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Abstract

The low-velocity impact of two convex surfaces comprised of identical material, which
approach each other along the direction of the normal at first contact, and obey a Jj = k2

plastic yield condition, is shown for very early times to satisfy the following conditions:
the interior surface which separates the two bodies is equivalent to either the locus of points
formed by the intersecting curves resulting from moving the two bodies towards each
other along their normal; or to the locus of points formed from the level surfaces (suitably
parametrized) drawn about each body at the time of first contact. This separating surface
lies midway between the geometrical overlap of the two approaching surfaces for times
sufficiently short for inertial effects not to significantly affect the approaching velocities.

2000 Mathematics subject classification: primary 74C99; secondary 52C35, 74A45.
Keywords and phrases: identical particles, separating surface, rigid-plastic impacts, level
surfaces, deformation.

1. Introduction

The motivation for this paper is to consider how plastic bodies deform just after first
contact [3]. Once a body begins to deform plastically, the resulting deformation is
history dependent, and in general it will very difficult, if not impossible, to make any
general comments about the nature of the resulting deformation. This is because of the
very large number of parameters which may be constraining the resulting deformation.

Quite different shapes can be expected to result if one body is much harder than the
other. Then one body will act as a punch [9], and a quite asymmetrical deformation
can be imagined to develop. On the other hand, if the two bodies are identical,
then a quite different type of deformation [11] could occur. Similarly, the frictional
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nature of the surface will affect the slip-stick [10] motion of the interface, which
will affect subsequent deformation. Similarly, different yield laws [5] will result in
different plastic motions, as will the relative importance of the plastic (irreversible)
and elastic (reversible) deformations. Previous plastic deformations will affect the
surface geometry of the bodies, and this will also affect subsequent deformation [12].

The huge variation in system description that is possible in a plastic deformation
makes progress in this area appear case-dependent, and so argues against drawing
any general conclusions on the subsequent plastic deformation. Nevertheless, by
considering special cases of impact, in which the initial geometry is still playing a
key role in the (initial) plastic motion, and by considering initial motions which will
tend to keep the impacting surfaces from sliding against each other, we can imagine
classes of plastic motions which perhaps can be quantified in some manner.

When two elastic-plastic bodies approach each other, and the undeformed geometry
at contact is between convex surfaces about the impact point, then for the initial
instances just after first contact, we can expect that a non-zero force will be initiated
over an extremely small area [8], resulting in huge stresses, which will result in
plastic yield. If the corresponding plastic deformation is much higher than the elastic
deformations about the first contact point, then an interesting and relevant set of
(effectively wholly plastic) problems can be imagined about the contact point. The
aim of this paper is to consider such problems.

We will assume that about the first contact point, wholly plastic yield occurs. The
volume of material displaced plastically will cause motion of material away from the
contact region, and plastic yield will exist for a finite and non-zero volume. Beyond the
plastically yielding region, the material will not yield plastically, and we will assume
that elastic deformation and the corresponding volume change will distribute the
displaced volume of geometrical overlap between the two bodies, throughout the two
bodies. We assume further that the initial velocity of approach is very much smaller
than the elastic wave speeds in the two bodies, so that the motions are quasi-static.

Throughout this paper we assume that the yield law is of J2 type

k2 = J2=
 X-sijSij = I(/>y - PStjKPu - PitJ), (1.1)

where k is a constant, and the deviatoric stresses J,; are defined in (1.1), P,; is the
pressure tensor [7], P is the pressure, which we take as one third of the trace of Pti,
so that the plastic deformation is volume preserving, and 8ti is the Kronecker delta
function.

The corresponding plastic equations are
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[3] Initial deformation about convex surfaces 451

where X is the plastic multiplier, the rate of change of plastic displacement is vh and xs

is a cartesian coordinate. We are assuming in (1.2) that elastic deformation can be
ignored, relative to the corresponding plastic deformation.

Throughout this paper we assume that the impacting surfaces are sufficiently smooth
about the initial contact point for their normals to be well defined, and we also assume
that the initial velocities are parallel to the normals at the contact point on the contacting
surfaces. This constraint on the velocities is a large restriction, but it will minimize
the initial tangential velocity, and so should minimize the effect of complications from
slip-stick. We will assume further that the points of contact remain together, once
contact has been made.

