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Abstract
We establish a link between the behavior of length functions on Teichmüller space and the geometry of certain anti-
de Sitter 3-manifolds. As an application, we give new purely anti-de Sitter proofs of results of Teichmüller theory
such as (strict) convexity of length functions along shear paths and geometric bounds on their second variation
along earthquakes. Along the way, we provide shear-bend coordinates for GHMC anti-de Sitter 3-manifolds.
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1. Introduction

The space T of hyperbolic metrics on a closed orientable surface Σ of genus 𝑔 ≥ 2 up to isotopy,
known as Teichmüller space, is an object that appears ubiquitously as a space of parameters but also as
a geometric object.

Comparing different hyperbolic metrics onΣ according to various measurements of distortion endows
T with a wealth of geometry. An example is the Lipschitz distortion, which corresponds to the so-called
Thurston’s asymmetric metric. Thurston proves in [21] that, given two hyperbolic metrics 𝑔𝑋 , 𝑔𝑌 on Σ,
we have

min
𝑓 homotopic to Id

{Lip( 𝑓 ) | 𝑓 : (Σ, 𝑔𝑋 ) → (Σ, 𝑔𝑌 )} = sup
𝛾∈𝜋1 (Σ)−{1}

𝐿𝑌 (𝛾)
𝐿𝑋 (𝛾)

,

where 𝐿𝑋 (𝛾), 𝐿𝑌 (𝛾) are the lengths of the geodesic representatives of 𝛾 with respect to 𝑔𝑋 , 𝑔𝑌 .
This phenomenon of expressing the measurement of distortion in terms of length spectra 𝐿𝑍 (•) is

not exclusive of the Thurston metric. For example, the Teichmüller and Weil-Petersson metrics on T
also have this property.

It is therefore important to understand how length functions behave on Teichmüller space. Often, this
behavior is related to certain geometric structures on low-dimensional manifolds. A celebrated example
is the relation between quasi-Fuchsian hyperbolic 3-manifolds and Teichmüller geodesics discovered
by Minsky [18].

Following an analogy between quasi-Fuchsian 3-manifolds and the so-called globally hyperbolic
maximal Cauchy compact (GHMC) anti-de Sitter 3-manifolds, in this article we bring together the
following:

◦ 3-dimensional anti-de Sitter geometry,
◦ Convexity of length functions along shear paths and earthquakes.
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In particular, we use the global scale geometry of GHMC anti-de Sitter manifolds to give a proof
of (strict) convexity of length functions. Using the same bridge, we also develop geometric bounds for
the second variation on those functions along earthquakes. Our methods are inspired from ideas in
3-dimensional hyperbolic geometry.

1.1. Anti-de Sitter geometry

Anti-de Sitter geometry in dimension 3 is the geometry of H2,1 := PSL2 (R) endowed with its natural
pseudo-Riemannian metric of signature (2, 1). The link between Teichmüller theory and anti-de Sitter
3-manifolds comes from the basic fact that the group of symmetries of this space is

Isom0 (PSL2 (R)) = PSL2(R) × PSL2(R),

where (𝐴, 𝐵) · 𝑋 := 𝐴𝑋𝐵−1 and, at the same time, PSL2 (R) = Isom+(H2). A vast literature explores
various aspects of this relation starting with the seminal work of Mess [17] (for a survey on the topic
and recent developments, see Bonsante and Seppi [8]).

Mess representations

Let Σ be a closed orientable surface of genus 𝑔 ≥ 2 that we fix once and for all. We denote by Γ := 𝜋1 (Σ)
its fundamental group.

We realize the Teichmüller space T of hyperbolic metrics on Σ up to isotopy as a component of the
representation space

T ⊂ Hom(Γ, PSL2(R))/PSL2(R)

by associating to each hyperbolic structure X (the conjugacy class of) its holonomy representation
𝜌𝑋 : Γ → PSL2 (R).

For any 𝑋,𝑌 ∈ T , we can consider the representation

𝜌𝑋,𝑌 = (𝜌𝑋 , 𝜌𝑌 ) : Γ → PSL2(R) × PSL2 (R).

We will refer to any such 𝜌𝑋,𝑌 as a Mess representation. The group 𝜌𝑋,𝑌 (Γ) acts on H2,1 convex
cocompactly, meaning that
◦ there is an equivariant boundary map

𝜉 : 𝜕Γ → 𝜕PSL2 (R) = P{𝐴 ∈ 𝑀2 (R) | rank(𝐴) = 1},

whose image 𝜉 (𝜕Γ) = Λ𝑋,𝑌 has the property that, for every 𝑎, 𝑏, 𝑐 ∈ 𝜕Γ, the subspace
P{Span{𝜉 (𝑎), 𝜉 (𝑏), 𝜉 (𝑐)}} ∩ PSL2 (R) is a spacelike plane – that is, it is isometric to H2;

◦ there is a canonical 𝜌𝑋,𝑌 (Γ)-invariant properly convex open subset Ω𝑋,𝑌 ⊂ PSL2(R) on which the
action is properly discontinuous; and

◦ we have 𝜕Ω𝑋,𝑌 ∩ 𝜕PSL2 (R) = Λ𝑋,𝑌 , and the group 𝜌𝑋,𝑌 (Γ) acts cocompactly on the convex hull
CH𝑋,𝑌 ⊂ Ω𝑋,𝑌 of Λ𝑋,𝑌 .
In order to study the geometry of Mess representations, we will use laminations and pleated surfaces,

as we introduced in [16]. Let us briefly recall the construction.

Laminations and pleated surfaces

A geodesic lamination on a hyperbolic surface X is a 𝜌𝑋 (Γ)-invariant closed subset 𝜆 ⊂ H2 that can
be decomposed as a disjoint union of complete geodesics, the leaves of the lamination. The connected
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components ofH2−𝜆 are ideal polygons, the plaques of the lamination. The lamination is called maximal
if all the plaques are ideal triangles. Conveniently, the data of a geodesic lamination can be encoded, by
recording the endpoints of the leaves, as a Γ-invariant closed subset of the space of geodesics

{(𝑥, 𝑦) ∈ 𝜕Γ × 𝜕Γ | 𝑥 ≠ 𝑦}/(𝑥, 𝑦) ∼ (𝑦, 𝑥).

The boundary map 𝜉 : 𝜕Γ → Λ𝑋,𝑌 and the property of the curve Λ𝑋,𝑌 allow us to associate with
every maximal lamination 𝜆 a geometric realization

𝜆̂ :=
⋃

(𝑎,𝑏) ∈𝜆
[𝜉 (𝑎), 𝜉 (𝑏)] ⊂ CH𝑋,𝑌

and a pleated set

𝑆𝜆 := 𝜆̂ ∪
⋃

Δ (𝑎,𝑏,𝑐) ⊂H2−𝜆
Δ (𝜉 (𝑎), 𝜉 (𝑏), 𝜉 (𝑐)) ⊂ CH𝑋,𝑌 .

Here, [𝜉 (𝑎), 𝜉 (𝑏)] denotes the spacelike geodesic with endpoints 𝜉 (𝑎), 𝜉 (𝑏), whereas
Δ (𝜉 (𝑎), 𝜉 (𝑏), 𝜉 (𝑐)) is the ideal spacelike triangle contained in the spacelike plane
P(Span{𝜉 (𝑎), 𝜉 (𝑏), 𝜉 (𝑐)}) ∩ PSL2(R) with vertices 𝜉 (𝑎), 𝜉 (𝑏), 𝜉 (𝑐).

For every element 𝛾 ∈ Γ−{1} with attracting and repelling fixed points 𝛾+ and 𝛾− ∈ 𝜕Γ, respectively,
the isometry 𝜌𝑋,𝑌 (𝛾) acts by translations on the spacelike line ℓ = [𝜉 (𝛾−), 𝜉 (𝛾+)] ⊂ CH𝑋,𝑌 with
minimal displacement

𝐿𝜌𝑋,𝑌 (𝛾) =
𝐿𝑋 (𝛾) + 𝐿𝑌 (𝛾)

2
.

We refer to 𝐿𝜌𝑋,𝑌 (𝛾) as the length of 𝛾 with respect to 𝜌𝑋,𝑌 . As in the case of Fuchsian representations,
the length function 𝐿𝜌𝑋,𝑌 admits a natural extension to the space of measured laminations ML, which
is continuous with respect to its weak* topology. Given any maximal geodesic lamination 𝜆, we set

ML𝜆 = {𝜇 ∈ ML | support(𝜇) ⊂ 𝜆}.

Then we have the following structural result:

Theorem. (Theorems A, B and C of [16]) Let 𝜌𝑋,𝑌 be a Mess representation. Consider a maximal
lamination 𝜆 ⊂ Σ and let 𝑆𝜆 ⊂ CH𝑋,𝑌 ⊂ Ω𝑋,𝑌 be the corresponding pleated set. Then,

1. 𝑆𝜆 is an acausal Lipschitz disk with boundary Λ𝑋,𝑌 (i.e., for every pair of points 𝑥, 𝑦 ∈ 𝑆𝜆, the
geodesic [𝑥, 𝑦] joining them is spacelike). In particular, 𝑆𝜆 has a pseudo-metric 𝑑H2,1 (𝑥, 𝑦) :=
length([𝑥, 𝑦]).

2. 𝑆𝜆 carries an intrinsic hyperbolic structure 𝑍𝜆 ∈ T , which satisfies 𝐿𝑍𝜆 (𝜇) = 𝐿𝜌𝑋,𝑌 (𝜇) for every
𝜇 ∈ ML𝜆.

3. Let 𝜌𝜆 be the holonomy representation of 𝑍𝜆 ∈ T . Then there exists a (𝜌𝑋,𝑌 − 𝜌𝜆)-equivariant
homeomorphism 𝑓 : 𝑆𝜆 → H2 which is 1-Lipschitz, in the sense that 𝑑H2,1 (𝑥, 𝑦) ≥ 𝑑H2 ( 𝑓 (𝑥), 𝑓 (𝑦)),
and that is isometric on each leaf and plaque.

Furthermore, we have

𝐿𝑍𝜆 (𝛾) ≤ 𝐿𝜌𝑋,𝑌 (𝛾)

for every 𝛾 ∈ Γ−{1}, with strict inequality if and only if 𝛾 intersects transversely the bending locus of 𝑆𝜆.

Mess [17], inspired by work of Thurston (Chapter 8 of [20]), observes that 𝜕±CH𝑋,𝑌 is the pleated
set 𝑆𝜆± of a lamination 𝜆± and that measuring the total turning angle along paths 𝛼 : 𝐼 → 𝜕±CH𝑋,𝑌
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endows 𝜆± with a natural transverse measure, the bending measure 𝜇±, with support(𝜇±) ⊂ 𝜆±. Then
he shows that the surfaces 𝑋,𝑌 and 𝑍𝜆+ , 𝑍𝜆− are related by the following diagram:

𝑍𝜆+
𝐸𝑟
𝜇+

����
��
��
�� 𝐸𝑙

𝜇+

��
��

��
��

��

𝑋 𝑌

𝑍𝜆−

𝐸𝑟
𝜇−

���������� 𝐸𝑙
𝜇−

����������

where 𝐸 𝑙
𝜇+ , 𝐸

𝑙
𝜇− , 𝐸𝑟

𝜇+ , 𝐸𝑟
𝜇− are the left and right earthquakes induced by the measured laminations 𝜇+, 𝜇−.

Recall that by the work of Bonahon [5] and Thurston [21], for every maximal geodesic lamination 𝜆
of Σ, the Teichmüller space T can be realized as an open convex cone in a finite dimensional R-vector
space H(𝜆;R) via the so-called shear coordinates 𝜎𝜆 : T → H(𝜆;R). Generalizing Mess, we prove
the following:
Theorem 1. Let 𝜌𝑋,𝑌 be a Mess representation. Consider a maximal lamination 𝜆 ⊂ Σ and let
𝑆𝜆 = 𝑆𝜆/𝜌𝑋,𝑌 (Γ) be the corresponding pleated surface. Then, in shear coordinates 𝜎𝜆 (T ) ⊂ H(𝜆;R)
for 𝜆, we have the following:
1. The intrinsic hyperbolic structure 𝑍𝜆 of 𝑆𝜆 satisfies

𝜎𝜆(𝑍𝜆) =
𝜎𝜆(𝑋) + 𝜎𝜆(𝑌 )

2
.

2. The intrinsic bending cocycle 𝛽𝜆 of 𝑆𝜆 satisfies

𝛽𝜆 =
𝜎𝜆 (𝑋) − 𝜎𝜆(𝑌 )

2
.

Length functions

We now come to the main novelty of this article, namely, the anti-de Sitter perspective on length
functions in Teichmüller theory.

Recall that, given any Mess representation 𝜌𝑋,𝑌 and any nontrivial element 𝛾 ∈ Γ−{1}, the isometry
𝜌𝑋,𝑌 (𝛾) acts by translation of 𝐿𝜌𝑋,𝑌 = 1

2 (𝐿𝑋 (𝛾) + 𝐿𝑌 (𝛾)) on its axis ℓ ⊂ CH𝑋,𝑌 . In fact, 𝜌𝑋,𝑌 (𝛾)
preserves also the dual line ℓ∗ ⊂ H2,1 − Ω𝑋,𝑌 of ℓ, which consists of all points in H2,1 at timelike
distance 𝜋

2 from ℓ. The element 𝜌𝑋,𝑌 (𝛾) acts also on ℓ∗ by translations and with minimal displacement

𝜃𝜌𝑋,𝑌 (𝛾) =
𝐿𝑋 (𝛾) − 𝐿𝑌 (𝛾)

2
.

We prove the following:
Theorem 2. Let 𝜌𝑋,𝑌 be a Mess representation and let 𝜆 be a maximal lamination. Denote by 𝑍𝜆 ∈ T
the intrinsic hyperbolic structure on 𝑆𝜆/𝜌𝑋,𝑌 (Γ), where 𝑆𝜆 ⊂ CH𝑋,𝑌 is the pleated set associated with
𝜆. Consider 𝛾 ∈ Γ − {1} a nontrivial element whose image 𝜌𝑋,𝑌 (𝛾) has axis ℓ ⊂ CH𝑋,𝑌 .
1. Let 𝛿 be the maximal timelike distance of ℓ from 𝑆𝜆. Then,

cosh(𝐿𝑍𝜆 (𝛾)) ≤ cos(𝛿)2 cosh(𝐿𝜌𝑋,𝑌 (𝛾)) + sin(𝛿)2 cosh(𝜃𝜌𝑋,𝑌 (𝛾)).

2. Let 𝛿± be the maximal timelike distance of ℓ from 𝜆±. Then,

cosh(𝑖(𝜆±, 𝛾)) ≤ sin(𝛿±)2 cosh(𝐿𝜌𝑋,𝑌 (𝛾)) + cos(𝛿±)2 cosh(𝜃𝜌𝑋,𝑌 (𝛾)),

where 𝑖(•, •) denotes the geometric intersection form (see, for example, [4]).
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When combined, the previous results (Theorem 1 and Theorem 2) give a purely anti-de Sitter proof of
(strict) convexity of length functions in shear coordinates, recovering simultaneously results of Bestvina,
Bromberg, Fujiwara and Souto [3], and Théret [19]:

Theorem 3. Let 𝜆 ⊂ Σ be a maximal lamination. Given a measured lamination 𝜇 ∈ ML, denote by
ℒ𝜇 : T → (0,∞) its associated length function, ℒ𝜇 (𝑋) := 𝐿𝑋 (𝜇). Then,

1. For any 𝛾 ∈ Γ − {1} nontrivial loop, the length function ℒ𝛾 is convex in shear coordinates for 𝜆.
Moreover, convexity is strict if 𝛾 intersects essentially every leaf of 𝜆.

2. For any measured lamination 𝜇 ∈ ML, the length function ℒ𝜇 is convex in shear coordinates for 𝜆.
Furthermore, convexity is strict if the support of 𝜇 intersects transversely each leaf of 𝜆.

Note that (b) does not imply (a). In (a), the loop 𝛾 does not necessarily represent a simple curve.
In the case of earthquakes, the geometry of Mess 3-manifolds allows us to get the following in-

finitesimal geometric bound. We should mention that these bounds can also be deduced from work of
Kerckhoff [13] and Wolpert [23], respectively.

