
J. Appl. Prob. 44, 306–320 (2007)
Printed in England

© Applied Probability Trust 2007

TAIL ASYMPTOTICS FOR
MONOTONE-SEPARABLE NETWORKS
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Abstract

A network belongs to the monotone separable class if its state variables are homogeneous
and monotone functions of the epochs of the arrival process. This framework contains
several classical queueing network models, including generalized Jackson networks, max-
plus networks, polling systems, multiserver queues, and various classes of stochastic Petri
nets. We use comparison relationships between networks of this class with independent
and identically distributed driving sequences and the GI/GI/1/1 queue to obtain the tail
asymptotics of the stationary maximal dater under light-tailed assumptions for service
times. The exponential rate of decay is given as a function of a logarithmic moment
generating function. We exemplify an explicit computation of this rate for the case of
queues in tandem under various stochastic assumptions.
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1. Introduction

Consider the GI/GI/1 single server queue; let Xn = σn − τn, where {σn} and {τn} are
independent and identically distributed (i.i.d.) nonnegative random variables, σn is the amount
of service customer n receives, and τn is the interarrival time between customer n and n + 1.
Assume that E[X1] < 0, then the supremum of the random walk Sn = X1 +· · ·+Xn defined by
M := supn≥1 Sn is finite almost surely and has the same distribution as the stationary workload
of the single server queue. If we assume moreover that E[exp(εX1)] < ∞, for some ε > 0,
then the following asymptotics is standard:

lim
x→∞

1

x
log P(M > x) = −θ∗, (1)

where θ∗ = sup{θ > 0, log E[exp(θX1)] < 0}. Motivated by queueing applications, this case
has been extensively studied in the literature and much finer estimates are available; see [10]
and [12]. The main goal of this paper is to derive analogous results to (1) for networks.

In the context of a network, we consider the maximal dater Z which is the time to empty the
network when stopping further arrivals. Clearly in the single server queue, the maximal dater
corresponds to the workload. In the case of queues in tandem, it corresponds to the end-to-end
delay. Theorem 2, below, gives the logarithmic tail asymptotics for the maximal dater of a
monotone separable network. The main difficulty in our task is the absence of closed form
formula for Z. The proof of Theorem 2 will proceed by deriving upper and lower bounds
for monotone separable networks. This class, which was introduced in [3], contains several
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classical queueing network models like generalized Jackson networks, max-plus networks,
polling systems, and multiserver queues. In this paper, we choose to put a particular emphasis
on tandem queues that fall in the class of open Jackson networks, and in the class of open
(max, +) systems which both belong to the class of monotone separable networks. It serves as
a pedagogical example to apply Theorem 2 under various stochastic assumptions and it enables
us to link our results with existing asymptotics results from queueing literature.

The paper is structured as follows. In Section 2, we give the precise definition of a monotone
separable network and its associated maximal dater. We then give the main result of this paper
in Section 2.2. The case of queues in tandem is dealt with in great detail in Section 3. In
particular, we show that a kind of phase transition is possible when service times at both
stations are dependent. We also link our result to the literature. Finally, technical proofs are
deferred to Section 4.

2. Tail asymptotics for monotone-separable networks

In this paper, we consider open stochastic networks with a single input process N , which is
a marked point process with points {Tn} corresponding to exogenous arrival times and marks
{ζn} which describe the service times and routing decisions.

More precisely, a stochastic network is described by the following framework (introduced
in [3]).

• The network has a single input point process N , with points {Tn}. That is, for all m ≤
n ∈ Z, let N[m,n] be the [m, n]-restriction of N , namely the point process with points
{T�}m≤�≤n.

• The network has almost sure (a.s.) finite activity for all finite restrictions of N . That
is, for all m ≤ n ∈ Z, let X[m,n](N) be the time of last activity in the network, when
this starts empty and is fed by N[m,n]. We assume that for all finite m and n as above,
X[m,n](N) is finite.

We assume that there exists a set of functions {f�}, f� : R
� × K� → R, such that

X[m,n](N) = fn−m+1{(T�, ζ�), m ≤ � ≤ n}, (2)

for all n, m, and N = {Tn}, where the sequence {ζn} is that describing service times and routing
decisions.

