
J. Appl. Prob. 46, 113–131 (2009)
Printed in England

© Applied Probability Trust 2009

DEPENDENT RISK MODELS WITH
BIVARIATE PHASE-TYPE DISTRIBUTIONS

ANDREI L. BADESCU,∗ University of Toronto

ERIC C. K. CHEUNG ∗∗ and

DAVID LANDRIAULT,∗∗ ∗∗∗ University of Waterloo

Abstract

In this paper we consider an extension of the Sparre Andersen insurance risk model by
relaxing one of its independence assumptions. The newly proposed dependence structure
is introduced through the premise that the joint distribution of the interclaim time and the
subsequent claim size is bivariate phase-type (see, e.g. Assaf et al. (1984) and Kulkarni
(1989)). Relying on the existing connection between risk processes and fluid flows (see,
e.g. Badescu et al. (2005), Badescu, Drekic and Landriault (2007), Ramaswami (2006),
and Ahn, Badescu and Ramaswami (2007)), we construct an analytically tractable fluid
flow that leads to the analysis of various ruin-related quantities in the aforementioned
risk model. Using matrix-analytic methods, we obtain an explicit expression for the
Gerber–Shiu discounted penalty function (see Gerber and Shiu (1998)) when the penalty
function depends on the deficit at ruin only. Finally, we investigate how some ruin-related
quantities involving the surplus immediately prior to ruin can also be analyzed via our
fluid flow methodology.
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1. Introduction

In ruin theory, considerable attention has been given to various risk models which relax
the stringent independence assumptions of the Sparre Andersen model. We recall that, in
the framework of the Sparre Andersen model, the claim size and the interclaim time random
variables (RVs) are all assumed to be independent. There exists a considerable number
of insurable contexts for which such an assumption is severely violated (e.g. catastrophic
insurance). An important class of risk models relaxing the stringent independence assumptions
is the class of risk models with Markovian arrival processes (see Neuts (1979)), which allows
for a complete dependence structure between claim sizes and interclaim times (see, e.g. Ahn et
al. (2007) and Badescu et al. (2005), (2007) for a more detailed discussion).

Recently, another class of generalizations have received special attention, namely the class
of risk models for which the increments of the surplus process between claims are independent
and identically distributed. We refer to this class of risk models as Sparre Andersen type
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114 A. L. BADESCU ET AL.

risk models. Risk models of this type have been proposed in Albrecher and Teugels (2006),
Boudreault et al. (2006), and Cossette et al. (2008), among others. This class of risk models is
of special interest given that some essential properties of the Sparre Andersen risk model are
preserved (see Cheung et al. (2009) for more details).

In this paper, our goal is to enrich the latter class. The risk model of interest in this paper is
described as follows. Let Wi be the ith interclaim time, and let Xi be the size of the ith claim
(i = 1, 2, . . . ). The claim number process {N(t), t ≥ 0} having interclaim times {Wi}∞i=1 is
defined as N(t) = max{n ≥ 0 : ∑n

i=1 Wi ≤ t}. Assuming that the insurer collects premium at
a constant rate c per unit time, its surplus process R = {R(t), t ≥ 0} follows the dynamics

R(t) = u + ct −
N(t)∑
i=1

Xi, t ≥ 0, (1)

for an initial surplus of u. We assume that the random vectors (Wi, Xi) (i = 1, 2, . . . ) are
independent and identically distributed. Contrary to the Sparre Andersen risk model, we allow
for the RVs Wi and Xi to be dependent. For reasons that will become apparent later, we
model the generic pair (W, X/c) by a bivariate phase-type distribution (see Section 2). As in
the univariate case, we point out that the class of bivariate phase-type distributions has been
proven to be dense in the set of distributions defined on R

+ × R
+ (see Corollary 1 of Assaf

et al. (1984)). The reader is referred to Assaf et al. (1984) for other properties of the bivariate
phase-type distribution.

Of special interest for the surplus process R is the analysis of the time to ruin τ , defined as
τ = inf{t ≥ 0 : R(t) < 0} with τ = ∞ if ruin does not occur (i.e. R(t) ≥ 0 for all t ≥ 0).
To ensure that ruin does not occur almost surely, we assume that the positive security loading
condition

E[X] < c E[W ] (2)

is fulfilled. In this paper, our main objective is the analysis of a subclass of Gerber–Shiu
functions (see Gerber and Shiu (1998)), namely those for which the penalty function depends
only on the deficit at ruin |R(τ)|. To this end, we define

m(u) = E[e−sτw(|R(τ)|) 1(τ < ∞) | R(0) = u], (3)

where s (s ≥ 0) is the force of interest, w is a penalty function, and 1(A) is the indicator
function of the event A. This special class of Gerber–Shiu functions has been considered in,
for example, Willmot (2007) and Landriault and Willmot (2008). In this paper we propose to
analyze m(u) using the connection to a particular fluid flow model described in Section 3.

The paper is organized as follows. A review of the bivariate phase-type distribution can be
found in Section 2. In Section 3, the construction of a fluid flow model is presented and its
connection to the surplus process R is established. The main results of this paper are provided
in Section 4. An explicit expression for the Laplace transform of the time to ruin τ is obtained
followed by the identification of the distribution of the deficit at ruin. Finally, in Section 5 we
examine the analysis of some ruin-related quantities involving the surplus immediately prior to
ruin.

2. Bivariate phase-type distributions

We consider the class of bivariate phase-type distributions introduced in Assaf et al. (1984)
and further analyzed in Kulkarni (1989). For purposes of completeness, this class of distribu-
tions is discussed in more detail here. Suppose that Z = {Z(t), t ≥ 0} is a (time-homogeneous)
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continuous-time Markov chain (CTMC) with state space E = {1, 2, . . . , m}∪{�}, infinitesimal
generator A, and initial probability vector α. Let �1 and �2 be two nonempty subsets of E,
and define � = �1 ∩ �2 (which can possibly be the empty set). We further assume that the
CTMC Z is defined such that both subsets �1 and �2 are visited at least once almost surely.

Let Y1 and Y2 be the time of the first visit of Z to �1 and �2, respectively, i.e.

Yi = inf{t ≥ 0 : Z(t) ∈ �i}, i = 1, 2.

We assume without loss of generality that � = �1 ∩ �2 contains only one state (when � is not
empty). The case in which � = ∅ will be discussed later. We partition the state space E into
the following four subsets: E0 = �c

1 ∩ �c
2, E1 = �1 ∩ �c

2, E2 = �c
1 ∩ �2, and � = �1 ∩ �2.

