
ISSTA.

Gambi, Alessio, Marc Müller, and Gordon Fraser. 2019. Asfault: testing self-
driving car software using search-based procedural content generation.
In ICSE-Companion, 27–30. IEEE.

Geiger, Andreas, Philip Lenz, and Raquel Urtasun. 2012. Are we ready for
autonomous driving? the kitti vision benchmark suite. In Conference on
computer vision and pattern recognition (cvpr).

Gladisch, Christoph, Thomas Heinz, Christian Heinzemann, Jens Oehlerk-
ing, Anne von Vietinghoff, and Tim Pfitzer. 2019. Experience paper:
search-based testing in automated driving control applications. In 34th
IEEE/ACM international conference on automated software engineering, ASE
2019, san diego, ca, usa, november 11-15, 2019, 26–37. IEEE.

Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. 2015. Explaining
and harnessing adversarial examples. In ICLR, edited by Yoshua Bengio
and Yann LeCun.

Gurobi Optimization, LLC. 2023. Gurobi Optimizer Reference Manual. https:
//www.gurobi.com.

Han, Jia Cheng, and Zhi Quan Zhou. 2020. Metamorphic fuzz testing of
autonomous vehicles. In ICSE ’20: 42nd international conference on software
engineering, workshops, seoul, republic of korea, 27 june - 19 july, 2020, 380–
385. ACM.

Haq, Fitash Ul, Donghwan Shin, and Lionel Briand. 2022. Efficient online
testing for dnn-enabled systems using surrogate-assisted and many-
objective optimization. In ICSE, 811–822.

Huang, Chao, Jiameng Fan, Xin Chen, Wenchao Li, and Qi Zhu. 2022.
Polar: a polynomial arithmetic framework for verifying neural-network
controlled systems. In ATVA, 414–430. Springer.

Huang, Chao, Jiameng Fan, Wenchao Li, Xin Chen, and Qi Zhu. 2019.
Reachnn: reachability analysis of neural-network controlled systems.
TECS.

Huang, Xinyu, Xinjing Cheng, Qichuan Geng, Binbin Cao, Dingfu Zhou,
Peng Wang, Yuanqing Lin, and Ruigang Yang. 2018. The apolloscape
dataset for autonomous driving. In Proceedings of the ieee conference on
computer vision and pattern recognition workshops, 954–960.

Ishikawa, Fuyuki. 2020. Testing and debugging autonomous driving: experi-
ences with path planner and future challenges. In 2020 IEEE international
symposium on software reliability engineering workshops, ISSRE workshops,
coimbra, portugal, october 12-15, 2020, xxxiii–xxxiv. IEEE.

Ivanov, Radoslav, Taylor Carpenter, James Weimer, Rajeev Alur, George
Pappas, and Insup Lee. 2021. Verisig 2.0: verification of neural net-
work controllers using taylor model preconditioning. In CAV, 249–262.
Springer.

Ivanov, Radoslav, Taylor J Carpenter, James Weimer, Rajeev Alur, George J
Pappas, and Insup Lee. 2020. Verifying the safety of autonomous systems
with neural network controllers. TECS 20 (1): 1–26.

Ivanov, Radoslav, James Weimer, Rajeev Alur, George J Pappas, and Insup Lee.
2019. Verisig: verifying safety properties of hybrid systems with neural
network controllers. In HSCC, 169–178.

https://doi.org/10.1017/cbp.2024.7 Published online by Cambridge University Press

https://doi.org/10.1017/cbp.2024.7

Accepted Manuscript

Cambridge Large One 15

Klück, Florian, Yihao Li, Mihai Nica, Jianbo Tao, and Franz Wotawa. 2018. Us-
ing ontologies for test suites generation for automated and autonomous
driving functions. In 2018 IEEE international symposium on software reli-
ability engineering workshops, ISSRE workshops, memphis, tn, usa, october
15-18, 2018, edited by Sudipto Ghosh, Roberto Natella, Bojan Cu-
kic, Robin S. Poston, and Nuno Laranjeiro, 118–123. IEEE Computer
Society.

Klück, Florian, Martin Zimmermann, Franz Wotawa, and Mihai Nica. 2019.
Genetic algorithm-based test parameter optimization for ADAS system
testing. In 19th IEEE international conference on software quality, reliability
and security, QRS 2019, sofia, bulgaria, july 22-26, 2019, 418–425. IEEE.

