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Abstract

This paper aims to explore alternative representations of the physical architecture using its real-
world sensory data through artificial neural networks (ANNs). In the project developed for this
research, a detailed 3-D point cloud model is produced by scanning a physical structure with
LiDAR. Then, point cloud data andmeshmodels are divided into parts according to architectural
references and part-whole relationships with various techniques to create datasets. A deep
learning model is trained using these datasets, and new 3-Dmodels produced by deep generative
models are examined. These new 3-D models, which are embodied in different representations,
such as point clouds, mesh models, and bounding boxes, are used as a design vocabulary, and
combinatorial formations are generated from them.

Introduction

This research investigates the potential of 3-D deep generative models within the field of design
computing, specifically targeting the challenge of transforming sensory data from the physical
environment into actionable design intelligence. The advent of high-fidelity 3-D scanning tech-
nologies and artificial neural networks (ANNs) has unlocked new possibilities for capturing and
interpreting complex architectural data. However, the effective utilization of this data in design
computing remains a significant challenge, marked by gaps in methodologies for data processing
that can fully leverage the depth of information available. Central to our investigation is the
ambition to address these methodological gaps by proposing a novel framework that integrates
3-D scanning data, such as LiDAR-generated point clouds, with deep learning algorithms to
generate alternative designmodels. Thesemodels aim to enrich the design process with new forms
and patterns derived from the real world, yet the translation of raw data into meaningful design
elements requires innovative approaches that can navigate the intricacies of architectural refer-
ences and the dynamics of part-whole relationships in design computing. The specific challenges
this research seeks to overcome include the efficient segmentation of complex 3D point-cloud
models into analyzable datasets, the application of encoder–decoder models for learning design
patterns from these datasets, and the generation of new design alternatives through generative
adversarial networks (GANs). These challenges emphasize the need for an integrated approach
that can bridge sensory data capture and generative design. By situating our work within the
broader context of design computing, this paper contributes to the ongoing discourse on the
integration of machine learning (ML) techniques in the design process. It underscores the
transformative potential of combining advanced computational methods with traditional design
principles to foster a new era of design exploration and innovation. Through detailed experimen-
tation and analysis, our research not only demonstrates the technical viability of our proposed
approach but also reflects on its implications for design theory and practice, aiming to inspire
further advancements in the field of design computing.

Background

The present research aims to use physical world structures to be decoded by ANNs to explore
representations of design alternatives. The methodology used in this research is based on deep
generative models. Therefore, in this section, 3-D deep generative models and related works in the
field of design computing are discussed in order to distinguish the specific contribution of this
research to the field.

Generative models and their evolution

Generative models aim to generate new data from the same distribution of given training data.
With the advancements in ANN, deep generative models are proposed, which can outperform
the previous studies (Goodfellow et al., 2014). GAN (Goodfellow et al., 2014), which is one of the
state-of-the-art generative models, consists of 2 different ANNs that play an adversarial minimax
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game against each other; generator G and discriminator D. The
Generator aims to generate novel realistic samples, and the dis-
criminator tries to distinguish between real and fake samples. At
each iteration, the discriminator gets better at identifying fake
samples, and the generator, using the feedback from the discrim-
inator, generates more realistic samples to fool the discriminator.

Recent advancements in 3-D generative modeling

In the realm of existing research, Shi et al. (2023) delve into various
facets of 3D generative models, offering an extensive overview of
recent advancements and applications. This survey is pivotal in
understanding the broader context of 3D generative model devel-
opment and its potential impact in various fields, including design
computing. Their insights provide a crucial foundation for the
current study, underlining the evolving nature of generative mod-
eling and its increasing relevance in the design domain. Zhang and
Blasetti (2020) used 3-D models for training GAN. The study
converts 3-D modes into 2-D images to use in training GANs as
2D images are more manageable for processing by GANs. Various
popular generative models, such as Pix2Pix (Isola et al., 2017) and
CycleGAN (Zhu et al., 2017), were used in the research to generate
design options. In this alternative application of neural style
transfer, the aim was to create a 3-D form by positioning 2-D
outputs in different directions. Zhang and Blasetti (2020) aimed to
generate 3-Dmodels with StyleGAN (Karras et al., 2019), which is
a state-of-the-art generative model that was trained with the
reconstruction of 3-D models in various complex concepts. It
was mentioned that the 3-D model is composed of changing
images, and these images were used as a dataset to create new
3-D models on various complexity levels of input.