The cardinality of the subsets E0, E1, and E2 is m0, m1, and m2, respectively (which satisfies
m0 + m1 + m2 = m). The infinitesimal generator A can be written as

A =
[
T −T e

0 0

]
, (4)

where

T =
⎡
⎣T00 T01 T02

T10 T11 T12
T20 T21 T22

⎤
⎦ , (5)

and e is a column vector of 1s while 0 is a row vector of 0s, both of appropriate dimension.
Note that

• Tii is an mi × mi matrix with negative diagonal elements and nonnegative off-diagonal
elements containing the rate of transition in Ei ;

• Tij (i �= j ) is an mi × mj matrix with nonnegative elements containing the rate of exit
from any state in Ei to any state in Ej .

Owing to the form of (5), the column vector −T e in (4) can be rewritten as

−T e =
⎡
⎣t0

t1
t2

⎤
⎦ ,

where ti = − [
Ti0 Ti1 Ti2

]
e for i = 0, 1, 2.

We will call the joint distribution of (Y1, Y2) a bivariate phase-type distribution with repre-
sentation (α, A). We point out that if � = ∅ then A = T . It is also possible that either set E1
or set E2 is empty when � is not. This simply implies that some submatrices in representation
(5) of T are empty.

The class of bivariate phase-type distributions contains various well-known bivariate distribu-
tions as special cases, notably Marshall and Olkin’s (1967) bivariate exponential distribution and
Freund’s (1961) extension of the exponential distribution (see Assaf et al. (1984, Example 5.2)
and Cai and Li (2007, Example 4.3) for their bivariate phase-type representations, respectively).
We remark that while the former distribution allows for only positive correlation between the
two RVs, the latter distribution can be used to model both positive and negative dependencies.
Interested readers are referred to Assaf et al. (1984, Section 5) for other special cases of the
bivariate phase-type distribution.

As pointed out in Kulkarni (1989), bivariate phase-type distributions may have singular
components along Y1 = 0, Y2 = 0, or Y1 = Y2. In our context, given that the claim sizes and
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the interclaim times are assumed to be strictly positive RVs, the possible singular components
along Y1 = 0 or Y2 = 0 are removed by assuming that the initial probability vector α is of the
form α = (α0, 0), where α0 is a vector with m0 nonnegative elements satisfying α0e = 1. In
addition, it seems unreasonable to the authors to assume that the interclaim time and the claim
size are equal with a positive probability. Such a possibility can be discarded by assuming that
t0 is a column vector of 0s. However, in most cases, no significant simplification occurs when
t0 is a null column vector. Thus, unless otherwise stated, we will treat the most general case in
this paper.

3. Connection with a particular fluid queue

To analyze the surplus process R, we capitalize on the connection between surplus processes
and fluid queues (see, e.g. Ramaswami (2006), Ahn et al. (2007), and Badescu et al. (2005),
(2007)). To construct the fluid flow process F equivalent to the surplus process R, we make
the following assumptions:

• a period of increase in the surplus process R (i.e. collect premiums at a rate c) corresponds
to a period of fluid increase (at a rate c) in the fluid queue F ;

• the sudden drop caused by a claim of size x in the surplus process R is replaced by a
period of decrease (at a rate c) over a period of length x/c in the fluid queue F (see
Figure 1).

F*(t)

X1/c

t

u

W1 − X1/c

W2

X2/c − W2

F(t)

X1/c
u X2/cW1

R(t)

u W2

u + cW1 − X1

W2

X1

X2

W1

u + c (W1 + W2) − X1 − X2

t

t

Figure 1: Translation of R(t) into F(t) and F ∗(t).
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From the above construction, the fluid process F has a rate of increase/decrease of c and
alternates between increasing and decreasing fluid periods. The length of an increasing fluid
period and its subsequent decreasing fluid period is distributed as the generic pair (W, X/c).
Also, all the increasing–decreasing cycles of F are mutually independent (given that the pairs
(Wi, Xi) are assumed to be independent in the risk process R). However, the fact that the length
of an increasing fluid period and its subsequent decreasing fluid period are generally dependent
compromises the use of the well-known matrix-analytic methods in fluid theory to analyze the
fluid process F .

In what follows, we define a second fluid flow process F ∗ = {F ∗(t), t ≥ 0} with three possi-
ble fluid patterns: increasing, decreasing, and constant. Defining the fluid process F ∗ together
with its underlying CTMC J ∗ = {J ∗(t), t ≥ 0} such that the bivariate process (F ∗, J ∗) is
Markovian, represents the key step to analyze the risk process R via the existing matrix-analytic
methods. To draw the connections between the surplus process R and the fluid process F ∗,
we assume that the pairs (Wi, Xi/c) (i = 1, 2, . . . ) are distributed as the pair (Y1, Y2) defined
in Section 2. Note that every pair of (Wi, Xi/c) is generated by a different sample path of
the CTMC Z. To avoid confusion, we will refer to the sample path of Z generating the pair
(Wi, Xi/c) as the ith sample path of Z. The construction of the fluid process F ∗ with F ∗(0) = u

is done as follows:

1. the fluid process F ∗ remains constant as long as the first sample path of Z has not yet
visited any states in �1 ∪ �2;

2. the fluid process F ∗ starts to decrease or increase at a rate c, when the first sample path
of Z has visited at least one state in �1 or, respectively, �2, but not any states in �2 or,
respectively, �1 (given that W1 < X1/c or, respectively, W > X1/c);

3. at the time that the first sample path of Z has visited both �1 and �2, the fluid process
F ∗ stops its increasing or decreasing pattern;

4. from this new established fluid level, we repeat steps 1–3 by successively replacing the
first sample path of Z by the 2nd, 3rd, . . . sample path of Z.

From the construction of the fluid process F ∗, it is immediate that the level of the surplus
process R immediately after the payment of the ith claim corresponds to the fluid level of the
process F ∗ at the end of the ith sample path of Z (i = 1, 2, . . . ). This is depicted in Figure 1.
Thus, the ruin probability for the surplus process R coincides with the probability that the fluid
process F ∗ eventually hits level 0 at least once. With regards to the time to ruin, it is not true that
the first passage time to level 0 of F ∗ corresponds to the time to ruin τ in the surplus process
R. Indeed, when the fluid process F ∗ increases or remains constant, the surplus process R

increases at a rate c, whereas time does not evolve in the surplus process R when the fluid
level F ∗ decreases. Hence, the time to ruin τ in the surplus process R is equivalent to the total
amount of time the process F ∗ takes to reach level 0, extracting periods of time for which the
fluid decreases over that first passage time.