Li, Guanpeng, Yiran Li, Saurabh Jha, Timothy Tsai, Michael B. Sullivan, Siva
Kumar Sastry Hari, Zbigniew Kalbarczyk, and Ravishankar K. Iyer.
2020. AV-FUZZER: finding safety violations in autonomous driving
systems. In 31st IEEE international symposium on software reliability en-
gineering, ISSRE 2020, coimbra, portugal, october 12-15, 2020, edited by
Marco Vieira, Henrique Madeira, Nuno Antunes, and Zheng Zheng,
25–36. IEEE.

Li, Renjue, Pengfei Yang, Cheng-Chao Huang, Youcheng Sun, Bai Xue, and
Lijun Zhang. 2022. Towards practical robustness analysis for dnns based
on PAC-model learning. In Icse, 2189–2201. ACM.

Li, Yihao, Jianbo Tao, and Franz Wotawa. 2020. Ontology-based test genera-
tion for automated and autonomous driving functions. Inf. Softw. Technol.
117.

Lundberg, Scott M., and Su-In Lee. 2017. A unified approach to interpreting
model predictions. In Advances in neural information processing systems 30:
annual conference on neural information processing systems 2017, december 4-9,
2017, long beach, ca, USA, edited by Isabelle Guyon, Ulrike von Luxburg,
Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan,
and Roman Garnett, 4765–4774.

Luo, Yixing, Xiao-Yi Zhang, Paolo Arcaini, Zhi Jin, Haiyan Zhao, Fuyuki
Ishikawa, Rongxin Wu, and Tao Xie. 2022. Targeting requirements vi-
olations of autonomous driving systems by dynamic evolutionary search
(HOP at gecco’22). In GECCO ’22: genetic and evolutionary computation
conference, companion volume, boston, massachusetts, usa, july 9 - 13, 2022,
edited by Jonathan E. Fieldsend and Markus Wagner, 33–34. ACM.

Mangal, Ravi, Aditya V. Nori, and Alessandro Orso. 2019. Robustness of
neural networks: a probabilistic and practical approach. In Proceedings
of the 41st international conference on software engineering: new ideas and
emerging results, ICSE (NIER) 2019, montreal, qc, canada, may 29-31, 2019,
edited by Anita Sarma and Leonardo Murta, 93–96. IEEE / ACM.

Nguyen, Vuong, Stefan Huber, and Alessio Gambi. 2021. SALVO: automated
generation of diversified tests for self-driving cars from existing maps.
In 2021 IEEE international conference on artificial intelligence testing, aitest
2021, oxford, united kingdom, august 23-26, 2021, 128–135. IEEE.

NHTSA. 2007. Pre-crash scenario typology for crash avoidance research. Techinical
Report.

Shao, Hao, Letian Wang, Ruobing Chen, Hongsheng Li, and Yu Liu. 2023.
Safety-enhanced autonomous driving using interpretable sensor fusion
transformer. In Conference on robot learning, 726–737. PMLR.

Singh, Gagandeep, Timon Gehr, Markus Püschel, and Martin T. Vechev.
2019. An abstract domain for certifying neural networks. Proc. ACM
Program. Lang. 3 (POPL): 41:1–41:30.

Sun, Hang, Hanguang Xie, Qiong Wu, Nan Liu, Wei Zhang, Jing Yang,
Liang Xing, et al. 2022. GB/T-41798—2022: Intelligent and connected
vehicles——Field testing methods and requirements for automated driving func-
tions. Technical report. Beijing, China: Standardization Administration
of China.

Sun, Yang, Christopher M. Poskitt, Jun Sun, Yuqi Chen, and Zijiang Yang.
2022. Lawbreaker: an approach for specifying traffic laws and fuzzing
autonomous vehicles. In 37th IEEE/ACM international conference on
automated software engineering, ASE 2022, rochester, mi, usa, october 10-14,
2022, 62:1–62:12. ACM.

Tancik, Matthew, Vincent Casser, Xinchen Yan, Sabeek Pradhan, Ben P.
Mildenhall, Pratul P. Srinivasan, Jonathan T. Barron, and Henrik Kret-
zschmar. 2022. Block-nerf: scalable large scene neural view synthesis.
In IEEE/CVF conference on computer vision and pattern recognition, CVPR
2022, new orleans, la, usa, june 18-24, 2022, 8238–8248. IEEE.

Tao, Jianbo, Yihao Li, Franz Wotawa, Hermann Felbinger, and Mihai Nica.
2019. On the industrial application of combinatorial testing for au-
tonomous driving functions. In 2019 IEEE international conference on
software testing, verification and validation workshops, ICST workshops 2019,
xi’an, china, april 22-23, 2019, 234–240. IEEE.

