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1. Introduction. The 6T6 summation theorem was first proved by
Bailey1, who deduced it indirectly from a transformation of a well-poised
8O7 series into two 4O3 series. No direct proof of the theorem has been
published, and, since it has interesting applications in the proofs of various
identities which occur in combinatory analysis, for example the A series
of Rogers2 and some elegant identities due to Ramanujan3, we give two
new proofs of the theorem in this paper.

The first proof (due to Slater) introduces a basic analogue of the Barnes
type integral. The second (due to Lakin) is the basic analogue of an
operational method used elsewhere4, and provides an application of
Carlson's theorem.

2. First Proof. The notation is that introduced by Bailey, with the
addition that

and II is written for II. Thus,

\b;/ n=0 (1 —ftj71)
Consider the integral

where
.y /frl—d+s nl-d~s nl-e+s -jl-e-s rtl-/+s al-f-s.

p / , j \ f f l ' ' ' ' ' 17s

1 >

1 Bailey [1], §4.
2 See Slater [5], for full references.
» Bailey [3].
* Burchnall [4].
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and q = e~', t> 0, taken round the contour

A(-2N-in/t) B{-2N+i*lt) G(2N+injt) D(2N-in/t),

and assume that none of the members of the sequences

qa±n g*±n qc±n

coincide or fall on the contour. By the periodicity of the integrand,

|
JBC JDA

Also

= i \'\PN(?N-ir)-PN{2N+ir)\ dr
Z 7 r t JO

(
JCD

and

[ =-h \"/l[PN(-2N-ir)-Py(-2N+ir)]dr.
JAB &n Jo

Both these integrals tend to zero as N^-co, provided

Rl(5—a—b—c—d—e) > 0.

Thus we can equate to zero the sum of the residues at the poles of PN(s)
in the s-plane. Now l/Il(qa+s;) has poles within ABCD at

s= —a—n~\-2-nikjt

for some integer 1c. Hence Ps(s) has increasing sequences of poles at
s = a-\-n, b-\-n, c-\-n, and decreasing sequences of poles at

s=— a—n, —b—n, —c—n, for n=0, 1, 2,

Combining the residues at « = a-\-n and s = —a—n, and using the
symmetry in the integrand, we have

y TT (
„ V

n = 0 v

n\+a-d+n n\-a-d-n nl+a-e+n a\-a-t—n nl+a-f+n

n2a+n a ob+a+n nb-a-n QC+a+n

X
 In-Z\ + i d e m (a>b>c) = 0,

where "idem(a; 6)" means that the preceding expression is to be
repeated with b and a interchanged.
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If we put a for q°-, and so on, this gives, in the more conventional
notation,

__ n f/ g/ad, aq/e, q/ae, aq/f, q/af;\
a \ a%q, ab, b/a, ac, c/a; I

x $ r a 2 > aq> ~aq'ab'oc> '̂ae> af] q2
8 7 La. —a, aq/b, aq/c, aq/d, aq/e, aq/f; abcdef

+idem(a; b, e) = 0, (1)

where the restriction that q is real can now be removed. This is the basic
analogue of a result due to Whipple1. In (1) put c = q/a. The first and
third series combine to give

1_ raq/d, aq/e, aq/f, q/ad, q/ae, q/afH
a ]_ a2q, ab, q, b/a, q/a2; J

r aq, —aq, ab, ad, ae, af; q ~j
X 6 6 Lo, -a, aq/b, aq/d, aq/e, aq/f; bdefj

and the second series reduces to

rb2, bq, -bq, bd, be, bf; _ff_-| _ / b*q, q/de, q/ef, q/df; \
6 5 lb, -b, bq/d, bq/e, bq/f; bdefj " \bq/d, bq/e, bq/f, q/bdef;) *

Hence, after a little reduction, we have the required result,

r aq, —aq, ab, ad, ae, af; q "J
6 6 \_a, —a, aq/b, aq/d, aq/e, aq/f; bdefj

= n T o2?> ff/W, ?/6e, # / , ff/tfo, j/rf/, ?/e/, ?, g-/a2; -j
U/o6, q/ad, q/ae, q/af, aq/b, aq/d, aq/e, aq/f, q/bdef ;J { '