Applications in architectural design

In one of the researches on deep generative models, using a dataset
that included house plans that have a specific architectural char-
acter, GAN was used to generate new plans that had the features of
this architecture (Newton, 2019). Further, in the architectural
context, Liu et al. (2019) produced 3-D model parts that have a
reference to specific architectural styles, further combined to create
more complex models that have various design references. After
that, rendered images were used as a database for GAN. The image
results were presented in the environments according to their
concepts. In another study, Peng et al. (2017) worked on a dataset,
including parts of 3-D models, to decode architectural space using
ML and computer Vision. These models were the buildings of
renowned architects. It was expected to recognize specific local
compositions in these partial models to produce new compos-
itions. Images of model parts were used for training a Neural
Network, and new 3-D configurations were created by post-
processing on 2-D output.

Utilizing point clouds in 3-D generative strategies

Point clouds are a set of unstructured points in a 3-D coordinate
system that represents real-world 3-D objects. It is mostly used in
robotic applications and 3-D scanners like LiDAR. It is the most
used capturing technique to digitalize real-world structures. To
calculate the similarity of point clouds for reconstruction, the
Chamfer Distance is used (Fan et al., 2017). It is the nearest
neighbor distance metric for point sets. It is permutation invariant
to work on unordered sets. Bidgoli and Veloso (2018) used an

AutoEncoder for point clouds to provide a new generation of 3-D
objects. They mentioned the advantages of using point cloud for
3-D representations in ML because it allows the production of
samples both by using a digital model and by scanning physical
objects using LiDAR Scanners.

Advancements in the current research

In this research, a GAN is used to generate new samples from the
learned architectural character encoded in a physical structure. Also,
anAutoEncoder is used in this study to learn and encode the common
style of input samples. Sincewe aim to learn from the information of a
real-world structure, we choose to work on point clouds instead of
other 3-D representation methods such as Polygonal Meshes or 3-D
Voxels. In most of the existing works, 2-D generative models were
used due to the difficulties encountered in 3-D processing inML. The
present research examines the built-in architecture in detail to explore
its alternative representations. The study uses generative models in a
3-D environment during the process of automation to decode real-
world data and investigates the morphology that creates a character
by conscious design decisions.

Research objectives

This research introduces an approach in generative design through
the application of 3-D Deep Generative Models, significantly
expanding the potential of ML in representing the unique morph-
ology created by the amalgamation of design elements. The study is
centered around the application and analysis of 3-D point cloud
data, obtained through LiDAR Scanning, to accurately capture and
transform the architectural structure into comprehensive datasets.
These datasets are intricately manipulated to effectively represent
the design features of real-world structures, focusing on the com-
plex relationships and references that are integral to the architec-
tural design.

A significant aim of this study is to identify and apply the
appropriate information processing models, especially ANNs, for
interpreting the complex data encapsulated in the physical struc-
ture of the design. These models are meticulously trained to decode
and represent the nuanced aspects of the design contained within
the datasets. By focusing on the parts of architectural structures,
this research enhances the generation of a specific design vocabu-
lary, addressing the limitations of current research that mainly
relies on 2-D and abstract data. Our methodology stands out by
harnessing real-world data, enabling the processing of 3-D model
parts withML to achieve spatial generations. Another key objective
is to employ Deep Generative Models to foster the generation of
alternative representations of the architectural design. This involves
utilizing the trained models to generate diverse and meaningful
samples that offer interpretations and insights for future generative
tasks in design computing. Through this research, the aim is to
contribute to the field of design computing by enhancing the
understanding of how ML models can be applied in architectural
contexts. This study serves as a stepping stone for future explor-
ations into the use ofML in design computing and the development
of advanced generative design systems.

Case study: application in architectural design

The approach underlying this descriptive research is experienced in
a project. This project creates a platform for the study to be tested
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and examined qualitatively in a chosen context by the use of 3-D
Deep Generative Models and the use of datasets in various forms as
mesh models and point cloud models. The data collection for the
project is conducted from primary sources of the chosen context,
The Faculty of Architecture at Middle East Technical University
(METU). Original drawings of the chosen context are provided by
theMETUDirectorate of Construction andTechnical Services. The
LiDAR Scanner model was developed by the Photogrammetry
Laboratory of the Faculty of Architecture at METU, and mesh
models are our own production. The stages of the project are
described in the workflow diagram in Figure 1.