Example 1. Consider a G/G/1/∞ → ·/G/1/∞ tandem queue. Denote by {σ (i)
n } the sequence

of service times in station i = 1, 2, and denote by N = {Tn} the sequence of arrival times at
the first station. With the notation introduced above, we have ζn = (σ

(1)
n , σ

(2)
n ), and the time

of last activity is given by

X[m,n](N) = sup
m≤k≤n

{
Tk + sup

k≤i≤n

i∑
j=k

σ
(1)
j +

n∑
j=i

σ
(2)
j

}
. (3)

We refer to Appendix A for an explicit derivation of (3). Here, X[m,n](N) is simply the last
departure time from the network, when only customers m, m + 1, . . . , n enter the network.
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We say that a network described as above is monotone separable if the functions fn are such
that the following properties hold for all input point process N .

1. (Causality.) For all m ≤ n,
X[m,n](N) ≥ Tn.

2. (External monotonicity.) For all m ≤ n,

X[m,n](N ′) ≥ X[m,n](N),

whenever N ′ := {T ′
n} is such that T ′

n ≥ Tn for all n.

3. (Homogeneity.) For all c ∈ R and for all m ≤ n,

X[m,n](N + c) = X[m,n](N) + c,

where N + c is the point process with points {Tn + c}.
4. (Separability.) For all m ≤ � < n, if X[m,�](N) ≤ T�+1 then

X[m,n](N) = X[�+1,n](N).

We should stress that these four properties are properties satisfied by the functions fn which
define the dynamic of the network. In particular, no stochastic assumption has been made at this
stage and so previous properties will hold almost surely in the stochastic framework described
in the sequel. Note that the external monotonicity and the homogeneity properties will be valid
for any random delay on the Tns or random shift c (see [2] for more on this).

Remark 1. Clearly, tandem queues belong to the class of monotone-separable networks.

2.1. Stability and stationary maximal daters

In this section, we introduce stochastic assumptions ensuring the stability of the network.
More general results can be found in [3] and we refer to it for the statements given in this section
without proof.

By definition, for m ≤ n, the [m, n] maximal dater is

Z[m,n](N) := X[m,n](N) − Tn.

Note that Z[m,n](N) is a function of {ζl}m≤�≤n and {τl}m≤�≤n only, where τn = Tn+1 − Tn.
In particular, Zn := Z[n,n](N) is not a function of N (which makes the notation consistent).
When dealing with the maximal dater, we do not loose any generality if we assume that T0 = 0.

Lemma 1. (Internal monotonicity of X and Z [3].) Under the above conditions, the variables
X[m,n] and Z[m,n] satisfy the following internal monotonicity property. For all N and all m ≤ n,
we have

X[m−1,n](N) ≥ X[m,n](N),

Z[m−1,n](N) ≥ Z[m,n](N).

In particular, the sequence {Z[−n,0](N)} is nondecreasing in n. We define the stationary
maximal dater as

Z := Z(−∞,0](N) = lim
n→∞ Z[−n,0](N) ≤ ∞.
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Example 2. In the case of the tandem queues, the stationary maximal dater is given by

Z = sup
p≤q≤0

{ q∑
k=p

σ
(1)
k +

0∑
k=q

σ
(2)
k − (T0 − Tp)

}
, (4)

and Z is the stationary end-to-end delay of the network.

Lemma 2. (Subadditive property of Z [3].) Under the above conditions, {Z[m,n](N)} satisfies
the following subadditive property. For all m ≤ � < n and all N , we have

Z[m,n](N) ≤ Z[m,�](N) + Z[�+1,n](N).

We assume that the sequence {τn, ζn}n is a sequence of i.i.d. random variables. The following
integrability assumptions are also assumed to hold (recall that Zn = Z[n,n](N) does not depend
on N ):

E[τn] := a < ∞, E[Zn] < ∞.

Denote by N0 = {T 0
n } the degenerate input process with T 0

n = 0 for all n. This degenerate
point process plays a crucial role for the derivation of the stability condition. The following
lemma follows from Lemma 2 in which we take the input point process to be N0 (note that
the constant γ defined below is denoted γ (0) in [3] to emphasize the fact that the input point
process is N0).

Lemma 3. ([3].) Under the foregoing stochastic assumption, there exists a nonnegative con-
stant γ such that

lim
n→∞

Z[−n,0](N0)

n
= lim

n→∞
E[Z[−n,0](N0)]

n
= γ a.s.

We now present the main result on the stability region.

Theorem 1. ([3].) Under the foregoing stochastic assumptions, either Z = ∞ a.s. or Z < ∞
a.s.

(a) If γ < a then Z < ∞ a.s.

(b) If Z < ∞ a.s. then γ ≤ a.