Tian, Haoxiang, Yan Jiang, Guoquan Wu, Jiren Yan, Jun Wei, Wei Chen, Shuo
Li, and Dan Ye. 2022. Mosat: finding safety violations of autonomous
driving systems using multi-objective genetic algorithm. In ESEC/FSE,
94–106.

Tian, Yuchi, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. Deeptest:
automated testing of deep-neural-network-driven autonomous cars.
In Proceedings of the 40th international conference on software engineering,
ICSE 2018, gothenburg, sweden, may 27 - june 03, 2018, edited by Michel
Chaudron, Ivica Crnkovic, Marsha Chechik, and Mark Harman, 303–
314. ACM.

Tran, Hoang-Dung, Xiaodong Yang, Diego Manzanas Lopez, Patrick Musau,
Luan Viet Nguyen, Weiming Xiang, Stanley Bak, and Taylor T Johnson.
2020. Nnv: the neural network verification tool for deep neural networks
and learning-enabled cyber-physical systems. In CAV, 3–17. Springer.

Valle, Pablo. 2021. Metamorphic testing of autonomous vehicles: A case study
on simulink. In 43rd IEEE/ACM international conference on software
engineering: companion proceedings, ICSE companion 2021, madrid, spain,
may 25-28, 2021, 105–107. IEEE.

Webb, Stefan, Tom Rainforth, Yee Whye Teh, and M. Pawan Kumar. 2019.
A statistical approach to assessing neural network robustness. In 7th
international conference on learning representations, ICLR 2019, new orleans,
la, usa, may 6-9, 2019. OpenReview.net.

Weng, Lily, Pin-Yu Chen, Lam M. Nguyen, Mark S. Squillante, Akhilan
Boopathy, Ivan V. Oseledets, and Luca Daniel. 2019. PROVEN: veri-
fying robustness of neural networks with a probabilistic approach. In
Proceedings of the 36th international conference on machine learning, ICML
2019, 9-15 june 2019, long beach, california, USA, edited by Kamalika
Chaudhuri and Ruslan Salakhutdinov, 97:6727–6736. Proceedings of
Machine Learning Research. PMLR.

Xu, Bingqing, Qin Li, Tong Guo, Yi Ao, and Dehui Du. 2019. A quanti-
tative safety verification approach for the decision-making process of
autonomous driving. In 2019 international symposium on theoretical aspects
of software engineering (tase), 128–135. IEEE.

Zapridou, Eleni, Ezio Bartocci, and Panagiotis Katsaros. 2020. Runtime verifi-
cation of autonomous driving systems in carla. In International conference
on runtime verification, 172–183. Springer.

Zhang, Mengshi, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz
Khurshid. 2018. Deeproad: gan-based metamorphic testing and input
validation framework for autonomous driving systems. In Proceedings
of the 33rd ACM/IEEE international conference on automated software
engineering, ASE 2018, montpellier, france, september 3-7, 2018, edited by
Marianne Huchard, Christian Kästner, and Gordon Fraser, 132–142.
ACM.

Zhang, Xudong, and Yan Cai. 2023. Building critical testing scenarios for
autonomous driving from real accidents. In Proceedings of the 32nd ACM
SIGSOFT international symposium on software testing and analysis, ISSTA
2023, seattle, wa, usa, july 17-21, 2023, edited by René Just and Gordon
Fraser, 462–474. ACM.

Zhang, Zhaodi, Jing Liu, Guanjun Liu, Jiacun Wang, and John Zhang.
2022. Robustness verification of swish neural networks embedded in
autonomous driving systems. IEEE Transactions on Computational Social
Systems.

https://doi.org/10.1017/cbp.2024.7 Published online by Cambridge University Press

https://doi.org/10.1017/cbp.2024.7

Accepted Manuscript

16 Renjue Li et al.

Zhong, Ziyuan, Gail E. Kaiser, and Baishakhi Ray. 2023. Neural network
guided evolutionary fuzzing for finding traffic violations of autonomous
vehicles. IEEE Trans. Software Eng. 49 (4): 1860–1875.

Zhou, Husheng, Wei Li, Zelun Kong, Junfeng Guo, Yuqun Zhang, Bei
Yu, Lingming Zhang, and Cong Liu. 2020. Deepbillboard: systematic
physical-world testing of autonomous driving systems. In ICSE ’20:
42nd international conference on software engineering, seoul, south korea, 27
june - 19 july, 2020, edited by Gregg Rothermel and Doo-Hwan Bae,
347–358. ACM.

https://doi.org/10.1017/cbp.2024.7 Published online by Cambridge University Press

https://doi.org/10.1017/cbp.2024.7