Let the time-homogeneous CTMCJ ∗ have finite state spaceS = S0∪S1∪S2 and infinitesimal
generator

Q =
⎡
⎣Q00 Q01 Q02

Q10 Q11 Q12
Q20 Q21 Q22

⎤
⎦ , (6)

where the submatrix Qij is an |Si | × |Sj | matrix containing the (r, s)th elements of the
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infinitesimal generator Q for all r ∈ Si and all s ∈ Sj . The partition of the state space S

into S0, S1, and S2 is as follows:

• during sojourns of J ∗ in S1 or S2, the fluid process F ∗ increases or, respectively, decreases
at a rate c;

• during sojourns of J ∗ in S0, the fluid process F ∗ remains constant.

Note that, under our construction of the fluid process F ∗, S1 or S2 cannot be reached from
S2 or, respectively, S1 without passing through S0. Now it remains to formally define the Qij

matrices in terms of the Tij matrices. We first consider the most general case where the set
� = �1 ∩ �2 is not empty. Cases for which � is empty can be obtained in an identical way.
At time 0, we consider the first sample path of Z starting in some states in E0 = �c

1 ∩ �c
2. The

fluid level remains constant as long as Z is in E0. Since the transition rates of Z within E0 are
governed by T00, it is clear that the cardinality of the set S0, denoted by |S0|, is |S0| = m0 and

Q00 = T00 + t0α0. (7)

When the process Z first leaves E0, it enters either E1 = �1 ∩�c
2 (governed by rate matrix T01)

or E2 = �c
1 ∩ �2 (governed by rate matrix T02) for the first time. Suppose that it enters E1.

From the time of entrance, as long as Z does not enter �2 (or, equivalently, as long as Z moves
only within E1 ∪E0), the fluid level decreases at a rate c. It follows that |S2| = |�c

2| = m1 +m0.
We also recall that the transitions within E1 ∪ E0 are governed by the T00, T01, T10, and T11
matrices. Combining the above observations, it is immediate that Q02 is an m0 × (m1 + m0)

matrix with representation
Q02 = [

T01 0
]
, (8)

while Q22 is the following square matrix (of dimension (m1 + m0)):

Q22 =
[
T11 T10
T01 T00

]
. (9)

When the fluid level decreases at a rate c and the process Z is in some states in E1, the process
J ∗ would enter S0 upon transition of Z into �2, which could happen through (i) transition into
E2 (governed by T12) or (ii) transition into � (governed by t1). Once a transition into �2 occurs,
both RVs from the bivariate phase-type distribution have been generated and we immediately
move on to the next sample path of Z via the initial probability vector α. Similarly, when the
fluid level is decreasing at rate c, but the process Z is in some states in E0, the process J ∗
would enter S0 upon transition of Z into �2 and this could happen through (i) transition into
E2 (governed by T02) or (ii) transition into � (governed by t0). From the above description,
the matrix Q20 is of size (m1 + m0) × m0 and defined as

Q20 =
[
(T12e + t1)α0
(T02e + t0)α0

]
. (10)

Furthermore, the process J ∗ cannot transit from any state in S2 to a state in S1 without going
through S0 and, therefore,

Q21 = 0. (11)

If the first transition out of E0 is to any state in E2, the use of identical arguments yields

Q01 = [
T02 0

]
, (12)
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Q11 =
[
T22 T20
T02 T00

]
, (13)

Q10 =
[
(T21e + t2)α0
(T01e + t0)α0

]
, (14)

and
Q12 = 0. (15)

The characterization of the generator Q in (6) is now complete.
For the case in which � = ∅, relations (7)–(15) remain valid by simply letting t0 = 0,

t1 = 0, and t2 = 0 in (7), (10), and (14). Also, the case where some of the matrices T10, T12,
T20, and T21 are 0s can be obtained in an analogous way, reducing the dimensions of some
Q matrices in the process.

4. Analysis of a class of Gerber–Shiu functions

In this section we consider the analysis of the special Gerber–Shiu function defined in
(3). This analysis is conducted via the connection of the surplus process R to the fluid flow
process F ∗. We recall here some crucial observations made in Section 3:

• the surplus level immediately after the payment of the ith claim corresponds to the fluid
level of the process F ∗ at the end of the ith sample path of Z (i = 1, 2, . . . );

• with respect to time, time evolves in the surplus process R only when the CTMC J ∗ is
either in the set of phases S0 or S1 (in contrast with the fluid process F ∗, where time
evolves independently of the state of the CTMC J ∗).

Clearly, the analysis of the Gerber–Shiu function m(u) in the risk process R requires a freeze
in the clock time whenever the CTMC J ∗ is in the set of phases S2. Then, consider the evolution
of the fluid process F ∗ (with initial fluid level F ∗(0) = u) and its underlying CTMC J ∗. For
the time being, we assume that the fluid is in an ascending phase at time 0 (i.e. J ∗(0) ∈ S1).
Thus, for the fluid level to become empty, the skip-free property of the fluid process F ∗ implies
that the process must revisit level u at least once and ultimately make a transition from level u

to level 0. We denote by θ the time it takes for the fluid process to return to its initial level u for
the first time and by ξ the remaining time until the fluid level becomes empty for the first time.