A proof is given in Section 4.1, where we derive an upper bound and a lower bound that will
be used for the study of large deviations.

Example 3. In the case of tandem queues, the constant γ is easy to compute. We have

lim
n→∞ sup

−n≤q≤0

∑q
k=−n σ

(1)
k + ∑0

k=q σ
(2)
k

n
= max(E[σ (1)

1 ], E[σ (2)
1 ]).

Hence, Theorem 1 gives the following standard stability condition: max(E[σ (1)
1 ], E[σ (2)

1 ]) <

E[τ1].
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2.2. Moment generating function and tail asymptotics

In the rest of the paper, we will make the following assumptions.

Assumption 1. We assume that the arrival process into the network {Tn} is a renewal process
independent of the service time and routing sequences {ζn}.
Assumption 2. The sequence {ζn} is a sequence of i.i.d. random variables, such that the random
variable Z0 is light tailed, i.e. for θ in a neighbourhood of 0,

E[eθZ0 ] < ∞.

Assumption 3. For stability, we assume that γ < a = E[T1 − T0] (see Theorem 1).

The subadditive property of Z directly implies the following property (which is proved in
Lemma 6).

Property 1. For any monotone separable network that satisfies Assumption 2, the following
limit exists in R ∪ {+∞} for all θ :

�Z(θ) = lim
n→∞

1

n
log E[exp(θZ[1,n](N0))]. (5)

Note that the subadditive property of Z is valid regardless of the point process N (see
Lemma 2). Like in the study of the stability of the network, it turns out that the right quantity
to look at is Z[m,n](N0), where N0 is the degenerate input point process with all its point equal
to 0. We also define

�T (θ) = log E[exp(θ(T1 − T0))].
Theorem 2. Under previous assumptions, the tail asymptotics of the stationary maximal dater
is given by

lim
x→∞

1

x
log P(Z > x) = −θ∗ < 0,

where θ∗ = sup{θ > 0, �T (−θ) + �Z(θ) < 0}.
It is relatively easy to see that, under our light-tailed assumption, the stationary maximal

dater Z will be light tailed (see [4, Corollary 3]). The main contribution of Theorem 2 is to
give an explicit way of computing the rate of decay of the tail distribution of Z. We refer the
interested reader to [11] for more details on the computation of �Z in the case of (max, +)-
linear networks. In Section 3, we continue the study of our example and deal with the case of
queues in tandem under various stochastic assumptions. The case we study allows us to show
a phase transition phenomena and to compare Theorem 2 with results of the literature.

Note that, in the context of heavy-tailed asymptotics, the moment generating function is
infinite for all θ > 0. There is no general result for the tail asymptotics of the maximal dater of
a monotone separable network. However, the methodology derived in [4] for subexponential
distributions allows to get exact asymptotics for (max, +)-linear networks [6] and generalized
Jackson networks [5].

3. A case study: queues in tandem

3.1. The impact of dependence

We continue our Example 2 and 3 and consider a stable G/G/1/∞ → ·/G/1/∞ tandem
queue where {σ (i)

n } is the sequence of service times in station i, where i = 1, 2 and {τn} is the
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sequence of interarrival times at the first station. We assume that the sequences {σ (1)
n , σ

(2)
n } and

{τn}n are sequences of i.i.d. random variables such that γ = max(E[σ (1)
1 ], E[σ (2)

1 ]) < E[τ1].
We consider the following two cases.

Case 1. The sequences {σ (1)
n }, {σ (2)

n }, and {τn} are independent.

Case 2. The sequences {σ (1)
n } and {τn} are independent and we have σ

(2)
n = σ

(1)
n .

We let �i(θ) = log E[exp(θσ
(i)
1 )] and δ = sup{θ ≥ 0, E[exp(θσ

(1)
1 )] < ∞}. A direct applica-

tion of Theorem 2 gives an extension of the results of [9].

Corollary 1. The tail asymptotics of the stationary end-to-end delay for two queues in tandem
is given by

lim
x→∞

1

x
log P(Z > x) = −θ∗,

where in case 1

θ∗ = min(θ1, θ2), with θi = sup{θ > 0, �i(θ) + �T (−θ) < 0},
and in case 2

θ∗ = min

(
θ1,

δ

2

)
.