Theorem 4. Let 𝜇 ∈ ML be a measured lamination and let 𝜖𝜇 : [𝑎, 𝑏] → T be an earthquake path
driven by 𝜇. Set ℒ𝛾 (𝑡) := 𝐿 𝜖𝜇 (𝑡) (𝛾). Then, for every 𝛾 ∈ Γ − {1}, we have

�ℒ𝛾 ≥ 1
sinh(ℒ𝛾)

�� 
ℒ𝛾

�� (𝑖(𝛾, 𝜇) − �� 
ℒ𝛾

��) .
Let us point out that, by Kerckhoff’s formula for the first variation [13], we always have | 
ℒ𝛾 | ≤ 𝑖(𝛾, 𝜇)

with strict inequality if 𝛾 intersects 𝜇 essentially.

Anti-de Sitter proofs

We now briefly discuss the main new ideas and ingredients that go into the anti-de Sitter proofs.

Theorem 2
The idea is that, as we move a closed geodesic 𝛾 ⊂ 𝑀𝑋,𝑌 orthogonally along timelike directions, its
length shrinks. Heuristically speaking, every closed geodesic 𝛾 ⊂ 𝑀𝑋,𝑌 is the core of an (immersed)
anti-de Sitter annulus 𝐴𝛾 ⊂ 𝑀𝑋,𝑌 whose intrinsic metric has the form d𝑠2 = −d𝑡2 + sin(𝑡)2dℓ2. Hence,
the length of 𝛾(𝑠) = (0, 𝑠) (in (𝑡, ℓ) coordinates) contracts as we move it away from the core {𝑡 = 0}
along orthogonal timelike directions. In the proof of the theorem, we make some aspects of this picture
precise. In particular, we understand how various avatars of 𝐴𝛾 intersect the pleated surfaces 𝑆𝜆/𝜌𝑋,𝑌 (Γ)
and 𝜕±CC (𝑀𝑋,𝑌 ) = 𝜕±CH𝑋,𝑌 /𝜌𝑋,𝑌 (Γ).

Theorem 3
(Strict) convexity is equivalent to the (strict) inequality in

ℒ𝛾 (𝑍𝜆) ≤
ℒ𝛾 (𝑋) +ℒ𝛾 (𝑌 )

2

for every 𝑋 ≠ 𝑌 ∈ T , where 𝜎𝜆(𝑍𝜆) = 𝜎𝜆 (𝑋 )+𝜎𝜆 (𝑌 )
2 ∈ H(𝜆;R). We note that the right-hand side is

equal to 𝐿𝜌𝑋,𝑌 (𝛾) and, by Theorem 1, the left-hand side is equal to 𝐿𝑍𝜆 (𝛾), where 𝑍𝜆 is the hyperbolic
structure on the pleated surface 𝑆𝜆/𝜌𝑋,𝑌 (𝛾) associated with 𝜆 and 𝜌𝑋,𝑌 . The inequality is then a
consequence of part (a) of Theorem 2. The inequality is not strict exactly when the maximal distance 𝛿
between ℓ and 𝑆𝜆 vanishes or, in other words, when ℓ ⊂ 𝑆𝜆. This is possible if and only if 𝛾 does not
intersect transversely the bending locus.

The proof for laminations requires a significantly more refined argument based on the following
heuristic principle: every time ℓ passes at timelike distance 𝛿 > 0 from 𝑆𝜆 it creates a gap of size 𝜅 > 0
between 𝐿𝑍𝜆 (𝜇) and 𝐿𝜌𝑋,𝑌 (𝜇).
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Theorem 4
The idea is to analyze the geometry of the representations 𝜌𝑡 := 𝜌𝑍−𝑡 ,𝑍𝑡 as 𝑡 → 0, where 𝑍𝑡 = 𝐸 𝑙

𝑡 𝜇 (𝑍)
for some fixed 𝑍 ∈ T . Notice that, by Theorem 1, the bending measure on 𝜕+CH𝑍−𝑡 ,𝑍𝑡 is 𝜇+𝑡 = 𝑡𝜇 and
its associated hyperbolic structure is constant 𝑍+

𝑡 = 𝑍 . The main tool is again Theorem 2: combining
the inequalities of part (a) and part (b) of Theorem 2, we have

cosh(𝑡 · 𝑖(𝜇, 𝛾)) − cosh(𝜃𝜌𝑡 (𝛾)) ≤ cosh(𝐿𝜌𝑡 (𝛾)) − cosh(𝐿𝑍 (𝛾)).

The conclusion follows from basic analysis, essentially the mean value theorem cosh(𝑥) − cosh(𝑦) =
sinh(𝜉) (𝑥 − 𝑦), where 𝜉 ∈ [𝑥, 𝑦], and the fact that ( 𝑓 (−𝑡) + 𝑓 (𝑡) − 2 𝑓 (0))/𝑡2 → �𝑓 , which we apply to
(𝐿𝜌𝑡 (𝛾) − 𝐿𝑍 (𝛾))/𝑡2 = (ℒ𝛾 (𝑍−𝑡 ) +ℒ𝛾 (𝑍𝑡 ) − 2ℒ𝛾 (𝑍)))/2𝑡2 → �ℒ𝛾/2.

Shear-bend parametrization

As an application of our computations on the intrinsic hyperbolic structure and intrinsic bending of
a non-convex pleated surface, we also obtain a shear-bend parametrization of the space of Mess 3-
manifolds, in the spirit of Bonahon’s work [5]. Consider the space of Mess representations

MR := T × T ⊂ Hom(Γ, PSL2(B))/PSL2 (B),

where B := R[𝜏]/(𝜏2 − 1) = R ⊕ 𝜏R denotes the ring of para-complex numbers. Let H(𝜆;B) be the
finite dimensional B-module of transverse cocycles for 𝜆 with values in B, as introduced in Bonahon
[5]. Notice that there are natural identifications PSL2 (B) = PSL2(R) × PSL2(R) and H(𝜆;B) =
H(𝜆;R) ⊕ 𝜏H(𝜆;R). We have the following:

Theorem 5. Let 𝜆 ⊂ Σ be a maximal lamination. Then,

1. The map

Φ : MR −→ H(𝜆;B)
𝜌 = 𝜌𝑋,𝑌 ↦−→ 𝜎𝜆(𝑍𝜆) + 𝜏 𝛽𝜆,

which associates to 𝜌 the shear-bend cocycle 𝜎𝜌 of the unique pleated surface 𝑆𝜆 = 𝑆𝜆/𝜌(Γ)
determined by 𝜆, is an analytic para-complex embedding.

2. If 𝜔BTh(•, •) denotes the (B-valued) Thurston’s symplectic form on H(𝜆;B), then

𝜔BTh(𝜎𝜌, 𝜇) = 𝐿𝜌 (𝜇) + 𝜏 𝜃𝜌 (𝜇)

for every measured lamination 𝜇 ∈ ML𝜆 and every 𝜌 = 𝜌𝑋,𝑌 ∈ MR.
3. The image of the embedding is given by

Φ(MR) =
{
𝜎 + 𝜏𝛽 ∈ H(𝜆;B)

���� 𝜎 + 𝛽, 𝜎 − 𝛽 ∈ T ⊂ H(𝜆;R)
}

=

{
𝜎 + 𝜏𝛽 ∈ H(𝜆;B)

���� |𝜔BTh (𝜎 + 𝜏𝛽, •)|2
B
> 0 on ML𝜆

}
.

Here, |𝑥 + 𝜏𝑦 |2
B
= 𝑥2 − 𝑦2 is the para-complex norm.

4. The pull-back of 𝜔BTh to MR = T × T coincides with

Φ∗𝜔Th = 𝑐 · (𝜔WP ⊕ 𝜔WP + 𝜏 𝜔WP ⊕ (−𝜔WP)),

where 𝜔WP (•, •) is the Weil-Petersson symplectic form.
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Notice that the para-complex structure and the symplectic structure appearing in items (1) and (4),
respectively, are part of the natural para-hyperKähler structure defined on the deformation space of
GHMC anti-de Sitter 3-manifolds (see Mazzoli, Seppi and Tamburelli [15] for details).

It is worth mentioning that Mausburger and Scarinci [14] described a similar set of coordinates for
GHMC spacetimes of dimension 3 that admit a cusped Cauchy surface, which they call generalised
shear coordinates. Although the present work deals with the case of a closed orientable surface Σ of
genus larger than 1 and any maximal geodesic lamination 𝜆, in [14], the authors consider constant
curvature (not necessary equal to −1) GHMC spacetimes homeomorphic to 𝑆 × R, where S is a finite
type surface with at least one puncture and 𝜆 is an ideal triangulation.

Structure of the article

The paper is organized as follows:

◦ In Section 2, we recall some basic facts in Teichmüller theory and anti-de Sitter 3-dimensional
geometry.

◦ In Section 3, we introduce Mess representations and pleated surfaces and recall some of their
properties.

◦ In Section 4, we compute the intrinsic shear-bend cocycles of pleated surfaces and prove Theorems 1
and 5.

◦ In Section 5, we study the behavior of length functions for Mess representations and prove Theorem 2.
◦ In Section 6, we discuss the purely anti-de Sitter proofs of Theorems 3 and 4.

2. Teichmüller and anti-de Sitter space

In this section, we recall the amount of basic Teichmüller theory and anti-de Sitter 3-dimensional
geometry that we will need in the next sections.

2.1. Teichmüller theory

We start with hyperbolic surfaces and (measured) geodesic laminations.

2.1.1. Hyperbolic surfaces
We fix once and for all a closed oriented surface Σ of genus 𝑔 ≥ 2 and denote by Γ := 𝜋1 (Σ) its
fundamental group.

Definition 2.1 (Hyperbolic Structures). A marked hyperbolic structure on Σ is a homeomorphism
between Σ and a quotient H2/𝜌𝑋 (Γ) of the hyperbolic plane H2 by the image of a faithful and discrete
representation 𝜌𝑋 : Γ → PSL2 (R), the holonomy of the structure. Two marked hyperbolic structures
𝑋, 𝑋 ′ on Σ are equivalent if their holonomies 𝜌𝑋 , 𝜌𝑋 ′ are conjugate.

Definition 2.2 (Teichmüller Space). The Teichmüller space of Σ, denoted by T , is the space of equiva-
lence classes of marked hyperbolic structures on Σ. It can be realized as a connected component of the
space

T ⊂ Hom(Γ, PSL2 (R))/PSL2(R),

where PSL2(R) acts on the space of representations by conjugation.

2.1.2. Geodesic laminations
To study the geometry of hyperbolic surfaces, it is quite useful to look at the behavior of their geodesic
laminations, which are 1-dimensional objects generalizing simple closed geodesics.
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Definition 2.3 (Space of Geodesics). The space of (unoriented) geodesics on H2 is naturally identified
with the set of pairs of endpoints

G := {(𝑥, 𝑦) ∈ RP1 × RP1 | 𝑥 ≠ 𝑦}/(𝑥, 𝑦) ∼ (𝑦, 𝑥),

where (𝑥, 𝑦) corresponds to the line with endpoints 𝑥, 𝑦.

Definition 2.4 (Geodesic Lamination). Let 𝑋 = H2/𝜌𝑋 (Γ) be a hyperbolic surface. A geodesic lami-
nation on X is a 𝜌𝑋 (Γ)-invariant closed subset 𝜆 ⊂ H2, which can be expressed as a disjoint union of
complete geodesics, the leaves of the lamination. The complementary regions H2 −𝜆 are ideal polygons
(with possibly infinitely many sides) and are called the plaques of 𝜆.

The geodesic lamination 𝜆 is maximal if all its plaques are ideal triangles. A geodesic lamination on
X is completely determined by the endpoints on RP1 of the leaves which form a closed 𝜌𝑋 (Γ)-invariant
subset of G. We denote by GL the space of geodesic laminations and by GL𝑚 the subspace consisting
of maximal ones.

For more details, we address the reader to Chapter I.4 of [10].

2.1.3. Currents and measured laminations
Both Teichmüller space and measured laminations can be seen inside the space of geodesic currents as
introduced by Bonahon (see [4]). This framework is well-suited to study length functions thanks to the
presence of a natural geometric intersection form, as we now explain.

Definition 2.5 (Geodesic Current). Let 𝑋 = H2/𝜌𝑋 (Γ) be a hyperbolic surface. A geodesic current on
X is a 𝜌𝑋 (Γ)-invariant locally finite Borel measure on G. We denote by C the space of geodesic currents.

Definition 2.6 (Closed Geodesics). A basic example of geodesic current is the one associated to a free
homotopy class of a loop 𝛾 ∈ Γ − {1}. It is defined as 𝛿𝛾 :=

∑
[𝛼] ∈Γ/〈𝛾〉 𝛿ℓ𝛼 , where ℓ𝛼 is the axis of

𝜌𝑋 (𝛼) and 𝛿ℓ is the Dirac mass on the point ℓ ∈ G.

Definition 2.7 (Geometric Intersection). On C, there is a natural intersection form 𝑖(•, •), defined as
follows. Let 𝛼, 𝛽 ∈ C be geodesic currents. Consider the space of intersecting geodesics I := {(ℓ, ℓ′) ∈
G × G |ℓ ∩ ℓ′ ≠ ∅}. The group 𝜌𝑋 (Γ) acts properly discontinuously and freely on I. By invariance, the
measure 𝛼 × 𝛽 on I descends to a Borel measure on I/𝜌𝑋 (Γ). Define 𝑖(𝛼, 𝛽) := (𝛼 × 𝛽) (I/𝜌𝑋 (Γ)). A
crucial property of the geometric intersection form 𝑖(𝛼, 𝛽) is that it is continuous in 𝛼, 𝛽.

Definition 2.8 (Measured Lamination). Let 𝑋 = H2/𝜌𝑋 (Γ) be a hyperbolic surface. A measured
lamination on X is a geodesic current 𝜇 ∈ C with 𝑖(𝜇, 𝜇) = 0. We denote by ML the space of measured
laminations.

The support of a measured lamination support(𝜇) is a geodesic lamination (see [4]). We denote by
ML𝜆 := {𝜇 ∈ ML| support(𝜇) ⊂ 𝜆} the space of measured laminations whose support is contained
in 𝜆.

2.1.4. Length functions
Every hyperbolic surface X has a (marked) length spectrum {𝐿𝑋 (𝛾)}𝛾∈Γ−{1} given by the lengths of its
closed geodesics. Conveniently, Bonahon [4] proves that the length function 𝐿𝑋 (•) extends continuously
to geodesic currents as follows:

Definition 2.9 (Liouville Current). The Liouville currentL onG is the PSL2 (R)-invariant Borel measure
on G defined by

L([𝑎, 𝑏] × [𝑐, 𝑑]) := 𝛽R (𝑎, 𝑏, 𝑐, 𝑑)
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on boxes [𝑎, 𝑏] × [𝑐, 𝑑] with [𝑎, 𝑏] ∩ [𝑐, 𝑑] = ∅ (these sets generate the Borel algebra of G), where 𝛽R

denotes the standard cross ratio of RP1. The Liouville current has the property that

𝐿𝑋 (𝛾) = 𝑖(L, 𝛿𝛾)

for every 𝛾 ∈ Γ (see [4]). Therefore, 𝑖(L, •) extends continuously the length function 𝐿𝑋 (•) to the space
of geodesic currents.

2.2. The PSL2(R) model of H2,1

The second central object that we discuss is the anti-de Sitter 3-space H2,1. We will mostly work in its
linear and projective models, which we now describe. For more details on the material we present here,
we refer the reader to [8].

The group SL2(R) sits inside the vector space of 2 × 2 matrices with real entries 𝑀2 (R) as the
hyperboloid of vectors of norm −1 for the quadratic form 〈•, •〉 of signature (2, 2) given by

2 〈𝑋,𝑌〉 := det(𝑋) + det(𝑌 ) − det(𝑋 + 𝑌 ) = −tr(𝑋𝑌★),

where
[

𝑎 𝑏
𝑐 𝑑

]★ :=
[

𝑑 −𝑏
−𝑐 𝑎

]
.