In queueing theory, the (random) time θ is known as the length of a busy period for the fluid
process F ∗. Given that θ is independent of the initial level u, let θ be defined as

θ = inf{t ≥ 0 : F ∗(t) < 0}
when F ∗(0) = 0 with θ = ∞ if F ∗(t) ≥ 0 for all t ≥ 0. Also, let θi = ∫ θ

0 1(J ∗(s) ∈ Si) ds

(i = 0, 1, 2) be the time spent in the set of phases Si during the (infinite buffer) busy period
(0, θ) (with θi = ∞ if θ = ∞). Given that time does not evolve in the surplus process R

whenever the CTMC J ∗ is in the set of phases S2, we are interested in the distribution of the
time θ0 + θ1 in the busy period (0, θ) for the fluid process F ∗. Thus, let �(x) be an |S1| × |S2|
matrix whose (k, l)th element is defined as

[�(x)]kl = Pr(θ < ∞, θ0 + θ1 ≤ x, J ∗(θ) = l | J ∗(0) = k)

for k ∈ S1 and l ∈ S2. The Laplace–Stieltjes transform (LST) of the time θ0 + θ1 is given by
�̃(s) = ∫ ∞

0 e−sx d�(x). As we will see later, the determination of the LST �̃(s) plays a crucial
role in this paper, being to some extent similar to the one defined for a certain fluid process in
Badescu et al. (2005, Section 4).
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Along the same lines of logic for the passage time ξ , we let ξi = ∫ ξ

0 1(J ∗(θ + s) ∈ Si) ds

(i = 0, 1, 2) be the time spent in the set of phases Si during the interval (θ, θ + ξ) with ξi = ∞
if ξ = ∞. Extracting the time intervals in which the fluid flow decreases over this passage time,
we are interested in the identification of the distribution of ξ0 + ξ1. We define an |S2| × |S2|
matrix �u(x) whose (k, l)th element is

[�u(x)]kl = Pr(ξ < ∞, ξ0 + ξ1 ≤ x, J ∗(θ + ξ) = l | F ∗(θ) = u, J ∗(θ) = k),

where k, l ∈ S2. The LST of the passage time ξ0 + ξ1 is given by �̃u(s) = ∫ ∞
0 e−sx d�u(x).

We remark that the distribution of ξ0 + ξ1 has a mass point at 0 given that the CTMC J ∗ may
remain in the S2 set of phases during the interval (θ, θ + ξ).

Conditioning on the length of the first ascending and subsequent constant period and on
whether the fluid flow F ∗ returns to an ascending phase or visits for the first time a descending
phase after the end of this constant period, we obtain

�(x) =
∫ x

0
exp{Q11y}Q10

×
∫ x−y

0
exp{Q00z}[Q01(� ∗ �cy)(x − y − z) + Q02�cy(x − y − z)] dz dy, (16)

where (� ∗ �y)(x) = ∫ x

0 �y(x − z) d�(z). Using (16) followed by some simple manipula-
tions, the LST �̃(s) satisfies

�̃(s) =
∫ ∞

0
e−sx

∫ x

0
exp{Q11y}Q10

×
∫ x−y

0
exp{Q00z} ∂

∂x
[Q01(� ∗ �cy)(x − y − z) + Q02�cy(x − y − z)] dz dy dx

+
∫ ∞

0
e−sx

∫ x

0
exp{Q11y}Q10 exp{Q00(x − y)}Q02�cy(0) dy dx

=
∫ ∞

0
exp{Q11y}Q10

∫ ∞

y

e−sx

×
∫ x−y

0
exp{Q00z} ∂

∂x
[Q01(� ∗ �cy)(x − y − z) + Q02�cy(x − y − z)] dz dx dy

+
∫ ∞

0
exp{Q11y}Q10

∫ ∞

y

e−sx exp{Q00(x − y)}Q02�cy(0) dx dy

=
∫ ∞

0
exp{(Q11 − sI )y}Q10

∫ ∞

0
e−sx

×
∫ x

0
exp{Q00z} ∂

∂x
[Q01(� ∗ �cy)(x − z) + Q02�cy(x − z)] dz dx dy

+
∫ ∞

0
exp{(Q11 − sI )y}Q10

(∫ ∞

y

exp{(Q00 − sI )(x − y)} dx

)
Q02�cy(0) dy

=
∫ ∞

0
exp{(Q11 − sI )y}Q10(sI − Q00)

−1[Q01�̃(s) + Q02]�̃cy(s) dy.

It remains to identify a relation satisfied by the LST of the remaining time until ruin, namely
�̃u(s). Now at level u in a decreasing phase, the fluid process F ∗ can become empty with
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or without a visit of the CTMC J ∗ in S0 in the interim. Conditioning on the length of the
descending period (from level u) and its subsequent constant period (if necessary), we obtain

�u(x) = exp

{
Q22

c
u

}

+
∫ u/c

0
exp{Q22y}Q20

×
∫ x

0
exp{Q00z}[Q01(� ∗ �u−cy)(x − z) + Q02�u−cy(x − z)] dz dy

= exp

{
Q22

c
u

}

+ 1

c

∫ u

0
exp

{
Q22

c
y

}
Q20

×
∫ x

0
exp{Q00z}[Q01(� ∗ �u−y)(x − z) + Q02�u−y(x − z)] dz dy.

(17)

Taking the LST on both sides of (17), we find that

�̃u(s) = exp

{
Q22

c
u

}

+ 1

c

∫ u

0
exp

{
Q22

c
y

}
Q20

∫ ∞

0
e−sx

×
∫ x

0
exp{Q00z} ∂

∂x
[Q01(� ∗ �u−y)(x − z) + Q02�u−y(x − z)] dz dx dy

+ 1

c

∫ u

0
exp

{
Q22

c
y

}
Q20

(∫ ∞

0
exp{(Q00 − sI )x} dx

)
Q02�u−y(0) dy

= exp

{
Q22

c
u

}

+ 1

c

∫ u

0
exp

{
Q22

c
y

}
Q20(sI − Q00)

−1[Q01�̃(s) + Q02]�̃u−y(s) dy. (18)

Defining the Laplace transform

�̃(r, s) =
∫ ∞

0
e−ru�̃u(s) du,

the use of (18) leads to

�̃(r, s) =
(

rI − Q22

c

)−1(
I + Q20

c
(sI − Q00)

−1[Q01�̃(s) + Q02]�̃(r, s)

)
. (19)

Simple manipulations of (19) yield

�̃(r, s) =
(

I −
(

rI − Q22

c

)−1 Q20

c
(sI − Q00)

−1[Q01�̃(s) + Q02]
)−1(

rI − Q22

c

)−1

=
(

rI − Q22

c
− Q20

c
(sI − Q00)

−1[Q01�̃(s) + Q02]
)−1

. (20)
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We remark that (20) is valid due to the fact that the spectral radius of the matrix
1

c

(
rI − 1

c
Q22

)−1

Q20(sI − Q00)
−1[Q01�̃(s) + Q02]

is strictly less than 1. To prove this, we use the fact that the matrix �̃(0) is strictly substochastic
under the positive security loading condition (2). It is then easy to see that

0 ≤ 1

c

(
rI − 1

c
Q22

)−1

Q20(sI − Q00)
−1[Q01�̃(s) + Q02]e

≤ 1

c

(
rI − 1

c
Q22

)−1

Q20(−Q00)
−1[Q01�̃(0) + Q02]e

< (−Q22)
−1Q20(−Q00)

−1[Q01e + Q02e]
= (−Q22)

−1Q20(−Q00)
−1(−Q00)e

= e.