In case 1, θi is the rate of exponential decay for the tail distribution of the stationary
workload of a single server queue with interarrival time τn and service time σ

(i)
n , and we

have θ∗ = min(θ1, θ2). It is well known that the stability of such a network is constrained by
the ‘slowest’ component. Here, we see that in a large deviations regime, the ‘bad’ behaviour
of the network is due to a ‘bottleneck’ component (which is not necessarily the same as the
‘slowest’ component in average). Note that, in the particular case where the random variables
σ

(1)
n , σ (2)

n , and τn are exponentially distributed with means 1/µ1, 1/µ2, and a, respectively, we
have θi = µi − a−1, and in this case the ‘slowest’component in average is also the ‘bottleneck’
component in the large deviations regime.

In the case where the service times are the same at both stations, Corollary 1 shows that the
tail behaviour of the random variable σ

(1)
1 described by δ matters. To simplify this and to get a

parametric model, we assume that the arrival process is Poisson with intensity λ := a−1 and the
service times are exponentially distributed with mean 1/µ. Then, depending on the intensity
of the arrival process λ, the following two situations may occur:

λ ≤ µ

2
⇒ θ∗ = µ

2
,

λ >
µ

2
⇒ θ∗ = µ − λ.

These situations can be expressed as follows.

1. If λ < µ/2 then the tail asymptotics of the end-to-end delay is the same as the total
service requirement of a single customer.

2. If λ > µ/2 then the tail asymptotics of the end-to-end delay is the same as in the
independent case.
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This shows that the behaviour of tandems differs from that of a single server queue. In particular,
it was shown in [1] that, for GI/GI/1 queues, the buildup of large delays can happen in one of
the following two ways.

• If the service times have exponential tails, then it involves a large number of customers
(whose interarrival and service times differ from their mean values).

• If the service times do not have exponential tails, then large delays are caused by the
arrival of a single customer with large service requirement.

We see that the first behaviour is still valid for queues in tandem when the service times
are independent at each station or if the intensity of the arrival process is sufficiently large. In
contrast, when the service times are the same at both stations, we see that a single customer
can create large delays in the network even under the assumption of exponential service times
(if the intensity of arrivals is sufficiently small). Note that this phenomena is rather simple and
results intrinsically from the fact that the network considered is of dimension greater than 2
(i.e. we cannot get such a phenomena with a single server queue).

Proof of Corollary 1. Recall that we have

Z[1,n](N0) = sup
1≤k≤n

k∑
i=1

σ
(1)
i +

n∑
i=k

σ
(2)
i .

In case 1, we have

log E[exp(θZ[1,n](N0))] ≤ log

( n∑
k=1

exp(k�1(θ) + (n − k)�2(θ))

)

≤ log n + n max(�1(θ), �2(θ)).

Hence, we have �Z(θ) = max(�1(θ), �2(θ)), and the result follows.
In case 2, we have

Z[1,n](N0) =
n∑

i=1

σ
(1)
i + max

i
σ

(1)
i = max

i

(
2σ

(1)
i +

∑
j 
=i

σ
(1)
j

)
;

hence, we have

log E[exp(θZ[1,n](N0))] ≥ max(n�1(θ), �1(2θ)),

log E[exp(θZ[1,n](N0))] ≤ (n − 1)�1(θ) + log n + �1(2θ).

It follows that

�Z(θ) =

⎧⎪⎪⎨
⎪⎪⎩

�1(θ), θ <
δ

2
,

∞, θ >
δ

2
,

which completes the proof.
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3.2. Comparison with the literature

In the context of two queues in tandem, if we define

Yn = sup
−n≤q≤0

q∑
k=−n

σ
(1)
k +

0∑
k=q

σ
(2)
k − (T0 − T−n),

then, in view of (4), we have Z = supn Yn. The supremum of a stochastic process has been
extensively studied in queueing theory but we do not know of any general results that would
allow us to derive Corollary 1. To end this section and to make the connection with the existing
literature, we state the following result.

Corollary 2. Consider the system of queues in tandem descried above. Under the assumptions
of Theorem 2 and if

1. the sequence {Yn/n} satisfies a large deviation principle (LDP) with a good rate func-
tion I ,

2. there exists ε > 0 such that �Z(θ∗ + ε) < ∞, where θ∗ is defined as in Theorem 2,

we have

lim
x→∞

1

x
log P(Z > x) = −θ∗ = − inf

α>0

I (α)

α
. (6)