Note that, for every 𝑋 ∈ SL2(R), the restriction of the quadratic form to 𝑇𝑋SL2(R) = 𝑋⊥ has
signature (2, 1) and hence induces a (2, 1)-pseudo-Riemannian metric on SL2(R) (experts will have
recognized the Killing form of SL2 (R)). The group SL2 (R) × SL2 (R) acts on 𝑀2 (R) by left and right
multiplications as (𝐴, 𝐵) · 𝑋 := 𝐴𝑋𝐵−1, and the action is isometric with respect to 〈•, •〉. Passing to the
projectivization PSL2(R) ⊂ P(𝑀2 (R)), we obtain the projective model of anti-de Sitter 3-space H2,1.

2.2.1. Boundary at infinity
In this model, the boundary at infinity 𝜕H2,1 ofH2,1 identifies with the topological boundary of PSL2(R)
in P(𝑀2 (R)):

𝜕PSL2(R) = {[𝑋] ∈ P(𝑀2 (R)) | det(𝑋) = 0}.

Observe that 𝜕PSL2(R) consists of rank one matrices and can be PSL2 (R) × PSL2(R)-equivariantly
identified with RP1 × RP1 via the map

𝜕PSL2(R) −→ RP
1 × RP1

[𝑋] ↦−→ ([Im(𝑋)], [Ker(𝑋)]).

2.2.2. Subspaces
Totally geodesic subspaces in anti-de Sitter 3-space H2,1 are of the form P(𝑉) ∩ PSL2(R), where
𝑉 ⊂ 𝑀2 (R) is a linear subspace intersecting SL2(R). In particular, we have

◦ timelike geodesics isometric to R/𝜋Z⇔ 𝑉 2-plane of signature (0, 2).
◦ spacelike geodesics isometric to R⇔ 𝑉 2-plane of signature (1, 1).
◦ spacelike planes isometric to H2 ⇔ 𝑉 3-plane of signature (2, 1).

Let 𝑥, 𝑦̃ be representatives of two distinct points 𝑥, 𝑦 ∈ H2,1 that satisfy 〈𝑥, 𝑥〉 = 〈𝑦̃, 𝑦̃〉 = −1. Then, x
and y are joined by

◦ a spacelike geodesic if and only if |〈𝑥, 𝑦̃〉| > 1;
◦ a lightlike geodesic if and only if |〈𝑥, 𝑦̃〉| = 1;
◦ a timelike geodesic if and only if |〈𝑥, 𝑦̃〉| < 1.
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The geodesic 𝛾(𝑡) starting at 𝑥 ∈ H2,1 with velocity 𝑣 ∈ 𝑇𝑥H
2,1 = 𝑥⊥ is represented by

𝛾̃(𝑡) =
{

cosh(𝑡)𝑥 + sinh(𝑡)𝑣 if 〈𝑣, 𝑣〉 = 1,
cos(𝑡)𝑥 + sin(𝑡)𝑣 if 〈𝑣, 𝑣〉 = −1.

(Throughout the rest of the exposition, we often do not distinguish between 𝑥 ∈ H2.1 and the choice of
a representative 𝑥 satisfying 〈𝑥, 𝑥〉 = −1.)

2.2.3. Acausal sets and pseudo-metrics
The last concept that we need is the one of acausality:

Definition 2.10 (Acausal Set). A subset 𝑆 ⊂ H2,1 ∪ 𝜕H2,1 is acausal if, for every 𝑥, 𝑦 ∈ 𝑆, the geodesic
[𝑥, 𝑦] is spacelike.

Definition 2.11 (Pseudo Metric). On acausal subsets 𝑆 ⊂ H2,1 we have a pseudo-metric 𝑑H2,1 (•, •),
defined as follows:

cosh(𝑑H2,1 (𝑥, 𝑦)) = |〈𝑥, 𝑦〉|.

Notice that 𝑑H2,1 does not satisfy the triangle inequality in general.

3. Mess representations and pleated surfaces

The goal of the section is to describe Mess representations and the geometry of their pleated surfaces.
In particular, at the end of the section, we discuss the structure of the boundary of the convex core
associated with a Mess representation.

3.1. Mess representations

First of all, we introduce the following class:

Definition 3.1 (Mess Representation). Let 𝑋,𝑌 ∈ T be hyperbolic structures. The Mess representation
with parameters 𝑋,𝑌 is

𝜌𝑋,𝑌 := (𝜌𝑋 , 𝜌𝑌 ) : Γ → PSL2(R) × PSL2 (R),

where 𝜌𝑋 , 𝜌𝑌 are the holonomy representations of 𝑋,𝑌 .

3.1.1. Boundary maps
Every Mess representation 𝜌𝑋,𝑌 comes with a natural equivariant boundary map

𝜉 : 𝜕Γ −→ 𝜕H2,1.

It can be described explicitly as follows. Recall that 𝜕PSL2 (R) is naturally identified with RP1 ×RP1.
Let ℎ𝑋 , ℎ𝑌 : 𝜕Γ → RP

1 be the unique 𝜌𝑋 , 𝜌𝑌 -equivariant homeomorphism. The boundary map
𝜉 : 𝜕Γ → RP1 × RP1 is just 𝜉 = (ℎ𝑋 , ℎ𝑌 ).

Its image 𝜉 (𝜕Γ) = Λ𝑋,𝑌 is the graph of the unique (𝜌𝑋 − 𝜌𝑌 )-equivariant homeomorphism ℎ𝑋,𝑌 :
RP

1 → RP1.
It is not difficult to check that Λ𝑋,𝑌 has the property that, for every 𝑎, 𝑏, 𝑐 ∈ RP1, the 3-

space Span{(𝑎, ℎ𝑋,𝑌 (𝑎)), (𝑏, ℎ𝑋,𝑌 (𝑏)), (𝑐, ℎ𝑋,𝑌 (𝑐))} has signature (2, 1). Let us assume without
loss of generality that 𝑎 < 𝑏 < 𝑐. As ℎ𝑋,𝑌 is an orientation-preserving homeomorphism, we have
ℎ𝑋,𝑌 (𝑎) < ℎ𝑋,𝑌 (𝑏) < ℎ𝑋,𝑌 (𝑐). Hence, up to the action of PSL2(R) × PSL2 (R), we can assume that
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(𝑎, 𝑏, 𝑐) = (ℎ𝑋,𝑌 (𝑎), ℎ𝑋,𝑌 (𝑏), ℎ𝑋,𝑌 (𝑐)) = ((0, 0), (1, 1), (∞,∞)). Tracing back the identification with
𝜕PSL2 (R), we see that

(0, 0) =
[

0 0
1 0

]
, (1, 1) =

[
1 −1
1 −1

]
, (∞,∞) =

[
0 1
0 0

]
.

Notice now that the span of these three elements equals the subspace of 2 × 2 traceless matrices,
which, by the expression of the bilinear pairing 〈•, •〉 from Section 2.2, coincides with the orthogonal of
the identity. Being the identity matrix a spacelike vector with respect to 〈•, •〉, the conclusion follows.

3.1.2. Domain of discontinuity
From the boundary curve Λ𝑋,𝑌 ⊂ 𝜕H2,1, one constructs a standard open domain:

Ω𝑋,𝑌 := {𝑦 ∈ H2,1 | [𝑥, 𝑦] spacelike ∀𝑥 ∈ Λ𝑋,𝑌 }.

It can also be described as a connected component of

H
2,1 −

⋃
𝑥∈Λ𝑋,𝑌

{〈𝑥, •〉 = 0},

which is a properly convex subset of P(𝑀2 (R)) whenever 𝑋 ≠ 𝑌 , whose closure contains Λ𝑋,𝑌 . In
particular, it contains a natural closed 𝜌𝑋,𝑌 (Γ)-invariant convex subset, namely the convex hull CH𝑋,𝑌

of the limit set Λ𝑋,𝑌 .
As Ω𝑋,𝑌 does not contain closed timelike geodesics, it has a well-defined timelike distance.

Definition 3.2 (Timelike Distance). The timelike distance 𝛿H2,1 (•, •) ∈ [0, 𝜋] on Ω𝑋,𝑌 is defined by
setting

𝛿H2,1 (𝑥, 𝑦) = 0

if the segment [𝑥, 𝑦] is either lightlike or spacelike, and otherwise

𝛿H2,1 (𝑥, 𝑦) :=
∫ √

−〈 
𝛼(𝑡), 
𝛼(𝑡)〉𝑑𝑡,

where 𝛼 = 𝛼(𝑡) denotes some lift to SL2 (R) of the parametrized timelike segment [𝑥, 𝑦] ⊂ Ω𝑋,𝑌 ⊂
PSL2(R).

The group 𝜌𝑋,𝑌 (Γ) acts freely and properly discontinuosly on Ω𝑋,𝑌 (see [17]). The quotient 𝑀𝑋,𝑌 :=
Ω𝑋,𝑌 /𝜌𝑋,𝑌 (Γ) is the Mess manifold associated with 𝑋,𝑌 ∈ T .

Let us mention the fact that 𝑀𝑋,𝑌 is a so-called globally hyperbolic maximal Cauchy compact
(GHMC) anti-de Sitter 3-manifold. In particular, this means that 𝑀𝑋,𝑌 contains a closed spacelike
surface S homeomorphic to Σ, which intersects every inextensible timelike geodesic exactly once. From
this property, it is not difficult to deduce that 𝑀𝑋,𝑌 is diffeomorphic to Σ × R. Mess proves in [17]
that, in fact, all GHMC manifolds M whose Cauchy surfaces are homeomorphic to Σ have the form
𝑀 = 𝑀𝑋,𝑌 for some 𝑋,𝑌 ∈ T .

3.2. Laminations and pleated surfaces

Mess representations are examples of maximal representations in PSL2(R) × PSL2 (R) = PSO0(2, 2),
as introduced in Burger, Iozzi and Wienhard [9]. In fact, by a celebrated result of Goldman [12], every
maximal representation in PSL2 (R) × PSL2(R) is a Mess representation.

As a consequence, we can apply the results of [16] to our setting. In this section, we recall the pleated
surface construction from [16] and describe some geometric properties of these objects.
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3.2.1. Pleated sets
Let 𝜌𝑋,𝑌 be a Mess representation with boundary map 𝜉 : 𝜕Γ → Λ𝑋,𝑌 .
Definition 3.3 (Geometric Realization). Let 𝜆 ∈ GL be a lamination. The geometric realization of 𝜆 for
𝜌𝑋,𝑌 is

𝜆̂ :=
⋃

(𝑎,𝑏) ∈𝜆
[𝜉 (𝑎), 𝜉 (𝑏)] ⊂ CH𝑋,𝑌 ,

where (𝑎, 𝑏) is the leaf of 𝜆 with endpoints 𝑎, 𝑏 and [𝜉 (𝑎), 𝜉 (𝑏)] is the spacelike geodesic with endpoints
𝜉 (𝑎), 𝜉 (𝑏).
Definition 3.4 (Pleated Set). Let 𝜆 ∈ GL𝑚 be a maximal lamination. The pleated set associated with 𝜆
and 𝜌𝑋,𝑌 is

𝑆𝜆 := 𝜆̂ ∪
⋃

Δ (𝑎,𝑏,𝑐) ⊂H2−𝜆
Δ (𝜉 (𝑎), 𝜉 (𝑏), 𝜉 (𝑐)) ⊂ CH𝑋,𝑌 ,

where Δ (𝑎, 𝑏, 𝑐) is the plaque of 𝜆 with vertices 𝑎, 𝑏, 𝑐 and Δ (𝜉 (𝑎), 𝜉 (𝑏), 𝜉 (𝑐)) is the ideal spacelike
triangle with endpoints 𝜉 (𝑎), 𝜉 (𝑏), 𝜉 (𝑐).
Proposition 3.5 (Proposition 3.7 of [16]). The pleated set 𝑆𝜆 ⊂ CH𝑋,𝑌 is a 𝜌𝑋,𝑌 (Γ)-invariant topo-
logical Lipschitz acausal subsurface.

Incidentally, in combination with classical 3-dimensional topology, Proposition 3.5 has also the
following topological corollary:
Corollary 3.6. Let 𝜌𝑋,𝑌 be a Mess representation with parameters 𝑋,𝑌 ∈ T . Identify the Mess manifold
𝑀𝑋,𝑌 := Ω𝑋,𝑌 /𝜌𝑋,𝑌 (Γ) with Σ × R and let 𝛼 ⊂ Σ be an essential multicurve. Then, the geodesic
realization of 𝛼 in 𝑀𝑋,𝑌 is isotopic to 𝛼 ⊂ Σ × {0}.
Proof. Let 𝜆𝛼 be a maximal lamination obtained from 𝛼 by adding finitely many geodesics spiraling
around the curves in 𝛼. By Proposition 3.5, there exists an embedded 𝜋1-injective (Lipschitz) surface
𝑆𝛼 = 𝑆𝜆𝛼/𝜌𝑋,𝑌 (Γ) ⊂ 𝑀𝑋,𝑌 containing the geodesic realization of the curves in 𝛼. By Proposition 3.1
and Corollary 3.2 of [22], such a surface, being embedded and 𝜋1-injective, is isotopic to Σ × {0}. �

3.2.2. Bending locus
The pleated set 𝑆𝜆 is not necessarily bent along all the lines in 𝜆̂.
Definition 3.7 (Bending Locus). Let 𝜌𝑋,𝑌 be a Mess representation. Consider 𝜆 a maximal lamination
with geometric realization 𝜆̂ and denote by 𝑆𝜆 the corresponding pleated set. A point 𝑥 ∈ ℓ ⊂ 𝜆̂ is in
the bending locus of 𝑆𝜆 if there is no (necessarily spacelike) geodesic segment k entirely contained in
𝑆𝜆 and such that int(𝑘) ∩ ℓ = 𝑥.

We have the following:
Proposition 3.8 (Proposition 3.11 of [16]). The bending locus is a sublamination of 𝜆̂, and its comple-
ment in 𝑆𝜆 is a union of 2-dimensional totally geodesic spacelike regions.

3.2.3. 1-Lipschitz developing map
Unfolding pleated sets along the bending locus naturally maps them to H2. We formalize this heuristic
picture as follows:
Definition 3.9 (Developing Map). Let 𝜌𝑋,𝑌 be a Mess representation. Let 𝑆𝜆 ⊂ CH𝑋,𝑌 be the pleated
set associated with a maximal lamination 𝜆. A 1-Lipschitz developing map is a homeomorphism
𝑓 : 𝑆𝜆 → H2 with the following properties:
1. It is isometric on every plaque and sends every leaf of 𝜆̂ onto a complete geodesic.
2. It is 1-Lipschitz with respect to the intrinsic pseudo-metric on 𝑆𝜆 and the hyperbolic metric on H2.
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Developing maps have a couple of useful general properties which we now describe. First, they are
isometric outside the bending locus.

Lemma 3.10 (Lemma 6.2 of [16]). Let 𝜌𝑋,𝑌 be a Mess representation and let 𝑆𝜆 be the pleated set
associated to a maximal lamination 𝜆. Then, every 1-Lipschitz developing map 𝑓 : 𝑆𝜆 → H2 is isometric
on the complement of the bending locus of 𝑆𝜆.

Secondly, developing maps are contracting with respect to the natural path metric structure on pleated
sets.

Definition 3.11 (Regular Path). A (weakly) regular path is a map 𝛾 : 𝐼 = [𝑎, 𝑏] → H2,1 that satisfies
the following:

◦ The path 𝛾 is Lipschitz.
◦ The tangent vector 
𝛾(𝑡) is spacelike (or lightlike) for almost every 𝑡 ∈ 𝐼 (at which 
𝛾 is defined).

The length of a weakly regular path is

𝐿(𝛾) :=
∫
𝐼

√
〈 
𝛾(𝑡), 
𝛾(𝑡)〉𝑑𝑡.

The Lipschitz property implies that the length 𝐿(𝛾) is always finite.

Lemma 3.12 (Claim 2 of Lemma 6.4 in [16]). Let 𝑆 ⊂ H2,1 be an acausal subset and let 𝛾 : 𝐼 =
[𝑎, 𝑏] → 𝑆 be a weakly regular path. Then,

𝐿(𝛾) = lim
𝜖→0

∫
𝐼

𝑑H2,1 (𝛾(𝑡), 𝛾(𝑡 + 𝜖))
𝜖

dt.