Thus, the use of Gershgorin’s theorem (see Faddeev and Faddeeva (1963, Section 1.13)) proves
the existence of the desired inverse.

Inverting (20) with respect to r leads to

�̃u(s) = exp

{
1

c
(Q22 + Q20(sI − Q00)

−1[Q01�̃(s) + Q02])u
}
.

In order to simplify the notation, we introduce the matrix Q∗(s) defined by

Q∗(s) :=
[
Q∗

11(s) Q∗
12(s)

Q∗
21(s) Q∗

22(s)

]
=

[
Q10(sI − Q00)

−1Q01 Q10(sI − Q00)
−1Q02

Q20(sI − Q00)
−1Q01 Q20(sI − Q00)

−1Q02

]
.

It is easy to observe that the four block matrices defining Q∗(s) give the Laplace transform of
the time spent by the underlying CTMC J ∗ in S0, given the states prior to entering and after
leaving S0. We are now ready to give the first result of this section.

Theorem 1. The Laplace transform of the time to ruin in the bivariate phase-type risk model
defined in (1) is given by

�̃u(s) := E[e−sτ 1(τ < ∞) | R(0) = u] = α0(sI − Q00)
−1[Q01�̃(s) + Q02]�̃u(s)e, (21)

where

�̃(s) = 1

c

∫ ∞

0
exp

{
1

c
(Q11 − sI )y

}
[Q∗

11(s)�̃(s) + Q∗
12(s)]�̃y(s) dy (22)

and

�̃u(s) = exp

{
1

c
(Q22 + Q∗

21(s)�̃(s) + Q∗
22(s))u

}
. (23)

Proof. Starting at time 0 with the initial probability vector α0, the CTMC J ∗ sojourns in
S0 for a period of time whose Laplace transform is given by (sI − Q00)

−1. At this instant,
the CTMC J ∗ switches to either a phase in S1 (with matrix exit rate Q01) or to a phase in S2
(with matrix exit rate Q02). If the transition is made to S1, the equivalent fluid flow F ∗ has to
return to the same level u followed by a first passage from level u to 0 for ruin to occur. On
the other hand, if the transition is made to S2, the fluid flow has to make a first passage from u

to 0. Combining these two cases and adding up all the possible phases (in S2) of J ∗ when the
fluid becomes empty for the first time results in (21).

https://doi.org/10.1239/jap/1238592120 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1238592120


Dependent risk models with bivariate phase-type distributions 123

It is easy to observe that �̃(s) plays a central role in the evaluation of the Laplace transform
of the time to ruin τ . Substituting (23) into (22) followed by an integration by parts, we further
obtain

[Q11 − sI + Q∗
11(s)]�̃(s) + �̃(s)[Q22 + Q∗

22(s)] + �̃(s)Q∗
21(s)�̃(s) + Q∗

12(s) = 0. (24)

Equation (24) for the LST �̃(s) is known as a Riccati equation (see, e.g. Abou-Kandil et al.
(2003, Chapter 2)). Several numerical algorithms have been proposed in the literature to obtain
solutions of a Riccati equation. We refer the interested reader to, e.g. Badescu et al. (2005), Bean
et al. (2005), and Guo (2001). Furthermore, once �̃(s) is numerically determined, a numerical
inversion of the LST �̃(s) leads to the determination of the finite-time ruin probability.

We point out that an alternative proof to the derivation of the Riccati equation for �̃(s)

is provided in Appendix A. The advantage of the present approach over the more analytic-
based one in Appendix A is that calculation of certain first passage probability matrices, whose
evaluation is of special interest independently of the purpose of this paper, is obtained as a
by-product.

Several natural consequences of the results obtained in Theorem 1 are stated as corollaries
at the end of this section. All these results are obtained as a direct consequence of the Markov
property exhibited by the bivariate fluid process (F ∗, J ∗).

Corollary 1. The infinite-time ruin probability in the bivariate phase-type risk model R is given
by

Pr(τ < ∞ | R(0) = u) = α0(−Q00)
−1[Q01�̃(0) + Q02]�̃u(0)e. (25)

Proof. The proof is immediate from (21) with s = 0.

We remark that (25) can also be retrieved from Theorem 3 of Ahn and Ramaswami (2005)
with s = 0 by recalling that the ruin probability for the surplus process R and the probability
that the fluid process F ∗ eventually hits level 0 at least once coincide.

Corollary 2. The deficit at ruin in the bivariate phase-type risk model R is phase-type (PH)
distributed with parameters PH(α0(−Q00)

−1[Q01�̃(0) + Q02]�̃u(0), Q22/c).

Proof. Starting at level u, the fluid process must first reach level 0. The distribution of
the phase in S2 of the CTMC at that time is given by α0(−Q00)

−1[Q01�̃(0) + Q02]�̃u(0).
Finally, Q22 corresponds to the intensity matrix of a descending period. The correction factor
of c arises because we are interested in the intensity matrix with respect to the level instead of
time.

Corollary 3. The Gerber–Shiu function m(u) in the bivariate phase-type risk model R is given
by

m(u) = α0(sI − Q00)
−1[Q01�̃(s) + Q02]�̃u(s)

∫ ∞

0
exp

{
Q22

c
y

}(
q2

c

)
w(y) dy,

where q2 = −Q22e.

Proof. The proof follows directly from Theorem 1 and Corollary 2.
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5. The surplus prior to ruin

In this section we investigate how some ruin-related quantities involving the surplus immedi-
ately prior to ruin can be analyzed via the fluid flow approach discussed above. More precisely,
we are interested in the identification of the so-called discounted density of the surplus prior
to ruin R(τ−) and the deficit at ruin |R(τ)| in the risk process R via its connection to the fluid
process F ∗. We remind the reader that the discounted density of the surplus prior to ruin and
the deficit at ruin has been studied by many authors in ruin theory (see, e.g. Gerber and Shiu
(1997), Li and Garrido (2005), and Ren (2007)). In this section we further make the practical
assumption that ties between the RVs W and X/c are not possible, i.e. t0 is a column vector
of 0s.