3. Second Proof. Let

Y = ^ F ab, ac, ad, ae; "l
4 4Lag-/6, ag-/c, ag-/i, ag-/ej J

and let Q be the operator q^d/dx with the property

Qf{x)=f(qx),

» Bailey [1], § (4 . 6).
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where f(x) is a polynomial or power series in z. Then

(l—jO) (l-o&G) Y = ( l — f ) (1-ab)

r abq, ac, ad, ae; ~\
XiYilalb, aq/c, aqjd, aq/e; *S (d)

the effect of the operator being to multiply 6 by q whenever it occurs in the
series, which remains well-poised. Further,

>̂ ~ ^ > <*' "f> ̂
a, —a, aq/b, aq/c, aq/d, aqje;

which introduces the first and second parameters of special form.
The g-difference equation satisfied by T is

| = 0. (5)

The operator in (5) may be written

where (7r is the r-th elementary symmetric function of the four parameters
b, c, d and e. Put x = 1/bcde = <x_4; then since (71a_4 = ff_3, etc., the
operator may be written

or

[ ( ^ ) ( ) ' ] - a * Q * ) , (6)

where B and C are undetermined constants. These may be evaluated by
putting Q = l/ac, l/ab in turn in (5) and (6), whence we find

l—bjc l—c/o
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Using (3) and (4) to perform on *F the operation indicated by (6), we have

(l — l/cd)(l — l/ce)(l—ab)(l—a/b) r aq, —aq, abq, ac, ad, ae; 1 "1
1—b/c 6 6\_a, —a, a/b, aq/c, aq/d, aq/e; bcdej

T [ aq' ~aq' ab' acq> ad> ae' - i - ] — o6 6 La, —a, aq/b, a/c, aq/d, aq/e; bcdej ~

If we arrange this and write b/q for b, then

> ~aq'ab> aCi "*'ae;C)= Y r — i
6 6 j a > —a^ aqji)) aq/c, aq/d, aq/e; bcdej

w g ' q>'

or, on applying the transformation N times,

, c) = U ( *lf f'be' Vt ' al2 ) Y(bq-», eg*). (7)
' \l/cd, 1/ce, q/ab, aq/b;) ( 1 ' " w

This equation is a two-term difference relation satisfied by the series.
Such a relation must exist in order that a hypergeometric series should be
summable. To show that (7) is still true for non-integral values of N we
apply Carlson's theorem to the function

f(z) = II(q1+°/bd, q^/be, q/ac, aq/c, q^/cd, q*-/ce, q/ab, aq/b;)W{b, c)

— IT (q/bd, q/be, qx~z/ac, aqx-»/c, q/cd, q/ce, qx+s/ab, aq^z/b;)

, cq% (8)

which is, in effect, (7) multiplied by a suitable factor, with N replaced by z.
I t is easy to establish by the usual arguments 1 that for III (z) ̂  0 this

function is regular and of the required order for large values of z, subject
to certain restrictions on the parameters which may be removed from the
final result. By (7), f(z) = 0 if z = 0, 1, 2, ..., and therefore by Carlson's
theorem it is identically zero. In particular it is zero if qz = b/a, when
y¥{bq~z, cqz) reduces to a summable 6O5 and the required result (2) follows
immediately.

1 Bailey [2], (5 . 3) and (5 . 4).
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The operator (6) may be written in another form, thus:

bEde
, (9)

where A is dependent on a, b, c, d and e.
Using the operator in this form, we obtain

-~) Y f a9' ~aq' abq' aC' ad' ae'' —b ) 6 6[_a, —a, a/b, aqjc, aq/d, aq/e; bcde

X 8 8 f aq' ~~a<1' aXq' aq^' ab' aC> ad' ae' — 1 = 0 (10)\_a, —a, a/A, a\, aqjb, aq/c, aq/d, aq/e; bcdej '

where A and B are constants which can be determined. The 6T6 is sum-
mable, and so therefore is the %¥&. It is interesting to notice the existence
of this summable %¥8, though there is little point in stating the result in
detail.
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