Lemma 3.13 (Lemma 6.4 of [16]). Let 𝜌𝑋,𝑌 be a Mess representation and let 𝑆𝜆 be the pleated set
associated to a maximal lamination 𝜆. Then, every 1-Lipschitz developing map 𝑓 : 𝑆𝜆 → H

2 sends
weakly regular paths 𝛾 : 𝐼 → 𝑆𝜆 to Lipschitz (hence rectifiable) paths 𝑓 𝛾 : 𝐼 → H2 of smaller length
𝐿(𝛾) ≥ 𝐿( 𝑓 𝛾).

3.2.4. Pleated surfaces
The following result makes sure that every pleated set 𝑆𝜆 admits a natural 1-Lipschitz developing map:

Proposition 3.14 (Proposition 6.6 in [16]). Let 𝜌𝑋,𝑌 be a Mess representation. For every maximal
lamination 𝜆 ∈ GL𝜆, there is

◦ an intrinsic hyperbolic structure 𝑍𝜆 ∈ T ;
◦ a (𝜌𝑋,𝑌 − 𝜌𝜆)-equivariant 1-Lipschitz developing map 𝑓 : 𝑆𝜆 → H2 where 𝜌𝜆 is the holonomy of 𝑍𝜆.

We can finally define pleated surfaces:

Definition 3.15 (Pleated Surface). Let 𝜌𝑋,𝑌 be a Mess representation. The pleated surface associated
with the maximal lamination 𝜆 ∈ GL consists of the following data:

1. The pleated set 𝑆𝜆.
2. The intrinsic hyperbolic holonomy 𝜌𝜆 : Γ → PSL2 (R) of 𝑍𝜆.
3. A (𝜌𝑋,𝑌 − 𝜌𝜆)-equivariant 1-Lipschitz developing map 𝑓 : 𝑆𝜆 → H2.

Remark 3.16. It is worth mentioning that there exist examples of distinct Fuchsian structures 𝜌𝜆, 𝜌
′
𝜆 ∈ T

and equivariant homeomorphisms 𝑓𝜆, 𝑓
′
𝜆 : 𝑆𝜆 → H2 associated with the same pleated set 𝑆𝜆 that satisfy

item (1) from Definition 3.9.
To see this, consider a maximal lamination𝜆 whose support admits a non-atomic measured lamination

𝜇 ≠ 0 and let 𝑍𝜆 = H2/𝜌𝜆 (Γ) and 𝑓𝜆 : 𝑆𝜆 → H
2 be as in Definition 3.9. Then, the left earthquake

along 𝜇 satisfies 𝐸 𝑙
𝜇 (𝑍𝜆) ≠ 𝑍𝜆, and its associated ((𝐸 𝑙

𝜇)∗(𝜌𝜆) − 𝜌𝜆)-equivariant map E 𝑙
𝜇 : H2 → H2 is
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continuous, is isometric on the complementary regions of the lift of support(𝜇) ⊂ 𝜆, and sends leaves
into complete geodesics. It follows that E 𝑙

𝜇 ◦ 𝑓𝜆 : 𝑆𝜆 → H
2 satisfies item (1) of Definition 3.9. This

shows in particular that the requirement (2) in Definition 3.9 is necessary if we want to have uniqueness
of the intrinsic hyperbolic structure and of the developing map of 𝑆𝜆 (up to the action of Diff0(Σ)).

Let us conclude this discussion by observing that pleated surfaces for a fixed Mess representation
𝜌𝑋,𝑌 have some useful compactness properties:

Lemma 3.17. Let 𝜌𝑋,𝑌 be the Mess representation with parameters 𝑋,𝑌 ∈ T . Then, the space of
intrinsic hyperbolic structures on the pleated sets

{𝑍𝜆}𝜆∈GL𝑚

is pre-compact in T .

Proof. Recall that 𝜌𝑋,𝑌 (Γ) acts cocompactly on CH𝑋,𝑌 . Let 𝐹 ⊂ CH𝑋,𝑌 be a compact fundamental
domain. For every maximal lamination 𝜆 ∈ GL𝑚 with associated pleated set 𝑆𝜆 ⊂ CH𝑋,𝑌 , choose a
basepoint 𝑥𝜆 ∈ 𝑆𝜆 ∩ 𝐹. Let 𝑓𝜆 : 𝑆𝜆 → H

2 be a (𝜌𝑋,𝑌 − 𝜌𝜆)-equivariant 1-Lipschitz developing map
normalized so that 𝑓𝜆 (𝑥𝜆) = 𝑜 ∈ H2, a fixed basepoint. The equivariance and the 1-Lipschitz property
tell us that

𝑑H2 (𝑜, 𝜌𝜆 (𝛾)𝑜) ≤ 𝑑H2,1 (𝑥𝜆, 𝜌𝑋,𝑌 (𝛾)𝑥𝜆)

for every 𝛾 ∈ Γ. Notice that the right-hand side is bounded from above by a uniform constant 𝐾𝛾

independent of 𝜆, since 𝑥𝜆 ∈ 𝐹 is contained in a compact set and

cosh(𝑑H2,1 (𝑥𝜆, 𝜌𝑋,𝑌 (𝛾)𝑥𝜆)) = |〈𝑥𝜆, 𝜌𝑋,𝑌 (𝛾)𝑥𝜆〉|.

Therefore, the set of representations {𝜌𝜆}𝜆∈GL𝑚 ⊂ T ⊂ Hom(Γ, PSL2 (R)) is pre-compact. �

3.2.5. Convex core
An example of pleated surfaces is given by the two connected components of the boundary of the convex
core 𝜕CH𝑋,𝑌 = 𝜕+CH𝑋,𝑌 ∪ 𝜕−CH𝑋,𝑌 . Each of them has the structure of a pleated set with bending
loci 𝜆+ and 𝜆− and intrinsic hyperbolic structures 𝑍𝜆+ , 𝑍𝜆− ∈ T . As we mentioned in the introduction,
measuring the total turning angles along paths 𝛼 : 𝐼 → 𝜕±CH𝑋,𝑌 equips the geodesic laminations 𝜆±

with a transverse measure and hence identifies a pair of points 𝜇± ∈ ML. Mess proves that we have the
following relations:

𝑍𝜆+
𝐸𝑟
𝜇+

����
��
��
�� 𝐸𝑙

𝜇+

��
��

��
��

��

𝑋 𝑌

𝑍𝜆−

𝐸𝑟
𝜇−

���������� 𝐸𝑙
𝜇−

����������

where 𝐸 𝑙
𝜇+ , 𝐸 𝑙

𝜇− , 𝐸𝑟
𝜇+ , 𝐸𝑟

𝜇− are the left and right earthquakes induced by the measured laminations 𝜇+, 𝜇−.
Heuristically speaking, an earthquake is the generalization to laminations of a twist deformation along a
simple closed geodesic. Given a closed geodesic 𝛾 on a hyperbolic surface X and a real parameter 𝜃 > 0,
we do the following operation. We lift 𝛾 to a 𝜌𝑋 (Γ)-invariant family of pairwise disjoint geodesics
𝜆 ⊂ H2. We cut H2 along 𝜆. We reglue all the ideal polygons 𝑃 ⊂ H2 − 𝜆 by composing all the initial
identifications ℓ ⊂ 𝜕𝑃 → ℓ′ ⊂ 𝜕𝑃′ (left-to-right) with the isometry of ℓ′ given by 𝑡 ↦→ 𝑡 + 𝜃 (the
identification ℓ′ = R is determined by the boundary orientation). The result is still isometric to H2, but
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the action of Γ on it is the holonomy of a different hyperbolic structure, which, depending on the choices
of orientations, is 𝐸 𝑙

𝜃𝛾 (𝑋) or 𝐸𝑟
𝜃𝛾 (𝑋).

We will describe more carefully the various elements that enter this picture in the next section, where
we will prove a generalization of the result of Mess.

3.2.6. Initial and terminal singularities
We end this section by describing the initial and terminal singularities of Ω𝑋,𝑌 , which are subsets of
𝜕Ω𝑋,𝑌 dual to the boundary components of the convex core. Duality is understood in the sense of the
duality induced by the quadratic form 〈•, •〉(2,2) on 𝑀2 (R). Explicitly, we have

P(𝐿) ↔ P(𝐿⊥),

where 𝐿⊥ ⊂ 𝑀2 (R) is the linear subspace orthogonal to L with respect to the quadratic form 〈•, •〉(2,2) .
Define the following:

Definition 3.18 (Initial and Terminal Singularities). The sets S± of dual points of supporting planes of
𝜕±CH𝑋,𝑌 are the initial and terminal singularities.

Let us start with the following observation:

Lemma 3.19. Let 𝐻 = 𝑃(𝑉) ∩ H2,1 be a supporting plane of 𝜕±CH𝑋,𝑌 . Then,

◦ H is spacelike and defines a dual point 𝑃(𝑉⊥) ∈ H2,1. Let 𝑤 ∈ 𝑉⊥ be a unit timelike vector pointing
outside CH𝑋,𝑌 .

◦ For every 𝑥 ∈ 𝐻 ∩ CH𝑋,𝑌 , the timelike geodesic 𝛾(𝑡) = cos(𝑡)𝑥 − sin(𝑡)𝑤, with 𝑡 ∈ [0, 𝜋/2), is
contained in Ω𝑋,𝑌 , while 𝑤 = 𝛾(𝜋/2) ∈ 𝜕Ω𝑋,𝑌 .

Any two distinct supporting planes 𝐻1, 𝐻2 of 𝜕+CH𝑋,𝑌 intersect in a spacelike geodesic 𝐻1 ∩ 𝐻2. If
𝑤1, 𝑤2 are the dual points of 𝐻1, 𝐻2, then [𝑤1, 𝑤2] is spacelike.

Proof. The first point: Recall that 𝜕H2,1 = RP1 × RP1 and that Λ𝑋,𝑌 is the graph of an orientation
preserving homeomorphism ℎ𝑋,𝑌 : RP1 → RP

1. If H is a supporting hyperplane for CH𝑋,𝑌 , then
𝜕𝐻 does not intersect Λ𝑋,𝑌 transversely. The fact that H must be spacelike follows from the following
observations. The boundary of a lightlike plane has the form ({𝑠} ×RP1) ∪ (RP1 × {𝑡}). The boundary
of a totally geodesic plane in H2,1 with signature (1, 1) is the graph of an orientation reversing linear
transformation RP1 → RP1. In the former case, either (𝑠, 𝑡) ∈ Λ𝑋,𝑌 , in which case H does not intersect
𝜕+CH𝑋,𝑌 , or 𝜕𝐻 intersects Λ𝑋,𝑌 transversely. In the latter case, namely if H has signature (1, 1), 𝜕𝐻
has always transverse intersection with Λ𝑋,𝑌 .

The second point: Recall that Ω𝑋,𝑌 is the set of points that can be connected to every point in Λ𝑋,𝑌

by a spacelike geodesic. A point 𝑥 ∈ H2,1 and a point 𝑝 ∈ 𝜕H2,1 are connected by a spacelike geodesic
if and only if 〈𝑥, 𝑝〉 ≠ 0. Let us show that 𝛾(𝑡) ∈ Ω𝑋,𝑌 for every 𝑡 ∈ [0, 𝜋/2). In order to do so, lift Λ𝑋,𝑌

continuously to 𝑀2 (R). As 𝑥 ∈ Ω𝑋,𝑌 , we have 〈𝑥, 𝑝〉 ≠ 0 for every 𝑝 ∈ Λ𝑋,𝑌 and, by continuity, we
can assume that it is negative for every 𝑝 ∈ Λ𝑋,𝑌 . As H is a supporting hyperplane and w is a timelike
vector orthogonal to H and pointing outside CH𝑋,𝑌 , we have 〈𝑝, 𝑤〉 ≥ 0 for every 𝑝 ∈ Λ𝑋,𝑌 . Therefore,
〈𝛾(𝑡), 𝑝〉 = cos(𝑡)〈𝑥, 𝑝〉 − sin(𝑡)〈𝑤, 𝑝〉 < 0 for every 𝑝 ∈ Λ𝑋,𝑌 and 𝑡 < 𝜋/2. In order to conclude, it is
enough to observe that 𝑤 = 𝛾(𝜋/2) ∉ Ω𝑋,𝑌 , as 〈𝑤, 𝑝〉 = 0 for every 𝑝 ∈ 𝜕𝐻 ∩ Λ𝑋,𝑌 ≠ ∅.

For the last part, notice that 𝐻1∩𝐻2 is either empty or a spacelike geodesic. Suppose that 𝐻1∩𝐻2 = ∅.
Then, H2,1 − (𝐻1 ∪ 𝐻2) consists of two connected components – one of them containing CH𝑋,𝑌 . As
𝐻1, 𝐻2 lie on opposite sides of CH𝑋,𝑌 in such component, they cannot be supporting hyperplanes for
the same boundary component of 𝜕CH𝑋,𝑌 . This is a contradiction. �

Notice that, by Lemma 3.19, the initial and terminal singularities S± are 𝜌𝑋,𝑌 (Γ)-invariant, acausal
and contained in 𝜕Ω𝑋,𝑌 . Benedetti and Guadagnini [2] prove that they have the structure of an R-tree
and relate them to the bending measured laminations 𝜇±.
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Definition 3.20 (R-tree). An R-tree is a geodesic metric space (S , 𝑑S (•, •)) such that between two
points 𝑥, 𝑦 ∈ S there is a unique (up to reparametrization) injective path 𝛼 : [0, 1] → S with
𝛼(0) = 𝑥, 𝛼(1) = 𝑦.

Benedetti and Guadagnini [2] show the following:

Proposition 3.21. Let 𝜌𝑋,𝑌 be a Mess representation and let S± ⊂ 𝜕Ω𝑋,𝑌 be the initial and terminal
singularities. Then,

◦ S± is 𝜌𝑋,𝑌 (Γ)-invariant, acausal and path-connected by regular paths. In particular, it has an
intrinsic path metric

𝑑S± (𝑥, 𝑦) = 𝐿(𝛼),

where 𝛼 : [0, 1] → S± is a regular path joining x to y.
◦ For every pair of points 𝑤, 𝑤′ ∈ S±, there is a unique continuous injective path connecting them

inside S±.
◦ For every 𝛾 ∈ Γ − {1}, the minimal displacement

min
𝑥∈S±

{𝑑S± (𝑥, 𝜌𝑋,𝑌 (𝛾)𝑥)}

coincides with 𝑖(𝛾, 𝜇±) and it is realized by some point 𝑥 ∈ S±.

Here, 𝜇± ∈ ML is the bending lamination of 𝜕±CH𝑋,𝑌 , and 𝑖(•, •) is the geometric intersection form.

For a proof, we refer to [2] and [1].

4. A generalization of a result of Mess

The goal of the section is to define the shear-bend cocycles of pleated surfaces and prove Theorem 1.
We begin by recalling the Thurston-Bonahon shear parametrization of Teichmüller space (as dis-

cussed by Bonahon in [5]), which we will generalize to the space of Mess representations in Theorem 5,
at the end of the section.

4.1. Shear coordinates

We refer to Bonahon [5] for more details on the material presented in this section.

4.1.1. Transverse cocycles
Shear-bend cocycles are a special case of transverse cocycles for 𝜆.

Definition 4.1 (Transverse Cocycle). LetA be an Abelian group and let𝜆 ⊂ H2 be a maximal lamination.
AnA-transverse cocycle for𝜆 is a function 𝜎(•, •) of pairs of plaques satisfying the following properties:

◦ Invariance: 𝜎(𝛾𝑃, 𝛾𝑄) = 𝜎(𝑃,𝑄) for every 𝛾 ∈ Γ and plaques 𝑃,𝑄;
◦ Symmetry: 𝜎(𝑃,𝑄) = 𝜎(𝑄, 𝑃) for every plaques 𝑃,𝑄;
◦ Additivity: 𝜎(𝑃, 𝑅) = 𝜎(𝑃,𝑄) + 𝜎(𝑄, 𝑅) for every plaques 𝑃,𝑄, 𝑅 such that R separates P from Q.

The space of A-transverse cocycles is denoted by H(𝜆;A). It has a natural structure of group, which
is isomorphic to A−3𝜒 (Σ) whenever A has no 2-torsion (see Bonahon [5]).