In Section 3, the time to ruin τ and the deficit at ruin |R(τ)| in the surplus process R were
connected to some particular quantities in the fluid process F ∗. However, a similar connection
for the surplus prior to ruin R(τ−) turns out to be more challenging to establish. Indeed, from
the construction of the process F ∗, the initial upward segment of R (following a claim) is
translated in the fluid process F ∗ to either a level segment (if W < X/c) or a combination of
a level segment and the following upward segment (if W > X/c). Thus, it is clear that the
construction of F ∗ does not allow us to directly associate the surplus prior to ruin R(τ−) to
any fluid level of F ∗. However, we already pointed out that the surplus level of R immediately
after the payment of a claim, say the ith claim, corresponds to the fluid level of F ∗ at the end
of the ith sample path of Z (i = 1, 2, . . . ). As a consequence, we propose to analyze R(τ−)

via the introduction of a new RV, say RN(τ)−1, defined as

RN(τ)−1 = u +
N(τ)−1∑

i=1

(cWi − Xi). (26)

From (26), RN(τ)−1 corresponds to the surplus level at the time of the penultimate claim
before ruin (the claim just preceding the one causing ruin) where, by definition, R0 = u

if ruin is caused by the first claim. By using sample path arguments we will obtain an
expression for the discounted joint distribution of the triplet (RN(τ)−1, R(τ−), |R(τ)|). Given
that the contributions to this discounted joint distribution have different functional forms based
on whether ruin is caused by the first claim or any of its subsequent claims (due to the
presence of RN(τ)−1), we introduce two |S0| × 1 column vectors, namely h1(s, x2, x3 | u)

and h2(s, x1, x2, x3 | u) whose ith elements (i ∈ S0) are respectively

[h1(s, x2, x3 | u)]i dx2 dx3

= E

[
e−sτ 1(N(τ) = 1)1(R(τ−) ∈ (x2, x2 + dx2))

1(|R(τ)| ∈ (x3, x3 + dx3))

∣∣∣∣ R(0) = u, J ∗(0) = i

]

and

[h2(s, x1, x2, x3 | u)]i dx1 dx2 dx3

= E

[
e−sτ 1(N(τ) > 1)1(RN(τ)−1 ∈ (x1, x1 + dx1))

1(R(τ−) ∈ (x2, x2 + dx2))1(|R(τ)| ∈ (x3, x3 + dx3))

∣∣∣∣ R(0) = u, J ∗(0) = i

]
.

To identify an expression for h1 and h2, we will first define some new quantities in the fluid
process F ∗ and its reflected version (F ∗)r. Note that the reflected fluid process (F ∗)r is obtained
by simply reversing the roles of S1 and S2 in F ∗, i.e. (F ∗)r is increasing or decreasing at rate c
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whenever J ∗ is in S2 or, respectively, S1. For y > x > 0, let the |S1|×|S1| matrix 0g̃11(x, y, s)

be the LST (with argument s) of the total time spent by J ∗ in S0 and S1 during a first passage
of (F ∗, J ∗) from (x, S1) to (y, S1), avoiding level 0 enroute. In addition, analogous to �̃(s)

defined in Section 4, we define the |S2| × |S1| matrix y�̃r(s) as the LST (with argument s) of
the total time spent by J ∗ in S0 and S1 during a first passage of ((F ∗)r, J ∗) from (0, S2) to
(0, S1), avoiding level y enroute.

We remark that these two quantities have been analyzed in a (similar) context where the
time spent by J ∗ in S0, S1, and S2 is accounted for (see, e.g. Ahn et al. (2007, Theorem 1)
and Ramaswami (2006, Theorem 4), respectively, and the references therein). Here those
quantities are defined by extracting the time spent by the process J ∗ in S2 over the desired first
passage times. Inspired from the existing methodology, these newly defined LSTs are defined
in Appendix B.

Theorem 2. For u ≥ 0, we have

h1(s, x2, x3 | u) = c−2 exp

{
(Q00 − sI )

(
x2 − u

c

)}
Q02 exp

{
Q22

(
u + x3

c

)}
Q20e

for x2 > u and x3 > 0, and

h2(s, x1, x2, x3 | u) = (sI − Q00)
−1[Q01k1(s, x1, x2, x3 | u) + Q02k2(s, x1, x2, x3 | u)]

for x1 > 0, x2 > x1, and x3 > 0, where

k1(s, x1, x2, x3 | u) = c−1
0g̃11(u, x1, s)[I − �̃(s)x1 �̃r(s)]−1

× (Q10 + �̃(s)Q20)h1(s, x2, x3 | x1)

and
k2(s, x1, x2, x3 | u) = u�̃r(s)k1(s, x1, x2, x3 | u)

for x1 > u, while
k1(s, x1, x2, x3 | u) = �̃(s)k2(s, x1, x2, x3 | u)

and
k2(s, x1, x2, x3 | u) = c−1 �̃u−x1(s)[I − x1 �̃r(s)�̃(s)]−1

× (Q20 + x1 �̃r(s)Q10)h1(s, x2, x3 | x1)

for x1 < u.

Proof. We first consider the expression for h1(s, x2, x3 | u). Given that the first claim causes
ruin, the surplus prior to ruin, x2, will be greater than the initial surplus u. For the surplus prior
to ruin to be x2, the following statements must hold.

• The surplus process R has to first reach level x2 from level u without a claim. This
is translated into a level segment of duration (x2 − u)/c in the associated fluid flow
process F ∗. Accounting for the time spent by J ∗ in S0 during this level segment, this
yields a contribution of exp{(Q00 − sI )(x2 − u)/c} to h1.

• Then, the surplus process experiences its first claim within c−1 dx2 after reaching level x2.
In order for ruin to occur upon the first claim, this is translated into a transition from a
level segment period to a decreasing period in the fluid process F ∗ within c−1 dx2 (with
a contribution of c−1Q02 to h1).
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In addition, the duration of this decreasing period in the fluid process F ∗ will be (u + x3)/c

to enable a deficit at ruin of x3. Thus, the following statements must hold.

• The fluid process F ∗ must decrease over a period of length (u + x3)/c. Given that the
time spent by J ∗ in S2 is factored out, this yields a contribution of exp{Q22(u + x3)/c}
to h1.

• The fluid process F ∗ should stop its descending behavior within c−1 dx3 after reaching
x3, which results in a contribution of c−1Q20 to h1.

Finally, the term e allows us to consider all the phases in S0 that the process ends up when
the descending period ends.