We can now follow Weir and Tallon [12] to provide the expected dimensional
dependence of the key variables just after impact. Firstly, we assume that the two
bodies are approaching each other with speeds V\ and u2. along their common normal
at the contact point, which is characterized by some radius of curvature /?, resulting
from the pre-impact curvature of the two bodies at the contact point. We define

\v2\)t, Vol = Rh2 = R(]Vi\ + \v2\)
2t2 and b = h (j) , (1.3)

where h is an estimate of the degree of overlap between the two bodies initially, t is
the time since first contact, Vol is the early time volume of material in the overlap
region about the impact, b is an estimate of the extent of the region of the bodies in
plastic yield about the contact region, and £ is an estimate of the Young's modulus of
the combined system.

Well after the early time behaviour of the initial impact has passed, the particle-
particle interactions will have significantly affected the velocities of the individual
particles, and particle recoil will commence. Then an estimate for the maximum
volume Volmax of overlapped material between the two bodies when most of the
initial kinetic energy of the two bodies has been dissipated into plastic work, and the
maximum penetration / i ^ is

( 2 + 2 ) k V \(m1v + m2v2)kVo\max kRhmx, (1.4)

where mi and m2 are the masses of the two bodies. When the local radius of curvature
is typical of the size of the two bodies, the maximum penetration distance is given
approximately in (1.5), where p is an estimate of the density (kg/m3) of the system
about the contact point

^ (1.5)

The approximate expressions in (1.3)—(1.5) provide a check on the validity of our
assumption that little time has passed since first impact. In particular, we are assuming

https://doi.org/10.1017/S144618110000314X Published online by Cambridge University Press

https://doi.org/10.1017/S144618110000314X


452 Graham Weir [4]

that the maximum extent of the overlap region is small with respect to the local radius
of curvature, which can be assessed from (1.4) or (1.5). We are also assuming that
the region of plastic yield is small with respect to the local radius of curvature, which
can be assessed from either (1.4) or (1.5). We are also assuming that the limit of
overlap, h, is small with respect to Amax. which can be assessed from (1.3) and (1.5).

From (1.3), the overlap distance will initially increase linearly with time, because
insufficient time will have elapsed to alter significantly the speeds of approach, and the
deformations about the contact points are essentially wholly plastic. Then the volume
of overlap will increase quadratically with time, and there will be an approximately
constant ratio between the distance of overlap and the extent of plasticity about
the contact point. Similarly, for sufficiently small times, the generation of angular
momentum from the resulting torques [4] about the contact point will be sufficiently
small to be ignored. The maximum extent of penetration is approximately proportional
to the initial velocity of approach.

During impact, three 'natural' surfaces can be constructed about the impact point.
One of these is clearly the surface separating the material from each body. Another
is the envelope formed from points of first overlap as the two bodies approach each
other. The third is the surface formed from the envelope of points where the level
surfaces about the two bodies at first contact are equal. Our aim for the rest of this
paper is to discuss these three surfaces in three dimensions, and to decide if there is
any relationship between these surfaces just after first contact.

2. The geometrical envelope from particle motion

For the remainder of this section we shall assume that Cartesian coordinates x, v, z
exist for which the equations for the surfaces of the first and second bodies at the time
of first contact are respectively <£>] (x, y, z) = 0 and <t>2(x, v, z) = 0, and the signs of
<&i and O2 have been chosen so that V4>, and V<t>2 are oriented along the outward
normals to their respective surfaces, so that V4>i/| V<t>i | + V4>2/| V<t>2| =0.

Now consider the motion of each body towards the other, along their common
normal, with positive approach speeds of |ui| and \vi\. Then the equation of the
moving surfaces of the bodies is

/
' V * dx *y |V*,(0)| dy yZ |V*,(0)| Bz

(2.1)

An identical equation holds for the second body, except that subscripts 1 are replaced
by subscripts 2. The argument 0 in (2.1) indicates that the corresponding variable is
to be evaluated at t = 0, where t is the time elapsed since first contact.
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We can expand the expression in (2.1) in a power series of time, retaining terms
quadratic in t, to obtain

*I(JC, y, z) - |«i|r |V*,(0)| + i ( i> ,O 2 Wi) = 0, (2.2)

where
N}N) 32<D,(0)

- i t f - s s s r C 3 )

where Nf is the outward normal to the curve <I>i = 0 at the point of first contact
(Nf = V4>i/ |V<I>i|), and the equation for the second set of curves is obtained by
interchanging the subscripts 1 by 2. In two dimensions, the expression for N in (2.3)
is just the usual curvature of a curve [1], whenever the normal vector Nf in (2.3) is
replaced by the corresponding tangent vector T*.