4.1.2. Measured laminations
Every measured lamination 𝜇 ∈ ML𝜆 determines a natural transverse cocycle which, with a little abuse
of notation, we will still denote by 𝜇 ∈ H(𝜆;R). It is defined as follows. Let 𝑃, 𝑃′ be plaques of 𝜆. Let
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ℓ ⊂ 𝜕𝑃, ℓ′ ⊂ 𝜕𝑃′ be the (oriented) edges that separate 𝑃, 𝑃′. Then,

𝜇(𝑃, 𝑃′) := 𝜇([ℓ, ℓ′]),

the measure, determined by 𝜇, of the box [ℓ, ℓ′] ⊂ G consisting of those geodesics separating ℓ and ℓ′.

4.1.3. Hyperbolic structures
Every hyperbolic structure X on Σ also determines a transverse cocycle 𝜎𝑋

𝜆 ∈ H(𝜆;R), the so-called
shear cocycle of X. It is defined as follows. Let 𝑃, 𝑃′ be plaques of 𝜆. Let ℓ ⊂ 𝜕𝑃, ℓ′ ⊂ 𝜕𝑃′ be the
(oriented) edges that separate 𝑃, 𝑃′. Denote by 𝑥 ∈ ℓ, 𝑥 ′ ∈ ℓ′ the orthogonal projections of the opposite
vertices in 𝑃, 𝑃′.

Consider the partial foliation 𝜆𝑃𝑃′ of the region [ℓ, ℓ′] bounded by ℓ, ℓ′ given by all the leaves that
separate P from 𝑃′. Note that [ℓ, ℓ′] − 𝜆𝑃𝑃′ is a union of wedges – that is, regions bounded by a pair
of leaves of 𝜆𝑃𝑃′ that are asymptotic in one or the other direction. Each of the wedges can be foliated
by adding all the geodesics separating the boundary leaves and asymptotic to their common endpoint at
infinity. Thus, we get a natural geodesic foliation of [ℓ, ℓ′]. The line field on [ℓ, ℓ′] which is orthogonal
to this foliation is integrable and, following its leaves, it provides a natural isometric identification
𝜋 : ℓ → ℓ′. Define

𝜎𝑋
𝜆 (𝑃, 𝑃′) := 𝑑ℓ′ (𝜋(𝑥), 𝑥 ′),

where 𝑑ℓ′ is the signed distance along ℓ′.
A straightforward computation in H2 shows the following:

Lemma 4.2. Let 𝛽R be the cross ratio on RP1. We have the following:

◦ If 𝑃, 𝑃′ are adjacent triangles and ℓ = ℓ′, then

𝜎𝑋
𝜆 (𝑃, 𝑃′) = log(−𝛽R (ℓ+, ℓ−, 𝑣, 𝑣′)),

where 𝑣, 𝑣′ are the ideal vertices of 𝑃, 𝑃′ opposite to ℓ = ℓ′, respectively, and ℓ is oriented so that P
and 𝑃′ lie on its left and on its right, respectively.

◦ If 𝑃, 𝑃′ lie on opposite sides of a leaf ℓ ⊂ 𝜆 and each shares an ideal vertex with ℓ (possibly distinct),
then

𝜎𝑋
𝜆 (𝑃, 𝑃′) = log(𝛽R (ℓ+, 𝑢, 𝑣, ℓ−) 𝛽R (ℓ−, ℓ+, 𝑢′, 𝑢) 𝛽R (ℓ−, 𝑢′, 𝑣′, ℓ+)),

where 𝑢, 𝑢′ are the ideal vertices of the sides 𝑒 ⊂ 𝑃, 𝑒′ ⊂ 𝑃′ that are not endpoints of ℓ and that
separate the plaques 𝑃, 𝑃′; 𝑣, 𝑣′ are the vertices of 𝑃, 𝑃′ opposite to 𝑒, 𝑒′; and ℓ is oriented so that P
and 𝑃′ lie on its left and on its right, respectively.

(See, for example, ([16], Lemma 4.11) for a proof of the second assertion.) Bonahon proves the
following:

Theorem 4.3 (Theorems A and B of [5]). Let 𝜆 be a maximal lamination. For every 𝑋 ∈ T , the function
𝜎𝑋
𝜆 (•, •) is a transverse cocycle. The map

Φ : T → H(𝜆;R)
𝑋 → 𝜎𝑋

𝜆

is a real analytic diffeomorphism onto its image, which coincides with the open convex cone

Φ(T ) = {𝜎 ∈ H(𝜆,R) | 𝜔Th(𝜎, •) > 0 on ML𝜆},

where 𝜔Th (•, •) is the Thurston’s symplectic form on H(𝜆;R).
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The resulting set of coordinates for Teichmüller space are called shear coordinates relative to 𝜆.
The Thurston’s symplectic form 𝜔Th(•, •) is a natural symplectic form on the vector space H(𝜆;R).

For our purposes, we do not need a precise definition of this object (we refer to Bonahon [5] for details),
as we will only use the following property.

Theorem 4.4 (Theorem E of [5]). Let 𝜆 be a maximal lamination. Let 𝜔Th(•, •) be the Thurston’s
symplectic form on H(𝜆;R). Then, for every 𝜇 ∈ ML𝜆 and 𝑋 ∈ T , we have

𝜔Th(𝜎𝑋
𝜆 , 𝜇) = 𝐿𝑋 (𝜇).

4.1.4. Continuity of cocycles
In order to talk about continuity properties of cocycles, we need to compare H(𝜆′;R) with H(𝜆;R)
for 𝜆′ close to 𝜆. This can be done using the weights system W (𝜏;R) of a train track 𝜏 carrying 𝜆. As
above, we will not need a precise definition of these objects but rather the following facts (see the proof
of Lemma 13 in Bonahon [6] or Proposition 5.10 and Corollary 5.11 in [16]).

◦ 𝜏 determines an open set 𝑈𝜏 ⊂ GL𝑚 containing 𝜆.
◦ W (𝜏;R) is a real vector space, and there is a canonical linear isomorphism H(𝜆′;R) → W (𝜏;R) for

every 𝜆′ ∈ 𝑈𝜏 .
◦ For every 𝜆1, 𝜆2 ∈ 𝑈𝜏 , the following diagram commutes:

T

��

�� H(𝜆2;R)

��

H(𝜆1;R) �� W (𝜏;R).

◦ For every 𝑋 ∈ T , the map 𝑈𝜏 � 𝜆 ↦→ 𝜎𝑋
𝜆 ∈ W (𝜏;R) is continuous.

4.2. Para-complex numbers

In order to define the shear-bend cocycle of pleated surfaces, it is convenient to exploit the natural
para-complex cross ratio on the boundary of H2,1 (see Section 2 of Danciger [11]).

Definition 4.5 (Para-complex Numbers). The ring of para-complex numbers is B := R[𝜏]/(𝜏2 − 1).
Similarly to the case of complex numbers, every element 𝑧 = 𝑥 + 𝜏𝑦 has

◦ a conjugate 𝑧 := 𝑥 − 𝜏𝑦;
◦ a pseudo-norm |𝑧 |2 := 𝑧𝑧 = 𝑥2 − 𝑦2 ∈ R.

However, B has also non trivial zero-divisors: an element 𝑧 ∈ B is invertible if and only if |𝑧 |2 ≠ 0,
in which case 𝑧−1 = 𝑧/|𝑧 |2. We denote by B∗ the set of invertible elements of B.

It is convenient to decompose B as R × R. Consider

𝑒𝑙 :=
1 + 𝜏

2
, 𝑒𝑟 :=

1 − 𝜏

2
.

The elements 𝑒𝑙 , 𝑒𝑟 are idempotent 𝑒2
𝑗 = 𝑒 𝑗 , orthogonal 𝑒𝑙 𝑒𝑟 = 0 and conjugate 𝑒𝑙 = 𝑒𝑟 . This implies

that the map (𝜆, 𝜇) ∈ R×R ↦→ 𝜆𝑒𝑙 + 𝜇𝑒𝑟 ∈ B is a ring isomorphism. In these coordinates, the conjugate
of an element is 𝜆𝑒𝑙 + 𝜇𝑒𝑟 = 𝜇𝑒𝑙 + 𝜆𝑒𝑟 , and its norm is |𝜆𝑒𝑙 + 𝜇𝑒𝑟 | = 𝜆𝜇.

4.2.1. Exponential and logarithm
The para-complex exponential function exp : B → B is given by exp(𝑧) :=

∑∞
𝑘=0

𝑧𝑘

𝑘! . In terms of the
classical exponential, we have 𝑒𝑥+𝜏𝑦 = 𝑒𝑥 (cosh(𝑦) + 𝜏 sinh(𝑦)). The para-complex exponential map is
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injective, but not surjective. Its image coincides with

B
+ := {𝑥 + 𝜏𝑦 ∈ B | 𝑥 > 0 and |𝑥 + 𝜏𝑦 |2 > 0}.

The inverse of the exponential is the para-complex logarithm log : B+ → B.
In coordinates B = R × R, we have B+ = {(𝜆, 𝜇) ∈ R × R| 𝜆, 𝜇 > 0}. The exponential satisfies

exp(𝜆 𝑒𝑙 + 𝜇 𝑒𝑟 ) = exp(𝜆) 𝑒𝑙 +exp(𝜇) 𝑒𝑟 , while the logarithm is log(𝜆 𝑒𝑙 + 𝜇 𝑒𝑟 ) = log(𝜆) 𝑒𝑙 + log(𝜇) 𝑒𝑟 .

4.2.2. Projective para-complex line
The boundary 𝜕H2,1 = RP1 × RP1 can be identified with the para-complex projective line BP1 =
(B2 − {0})/B∗ via

([𝑢], [𝑣]) ∈ RP1 × RP1 ↦→
[
1 + 𝜏

2
𝑢 + 1 − 𝜏

2
𝑣

]
∈ BP1,

and PSL2(R) × PSL2(R) can be thought of as the para-complex projective linear transformations
PSL2(B) = SL2(B)/{±1,±𝜏}, via the isomorphism

([𝐴], [𝐵]) ∈ PSL2 (R) × PSL2(R) ↦→
[
1 + 𝜏

2
𝐴 + 1 − 𝜏

2
𝐵

]
∈ PSL2(B).

The para-complex projective line BP1 is equipped with a natural para-complex cross ratio:

Definition 4.6 (Cross Ratio). The para-complex cross ratio is defined by

𝛽B (𝑧1, 𝑧2, 𝑧3, 𝑧4) =
𝑧1 − 𝑧3
𝑧1 − 𝑧4

· 𝑧2 − 𝑧4
𝑧2 − 𝑧3

∈ B,

for any 4-tuple (𝑧1, 𝑧2, 𝑧3, 𝑧4) ∈ B4 such that 𝑧1 − 𝑧4, 𝑧2 − 𝑧3 ∈ B∗.

The following is an elementary computation.

Lemma 4.7. For every 𝑎, 𝑏, 𝑐, 𝑑 ∈ BP1 = RP1 × RP1such that 𝑎 − 𝑑, 𝑏 − 𝑐 ∈ B∗, we have

𝛽B (𝑎, 𝑏, 𝑐, 𝑑) = 1 + 𝜏

2
𝛽R (𝑎𝑙 , 𝑏𝑙 , 𝑐𝑙 , 𝑑𝑙) +

1 − 𝜏

2
𝛽R (𝑎𝑟 , 𝑏𝑟 , 𝑐𝑟 , 𝑑𝑟 ),

where 𝑥𝑙 and 𝑥𝑟 denote the first and second components of 𝑥 ∈ {𝑎, 𝑏, 𝑐, 𝑑} ⊂ RP1 × RP1, respectively.

4.3. Shear-bend cocycle

We now recall the natural shear-bend cocycle and its geometric interpretation, as given in Sections 4
and 5 of [16].

Let 𝜌 = 𝜌𝑋,𝑌 be a Mess representation with limit curve Λ𝑋,𝑌 .

4.3.1. Elementary shear
Let us start with an elementary shear-bend.

Lemma 4.8. Let Δ = (𝑢, ℓ−, ℓ+),Δ ′ = (𝑢′, ℓ+, ℓ−) ⊂ H2,1 be ideal triangles sharing a common edge
ℓ = [ℓ−, ℓ+] and with vertices on Λ𝑋,𝑌 ordered as 𝑢 < ℓ− < 𝑢′ < ℓ+. Then, −𝛽B (ℓ+, ℓ−, 𝑢, 𝑢′) ∈ B+.

Proof. Recall that Λ𝑋,𝑌 is the graph of the unique (𝜌𝑋 − 𝜌𝑌 )-equivariant homeomorphism ℎ𝑋,𝑌 :
RP

1 → RP1. For a point 𝑝 ∈ RP1 × RP1, denote by 𝑝𝑙 , 𝑝𝑟 its left and right components, respectively.
Then, we have 𝑢𝑎 < ℓ−𝑎 < 𝑢′𝑎 < ℓ+𝑎 on RP1 for 𝑎 = 𝑙, 𝑟 . The conclusion follows from Lemma 4.7. �
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We define

𝜎B(Δ ,Δ ′) := log(−𝛽B (ℓ+, ℓ−, 𝑢, 𝑢′)) ∈ B.

4.3.2. Maximal laminations with countably many leaves
We then consider the case of maximal laminations with countably many leaves.

These laminations always have the following structure: there is a canonical collection of simple
sublaminations

𝜆′ = 𝜆1 � · · · � 𝜆𝑛 ⊂ 𝜆,

where each 𝜆 𝑗 consists of the orbit of the axis of an element 𝛾 𝑗 ∈ Γ − {1} representing a simple closed
curve. The complement 𝜆 − 𝜆′ is made of isolated geodesics asymptotic to leaves of 𝜆′.

Let 𝜆 ⊂ H2 be a maximal lamination with countably many leaves and let 𝑃,𝑄 ⊂ H2 − 𝜆 be a pair of
distinct plaques. We denote by ℓ1, · · · , ℓ𝑚 the leaves of 𝜆′ that separate P from Q, oriented so that P and
Q lie on the left and on the right, respectively, of each ℓ 𝑗 . For any 𝑗 ∈ {1, . . . , 𝑚}, select two plaques
𝑅𝑃

𝑗 and 𝑅𝑄
𝑗 that lie on the left and on right of ℓ 𝑗 , respectively, and have an ideal vertex equal to one of

the endpoints of ℓ 𝑗 (possibly distinct, compare with Lemma 4.2). Set 𝑅𝑄
0 := 𝑃 and 𝑅𝑃

𝑚+1 := 𝑄.
For every 𝑗 = 0, . . . , 𝑚, the plaques 𝑅𝑄

𝑗 and 𝑅𝑃
𝑗+1 are separated by finitely many adjacent plaques

𝑇𝑗 ,0 := 𝑅𝑄
𝑗 , 𝑇𝑗 ,1, . . . , 𝑇𝑗 ,𝑛 𝑗 , 𝑇𝑗 ,𝑛 𝑗+1 := 𝑅𝑃

𝑗+1,

indexed so that 𝑇𝑗 ,𝑖 is adjacent to 𝑇𝑗 ,𝑖−1 and 𝑇𝑗 ,𝑖+1 for any i. In this case, we set

𝜎𝜌 (𝑅𝑄
𝑗 , 𝑅

𝑃
𝑗+1) :=

𝑛 𝑗∑
𝑖=0

𝜎B(𝑇𝑗 ,𝑖 , 𝑇𝑗 ,𝑖+1), 𝑗 ∈ {0, . . . , 𝑚}.