Conceptual framework

This research experiments to process design context withML using
point cloud data directly obtained from the physical environment.
In order to analyze the design character in the 3-D contexts and to
investigate its use for alternative representations throughML, a 3-D
model is deconstructed and processed. Then the new 3-D models
produced by the ML model are examined. Different combinations
of design elements are selected, and spatial parts are analyzed
through 3-D deep learning algorithms. For this purpose, the ML
model is trained by using 3-D parts of the design system to analyze

Figure 1. Workflow diagram.
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the information about the features of the whole system encoded in
the parts. Later, a generative model is used to produce new samples
reflecting a design representation.

Contextual analysis

The specific architectural form and level of complexity chosen for
this study are critical in demonstrating the capabilities of 3-D deep
generative models. The METU, selected as the primary case, exem-
plifies a structure with meaningful and repetitive combinations of
design elements, exhibiting a strong and distinctive architectural
character. This particular case was chosen not only for its archi-
tectural significance but also for its diverse array of design elements
that represent a challenging and insightful subject for analysis.

The METU Faculty of Architecture building presents a unique
blend of architectural forms, making it an ideal subject for explor-
ing the nuances of spatial design and generative modeling. The
building’s design composition is characterized by a robust articu-
lation of solids, providing a rich context for applying and testing our
3-D modeling techniques. The complexity and distinctiveness of
the building’s design elements allow for a thorough investigation
into the potential of 3-D generative methods in capturing and
reinterpreting architectural characteristics.

Moreover, the choice of this building was also influenced by the
availability of comprehensive data from primary sources. The
accessibility of detailed architectural data, including the views from
the 3-D mesh model of the building as shown in Figure 2, has been
instrumental in the development and validation of our method-
ology. By utilizing a well-documented and architecturally signifi-
cant structure, the study ensures a robust and relevant application
of its generative modeling techniques, aiming to contribute sub-
stantial insights into the field of design and computation.

Data collection and analysis

This project explores the transformation of design data for use in
ANNs, focusing on architectural references and volumetric rela-
tionships to reflect the design process. This investigation unfolds
through consecutive stages in a comprehensive workflow, each
building upon the previous to refine and enhance the dataset used
for training our ML model.

Our approachmeticulously segments the 3Dmodel of a building
into subunits, facilitating a focused analysis of design elements
within these partitions. This approach allows for the extraction of
detailed features from each subunit, contributing to a layered
understanding of the architectural structure. Each subunit is ana-
lyzed independently, enabling the identification of unique archi-
tectural features and design principles at a granular level. This
segmentation into subunits is central to our methodology, allowing
us to explore the intricate details of the architectural design and its
components. While this approach effectively captures the detailed
features of individual subunits, it inherently presents a challenge in
synthesizing these findings to extract global features that represent
the entire building model comprehensively.

Our methodology primarily focuses on the in-depth analysis of
the subunits, aiming to understand the building’s architectural
essence through its components. This focus on subunits allows
for a deep, detail-oriented exploration of architectural elements,
though it may limit the scope for capturing the building’s global
architectural features in their entirety.

Stage 1: 3D scanning with LiDAR

The selected design context was scanned with the LiDAR Scanner
tool, which uses laser pulses to detect the distance of an object’s
surface. In this way, a highly detailed 3-D point cloud model was
created for the chosen building. LiDAR provides the coordinate
values of all the details of the building in real dimensions. This data
was divided into smaller 3-D subunits that allowed detailed analysis
of information (Figure 4 ). MLmodel was trained with the subunits
of this 3-D point cloud model. Using real scans can help to decode
the underlying system of the design process and provide experi-
mental results on real-world data.

The LiDAR data has some problems regarding the uniformity
and density of the points. The point density is higher near locations
where the LiDAR device is located. This causes a non-uniform
distribution of the points among the 3-D model. This also creates
visible dense circles around the LiDAR device on the point cloud.
ML systems tend to learn dense areas better than sparse areas. Thus,
it may cause problems regarding reconstruction and generation
quality. An extra pre-processing step (spatially uniform point
sampling) is applied to make LiDAR data more uniform.