Eliminating time / in (2.2) yields

H2|V*,(0) |V
(2.4)

and the equation for the second body is again obtained by replacing the subscript 1
in (2.4) by the subscript 2.

Consequently, the envelope of curves obtained from where the two bodies contact
when the two bodies are moved towards each other, is obtained by equating values
of time t, and this is equivalent to equating the functions on the right of (2.4) for the
two bodies, which will usually form a surface about, and containing, the point of first
contact.

3. The geometrical envelope about contacting bodies

When the two bodies first contact, then level surfaces can be drawn about each
body, through the equations

*i(jcly,z) = At|uil|V4>,(0)|, (3.1)

where fx is a positive parameter. Any parametrization is possible on the right-hand side
of (3.1), but the choice in (3.1) ensures that the envelope formed from eliminating fx
from (3.1) (and the corresponding expression for <t>2) exactly corresponds to first order
to the envelope in (2.4), namely

<*>\(x,y,z)

(vzl |V<&2(0)|
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The construction of both O, and O2 was to produce positive outwards normals, and so
the surfaces implicit in (3.1) are in the external region of the first body. Consequently,
the envelope, for small values of time (or small values of fi in (3.1) implied in (3.2))
is external to both of the bodies at the time of first contact.

4. The physical separating surface

In this section we will consider the very early time solution of the fully plastic
flow equations in (1.1)—(1.2), for a quasi-static impact. We will choose an inertial
Cartesian system, travelling at a speed so that each body approaches each other with
equal and opposite velocities along the direction of the common normal at the first
contact point. We align the coordinate system (x, y, z) to have its origin at the point
of first contact, and with the z axis aligned along the outward normal to the first body.

Then about the origin of our coordinate system, for very early times, we assume
that the surfaces at contact satisfy

90,(0,0,0) ^ Q ^ 90,(0,0,0) 90,(0,0,0)
dx dy ^ dz

and the corresponding equations for the second body are
9O2(0,0,0) _ 9O2(0,0,0) 9O2(0,0,0)

= 0 = and = - 1 . (4.2)
dx dy dz

We are assuming in (4.1) that the surfaces are not locally planar at the point of first
contact. If the surfaces are planar at first contact, the impact will initially be elastic,
because then the very high stresses assumed at first impact will not occur.

From (4.1)-(4.2), we assume that the surfaces are essentially conic sections about
the point of first contact, with

0 = 0, = z + O]X2 + a2y
2 + a3z

2 + a4xy + a5xz + a6yz and (4.3)

0 = O2 = -z + bxx
2 + b2y

2 + hz2 + bAxy + b5xz + b6yz, (4.4)

where a,, . . . , b6 are constants.
We are interested in very early times, when the values of x, y, z will be very small

in the vicinity of the impact. For this to be valid, the values of z must scale so as
to couple with the quadratic terms in (4.3) and (4.4), suggesting we rescale these
equations by

x = yflX, y = V?y and z = eZ, (4.5)

where e is a very small parameter (proportional to time). Then substituting (4.5)
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into (4.3)-(4.4), cancelling e, and retaining only the leading order terms, yields

0 = 4>, = Z + a1X
2 + a2Y

2 + a4XY and (4.6)
2 2 (4.7)

The forms of the functions in (4.6) and (4.7) have been scaled so that

= l = |V*2(0)|,

and they are invariant under keeping X and Y fixed, and letting Z be displaced
(corresponding to moving the bodies), or by keeping the form of the expressions
fixed, and drawing the level surfaces for (4.6) and (4.7). This corresponds to the
observation above that, to first order, it is possible to scale terms so that the envelopes
formed by moving the two bodies together, or by drawing (suitably scaled) level
surfaces about each body at the time of first contact, are identical.

We now assume that most of the deformation occurs around the region of geo-
metrical overlap, and that outside the region of geometrical overlap, the bodies retain
their previous shape. Within the region of geometrical overlap, material from each
body will be separated by a curve of separation, z = r)(x, y). Points originally on the
boundary of the bodies will now be on the surface of separation. Our immediate aim
is to estimate the shape of the surface z = rj.