This kind of result has been extensively studied in the queueing literature (see [8]). However,
we see that considering the moment generating function instead of the rate function allows us
to get a more general result than (6) since we do not require assumption (2) of Corollary 2.
Indeed, this assumption ensures that the tail asymptotics of P(Yn > nc) for a single value of n

cannot dominate those of P(Z > x). In this case, (6) has a nice interpretation: the natural drift
of the process Yn is µn (where µ < 0). The quantity I (α) can be seen as the cost for changing
the drift of this process to α > 0. Now, in order to reach level x, this drift has to last for a time
x/α. Hence, the total cost for reaching level x with drift α is xI (α)/α and the process naturally
choose the drift with the minimal associated cost. As already discussed, this heuristic argument
is valid only if assumption (2) of Corollary 2 holds. Note also that in our framework, we do
not assume any LDP to hold for the sequence {Yn/n}. In particular, as shown by Corollary 1,
the computation of the moment generating function �Z is much easier than deriving a LDP for
{Yn/n}. Lastly, we should stress that for general monotone separable networks, the maximal
dater Z cannot be expressed as the supremum of a simple stochastic process, in which case the
derivation of the tail asymptotics of Z requires new techniques.

Proof of Corollary 2. We have only to show that θ∗ = infα>0(I (α)/α). Using Varadhan’s
integral lemma (see [7, Theorem 4.3.1]), we have

lim
n→∞

1

n
log E[exp(θYn)] = �(θ) = sup

x
{θx − I (x)},

for θ < θ∗ + ε, where �(θ) = �Z(θ) + �T (−θ). Then, for θ > 0, the corollary follows from
the following observations:

θ < inf
α>0

I (α)

α
⇐⇒ θα − I (α) < 0, for all α,

⇐⇒ sup
α

{θα − I (α)} = �(θ) < 0.
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4. Proof of the tail asymptotics

4.1. Upper G/G/1/∞ queue and lower bound for the maximal dater

The material of this subsection is not new and may be found in various references (that are
given in what follows). For the sake of completeness, we include all the proofs. We now derive
upper and lower bounds for the stationary maximal dater Z. These bounds allow us to prove
Theorem 1 and will be the main tools for the study of large deviations.

We first derive a lower bound that can also be found in [2, proof of Theorem 2.11.3].

Proposition 1. We have the following lower bound:

Z ≥ sup
n≥0

(Z[−n,0](N0) + T−n − T0).

Proof. For fixed n, let Nn be the point process with point T n
j = T−n − T0, for all j . Then

Z[−n,0] = X[−n,0](N) − T0

≥ X[−n,0](Nn)

= X[−n,0](N0) + T−n − T0

= Z[−n,0](N0) + T−n − T0,

where we used external monotonicity in the first inequality and homogeneity in the second
equality.

Proof of Theorem 1(b). Suppose that γ > a; then we have

lim inf
n→∞

Z[−n,0](N)

n
≥ γ − a > 0,

which concludes the proof.

We assume now that γ < a. We pick an integer L ≥ 1 such that

E[Z[−L,−1](N0)] < La, (7)

which is possible in view of Lemma 3. Without loss of generality, we assume that T0 = 0.
Theorem 1(a) follows from the following proposition.

Proposition 2. ([4].) The stationary maximal dater Z is bounded from above by the stationary
response time R̂ in the G/G/1/∞ queue with service times

ŝn := Z[L(n−1)+1,Ln](N0)

and interarrival times τ̂n := TLn − TL(n−1), where L is the integer defined in (7). Since
E[ŝ1] < E[τ̂1] = La, this queue is stable. With the convention

∑−1
0 = 0, we have

Z ≤ ŝ0 + sup
k≥0

−1∑
i=−k

(ŝi − τ̂i+1).
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To prove Proposition 2, we will need the following two lemmas.

Lemma 4. Assume that T0 = 0. For any m < n ≤ 0, we have

Z[m,0](N) ≤ Z[n,0](N) + (Z[m,n−1](N) − τn−1)
+,

where x+ = max(x, 0).

Proof. First assume that Z[m,n−1](N) − τn−1 ≤ 0, which is exactly X[m,n−1](N) ≤ Tn.
Then, by the separability property, we have

Z[m,0](N) = X[m,0](N) = X[n,0](N) = Z[n,0](N).

Now assume that Z[m,n−1](N) − τn−1 > 0. Let N ′ = {T ′
j } be the input process defined as

follows:

T ′
j =

{
Tj , for all j ≤ n − 1,

Tj + Z[m,n−1](N) − τn−1, for all j ≥ n.

Then we have N ′ ≥ N and X[m,n−1](N ′) ≤ T ′
n; hence, by the external monotonicity, the

separability, and the homogeneity properties, we have

Z[m,0](N) = X[m,0](N)

≤ X[m,0](N ′)
= X[n,0](N ′)
= X[n,0](N) + Z[m,n−1](N) − τn−1

= Z[n,0](N) + Z[m,n−1](N) − τn−1.