Figure 2. A 3-D mesh model of the Faculty of Architecture at METU.
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Stage 2: 3D mesh partitioning with a grid

At this stage, the mesh model was partitioned with a 3-D grid.
Figure 4 illustrates the division of the structure’s point cloud and
mesh model using a grid-based volume, along with the resulting
dataset obtained after the grid partitioning process. This is a basic
process for partitioning the buildings with respect to the given part
count. These parts were used for training theMLmodel. When the
results were examined, some generatedmodels were very similar or
as same as some parts of the dataset. When a dataset, which
consists of elements that are similar to each other, is used for

training a generative model, the model starts to memorize the
elements in the dataset and repeat them instead of understanding
the hierarchical relationships of these elements and making new
productions (Achlioptas et al., 2018). Also, this automatic splitting
causes unrelated and unrealistic parts, such as unconnected parts
or elements from different spaces. The produced parts do not
follow a meaningful pattern or a useful representation. The ML
model imitates the dataset by generating unconnected or mean-
ingless parts. This method reduces the quality and diversity of the
generated samples.

Figure 3. Partitions according to the references of design elements.
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Figure 4. Dividing the 3-D point cloud model and mesh model into 3-D subunits.
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Stage 3: Design reference-based partitioning

After experimenting with partitioning using a grid, we create the
dataset with logical partitions according to the references of
design elements that carry the representation of the design pro-
cess. In this context, design elements are interpreted through the
lens of the grid system, which acts as a primary reference for the
architectural configuration of spaces. These elements encompass
the junction points of functionality and structure, where archi-
tectural spaces are crafted with consideration of their purpose
and relationship to the overall grid. This method ensures that
each partitioned segment is reflective of the building’s functional
layout and architectural intent. Moreover, the structural segmen-
tation of the architecture plays a pivotal role in our partitioning
process. It involves dissecting the building into meaningful com-
ponents based on the structural integrity and load-bearing
schema dictated by the grid. This approach allows for the iden-
tification of structural elements such as beams, columns, and
load-bearing walls, which serve as critical references for segment-
ing the building into logical parts. With this approach, the whole
building was divided into parts gradually, and the results were
analyzed at each stage. First, the building was divided into
250 main parts that refer to the whole volume. Later, these
250 pieces were split into 500 pieces with references within
themselves. Finally, all parts were brought together, and the parts
were transformed into 1,000 subparts containing different rela-
tional combinations to allow the machine to focus more on the

details. Datasets that are gradually divided into subspaces accord-
ing to design references are displayed in Figure 3. The dataset
consists of meaningful parts, each with a representation and
uniform distribution of points and surfaces.

Methodological approach

The methodology of the study is inspired by Achlioptas et al.
(2018). First, the data is pre-processed to feed the network, as
explained in the Data preprocessing techniques Section. The data
is fed to an encoder–decoder for learning the underlying structure
of input samples. Then, a GAN is used to generate new samples
from the learned structure. The encoder-decoder and the GAN
models are explained in Learning design patterns: the encoder–
decoder model section and Sample generation: employing GAN
section, respectively. All implementations are done with the
PyTorch framework on an Nvidia RTX 2070 GPU and are
imported into the Unity Engine. The methodology of the study
is demonstrated in Figure 5. The system architecture is visualized
in Figure 6.

Data preprocessing techniques

The selected building is modeled in 3-D format. After partitioning
the building model as explained in Data collection and analysis
section, there are 250, 500, and 1,000 parts in 3-D mesh format for

Figure 5. Methodology.
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different experiments. The 3-D parts are converted to 3-D point
clouds using uniform point sampling. Uniform point sampling is
basically selecting a certain number of points to represent a surface.
There must be at least 3 points to represent a triangle surface, and
more points can be located using linear interpolation on the surface.
Considering the mesh faces have different surface areas, to repre-
sent each surface uniformly, the resolution (point density) is set for
each surface to its proportional area. All 3-D point cloud samples in
the dataset are set to have 1,024, 2,048, 4,096, or 8,192 points for
different experiments. After the conversion, all samples are posi-
tioned at the center of the coordinates and scaled into the unit cube.
The dataset is randomly divided into train, validation, and test
subsets with 80%, 10%, and 10% ratios, respectively.