Moreover, by Lemma 4.2, the elementary shear between 𝑅𝑃
𝑗 and 𝑅𝑄

𝑗 can be computed as the logarithm
of an explicit product of cross ratios, which depend only on the vertices of the plaques 𝑅𝑃

𝑗 and 𝑅𝑄
𝑗

(compare also with Lemma 4.7). Finally, we set

𝜎𝜌 (𝑃,𝑄) :=
𝑚−1∑
𝑗=0

(
𝜎B (𝑅𝑄

𝑗 , 𝑅
𝑃
𝑗+1) + 𝜎B(𝑅𝑃

𝑗+1, 𝑅
𝑄
𝑗+1)
)
+ 𝜎B(𝑅𝑄

𝑚 , 𝑄),

where 𝜌 = 𝜌𝑋,𝑌 .
As observed in ([16], Section 4.4), a simple cross ratio identity shows that a different choice of

plaques 𝑅𝑃
𝑗 , 𝑅

𝑄
𝑗 asymptotic from the left and from the right to the leaves ℓ 𝑗 ∈ 𝜆′ separating P from Q

gives the same value for 𝜎𝜌 (𝑃,𝑄). The fact that 𝜎𝜌 (𝑃,𝑄) is well-defined immediately implies that it
also satisfies the properties of a transverse cocycle. Therefore, we have the following:

Definition 4.9 (Intrinsic Shear-Bend I). Let 𝜌 = 𝜌𝑋,𝑌 be a Mess representation. Let 𝜆 be a maximal
lamination with countably many leaves. The cocycle 𝜎𝜌 (•, •) ∈ H(𝜆;B) is the intrinsic shear-bend
cocycle of the pleated set 𝑆𝜆.

Furthermore, we have the following:

Proposition 4.10 (Proposition 6.7 in [16]). Let 𝜌 = 𝜌𝑋,𝑌 be a Mess representation. Let 𝜆 be a maximal
lamination with countably many leaves. Then, �𝜎𝜌 = (𝜎𝜌 + 𝜎̄𝜌)/2 ∈ H(𝜆;R) is the shear cocycle of
the intrinsic hyperbolic structure 𝑍𝜆 ∈ T of the pleated set 𝑆𝜆.

Proof. Proposition 6.7 in [16] characterizes the intrinsic hyperbolic structure 𝑍𝜆 ∈ T in terms of its
shear coordinates. More precisely, one sees that the shear cocycle of 𝑍𝜆 can be reconstructed from a
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natural cross ratio 𝛽𝜉 associated to the 𝜌𝑋,𝑌 -equivariant limit map 𝜉 : 𝜕Γ → 𝜕H2,1 and defined purely
in terms of the pseudo-Riemannian structure of R2,2. An elementary computation shows that the cross
ratios 𝛽𝜉 and 𝛽B are related by the identity

|𝛽B (𝜉 (𝑥1), 𝜉 (𝑥2), 𝜉 (𝑥3), 𝜉 (𝑥4)) |2 = 𝛽𝜉 (𝑥1, 𝑥2, 𝑥3, 𝑥4)2,

as we identify 𝜕H2,1 with BP1. (Here, | · |2 denotes the natural pseudo-norm on B.) It then follows from
the properties of the para-complex logarithm that the shear 𝜎𝜉 , defined through the cross ratio 𝛽𝜉 , and
the para-complex shear 𝜎B satisfy

�(𝜎B (𝑃,𝑄)) = 𝜎𝜉 (𝑃,𝑄)

for any pair of distinct plaques 𝑃,𝑄 of 𝜆, from which we deduce the desired statement. �

4.3.3. General maximal laminations
Lastly, we describe the natural finite approximation process that defines the shear-bend cocycle in
general, extending the previous case. Let 𝜆 ⊂ H2 be an arbitrary maximal lamination. As before, let
𝑃,𝑄 ⊂ H2 − 𝜆 be a pair of plaques and let P𝑃𝑄 be the set of plaques separating P from Q. Let

P = {𝑃1, · · · , 𝑃𝑚} ⊂ P𝑃𝑄

be a finite subset of plaques ordered from P to Q. Any two consecutive 𝑃 𝑗 , 𝑃 𝑗+1 cobound a (possibly
empty) region 𝑈 𝑗 . We decompose its boundary as 𝜕𝑈 𝑗 = ℓ 𝑗 ∪ ℓ 𝑗+1 with ℓ 𝑗 ⊂ 𝜕𝑃 𝑗 and ℓ 𝑗+1 ⊂ 𝜕𝑃 𝑗+1.
We add to the finite collection P of plaques the triangles

Δ (ℓ+𝑗 , ℓ−𝑗 , ℓ+𝑗+1),Δ (ℓ−𝑗 , ℓ−𝑗+1, ℓ
+
𝑗+1),

obtaining a chain of triangles 𝑃 = 𝑇1, 𝑇2, · · · , 𝑇3𝑚−2, 𝑇3𝑚−1 = 𝑄.
We define

𝜎𝜌 (𝑃,𝑄) :=
3𝑚−2∑
𝑗=1

𝜎B(𝑇𝑗 , 𝑇𝑗+1).

We then carefully choose an exhaustion {P𝑛}𝑛∈N of P𝑃𝑄 by finite subsets and we set

𝜎𝜌 (𝑃,𝑄) := lim
𝑛→∞

𝜎BP𝑛
(𝑃,𝑄).

The existence of the limit as well as the independence of the choices made to define it and the fact
that the limit object is a B-transverse cocycle are proved in [16].
Theorem 4.11 (Theorem B of [16]). Let 𝜌 = 𝜌𝑋,𝑌 be a Mess representation. For every maximal
geodesic lamination 𝜆 ∈ GL, the finite approximation process converges and defines a B-transverse
cocycle 𝜎𝜌 ∈ H(𝜆;B).
Definition 4.12 (Intrinsic Shear-Bend II). Let 𝜌 = 𝜌𝑋,𝑌 be a Mess representation. Let 𝜆 be a maximal
lamination. The cocycle 𝜎𝜌 ∈ H(𝜆;B) provided by Theorem 4.11 is the intrinsic shear-bend cocycle of
the pleated set 𝑆𝜆.

The following is a summary of results in Sections 4, 5 and 6 of [16].
Proposition 4.13. We have the following properties:
1. If 𝜆 has countably many leaves, the definitions I and II coincide.
2. (𝜎𝜌 + 𝜎̄𝜌)/2 is the shear cocycle of the intrinsic hyperbolic structure 𝑍𝜆 ∈ T .
3. The map 𝜆 ∈ GL𝑚 ↦→ 𝜎𝜌 ∈ W (𝜏;B) is continuous with respect to the Hausdorff topology on GL𝑚.

Here, W (𝜏;R) is the weight space of a train track 𝜏 carrying 𝜆.
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4.4. Gauss map

In order to prove Theorem 1, we study the Gauss map of the pleated set 𝑆𝜆, which we now describe. To
this purpose, let us begin with some general observations.

The group PSL2(R) × PSL2(R) acts transitively on oriented timelike geodesics. The stabilizer of
𝛾(𝑡) = cos(𝑡)𝐼 + sin(𝑡)𝐽 ∈ PSO(2), where 𝐽 =

( 0 −1
1 0

)
, is equal to PSO(2) × PSO(2).

Therefore, the space of oriented timelike geodesics is PSL2(R) × PSL2(R)-equivariantly identified
with

(PSL2 (R)/PSO(2)) × (PSL2(R)/PSO(2)) � H2 × H2

(that is, the symmetric space of PSL2(R) × PSL2(R)). We identify RP1 with P{𝐴 ∈ 𝑀2 (R) | rk(𝐴) =
1}/PSO(2) and H2 with PSL2(R)/PSO(2).
Lemma 4.14. Let 𝐻 ⊂ H2,1 be a (oriented) spacelike plane. Consider the map 𝑔 = (𝑔𝑙 , 𝑔𝑟 ) : 𝐻 →
H

2 ×H2, where 𝑔(𝑥) is the future-pointing timelike geodesic orthogonal to H at x. Then, 𝑔 𝑗 is isometric
and extends continuously to the map 𝑔 𝑗 : 𝜕𝐻 ⊂ RP1 ×RP1 → RP1, sending 𝑔 𝑗 (𝑎𝑙 , 𝑎𝑟 ) = 𝑎 𝑗 for 𝑗 = 𝑙, 𝑟 .
Proof. By equivariance, it is enough to check the claim for a specific hyperplane 𝐻 ⊂ H2,1 = PSL2(R).
We choose H to be the dual plane of I – that is, 𝐻 = P{𝑀 ∈ SL2 (R) | tr(𝑀) = 0}. As above, let
𝛾 = PSO(2).

Notice that 𝐽 = 𝐻 ∩ 𝛾 and that H, 𝛾 intersect orthogonally at J. It follows that 𝑔(𝐽) = 𝛾 = ([𝐼], [𝐼]).
As the diagonal group of PSL2 (R) ×PSL2(R) preserves H and acts transitively on it, by equivariance we
have 𝑔 𝑗 (𝐴𝐽) = [𝐴]. In other words, the components 𝑔 𝑗 are the restrictions of the standard projections
𝜋 : PSL2(R) → PSL2 (R)/PSO(2) to H. Also observe that, as 𝛾 is orthogonal to H at J, the differential
d𝜋𝐽 is isometric. Thus, by equivariance, d𝜋 is isometric everywhere.

The boundary of H is 𝜕𝐻 = P({𝑀 ∈ 𝑀2 (R) | tr(𝑀) = 0, rk(𝑀) = 1}). Notice that, by Hamilton-
Cayley, every 𝑀 ∈ 𝑀2 (R) satisfies 𝑀2 − tr(𝑀)𝑀 + det(𝑀) = 0. Therefore, if 𝑀 ∈ 𝜕𝐻, then 𝑀2 =
0 ⇐⇒ Im(𝑀) = Ker(𝑀). The map 𝑔 𝑗 (𝐴𝐽) = [𝐴] extends continuously to a map 𝜕𝐻 → RP1 sending
𝑔 𝑗 (Im(𝑀),Ker(𝑀)) = [Im(𝑀)] = [Ker(𝑀)]. �

Let 𝜌𝑋,𝑌 be a Mess representation with limit curve Λ𝑋,𝑌 ⊂ RP1 × RP1.
Lemma 4.15. Consider two ideal spacelike adjacent triangles Δ = Δ (𝑎, 𝑏, 𝑐) and Δ ′ = (𝑐, 𝑏, 𝑎′)
sharing a common edge [𝑏, 𝑐] and with vertices ordered as 𝑎 < 𝑏 < 𝑎′ < 𝑐 along Λ𝑋,𝑌 . Let
𝑔 = (𝑔𝑙 , 𝑔𝑟 ) : int(Δ) ∪ int(Δ ′) → H2 × H2 be the map sending x to the future pointing timelike normal
𝑔(𝑥) ∈ H2 × H2. Then,

𝜎(Δ ,Δ ′) = 𝜎H2 (𝑔𝑙 (Δ), 𝑔𝑙 (Δ ′)) + 𝜎H2 (𝑔𝑟 (Δ), 𝑔𝑟 (Δ ′))
2

,

𝛽(Δ ,Δ ′) = 𝜎H2 (𝑔𝑙 (Δ), 𝑔𝑙 (Δ ′)) − 𝜎H2 (𝑔𝑟 (Δ), 𝑔𝑟 (Δ ′))
2

,

where 𝜎H2 (Δ1,Δ2) denotes the hyperbolic elementary shear of the adjacent ideal trianglesΔ1,Δ2 ⊂ H2.
Proof. Identify BP1 with RP1 × RP1. By Lemma 4.14, the left and right projections of Δ ,Δ ′ are the
ideal triangles 𝑔 𝑗 (Δ) = Δ (𝑎 𝑗 , 𝑏 𝑗 , 𝑐 𝑗 ), 𝑔 𝑗 (Δ ′) = Δ (𝑐 𝑗 , 𝑏 𝑗 , 𝑎

′
𝑗 ), where 𝑗 = 𝑙, 𝑟 , respectively. Notice that

we have 𝑎 𝑗 < 𝑏 𝑗 < 𝑎′𝑗 < 𝑐 𝑗 on RP1 because the set Δ ∪ Δ ′ is acausal. In particular,

𝜎H2 (𝑔 𝑗 (Δ), 𝑔 𝑗 (Δ ′)) = log(−𝛽R (𝑏 𝑗 , 𝑐 𝑗 , 𝑎 𝑗 , 𝑎
′
𝑗 ))

by Lemma 4.2. Recall that 𝜎(Δ ,Δ ′), 𝛽(Δ ,Δ ′) are the real and para-complex parts of 𝜎B(Δ ,Δ ′) =
𝜎B (𝑎, 𝑏, 𝑐, 𝑑) and that, by definition, 𝜎B(𝑏, 𝑐, 𝑎, 𝑎′) = log(−𝛽B (𝑏, 𝑐, 𝑎, 𝑎′)). The conclusion follows
from Lemma 4.7. �

We are ready to prove Theorem 1.
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4.5. The proof of Theorem 1

Let 𝜌𝑋,𝑌 be a Mess representation.
Consider the pleated set 𝑆𝜆 associated with the maximal lamination 𝜆. Every point 𝑥 ∈ 𝑆𝜆 − 𝜆̂ lies

in a plaque and, therefore, has a well-defined future-pointing, timelike, unit normal direction 𝑔(𝑥). The
map 𝑔 = (𝑔𝑙 , 𝑔𝑟 ) : 𝑆𝜆 − 𝜆̂ → H

2 × H2 is the Gauss map of the pleated set 𝑆𝜆. By Lemma 4.14, it is
𝜌𝑋,𝑌 -equivariant and isometric on each plaque.

Proof of Theorem 1. We split the proof into two cases.
Maximal laminations with countably many leaves. Let 𝑃,𝑄 be distinct plaques. By definition and by

Lemma 4.2, it is enough to consider the case where 𝑃,𝑄 are either adjacent or asymptotic to the same
leaf. The claim then follows from the computations of Lemmas 4.14 and 4.15.

General maximal laminations. The general case follows from the density of finite leaved maximal
laminations in GL𝑚 and from the continuity properties of cocycles, as given in Theorem 4.13. �

4.6. Shear-bend parametrization

The proof of Theorem 5 is a combination of Theorem 1 and some properties of the classical shear
coordinates Φ : T → H(𝜆;R).

Proof of Theorem 5. We have

H(𝜆;B) = 1 + 𝜏

2
H(𝜆;R) ⊕ 1 − 𝜏

2
H(𝜆;R)

as B-modules.
Part (1). Recall that 𝜎B𝜆 = 𝜎 + 𝜏𝛽 and that, by Theorem 1, we have 𝜎 = (𝜎𝑋

𝜆 + 𝜎𝑌
𝜆 )/2 and

𝛽 = (𝜎𝑋
𝜆 − 𝜎𝑌

𝜆 )/2. Therefore, in terms of the above splitting, the shear-bend map decomposes as

Ψ : 𝜌𝑋,𝑌 ↦→ 𝜎B𝜆 =
1 + 𝜏

2
𝜎𝑋
𝜆 ⊕ 1 − 𝜏

2
𝜎𝑌
𝜆 .

The single components Φ(𝑋),Φ(𝑌 ) = 𝜎𝑋
𝜆 , 𝜎𝑌

𝜆 are analytic by Theorem 4.3. Injectivity also follows
from the injectivity in the same theorem, since every pair of Mess representations 𝜌 = 𝜌𝑋,𝑌 , 𝜌

′ = 𝜌𝑋 ′,𝑋 ′

satisfies

𝜎B𝜌 = 𝜎B𝜌′ ⇐⇒ 𝜎𝑋
𝜆 = 𝜎𝑋 ′

𝜆 and 𝜎𝑌
𝜆 = 𝜎𝑌 ′

𝜆 .

It remains to be checked that the map respects the para-complex structures of T × T and H(𝜆;B).
The para-complex structure J acts on 𝑇𝑋T ⊕ 𝑇𝑌 T simply as J(𝑢, 𝑣) = (𝑢,−𝑣) and acts on H(𝜆;B) as
the multiplication by 𝜏. Denoting by Φ : T → H(𝜆;R) the classical shear coordinates, we observe

dΨ(J(𝑢, 𝑣)) = dΨ(𝑢,−𝑣) = 1 + 𝜏

2
dΦ(𝑢) ⊕ 1 − 𝜏

2
(−dΦ(𝑣))

= 𝜏

(
1 + 𝜏

2
dΦ(𝑢) ⊕ 1 − 𝜏

2
dΦ(𝑣)

)
= 𝜏 dΨ(𝑢, 𝑣).