From Lemma 4 we directly derive the following result.

Lemma 5. Assume that T0 = 0. For any n < 0, we have

Z[n,0](N) ≤ sup
n≤k≤0

( −1∑
i=k

(Zi − τi+1)

)
+ Z0,

with the convention
∑−1

0 = 0.

Proof of Proposition 2. To an input process N , we associate the upper bound process N+ =
{T +

n }, where T +
n = TkL if n = (k − 1)L + 1, . . . , kL. Note that T +

n ≥ Tn for all n. Then, for
all n, since we assumed that T0 = 0 and thanks to the external monotonicity, we have

X[−n,0](N) = Z[−n,0](N) ≤ X[−n,0](N+) = Z[−n,0](N+). (8)

Applying Lemma 5 to Z[−kL+1,0](N+) for all k ≥ 1, we obtain

Z[−kL+1,0](N+) ≤ ŝ0 + sup
−k+1≤i≤0

−1∑
j=−i

(ŝj − τ̂j+1). (9)
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Hence, we have

Z = lim
k→∞ Z[−kL+1,0]

= sup
k≥0

Z[−kL+1,0](N)

≤ sup
k≥0

Z[−kL+1,0](N+), using (8),

≤ sup
k≥0

(
ŝ0 + sup

−k+1≤i≤0

−1∑
j=−i

(ŝj − τ̂j+1)

)
= R̂, using (9).

4.2. Moment generating function

Lemma 6. The function �Z(·) defined by (5) is a proper convex function with �Z(θ) < ∞ for
all θ < η and �Z(θ) = ∞ for all θ > η, where η = sup{θ, E[exp(θZ0)] < ∞}.

Proof. Let

�Z,n(θ) = log E

[
exp

(
θ
Z[1,n](N0)

n

)]
.

Thanks to the subadditive property of Z, we have

Z[1,n+m](N0) ≤ Z[1,n](N0) + Z[n+1,n+m](N0),

and Z[1,n](N0) and Z[n+1,n+m](N0) are independent. Hence, for θ ≥ 0, we have

�Z,n+m((n + m)θ) ≤ �Z,n(nθ) + �Z,m(mθ).

Hence, we can define, for any θ ≥ 0,

�Z(θ) = lim
n→∞

1

n
log E[exp(θZ[1,n](N0))] = lim

n→∞
�Z,n(nθ)

n
= inf

n≥1

�Z,n(nθ)

n

as an extended real number. The fact that �Z is a proper convex function follows from
[7, Lemma 2.3.9]. The fact that �Z(θ) < ∞ for all θ < η and �Z(θ) = ∞ for all θ > η,
follows from

�Z(θ) ≤ log E[exp(θZ1)] and log E[exp(θZ1)] ≤ �Z,n(nθ), for θ ≥ 0 and all n ≥ 1.

We define

�(θ) = �T (−θ) + �Z(θ) and �n(θ) = �T (−θ) + �Z,n(θ).

Note that �Z(·) and �T (·) are proper convex functions; hence, �(·) is a well-defined convex
function. Recall that θ∗ is defined as follows:

θ∗ = sup{θ > 0, �(θ) < 0}.
The following lemma is used repeatedly in what follows.

Lemma 7. Under the foregoing assumptions, we have θ∗ > 0 and

�(θ) < 0, if θ ∈ (0, θ∗),
�(θ) > 0, if θ > θ∗.
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Proof. Let
θn = sup{θ > 0, �n(nθ) < 0}. (10)

We fix n such that E[Z[1,n](N0)] ≤ na, which is possible in view of the stability condition.
We first show that θn > 0 and

�n(nθ) < 0, if θ ∈ (0, θn), (11)

�n(nθ) > 0, if θ > θn. (12)

The function θ �→ �n(nθ) is convex, continuous, and differentiable on [0, η). Hence, we have

�n(nδ) = δ(E[Z[1,n](N0)] − a) + o(δ),

which is less than zero for sufficiently small δ > 0. Hence, the set over which the supremum
in the definition of θn is taken is not empty and θn > 0. Now (11) and (12) follow from the
definition of θn, the convexity of θ �→ �n(nθ), and the fact that �n(0) = 0.

We now show that θn → θ∗ as n → ∞. For θ ≥ 0, we have

lim
n→∞

�n(nθ)

n
= inf

n≥1

�n(nθ)

n
= �(θ).