Now, let us look at the expression for h2(s, x1, x2, x3 | u). Note that h2(s, x1, x2, x3 | u)

is nonzero only if x2 > x1 (given that R(τ−) > RN(τ)−1 almost surely). First, the term
(sI − Q00)

−1 corresponds to the Laplace transform of the time that the CTMC J ∗ first leaves
S0 given that J ∗(0) ∈ S0. Upon this first exit from S0, J ∗ enters either S1 (governed by Q01)
if W1 > X1/c or S2 (governed by Q02) if W1 < X1/c. Provided that the first exit was made
to a phase in Si , we denote the LST of the remaining time until ruin (with a surplus level at the
time of the penultimate claim before ruin of x1, a surplus prior to ruin of x2, and a deficit of x3)
by ki (s, x1, x2, x3 | u) (i = 1, 2).

Now let us consider the case in which x1 > u for ki (s, x1, x2, x3 | u) (i = 1, 2). First,
we look at the expression for k1(s, x1, x2, x3 | u). For RN(τ)−1 to be x1 (x1 > u), the surplus
process R has to first reach level x1 from level u before ruin. Equivalently, the fluid level process
F ∗, starting with level u in S1, has to first attain level x1 in S1, avoiding level 0 enroute. The
LST of the total time spent in S0 and S1 during this first passage time is 0g̃11(u, x1, s). Being
at level x1 in S1 for the first time, it is possible to revisit level x1 in S1 an arbitrary number of
times prior to ruin. The LST of the time spent by J ∗ in S0 and S1 before the last visit of F ∗ to
level x1 in S1 is given by [I − �̃(s)x1 �̃r(s)]−1. Now, having the fluid process F ∗ at level x1 in
S1 for the last time, RN(τ)−1 can be x1 via two scenarios:

• the fluid process F ∗ should stop its ascending pattern within c−1 dx1 after reaching x1
for the last time in S1, which results in a contribution of c−1Q10 to k1; or

• the fluid process F ∗ continues its ascending pattern, returns to level x1 this time in S2,
and then stops its descending pattern within c−1 dx1 after reaching x1 in S2 (with a total
contribution �̃(s) c−1Q20 to k1).

Note that in both cases, the fluid process is now at level x1 in S0. Given that ruin has to
occur at the time of the next claim with a surplus prior to ruin of x2 and a deficit at ruin of x3,
this yields a final contribution of h1(s, x2, x3 | x1).

For k2(s, x1, x2, x3 | u), we note that the fluid process F ∗ (now at level u in S2) must return
to level u in S1 avoiding level 0 enroute for RN(τ)−1 to be x1. The LST of the total time spent
in S0 and S1 during this first passage time is u�̃r(s). Being back at level u in S1, the remaining
contribution is easily found to be k1(s, x1, x2, x3 | u).

The formulae provided for k1(s, x1, x2, x3 | u) and k2(s, x1, x2, x3 | u) when x1 < u can
be found using a similar line of logic.
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From Theorem 2, it is immediate that the discounted joint distribution of R(τ−) and |R(τ)|,
denoted by f̃ (s, x2, x3 | u) and having as its ith element

[f̃ (s, x2, x3 | u)]i dx2 dx3

= E[e−sτ 1(R(τ−) ∈ (x2, x2 + dx2))1(|R(τ)| ∈ (x3, x3 + dx3)) | R(0) = u, J ∗(0) = i],
is given by

f̃ (s, x2, x3 | u) = 1(x2 > u)h1(s, x2, x3 | u) +
∫ x2

0
h2(s, x1, x2, x3 | u) dx1.

We point out that the discounted density of the surplus prior to ruin and the deficit at ruin
represents a key component of the defective renewal equation satisfied by the general Gerber–
Shiu discounted penalty function in a large class of commonly analyzed risk models in ruin
theory (see Cheung et al. (2009)).

Appendix A

In this appendix we provide an alternative analytic proof for the derivation of the Riccati
equation (24). For the fluid process F ∗ with initial fluid F ∗(0) = u, let ν be the time taken by
the fluid process to become empty for the first time with ν = ∞ if F ∗(t) > 0 for all t ≥ 0. Also,
let νi = ∫ ν

0 1(J ∗(s) ∈ Si)ds (i = 0, 1, 2) be the time spent in the set of phases Si during this
first passage time (with νi = ∞ if ν = ∞). Note that the (k, l)th element of �u(x) previously
defined in Section 4 can also be expressed as

[�u(x)]kl = Pr(ν < ∞, ν0 + ν1 ≤ x, J ∗(ν) = l | F ∗(0) = u, J ∗(0) = k)

for k ∈ S2 and l ∈ S2. We further introduce an |S1| × |S2| matrix �u(x) and an |S0| × |S2|
matrix ϒu(x) whose (k, l)th elements are respectively defined as

[�u(x)]kl = Pr(ν < ∞, ν0 + ν1 ≤ x, J ∗(ν) = l | F ∗(0) = u, J ∗(0) = k)

for k ∈ S1 and l ∈ S2, and

[ϒu(x)]kl = Pr(ν < ∞, ν0 + ν1 ≤ x, J ∗(ν) = l | F ∗(0) = u, J ∗(0) = k)

for k ∈ S0 and l ∈ S2. We also denote their respective LSTs by �̃u(s) = ∫ ∞
0 e−sx d�u(x) and

ϒ̃u(s) = ∫ ∞
0 e−sx dϒu(x).

Our objective consists in establishing some relationships between the LSTs �̃u(s), �̃u(s),
and ϒ̃u(s). To this end, we condition on the first transition of the process J ∗ into another set
of phases and readily obtain

ϒ̃u(s) = (sI − Q00)
−1[Q01�̃u(s) + Q02�̃u(s)], (27)

�̃u(s) =
∫ ∞

0
exp{(Q11 − sI )y}Q10ϒ̃u+cy(s) dy

= 1

c

∫ ∞

u

exp

{(
Q11 − sI

c

)
(y − u)

}
Q10ϒ̃y(s) dy, (28)

and

�̃u(s) = exp

{
Q22

c
u

}
+

∫ u/c

0
exp{Q22y}Q20ϒ̃u−cy(s) dy

= exp

{
Q22

c
u

}
+ 1

c

∫ u

0
exp

{
Q22

c
(u − y)

}
Q20ϒ̃y(s) dy. (29)
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Differentiating (28) with respect to u and then making use of (27), we find that

∂

∂u
�̃u(s) = −1

c
[Q10ϒ̃u(s) + (Q11 − sI )�̃u(s)]