The corresponding quasi-static plastic flow equations are those in (1.1) and (1.2),
and Pjj,j = 0. The scalings in (4.5) imply that only the vertical velocity component
is significant about the contact point, and this is a function of x and y. Then (1.2)
implies that the diagonal pressure elements are all equal, with Pxx = Pyy = Pzz = P,
and that Pxy = 0. From (1.1), the remaining pressure components satisfy

Pxz = k cos 6 and Pyz = k sin 0,

where 0 is a stress angle, which depends only on x and y (and perhaps t).
During the first instances of the deformation, body 1 will move upwards, and the

boundary points in the overlap region will be moved downwards so that they lie
on the surface of separation, z = t](x, y). The corresponding displacement is then
t] — Z\, which is negative, and the corresponding rate of strain is (r) — Z\)/t. Similarly,
the corresponding rate of strain for the second body in the overlap region will be
(>7 — Z2)/t, which is positive, because boundary points in the overlap region on body 2
are displaced upwards by body 1 once impact has occurred.

Across the separating surface we require that pressures be continuous. However,
in many plastic yield problems, the plastic pressures which are derived from both
experiment, and calculations in spherical geometries, are equal to about 4\/3/c ([12]),
and for this to be continuous across the separating surface will require that both
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particles have identical plastic yield laws, so that both bodies have the same value
oik. Alternatively, if there are (significantly) different values of k across the separating
surface, then for early times we may have one of the bodies being in an elastic state
of strain, which violates our assumption that both bodies are yielding plastically.

Next, the shear components will be equal and opposite across the separating surface,
in order for the corresponding forces P^rij to be continuous. From (1.2), we then
derive the conditions

- ' - - -*«• • - -n - «•»

where the subscripts + and — relate to being just above (in body 2) and just below (in
body 1) the separating surface.

To proceed further, we need to fix conditions on the frictional properties of the
contacting surface. We will assume here that the surface is sufficiently frictional
for no slip to occur during the initial stages of impact. Then particles which are
initially adjacent will remain so. We also assume that in our reference frame, in which
both bodies are approaching each other with the same speed, that the location of the
separating surface is stationary. This fixes the spatial position of the separating surface
as the envelope formed from the overlap between the two bodies.

If at t — 0, the equation for the first body is z = Z\ = Zi(x, y), and that of the
second body is z = Zi = Zi(.x, y), as in (4.6) and (4.7), then the subsequent profiles
are z — vt = z\(x, y) for the first body, and z + vt = z2(*. y) for the second body.
Eliminating t from these expressions, and noting that the corresponding values of z
are just those of rj, gives

Zi(x,y) + z2(x, y)
r) = - , (4.10)

and so from (4.8) or (4.9), about the separating surface,

ki(x,y) =

and the stress angle and plastic multiplier are given by

d(z2-Zi)/dy
tan0 =

d(z2-Zi)/dx

This shows that, for very short times after impact, the separating surface for identical
particle properties will equally divide the overlap region vertically, since

Z2-Zx
Z r)Z
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[9] Initial deformation about convex surfaces 457

so that the separated volumes are equal, and the mass flow rates from the separating
surface regions into bodies 1 and 2 are equal and opposite. The latter two statements
follow from noting, that while the approximate parabolic shape of the separating
surface remains fixed during the early period of the impact, the aspect ratio between
the depth and width of the geometric overlap does not. Specifically, from (4.5), the
ratio between the vertical and horizontal length scales will vary as -Ji, and so this
tends to zero with small times, making the separated volumes tend to each other for
very small times.

From (4.10), the separating surface is planar (which must correspond to the tangent
plane at first contact) if and only if the two approaching surfaces are locally mirror
images of each other through the tangent plane. This follows from (4.6) and (4.7),
since the condition that Z = 0 is the separating surface requires that ax = bua2 = b2

and a4 = fc4. Alternatively the coordinate system can always be rotated about the
Z-axis to eliminate the XY terms in (4.6), by setting a4 to zero. Then the resulting
coefficients a\ and a2 in (4.6) are twice the principal curvatures [6] for the lower
surface. Consequently, the condition for the separating surface to be planar is that, at
the point of contact, the two principal directions must be aligned (b4 = 0), and also
that the two principal curvatures of the two surfaces must be correspondingly equal
(d -bl\a2 = b2).