Hence, for θ ≥ 0 we have �n(nθ)/n ≥ �(θ) and, for all θ ∈ (0, θn),

�(θ) ≤ �n(nθ)

n
< 0.

This implies that θ∗ ≥ θn > 0. If θ∗ < ∞ then we can choose ε > 0 such that θ∗ − ε > 0, and
then we have �n(n(θ∗ − ε))/n → �(θ∗ − ε) < 0. Hence, for sufficiently large n, we have
�n(n(θ∗ − ε))/n < 0; hence, θ∗ − ε ≤ θn, and we proved that θn → θ∗. As �(·) is a convex
function and since �(0) = 0, the lemma follows in this case.

If θ∗ = ∞, we still have θn → ∞ (this will be needed in proof of Lemma 9) by the same
argument as above with θ∗ − ε replaced by any real number.

4.3. Lower bound

Lemma 8. Under previous assumptions, we have

lim inf
x→∞

1

x
log P(Z > x) ≥ −θ∗.

Proof. We have (see Proposition 1)

Z ≥ sup
n

{Z[−n,0](N0) + T−n − T0}. (13)

We let Yn = Z[−n,1](N0) + T−n + T0; the lemma follows from the following fact:

lim inf
x→∞

1

x
log P(sup

n
Yn > x) ≥ −θ∗.

Note that we have

lim
n→∞

1

n
log E[eθYn ] = �(θ).
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In particular, we are in the setting of the Gärtner–Ellis theorem (see [7, Theorem 2.3.6]), which
will be the main tool of the proof.

First note that we only need to consider the case θ∗ < ∞. We first consider the case where
there exists θ > θ∗ such that �(θ) < ∞. First note that the function θ �→ �(θ) is convex;
hence, the left-hand derivatives �′(θ−) and the right-hand derivatives �′(θ+) exist for all
θ > 0. Moreover, we have �′(θ−) ≤ �′(θ+) and the function θ �→ 1

2 (�′(θ−) + �′(θ+))

is nondecreasing; hence, �′(θ) = �′(θ−) = �′(θ+) except for θ ∈ 
, where 
 is at most
countable. Since �(θ) < ∞ for θ > θ∗, we have �(θ∗) = 0 and �′(θ∗+) > 0. To prove this,
assume that �′(θ∗+) = 0. For θ < θ∗, using Lemma 7, we have �(θ) < 0. Choose ε > 0
such that 0 < �(θ∗ + ε) < ε|�(θ)|. We have

�(θ∗ + ε)

ε
<

−�(θ)

θ∗ − θ
,

which contradicts the convexity of �(θ). Hence, we can find t ≤ θ∗ + ε such that

0 < �(t), t /∈ 
.

Note that these conditions imply that t > θ∗ and �′(t) ≥ �′(θ∗+) > 0.
Thanks to the Gärtner–Ellis theorem, we have

lim inf
n→∞

1

n
log P(Yn > nα) ≥ − inf

x∈F , x>α
�∗(x), (14)

where F is the set of exposed point of �∗ and �∗(x) = supθ≥0(θx−�(θ)). Note that, from the
monotonicity of θx − �(θ) in x as θ is fixed, we deduce that �∗ is nondecreasing. Moreover,
take α = �′(t), then �∗(α) = tα − �(t) and α ∈ F by [7, Lemma 2.3.9].

Given x > 0, define n = 
x/α�. We have

1

x
log P(sup

n
Yn > x) ≥ 1

nα
log P(Yn ≥ nα),

taking the limit in x and n (while α = �′(t) is fixed) gives, thanks to (14),

lim inf
x→∞

1

x
log P(sup

n
Yn > x) ≥ − tα − �(t)

α
≥ −t ≥ −θ∗ − ε.

We now consider the case where, for all θ > θ∗, we have �(θ) = ∞, i.e. θ∗ = η

defined in Lemma 6. Take K > 0 and define Z̃K[n,m] = Z[n,m](N0)
∏m

i=n 1{Zi≤K} and Z̃K =
supn≥0(Z̃

K[−n,0] + T−n), where 1{·} is the indicator function. By (13), we have Z ≥ Z̃K . It is
easy to see that the proof of Lemma 6 is still valid (note that the subadditive property carries
over to Z̃K[n,m]) and the following limit exists:

�̃K
Z (θ) = lim

n→∞
1

n
log E[exp(θZ̃K[1,n])] = inf

n

1

n
log E[exp(θZ̃K[1,n])].