= −1

c
[(Q10(sI − Q00)

−1Q01 + (Q11 − sI ))�̃u(s)

+ Q10(sI − Q00)
−1Q02�̃u(s)]

= −1

c
[(Q11 − sI + Q∗

11(s))�̃u(s) + Q∗
12(s)�̃u(s)]. (30)

Note that, under the positive security loading condition (2),

lim
u→∞ �̃u(s) = 0. (31)

Similarly, the differentiation of (29) with respect to u followed by the use of (27) yields

∂

∂u
�̃u(s) = 1

c
[Q22�̃u(s) + Q20ϒ̃u(s)]

= 1

c
[Q22�̃u(s) + Q20((sI − Q00)

−1[Q01�̃u(s) + Q02�̃u(s)])]

= 1

c
[(Q22 + Q∗

22(s))�̃u(s) + Q∗
21(s)�̃u(s)] (32)

with boundary condition
�̃0(s) = I . (33)

From (30), (31), (32), and (33), we observe that �̃u(s) and �̃u(s) satisfy a Feynman–Kac
equation (see, e.g. Asmussen et al. (2002, Theorem 2)). Given that

�̃u(s) = �̃(s)�̃u(s), (34)

we arrive at
∂

∂u
�̃u(s) = 1

c
[Q22 + Q∗

22(s) + Q∗
21(s)�̃(s)]�̃u(s). (35)

Equation (35), together with the boundary condition (33), yields (23). Finally, using (23), (34)
becomes

�̃u(s) = �̃(s) exp

{
1

c
(Q22 + Q∗

21(s)�̃(s) + Q∗
22(s))u

}
. (36)

The substitution of (23) and (36) into (30) followed by some algebraic manipulations leads to
the Riccati equation obtained in (24) for �̃(s).

Appendix B

Let {J ∗∗(t), t ≥ 0} and {F ∗∗(t), t ≥ 0} be the time-modified versions of the CTMC {J ∗(t),
t ≥ 0} and the fluid flow {F ∗(t), t ≥ 0} by incising out the intervals of time in which the fluid
flow {F ∗(t), t ≥ 0} decreases and gluing the remaining pieces together. Let V be a matrix for
which its (i, j)th element is defined as

[V ]i,j (t, x) = Pr(F ∗∗(t) ≤ x, J ∗∗(t) = j | J ∗∗(0) = i, F ∗∗(0) = 0),
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and its associated density is defined as

[v]i,j (t, x) = ∂

∂x
[V ]i,j (t, x) for i ∈ S1 and j ∈ S1 ∪ S2.

Following a similar line of logic as in the proof of Lemma 3.3.2 of Ahn and Ramaswami
(2006) (with Q21 = 0), we find that

∂

∂t
v11(t, x) = v11(t, x)Q11 + v10(t, x)Q01 − c

∂

∂x
v11(t, x) (37)

and
∂

∂t
v10(t, x) = v11(t, x)Q10 + v10(t, x)Q00 + h12(t, x)Q20, (38)

where

h12(t, x) =
∫ ∞

0
v10(t, x + cy)Q02 exp{Q22y} dy.

Note that, by a probabilistic argument, it is clear that we reach level x + cy in S0 by being in
the interim at level x in S1. By conditioning h12(t, x) on the time of the last visit to x in S1
before time t , we find that

h12(t, x) =
∫ t

0
v11(t − a, x) d�(a). (39)

Taking Laplace transforms (with respect to time) of (37) and (38) yields

sṽ11(s, x) = ṽ11(s, x)Q11 + ṽ10(s, x)Q01 − c
∂

∂x
ṽ11(s, x)

and

sṽ10(s, x) = ṽ11(s, x)Q10+ṽ10(s, x)Q00+
∫ ∞

0
ṽ10(s, x+cy)Q02 exp{Q22y}Q20 dy, (40)

respectively. Given that∫ ∞

0
ṽ10(s, x + cy)Q02 exp{Q22y} dy = ṽ11(s, x)�̃(s),

(40) becomes

sṽ10(s, x) = ṽ11(s, x)Q10 + ṽ10(s, x)Q00 + ṽ11(s, x)�̃(s)Q20,

or, equivalently,

ṽ10(s, x) = ṽ11(s, x)(Q10 + �̃(s)Q20)(sI − Q00)
−1. (41)

Substituting (41) into (B) yields

sṽ11(s, x) = ṽ11(s, x)Q11 + ṽ11(s, x)(Q10 + �̃(s)Q20)(sI − Q00)
−1Q01 − c

∂

∂x
ṽ11(s, x),

or, equivalently,

c−1ṽ11(s, x)(Q11 − sI + (Q10 + �̃(s)Q20)(sI − Q00)
−1Q01) = ∂

∂x
ṽ11(s, x). (42)
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The solution to (42) is
ṽ11(s, x) = c−1eK(s)x, (43)

where
K(s) = c−1(Q11 − sI + (Q10 + �̃(s)Q20)(sI − Q00)

−1Q01).

Note that the occurrence of the c−1 term in (43) is precisely the effect of the infinitesimal
changes in time to infinitesimal changes in fluid level (for a detailed discussion see Section 3.5
of Ahn et al. (2007)).

Given that (F ∗∗(0), J ∗∗(0)) = (x, i) for i ∈ S1, the LST (with respect to time) of the
expected number of visits to (x, j), j ∈ S1, avoiding level 0 in the interval (0, t) is the (i, j)th
element of the matrix

�(s, x) = c−1�̃(s)

∫ x

0
�̃y(s)Q20(sI − Q00)

−1Q01ṽ11(s, y) dy.

For computation of the integral term, we refer the interested reader to Lemma 2 of Ramaswami
(2006). Clearly,

ṽ11(s, y) = c−1
0g̃11(0, y, s) + c−1

0g̃11(0, y, s)�(s, x),

which leads to

0g̃11(0, y, s) = cṽ11(s, y)(I + �(s, x))−1.

Using a sample path argument,

b�̃(s) = �̃(s) − 0g̃11(0, b, s)�̃(s)�̃b(s). (44)

For the reflected fluid flow, b�̃r(s) is calculated from (44) by first changing the roles of the
states in S1 and S2. Finally, an explicit expression for 0g̃11(x, y, s) is found to be

0g̃11(x, y, s) = (I − y−x�̃(s)x�̃r(s))−1
0g̃11(0, y − x, s).
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