Part (2). The Thurston’s symplectic form on H(𝜆;B) splits as

𝜔BTh =
1 + 𝜏

2
𝜔RTh ⊕

1 − 𝜏

2
𝜔RTh,

https://doi.org/10.1017/fms.2023.100 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.100


Forum of Mathematics, Sigma 25

with respect to the above decomposition. Thus, by Theorem 4.4, we have

𝜔BTh(𝜎
B

𝜌 , 𝜇) =
1 + 𝜏

2
𝜔RTh(𝜎

𝑋
𝜆 , 𝜇) + 1 − 𝜏

2
𝜔RTh(𝜎

𝑌
𝜆 , 𝜇)

=
1 + 𝜏

2
𝐿𝑋 (𝜇) +

1 − 𝜏

2
𝐿𝑌 (𝜇)

=
𝐿𝑋 (𝜇) + 𝐿𝑌 (𝜇)

2
+ 𝜏

𝐿𝑋 (𝜇) − 𝐿𝑌 (𝜇)
2

for every 𝜇 ∈ ML𝜆. We will see in the next section that 𝐿𝜌 = (𝐿𝑋 + 𝐿𝑌 )/2 and 𝜃𝜌 = (𝐿𝑋 − 𝐿𝑌 )/2 for
any 𝜌 = 𝜌𝑋,𝑌 .

Part (3). By part (1), the image of Ψ is{
𝜎 + 𝜏𝛽 ∈ H(𝜆;B)

���� 𝜎 + 𝛽, 𝜎 − 𝛽 ∈ T ⊂ H(𝜆;R)
}
.

By Theorem 4.3, we have

T = {𝜎 ∈ H(𝜆,R) | 𝜔Th(𝜎, •) > 0 on ML𝜆}.

Thus,

𝜎 + 𝜏𝛽 ∈ Ψ(T × T ) ⇔ 𝜔Th (𝜎 ± 𝛽, 𝜇) > 0
⇔ 𝜔Th(𝜎, 𝜇)2 − 𝜔Th(𝛽, 𝜇)2 =

��𝜔BTh (𝜎 + 𝜏𝛽, 𝜇)
��2
B
> 0

for every 𝜇 ∈ ML𝜆.
Part (4). By work of Bonahon and Sözen [7], we have that Φ∗𝜔Th = 𝑐 · 𝜔WP. The conclusion then

follows from the fact that Ψ splits as 1+𝜏
2 Φ ⊕ 1−𝜏

2 Φ and 𝜔BTh splits as 1+𝜏
2 𝜔RTh ⊕

1−𝜏
2 𝜔RTh. �

5. Length functions in anti-de Sitter 3-manifolds

In this section, we study the anti-de Sitter length functions associated with Mess representations and
prove Theorem 2.

5.1. Moving endpoints orthogonally

Let us start with some estimates in H2,1 on how the length of a spacelike segment changes if we move
its endpoints orthogonally in timelike directions. The following is an elementary computation:

Lemma 5.1. Let [𝑥, 𝑦] be a spacelike segment. Let 𝑣 ∈ 𝑇𝑥H
2,1, 𝑤 ∈ 𝑇𝑦H

2,1 be unit timelike vectors
orthogonal to [𝑥, 𝑦]. Consider 𝑝 = cos(𝑡)𝑥 + sin(𝑡)𝑣 and 𝑞 = cos(𝑡)𝑦 + sin(𝑡)𝑤. Then,

1. [𝑣, 𝑤] lies on the dual geodesic of [𝑥, 𝑦]. In particular, it is spacelike.
2. We have

−〈𝑝, 𝑞〉 = cos(𝑡)2 cosh(𝑑H2,1 (𝑥, 𝑦)) + sin(𝑡)2 cosh(𝑑H2,1 (𝑣, 𝑤)).

As −〈𝑝, 𝑞〉 > 1, [𝑝, 𝑞] is spacelike and cosh(𝑑H2,1 (𝑝, 𝑞)) = −〈𝑝, 𝑞〉.

In order to manipulate better some inequalities, later we will use several times the following estimates
on hyperbolic trigonometric functions.
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Lemma 5.2. We have the following:

1. For every 𝑎0 > 0 and 𝑏0 ∈ (0, 𝜋
2 ), there exists 𝜅 > 0 such that

cos(𝑏)2 cosh(𝑎) + sin(𝑏)2 cosh(𝑎 − 𝑎0) ≤ cosh(𝑎 − 𝜅)

for all 𝑎 ∈ [𝑎0, +∞) and 𝑏 ∈ [𝑏0, 𝜋/2].
2. For every 𝑎0 > 0, there exists 𝑐0 ∈ (0, 1) such that

𝑐 cosh(𝑎) ≥ cosh(𝑎 − 𝜂(𝑐))

for all 𝑎 ≥ 𝑎0 and 𝑐 ∈ [𝑐0, 1], where 𝜂(𝑐) := arccosh(1/𝑐).

Proof. A straightforward computation shows that, for every 𝑢 > 0, the function 𝑥 ↦→ cosh(𝑥−𝑢)/cosh(𝑥)
is strictly decreasing over R. In particular, for every 𝑥 ≥ 𝑥0 > 0, we have

𝑒−𝑢 <
cosh(𝑥 − 𝑢)

cosh(𝑥) ≤ cosh(𝑥0 − 𝑢)
cosh(𝑥0)

.

Inequality (1). We first rewrite the desired statement as

cos(𝑏)2 + sin(𝑏)2 cosh(𝑎 − 𝑎0)
cosh(𝑎) ≤ cosh(𝑎 − 𝜅)

cosh(𝑎) .

As 𝑥 ↦→ cosh(𝑥 − 𝑎0)/cosh(𝑥) is decreasing and 𝑏 ≥ 𝑏0 ∈ (0, 𝜋
2 ], we have

cos(𝑏)2 + sin(𝑏)2 cosh(𝑎 − 𝑎0)
cosh(𝑎) ≤ cos(𝑏)2 + sin(𝑏)2 1

cosh(𝑎0)

= 1 − sin(𝑏)2
(
1 − 1

cosh(𝑎0)

)
≤ 1 − sin(𝑏0)2

(
1 − 1

cosh(𝑎0)

)
= cos(𝑏0)2 + sin(𝑏0)2 1

cosh(𝑎0)
< 1.

Since cosh(𝑎 − 𝜅)/cosh(𝑎) > 𝑒−𝜅 , it is enough to choose 𝜅 > 0 so that cos(𝑏0)2 + sin(𝑏0)2/cosh(𝑎0) <
𝑒−𝜅 .

Inequality (2). We write 𝑐 = 1/cosh(𝛿) for some 𝛿 ≥ 0. For every 𝛿 ∈ [0, 𝑎0] and for every 𝑎 ≥ 𝑎0,
we have

cosh(𝑎 − 𝛿)
𝑐

= cosh(𝛿) cosh(𝑎 − 𝛿)

≤ cosh(𝛿) cosh(𝑎 − 𝛿) + sinh(𝛿) sinh(𝑎 − 𝛿)
= cosh(𝑎).

Hence, the assertion follows if we set 𝑐0 := 1/cosh(𝑎0). �

5.2. Length and pleated surfaces

We now introduce loxodromic transformations of H2,1 and the length functions associated to Mess
representations.

Definition 5.3 (Loxodromic). An isometry 𝛾 = (𝐴, 𝐵) ∈ PSL2 (R) × PSL2(R) is loxodromic if 𝐴, 𝐵 are
both loxodromic transformations of PSL2(R). A loxodromic transformation 𝛾 preserves two disjoint
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(dual) lines

ℓ = [(𝑥+𝐴, 𝑥
+
𝐵), (𝑥

−
𝐴, 𝑥

−
𝐵)], ℓ

∗ = [(𝑥+𝐴, 𝑥
−
𝐵), (𝑥

−
𝐴, 𝑥

+
𝐵)] ⊂ H

2,1,

where 𝑥±𝐴, 𝑥
±
𝐵 are the attracting and repelling fixed points of 𝐴, 𝐵 on RP1, and it acts on them by

translations by

𝐿(𝛾) = 𝐿(𝐴) + 𝐿(𝐵)
2

and 𝜃 (𝛾) = |𝐿(𝐴) − 𝐿(𝐵) |
2

,

respectively, where 𝐿(𝐴), 𝐿(𝐵) are the translation lengths of 𝐴, 𝐵. The quantities 𝐿(𝛾) and 𝜃 (𝛾) are
the translation length and torsion of 𝛾.

Notice that if 𝜌𝑋,𝑌 is a Mess representation, then for every 𝛾 ∈ Γ−{1}, the transformation 𝜌𝑋,𝑌 (𝛾) =
(𝜌𝑋 (𝛾), 𝜌𝑌 (𝛾)) is loxodromic because 𝜌𝑋 , 𝜌𝑌 are holonomies of hyperbolic structures. Furthermore,
as Λ𝑋,𝑌 ⊂ RP1 ×RP1 is the graph of the unique (𝜌𝑋 − 𝜌𝑌 )-equivariant homeomorphism ℎ𝑋,𝑌 : RP1 →
RP

1, we see that the axis ℓ𝛾 of 𝜌𝑋,𝑌 (𝛾), having the endpoints on Λ𝑋,𝑌 , is contained in CH𝑋,𝑌 .
We are now ready to prove the first part of Theorem 2.

Proposition 5.4. Let 𝜌 = 𝜌𝑋,𝑌 a Mess representation. Consider 𝛾 ∈ Γ − {1} a nontrivial element and
denote by ℓ ⊂ CH𝑋,𝑌 the axis of 𝜌(𝛾). Let 𝜆 ⊂ Σ be a maximal lamination and let 𝑍𝜆 ∈ T be the
intrinsic hyperbolic structure on 𝑆𝜆/𝜌(Γ), where 𝑆𝜆 ⊂ CH𝑋,𝑌 is the pleated set associated with 𝜆. Let
𝛿 denote the maximal timelike distance of ℓ from 𝑆𝜆. Then,

cosh(𝐿𝑍𝜆 (𝛾)) ≤ cos(𝛿)2 cosh(𝐿𝜌 (𝛾)) + sin(𝛿)2 cosh(𝜃𝜌 (𝛾)).

Proof. Let 𝑥 ∈ ℓ, 𝑦 ∈ 𝑆𝜆 be points that realize the maximal timelike distance 𝛿. Notice that the timelike
segment [𝑥, 𝑦] is orthogonal to ℓ at x. Denote by 𝑣 ∈ 𝑇𝑥H

2,1 the unit timelike vector tangent to [𝑥, 𝑦]
that points towards y. We can write 𝑦 = cos(𝛿)𝑥 + sin(𝛿)𝑣.

We now apply Lemma 5.1 to the spacelike segment [𝑥, 𝜌𝑋,𝑌 (𝛾)𝑥] ⊂ ℓ and the timelike unit tangent
vectors 𝑣, 𝜌𝑋,𝑌 (𝛾)𝑣. We have

cosh
(
𝑑H2,1 (𝑦, 𝜌𝑋,𝑌 (𝛾)𝑦)

)
= cos(𝛿)2 cosh

(
𝑑H2,1 (𝑥, 𝜌𝑋,𝑌 (𝛾)𝑥)

)
+ sin(𝛿)2 cosh

(
𝑑H2,1 (𝑣, 𝜌𝑋,𝑌 (𝛾)𝑣)

)
.

Notice that 𝑑H2,1 (𝑥, 𝜌𝑋,𝑌 (𝛾)𝑥) = 𝐿𝜌 (𝛾) and 𝑑H2,1 (𝑣, 𝜌𝑋,𝑌 (𝛾)𝑣) = 𝜃𝜌 (𝛾).
The conclusion then follows from Proposition 3.14, which tells us that the intrinsic hyperbolic

distance between 𝑦, 𝜌𝑋,𝑌 (𝛾)𝑦 on 𝑆𝜆 is smaller than 𝑑H2,1 (𝑦, 𝜌𝑋,𝑌 (𝛾)𝑦), and from the fact that 𝐿𝑍 (𝛾)
coincides with the minimal displacement of 𝜌𝑋,𝑌 (𝛾) with respect to the hyperbolic metric on 𝑆𝜆. �

5.3. Intersection and pleated surfaces

We then prove the second part of Theorem 2.

Proposition 5.5. Let 𝜌 = 𝜌𝑋,𝑌 be a Mess representation. Let 𝛾 ∈ Γ − {1} be a nontrivial element and
denote by ℓ ⊂ CH𝑋,𝑌 the axis of 𝜌(𝛾). Let 𝛿± be the maximal timelike distance of ℓ from 𝜆±. Then,

cosh(𝑖(𝜆±, 𝛾)) ≤ sin(𝛿±)2 cosh(𝐿𝜌 (𝛾)) + cos(𝛿±)2 cosh(𝜃𝜌 (𝛾)).

Proof. Let [𝑥, 𝑥±] be a timelike segment that realizes the maximal timelike distance 𝛿±, with 𝑥 ∈ ℓ, 𝑥± ∈
ℓ± ⊂ 𝜆±. Notice that [𝑥, 𝑥±] is orthogonal to both ℓ, ℓ±. Let 𝑣 ∈ 𝑇𝑥H

2,1, 𝑣± ∈ T𝑥±H
2,1 be the unit speed

timelike vectors tangent to the geodesic [𝑥, 𝑥±] at the endpoints.
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Claim 1. We have

cosh(𝑑H2,1 (𝑣±, 𝜌𝑋,𝑌 (𝛾)𝑣±)) = sin(𝛿±)2 cosh(𝐿𝜌 (𝛾)) + cos(𝛿±)2 cosh(𝜃𝜌 (𝛾)).

Proof of the claim. Note that

𝑣± = − cos(𝜋/2 − 𝛿±)𝑥 + sin(𝜋/2 − 𝛿±)𝑣

and that v and 𝜌𝑋,𝑌 (𝛾)𝑣 are both orthogonal to the segment [𝑥, 𝜌𝑋,𝑌 (𝛾)𝑥] ⊂ ℓ. The claim follows from
Lemma 5.1. �

Claim 2. Let 𝑣, 𝑣′, 𝑣′′ ∈ H2,1 be dual to the pairwise distinct supporting planes 𝐻, 𝐻 ′, 𝐻 ′′ of 𝜕+CH𝑋,𝑌 .

1. If 𝑣, 𝑣′, 𝑣′′ all lie on a common minimizing path inside S+, then 𝐻∩𝐻 ′ ∩𝐻 ′′ is either empty or equal
to a line. The latter happens if and only if 𝑣, 𝑣′, 𝑣′′ lie on a spacelike geodesic segment of H2,1.

2. If 𝑣, 𝑣′, 𝑣′′ all lie on a common minimizing path inside S+ and 𝑣 < 𝑣′ < 𝑣′′, then the reverse triangle
inequality holds:

𝑑H2,1 (𝑣, 𝑣′′) ≥ 𝑑H2,1 (𝑣, 𝑣′) + 𝑑H2,1 (𝑣′, 𝑣′′).

Proof of the claim. Consider the faces 𝐹, 𝐹 ′, 𝐹 ′′ = 𝐻, 𝐻 ′, 𝐻 ′′ ∩𝜕+CH𝑋,𝑌 . As S+ is an R-tree, there are
two possibilities: either one of the faces separates the other two on 𝜕+CH𝑋,𝑌 , or there is a unique face
𝐺 ⊂ 𝜕+CH𝑋,𝑌 different from 𝐻, 𝐻 ′, 𝐻 ′′ that separates every pair of them. The first case corresponds
to the configuration where the dual points 𝑣, 𝑣′, 𝑣′′ lie on a minimizing path inside S+. The second case
corresponds to the configuration where 𝑣, 𝑣′, 𝑣′′ are the vertices of a tripod in S+ with center w, the dual
point of G. Let us consider the first case. In addition, let us assume that 𝑣 < 𝑣′ < 𝑣′′ without loss of
generality. Then, either the lines 𝐻 ∩ 𝐻 ′, 𝐻 ′ ∩ 𝐻 ′′, and 𝐻 ∩ 𝐻 ′′ coincide, or 𝐹 ′ separates 𝐻 ∩ 𝐻 ′ from
𝐻 ′ ∩ 𝐻 ′′ in 𝐻 ′. Hence, the triple intersection 𝐻 ∩ 𝐻 ′ ∩ 𝐻 ′′ is either empty or equal to a line.

The second part of the claim follows from Lemma 6.3.5 of [1]. �

Claim 3. Let 𝑣, 𝑤 ∈ S+ be distinct points. Then,

𝑑S+ [𝑣, 𝑤] ≤ 𝑑H2,1 (𝑣, 𝑤).