Moreover, thanks to the subadditive property of Z, we have P(Z̃K[1,n] ≤ nK) = 1, so that
�̃K

Z (θ) ≤ θK . Hence, by the first part of the proof, we have

lim inf
x→∞

1

x
log P(Z̃K > x) ≥ −θ̃K,
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with θ̃K = sup{θ > 0, �̃K
Z (θ) + �T (−θ) < 0}. We now prove that θ̃K → η as K → ∞,

which will conclude the proof. Note that, for any fixed θ ≥ 0, the function �̃K
Z (θ) is nonde-

creasing in K and limK→∞ �̃K
Z (θ) = �̃Z(θ) ≤ �Z(θ). This directly implies that θ̃K ≥ η. Take

θ > η, so that �Z(θ) = ∞. If �̃Z(θ) < ∞ then, for all K , we have �̃K
Z (θ) ≤ �̃Z(θ) < ∞.

But, we have

�̃K
Z (θ) = inf

n

1

n
log E[exp(θZ̃K[1,n])],

so that there exists n such that

E[exp(θZ[1,n](N0)), max(Z1, . . . , Zn) ≤ K] ≤ exp(n(�̃K
Z (θ) + 1)) ≤ exp(n(�̃Z(θ) + 1)),

but the left-hand side tends to infinity as K → ∞. Hence, we have proved that, for all θ > η,
we have �̃K

Z (θ) → ∞ as K → ∞. This implies that θ̃K → η as K → ∞.

4.4. Upper bound

Lemma 9. Under previous assumptions, we have

lim sup
x→∞

1

x
log P(Z > x) ≤ −θ∗.

Proof. For sufficiently large L, we have, with the convention
∑−1

0 = 0 (see Proposition 2),

Z ≤ sup
n≥0

( −1∑
i=−n

ŝi(L) − τ̂i+1(L)

)
+ ŝ0(L) =: V (L) + ŝ0(L).

We will show that, under previous assumptions, we have

lim sup
x→∞

1

x
log P(V (L) + ŝ0(L) > x) ≤ −θL,

where θL is defined as in (10), and the lemma will follow since θL → θ∗ as L → ∞ (see
Lemma 7).

First note that, for all θ ∈ (0, θL), we have

max{E[exp(θ ŝ0(L))], E[exp(θV (L))]} < ∞.

Hence, for θ ∈ (0, θL), we have

E[exp(θ(V (L) + ŝ0(L)))] = E[exp(θV (L))] E[exp(θ ŝ0(L))] ≤ A,

for some finite constant A. Hence, by Chernoff’s inequality, we obtain

P(V (L) + ŝ0(L) ≥ x) ≤ exp(−θx) E[exp(θ(V (L) + ŝ0(L)))] ≤ A exp(−θx).

Since the above holds for all 0 < θ < θL, we obtain

lim sup
x→∞

1

x
log P(V (L) + ŝ0(L) ≥ x) ≤ −θL.
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Appendix A. Recursion for queues in tandem

We consider a G/G/1/∞ → ·/G/1/∞ tandem queue, where {σ (i)
n } denotes the sequence

of service times in station i = 1, 2 and N = {Tn} is the sequence of arrival times at the
first station. For m ≤ k ≤ n, we denote by D

(i)
[m,n](k) the departure time of customer k from

station i = 1, 2 when the network starts empty and is fed by N[m,n]. With the notation introduced
in Section 2, we have X[m,n](N) = D

(2)
[m,n](n). We now derive the recursion equations satisfied

by the D[m,n]s,

D
(1)
[m,n](m) = Tm + σ (1)

m ,

D
(2)
[m,n](m) = D

(1)
[m,n](m) + σ (2)

m

= Tm + σ (1)
m + σ (2)

m ,

D
(1)
[m,n](k) = max(D

(1)
[m,n](k − 1), Tk) + σ

(1)
k ,

D
(2)
[m,n](k) = max(D

(2)
[m,n](k − 1), D

(1)
[m,n](k)) + σ

(2)
k ,

for m < k ≤ n. From these equations, we can easily check that

D
(1)
[m,n](k) = sup

m≤j≤k

{
Tj +

k∑
i=j

σ
(1)
i

}
,

D
(2)
[m,n](k) = sup

m≤j≤k

{
Tj + sup

j≤�≤k

�∑
i=j

σ
(1)
i +

k∑
i=�

σ
(2)
i

}
,

and (3) follows.
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