Learning design patterns: the encoder-decoder model

Our first aim was to learn the underlying structure of the design
system from the dataset. An encoder–decoder model (Achlioptas
et al., 2018) (Figure 7) is employed to encode the real data and form
a latent space that represents the design context. This latent space
consists of learned features and similarities of the dataset. Since the
dataset is formed from a single building, we expect the model to
learn the similarities from the parts of the building.

The encoder model (Öngün and Temizel, 2021) is inspired by
PointNet (Qi et al., 2017). It is a 3-layer 1-D convolutional network
with feature sizes (3, 64, and 128). It extracts the features for each
point having three dimensions for the x, y, and z-axis. Then a
maxpooling is applied as explained in Qi et al. (2017) to extract
the global feature (code) that represents the point cloudmodel. The
input and feature transform subnetworks are omitted since the
input data is already aligned and scaled. All extracted global features
form a latent space that represents the underlying style and simi-
larities of the dataset.

The global features are then decoded using a 3-layer Fully
Connected Network (128, 1,024, and 2,048). The reconstruction
loss is calculated with Chamfer Distance (Fan et al., 2017) between
the real and reconstructed point clouds. The network is trained
end-to-end using Adam (Kingma and Ba, 2015) optimizer with the
reconstruction loss and a learning rate of 5 × 10�4 for 1,000 epochs.
The reconstruction loss is around 10 × 10�4, which indicates a good
reconstruction performance with minimal error.

Sample generation: employing GAN

A GAN (Figure 8) is employed for generating new samples in the
learned underlying structure of the design. The extracted global

Figure 6. System architecture.
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features are fed to the discriminator to train the discriminator
alongside the generated global features using concatenation. The
generator is trained by the feedback from the discriminator tomake
the generated samples more realistic. The generated global features
are then decoded using the trained decoder to get 3-D point clouds
that represent the real-world data.

Both the generator and the discriminator are 3-layer fully con-
nected networks with (32, 64, and 128) and (128, 64, and 1) sizes,
respectively. All layers have ReLU activation functions followed by
batch normalization layers except the output layers. The Generator
input is sampled from a Normal distribution. A WGAN (Arjovsky
et al., 2017) objective function is used for training with better
stability and diversity. Adam optimizer is used with learning rates
of 5 × 10�4 and 1 × 10�4 for Generator and Discriminator,
respectively. The code and more details about the models can be
found in the baseline study (Öngün and Temizel, 2021).

Results and evaluation

In the study, the dataset is prepared and preprocessed to work with
the proposed model. The AutoEncoder model is trained to evaluate
the dataset and the learning ability of themodel. The reconstruction
loss between input and output is calculated using Chamfer Distance
(Fan et al., 2017) which is a nearest neighbor distance metric for
point sets. The reconstruction loss is 3.07 × 10�4 for training and
10.51 × 10�4 for testing, indicating a visually good reconstruction
with a minimum loss between input and output.

The generated parts are evaluated using the same evaluation
metrics of the LPMNet (Öngün and Temizel, 2021), which is used
as a baseline for encoding–decoding the dataset and generating new
parts. Our results are similar to the reconstruction loss of the
LPMNet (8.07 × 10�4), supporting our claim that our dataset serves
well for the purpose of the encoding–decoding design system. The
comparison with the baseline (Öngün and Temizel, 2021) shows
that a better reconstruction can be achieved with a bigger and more
diverse dataset by avoiding overfitting.

The results can be seen in Table 1. Coverage (Cov) measures the
percentage of representation of generated parts in the input dataset.
High coverage means that generated parts have high diversity to
represent all different classes of data samples in the input dataset.
Minimum matching distance (MMD) is the average of distances
between the most similar samples in the input and generated sets.
While low MMD means the samples are in the same scope and
class, 0 means they are completely the same. Jensen- Shannon
Divergence (JSD; derived from Kullback–Leibler divergence
(Kullback and Leibler, 1951)) is a metric to calculate distances
between probability distributions. In this study, it is used to meas-
ure if the generated samples occupy a similar scale, rotation, and
location as the input set. The results are again comparable to the
LPMNet, indicating that our case is suitable to generate new
samples reflecting the features of the design character. The quan-
titative results support visual results that the generated parts are
meaningful enough for forming alternative representations of the
design system.