Finally, we see that the separating surface derived in this section is consistent
with the corresponding first-order expressions derived above, since the surfaces of
the two bodies are <t>j = z — Z\(x,y) = 0 and 4>2 = z2(x, y) — z = 0, where
z,(0, 0) = 0 = Z2(0, 0), |V<D,(0,0,0)| = 1 = |V<D2(0, 0, 0)| and | v , | = \v2\. Then
the separating surface is given by <t>! = <t>2. which is consistent to first order with
both (2.4) and (3.2).

5. Discussion and conclusions

This paper has focussed on the very early time behaviour of plastically deforming
bodies. For ordinarily sized plastic bodies moving at about a metre per second at
the time of impact, the total time of interaction will be typically about 10"5 seconds
or so [2]. Then requiring times short relative to this, suggests times of fractions of
micro-seconds. Consequently, the distances of overlap considered will be only of the
order of microns, or less (this will often be of the order of magnitude of the size of
the crystal grains in the material). For overlap distances much greater than this, or
for corresponding times much greater than parts of micro-seconds, our assumptions
will break down, as momentum transfer between bodies significantly affects their
velocities.

Another key assumption we made was that the physical properties of the bodies
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needed to be identical, in order to be sure that both particles would become plastic
just after impact. This greatly simplified the analysis, and gave results consistent
with experiment (where plastic pressures can be effectively constant, and proportional
to k) and with the theory of spherical particles undergoing plastic deformation. In
particular, the idea of a common pressure throughout the region of geometry overlap
was consistent with the plastic analysis in the previous section.

The difficulty of slip-stick motion was ignored, and this was partly justified by con-
sidering impacts from particles which approach each other along directions directed
along the common normal vector to the surfaces at the point of impact. This also
has the advantage of reducing the number of parameters considered in the problem
specification.

The central result in this paper is that for the very early period, just after impact
between two identical particles with convex shapes about the impact point, that the
interior surface which separates the two bodies is equivalent to either the locus of points
formed by the intersecting curves resulting from moving the two bodies towards each
other along their normal; or to the locus of points formed from the level surfaces
(suitably parametrized) drawn about each body at the time of first contact.

It was easy to show, to first order, that the two envelopes are equivalent, provided
we parametrized the level surfaces about the two bodies appropriately. It was more
problematic to show that the plastic flow equations led to the same surface. We showed
that the plastic flow equations are consistent with equality between the physical sep-
arating surface, and the two envelopes, and derived the corresponding shear stresses,
plastic parameter and shear angle, in our fully plastic mathematical formulation.

However, we also needed to place a constraint on the nature of the separating
surface, and we assumed that initially this was fixed in space, when viewed from a
coordinate system in which both (effectively identical) bodies approached each other
with equal and opposite velocities along the normal direction of the impact point.
As this was one of the assumptions in defining one of the envelopes, there is some
circularity in the argument connecting the plastic flow and geometric constructions.
Our analysis therefore does not show that this is the only possible solution, but rather,
shows consistency between the different formulations.

The resulting separating surface has the property that it subdivides the upper and
lower geometrically overlapping surfaces, so that the volumes above and below the
separating surface, in the region of geometrical overlap, were equal. This also results
in equal and opposite mass flows about the separating surface. The separating surface
cannot usually remain fixed in space for intermediate times, when the two velocities
begin to alter significantly from their initial values, since then each particle will be
moving quite asymmetrically with respect to the other, in the initial coordinate system.

We shall finish this paper by giving a specific example, to further clarify how the
different surfaces arise, and are equivalent. Consider two identical ellipses, one of
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[11] Initial deformation about convex surfaces 459

which has been rotated through 90 degrees, and displaced vertically so as to contact
the other ellipse at (0, b), and each ellipse approaches the other along the line x = 0.
Then from (3.2),

<t>dx,y)^b (x2 y2 \ <D2(jc,y,z) a (x2 (y-a-b)2 \
|V* , | 2\a2 b2 ) |V<D2| 2\b* a2 J' ( }

and so about the contact point (0, b) we have from (5.1), that the approximate expres-
sion for the separating surface is (dropping terms quadratic in (y — b)),

. (5.2)
b2 a2) 4

Alternatively, the two profiles can be written as

y - b = bUl- — - l \ = Y 1 ( x ) and y - b = a

and from (4.10)

y-b = -

which agrees with (5.2).
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