The 3-D Deep Generative Model trained with the point cloud
data of building parts can produce new 3D models. The generated
samples can be seen in Figure 9. The generated data is visualized in
raw point cloud form first, as shown in the first columns of the
tables in Figure 9. Then the generated point clouds are automatic-
ally transformed to mesh form with the Poisson Surface Recon-
struction (Kazhdan et al., 2006) method to analyze the surfaces and
the general connected structure of the data (see second columns in
Figure 9). In our methodology, the mesh models represented in the
second column of Figure 9 undergo a stage of manual post-
processing, where they are flattened, as shown in the third column
of Figure 9. In the progression from the generative output seen in

Figure 8. The generative adversarial network (GAN) model

Figure 7. The AutoEncoder model.

Table 1. The best WGAN results from the LPMNet (Öngün and Temizel, 2021)
and our results

Reconstruction loss
Evaluation of the generated

samples
Chamfer distance (×10�4) MMD %Cov JSD(×10�2)

Ours 10.51 3.92 67.83 3.01

LPMNet 8.07 4.76 60.93 4.17
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column 2 of Figure 9 to the refined interpretations presented in
column 3, a nuanced approach to post-processing was undertaken,
meticulously guided by the initial forms generated by the GAN.
These GAN-generated models served as the foundational blue-
prints upon which further transformations were applied, primarily
aimed at enhancing architectural feasibility and aesthetic value. The
focus was on achieving more straightforward and plain surfaces, a
design attribute often sought in contemporary architectural prac-
tices for its visual clarity and structural efficiency. To accomplish
this, we employed sculpting tools available in 3D modeling soft-
ware. These tools allowed us to manipulate the mesh geometry
directly, enabling precise control over the form and surface char-
acteristics of the models.

The sculpting process involved selectively smoothing and flat-
tening the surfaces, effectively transforming forms generated by the
GAN into models with cleaner lines and more defined geometries.
This manual intervention is essential for analyzing and employing
various spatial representations at different levels of abstraction. It’s
important to recognize that this manual aspect of post-processing
signifies an intriguing interplay between the generative capabilities
of our models and the indispensable role of human expertise in the
design process. Although the generative process effectively provides
diverse and complex design outputs, the current state of technology
necessitates human judgment to refine these outputs, aligning them
with practical and aesthetic design considerations. This process is
inherently subjective, reflecting the unique perspectives and

creativity of the designers. By manually adjusting and refining the
generated models, designers can infuse their vision and expertise,
shaping the raw computational output into forms that resonate
with human sensibilities in architecture and design. The preserva-
tion of the original GAN-generated 3-D point cloud models in the
postprocessed third columns of Figure 9, as well as in the sample
scene in Figure 10, demonstrates our commitment to maintaining
the integrity of the generative output while highlighting the trans-
formative impact of manual post-processing. The spatial configur-
ations of the generated samples, as exhibited in Figure 10,
underscore their potential to foster a diverse range of architectural
scenes and forms. This underscores the importance of the design-
er’s role in the generative design process, suggesting that while the
automation of generative models is advancing, the creative and
subjective input of human designers remains a vital component in
realizing the full potential of these technologies in design.

The results in Figure 9 are not merely theoretical representations
but function as a practical design vocabulary. This vocabulary facili-
tates the exploration of new forms and spaces by combining different
generated elements in a systematic manner. For instance, designers
can use these models as blocks to conceptualize and visualize new
layouts ormodifications to existing formations. This approach allows
for a more dynamic and innovative design process, where various
permutations of the generated models can be assessed for aesthetic,
functional, or structural suitability. In practice, this can lead to novel
design solutions that are both inspired by traditional forms and

Figure 9. 3-D productions of the ML model in different abstraction levels.
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adapted to contemporary needs. Furthermore, the combinatorial use
of these generatedmodels, as illustrated in Figure 10, offers amethod
for designers to interact with and modify the generated outcomes,
injecting human creativity and expertise into the design process. This
human-machine collaboration in design could be particularly bene-
ficial in early-stage conceptualization, where rapid iteration and
exploration of ideas are crucial.

Overall, the generative model developed in this study provides a
versatile toolset for designers, enabling them to experiment with an
array of design possibilities that were previously unattainable or
time-consuming to explore. This method stands to significantly
impact the design process, opening up new avenues for creativity
and innovation.

Discussion

The design of 3-D deep generative models with the datasets of
building parts demonstrates the practical application of this
method in architectural contexts. The potential limitation of this
approach lies in the balance between capturing exhaustive global
features of the entire structure and delving deeply into the specific
details provided by individual subunits.While ourmethod enriches
the design analysis by highlighting the distinct characteristics of its
parts, it might constrain the holistic representation of global fea-
tures as a unified entity. Future work could explore methodologies
that integrate the detailed analysis of subunits with strategies for
synthesizing these insights to more directly capture global features,
offering a comprehensive understanding of both the parts and the
whole of architectural structures.

In exploring the potential of 3-D deep generative models, this
research directly engages with practical design scenarios by apply-
ing the generated models to the refurbishment and adaptive reuse
of existing buildings. The practical design variables include spatial
configurations, structural integrity, and historical preservation
criteria, which are crucial in architectural redesign processes. By
leveraging LiDAR-generated point clouds and ANNs, our
approach facilitates the detailed analysis of physical structures,
enabling designers to explore a multitude of design options within
predefined constraints such as building codes and preservation
guidelines.

This methodology not only enhances the design process but also
supports the creation of dynamic, interactive environments, where
historical accuracy and architecture are paramount. While the

initial findings suggest potential applications beyond architecture
—such as in procedural content generation and engineering simu-
lations—these extensions are speculative and require further
empirical validation. The mention of these potential applications
is intended to highlight the versatility of our approach and the
breadth of its possible impact. As we set a foundation for future
exploration, our research introduces a perspective on the use of ML
for engaging with complex 3-D data in design. It opens discussions
on spatial representation and the practical implications of integrat-
ing advanced computational models into the design process. This
study, therefore, contributes to the ongoing dialogue in generative
design and ML, offering insights while acknowledging the need for
continued empirical research to fully realize and extend the meth-
odologies and applications discussed.

Conclusions and future directions

This research provides an investigation for a generative design
understanding by decoding and learning from the physical envir-
onment. The research hence contributes to the representation of
design alternatives using real-world design data. In the stages of
data collection and analysis, a 3-D mesh model and sensory data
collected from a built-in structure with a LiDAR Scanner are used.
The datasets are produced by transforming the design data in
accordance with the part-whole relationship and reference system,
reflecting the design process. These datasets, which represent the
3-D nature of the design features and provide the information of
coordinates, are then fed to anAutoEncoder to learn the underlying
structure. A deep generative model is used to generate new repre-
sentations through the learned design character encoded in the
physical structure. The generated samples can be analyzed in
different forms, such as point clouds and 3-D meshes. The results
show that the generated samples are meaningful for creating a
design vocabulary in order to produce combinatorial formations
for further generative tasks.

We aim to extend this study by experimentingwith various cases
to provide a better analysis of the proposed model. To further this
research, the proposed model is planned to produce more results in
the current case and be adapted to different design contexts. The
versatility of our proposed method would find significant applica-
tions in the field of heritage building information modelling
(HBIM) that greatly benefit from the accurate digital representation
and analysis of architectural elements. In HBIM, our approach can

Figure 10. A Sample scene with spatial configurations of the productions.
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be instrumental in creating detailed libraries of architectural elem-
ents from various historical periods. These libraries can serve as
foundational assets in preserving cultural heritage, enabling the
precise modeling of historical buildings for maintenance, restor-
ation, and educational purposes.

As we look to the future, the application of 3-D deep generative
models in architectural design, HBIM, and game design presents a
promising avenue for interdisciplinary research. The integration of
these models with HBIM offers a novel approach to preserving and
interacting with historical architecture, providing a bridge between
traditional architectural practices and contemporary digital tech-
nology. Furthermore, the exploration of these models in game
design opens up new possibilities for creating immersive, historic-
ally accurate virtual environments, pushing the boundaries of what
is currently achievable in digital content creation.
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