Proof of the claim. Let 𝛼 : 𝐼 = [0, 1] → S+ be an injective weakly regular path joining v and w. By
Lemma 3.12, we have

𝐿 =
∫
𝐼
| 
𝛼(𝑡) |dt = lim

𝜖→0

∫
[0,1−𝜀 ]

𝑑H2,1 (𝛼(𝑡), 𝛼(𝑡 + 𝜖))
𝜖

dt.

If 𝜖 < 𝜖0, then ����∫
𝐼

𝑑H2,1 (𝛼(𝑡), 𝛼(𝑡 + 𝜖))
𝜖

dt − 𝐿

���� < 𝛿.

Choose 𝜖 = 1/2𝑘 . For convenience, we take dyadic approximations of the integral with Riemann
sums: ∫

𝐼

𝑑H2,1 (𝛼(𝑡), 𝛼(𝑡 + 1/2𝑘 ))
1/2𝑘

dt = lim
𝑛→∞

2𝑛−2𝑛−𝑘∑
𝑝=0

𝑑H2,1 (𝛼(𝑝/2𝑛), 𝛼(𝑝/2𝑛 + 1/2𝑘 ))
1/2𝑘

· 1
2𝑛

.
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We reorganize the sum as

2𝑘

2𝑛
·

2𝑛−2𝑛−𝑘∑
𝑝=0

𝑑H2,1 (𝛼( 𝑝
2𝑛 ), 𝛼(

𝑝
2𝑛 + 1

2𝑘 )) =

=
2𝑘

2𝑛
·

2𝑛−𝑘−1∑
𝑗=0

���
2𝑘−2∑
𝑞=0

𝑑H2,1 (𝛼( 𝑗
2𝑛 + 𝑞

2𝑘 ), 𝛼(
𝑗

2𝑛 + 𝑞+1
2𝑘 ))���

+ 2𝑘

2𝑛
𝑑H2,1 (𝛼(1 − 1

2𝑘 ), 𝛼(1))

≤ 2𝑘

2𝑛
·

2𝑛−𝑘−1∑
𝑗=0

𝑑H2,1 (𝛼( 𝑗
2𝑛 ), 𝛼(

𝑗
2𝑛 + 1 − 1

2𝑘 )) (Claim 2)

+ 2𝑘

2𝑛
𝑑H2,1 (𝛼(1 − 1

2𝑘 ), 𝛼(1))

≤ 2𝑘

2𝑛
·

2𝑛−𝑘−1∑
𝑗=0

𝑑H2,1 (𝛼(0), 𝛼(1)) = 𝑑H2,1 (𝑣, 𝑤). (Claim 2)

The assertion follows by taking the limits first as 𝑛 → ∞, and then as 𝑘 → ∞. �

We have

cosh(𝑖(𝜆, 𝛾)) ≤ cosh(𝑑S+ (𝑣, 𝜌𝑋,𝑌 (𝛾)𝑣)) (Prop. 3.21)

≤ cosh(𝑑H2,1 (𝑣, 𝜌𝑋,𝑌 (𝛾)𝑣)) (Claim 3)

= sin(𝛿±)2 cosh(𝐿𝜌 (𝛾)) + cos(𝛿±)2 cosh(𝜃𝜌 (𝛾)). (Claim 1)

�

6. Length functions in Teichmüller space

In this section, we carry out an anti-de Sitter analysis of length functions on Teichmüller space, on both
global and infinitesimal scales, and prove Theorems 3 and 4.

6.1. Orthogonal projection to a line

We begin with some explicit computations on the orthogonal projection 𝜋 : H2,1 → ℓ to a spacelike
geodesic.
Lemma 6.1. Let 𝑦, ℓ be a point and a spacelike line inH2,1 such that the rays [𝑦, ℓ±] are spacelike. Then,

𝑚𝑦,ℓ = min
𝑥∈ℓ

{−〈𝑦, 𝑥〉}) =

√
2〈𝑦, ℓ+〉〈𝑦, ℓ−〉

−〈ℓ+, ℓ−〉 ,

and it is realized at the unique point

𝑥 =
1√

−2〈ℓ+, ℓ−〉

(√
〈𝑦, ℓ−〉
〈𝑦, ℓ+〉 ℓ

+ +

√
〈𝑦, ℓ+〉
〈𝑦, ℓ−〉 ℓ

−

)
∈ ℓ

such that [𝑦, 𝑥] is orthogonal to ℓ.
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Proof. Write ℓ(𝑡) = (𝑒𝑡ℓ+ + 𝑒−𝑡ℓ−)/
√
−2〈ℓ+, ℓ−〉 and consider the function 𝑓 (𝑡) = −〈ℓ(𝑡), 𝑦〉. As

[𝑦, ℓ+], [𝑦, ℓ−] are spacelike, we have 𝑓 (𝑡) → ∞ as |𝑡 | → ∞. Hence, 𝑓 (𝑡) has a minimum which is a
critical point. The unique critical point of the function is at 𝑒2𝑡 = 〈𝑦, ℓ−〉/〈𝑦, ℓ+〉. The conclusion follows
by elementary computations. �

6.2. Convexity of length functions

We now describe the purely anti-de Sitter proof of (strict) convexity of length functions on Teichmüller
space T in shear coordinates for an arbitrary maximal lamination 𝜆 ⊂ Σ.

We prove separately the two parts of Theorem 3.

Proposition 6.2. Let 𝜆 ⊂ Σ be a maximal lamination. Let 𝛾 ∈ Γ − {1} be a nontrivial loop. The length
function ℒ𝛾 : T ⊂ H(𝜆;R) → (0,∞) is convex. Moreover, convexity is strict if 𝛾 intersects essentially
every leaf of 𝜆.

Proof. Recall that a function 𝐿 : 𝑈 ⊂ R𝑛 → R defined on an open convex subset 𝑈 ⊂ R𝑛 is (strictly)
convex if and only if for every 𝑥, 𝑦 ∈ 𝑈, we have a (strict) inequality

𝐿
( 𝑥 + 𝑦

2

)
≤ 𝐿(𝑥) + 𝐿(𝑦)

2
.

Consider 𝑋,𝑌 ∈ T and let 𝜌 = 𝜌𝑋,𝑌 be the corresponding Mess representation. Let 𝑆𝜆 ⊂ CH𝑋,𝑌 be
the pleated set associated with 𝜆 and let 𝜌𝜆 : Γ → PSL2 (R) be the holonomy of the intrinsic hyperbolic
structure 𝑍𝜆 ∈ T on 𝑆𝜆/𝜌𝑋,𝑌 (Γ). By Theorem 1, we have 𝜎𝜆(𝑍𝜆) = (𝜎𝜆(𝑋) + 𝜎𝜆(𝑌 ))/2 in H(𝜆;R).
By Theorem 2, we have

cosh(𝐿𝑍𝜆 (𝛾)) ≤ cos(𝛿)2 cosh(𝐿𝜌 (𝛾)) + sin(𝛿)2 cosh(𝜃𝜌 (𝛾)),

where 𝛿 is the maximal timelike distance of the axis ℓ of 𝜌𝑋,𝑌 (𝛾) from the pleated set 𝑆𝜆. Notice that
𝛿 > 0 unless ℓ ⊂ 𝑆𝜆, in which case ℓ does not intersect transversely the bending locus. Also observe
that, unless 𝜌 is Fuchsian, which happens precisely when 𝑋 = 𝑌 , the bending locus cannot be empty.
Therefore, if 𝑋,𝑌 are distinct and the support of 𝛾 ∈ C intersects essentially every leaf of 𝜆, we have
𝛿 > 0 and

cos(𝛿)2 cosh(𝐿𝜌 (𝛾)) + sin(𝛿)2 cosh(𝜃𝜌 (𝛾)) < cosh(𝐿𝜌 (𝛾))

as 𝐿𝜌 (𝛾) < 𝜃𝜌 (𝛾). Since cosh(•) is strictly increasing on (0,∞), we conclude 𝐿𝑍 (𝛾) < 𝐿𝜌 (𝛾). �

Proposition 6.3. Let 𝜆 ⊂ Σ be a maximal lamination and let 𝜇 ∈ ML be a measured lamination.
Then, the length function ℒ𝛾 : T ⊂ H(𝜆;R) → (0,∞) is convex. Furthermore, convexity is strict if the
support of 𝜇 intersects transversely each leaf of 𝜆.

Proof. We immediately deduce convexity by Proposition 6.2, the density of weighted simple curves in
ML and the C∞-convergence of length functions 𝑎𝑛 ℒ𝛾𝑛 → ℒ𝜇 if 𝑎𝑛𝛾𝑛 → 𝜇 in ML.

We now discuss strict convexity.
Consider 𝑋,𝑌 ∈ T and the Mess representation 𝜌 := 𝜌𝑋,𝑌 . Let 𝑆𝜆 ⊂ CH𝑋,𝑌 be the pleated set

associated with 𝜆. Let 𝜇 ∈ ML be a measured lamination whose support contains a leaf ℓ that intersects
the bending locus of 𝑆𝜆 (which is nonempty, unless the representation is Fuchsian).

Because ℓ intersects the bending locus, its geometric realization ℓ̂ is not contained on 𝑆𝜆. Let 𝑥 ∈ ℓ̂
and 𝑦 ∈ 𝑆𝜆 be points that realize the maximal timelike distance 𝛿 = max{𝛿H2,1 (𝑧, 𝑡) | 𝑧 ∈ 𝑆𝜆, 𝑡 ∈ ℓ̂} > 0.

Let 𝐾 := 𝐼 × 𝐽 denote the neighborhood of ℓ in the space of geodesics G consisting of those lines
with one endpoint in I and another endpoint in J.
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Recall that, by Lemma 6.1, we have

𝑚𝑧,ℓ := min
𝑡 ∈ℓ̂

{−〈𝑧, 𝑡〉}) =

√
2〈𝑧, ℓ̂+〉〈𝑧, ℓ̂−〉
−〈ℓ̂+, ℓ̂−〉

and that the minimum is realized at a point 𝜋(𝑧) ∈ ℓ̂, the orthogonal projection of z to ℓ̂, described
explicitly by

𝜋(𝑧) = 1√
−2〈ℓ̂+, ℓ̂−〉

���
√

〈𝑧, ℓ̂−〉
〈𝑧, ℓ̂+〉

ℓ̂+ +

√
〈𝑧, ℓ̂+〉
〈𝑧, ℓ̂−〉

ℓ̂−
���.

As y is connected to ℓ̂ by a timelike segment of length 𝛿 orthogonal to ℓ̂, we have 𝑚𝑦,ℓ = cos(𝛿). As
𝑥 ∈ ℓ̂, we have 𝑚𝑥,ℓ = 1. By continuity of the above expressions, we have the following.

Claim 1. For every 𝜖 > 0, there exist a neighborhood 𝐾 (𝜖) = 𝐼 (𝜖) × 𝐽 (𝜖) of ℓ ∈ G and a neighborhood
𝑈 (𝜖) of x in H2,1 with the following properties:

1. 𝑚𝑦,ℓ′ ∈ (cos(2𝛿), cos(𝛿/2)) for every ℓ′ ∈ 𝐾 (𝜖). In particular, y is connected to every ℓ̂′ by a
timelike segment of length at least 𝛿/2 and, hence, 𝛿H2,1 (𝑦, ℓ̂′) ≥ 𝛿/2;

2. For every ℓ′ ∈ 𝐾 (𝜖), ℓ̂′ intersects 𝑈 (𝜖);
3. If ℓ1, ℓ2 ∈ 𝐾 (𝜖) are so that ℓ̂1 ∪ ℓ̂2 is acausal and 𝑧 𝑗 ∈ ℓ̂ 𝑗 ∩𝑈 (𝜖), then 𝑑H2,1 (𝑧1, 𝑧2) < 𝜖;
4. 𝑚𝑧,ℓ′ ∈ (cos(𝜖), cosh(𝜖)) for every ℓ′ ∈ 𝐾 (𝜖) and 𝑧 ∈ 𝑈 (𝜖);
5. For every 𝑧, 𝑤 ∈ 𝑈 (𝜖) and ℓ′ ∈ 𝐾 (𝜖), we have 𝑑H2,1 (𝜋′(𝑧), 𝜋′(𝑤)) < 𝜖 where 𝜋′ is the orthogonal

projection onto ℓ̂′.

Let 𝐾 (𝜖) and 𝑈 (𝜖) be the neighborhoods provided by the claim. As ℓ lies in the support of 𝜇, we
have 𝑚(𝜖) := 𝜇(𝐾 (𝜖)) > 0.

We approximate 𝜇 in ML with a sequence of weighted simple closed curves 𝑎𝑛𝛾𝑛. By convergence
of 𝑎𝑛𝛾𝑛 to 𝜇, we have 𝑎𝑛𝑚𝑛 (𝜖) := 𝑎𝑛𝛾𝑛 (𝐾 (𝜖)) → 𝑚(𝜖). Notice that 𝑚𝑛 = 𝑚𝑛 (𝜖) is the number of
distinct leaves of the geometric realization 𝛾̂𝑛 contained in 𝐾 (𝜖). Let ℓ𝑛 be one of those leaves.

Claim 2. There exists a constant 𝑀 > 1 that depends only on the representation 𝜌 such that, for any
𝜖 > 0, 𝑛 ∈ N, and ℓ𝑛 as above, we can find elements

𝛼𝑛,1, · · · , 𝛼𝑛,𝑚𝑛 ∈ Γ

and corresponding points

𝑧𝑛,0 < 𝑧𝑛,1 < · · · < 𝑧𝑛,𝑚𝑛−1 < 𝑧𝑛,𝑚𝑛 = 𝜌(𝛾𝑛)𝑧𝑛,0

on ℓ̂𝑛 with the following properties:

1. 𝛼𝑛,𝑚𝑛 · · · 𝛼𝑛,1 = 𝛾𝑛;
2. 𝑧𝑛,0, 𝜌(𝛼𝑛, 𝑗 · · · 𝛼𝑛,1)−1𝑧𝑛, 𝑗 ∈ 𝑈 (𝜖/𝑀) and

𝑑H2,1 (𝑧𝑛, 𝑗 , 𝜌(𝛼𝑛, 𝑗 · · · 𝛼𝑛,1)𝑧𝑛,0) < 𝜖/𝑀 < 𝜖

for every 𝑗 ∈ {1, . . . , 𝑚𝑛};
3. The axis of 𝛼𝑛, 𝑗 lies inside 𝛼𝑛, 𝑗−1 · · · 𝛼𝑛,1 (𝐾 (𝜖)).

Proof of the claim. Let us start by applying Claim 1 to an arbitrary 𝜖 ′ > 0, and denote by

ℓ𝑛 = ℓ𝑛,0, · · · , ℓ𝑛,𝑚𝑛−1
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the 𝑚𝑛 translates of ℓ𝑛 contained in 𝐾 (𝜖 ′). We will later determine sufficient conditions on 𝜖 ′ (in terms
of 𝜖) that guarantee the desired properties.

By Claim 1 part (ii), for every 𝑗 ∈ {0, . . . , 𝑚𝑛−1}, there exists some point 𝑤𝑛, 𝑗 ∈ ℓ̂𝑛, 𝑗 ∩𝑈 (𝜖 ′). Since
the leaves ℓ𝑛, 𝑗 are in the same Γ-orbit, we can find elements 𝛽𝑛, 𝑗 ∈ Γ such that 𝑧𝑛, 𝑗 := 𝜌(𝛽𝑛, 𝑗 ) 𝑤𝑛, 𝑗

belongs to the spacelike geodesic segment [𝑤𝑛,0, 𝜌(𝛾𝑛)𝑤𝑛,0] ⊂ ℓ̂𝑛. Notice that 𝛽𝑛,0 = id ∈ Γ and
𝑧𝑛,0 = 𝑤𝑛,0. We also set 𝛽𝑛,𝑚𝑛 := 𝛾𝑛, 𝑧𝑛,𝑚𝑛 := 𝜌(𝛾𝑛)𝑤𝑛,0. Up to reindexing the leaves ℓ𝑛, 𝑗 , we can
assume that the points 𝑧𝑛, 𝑗 appear in linear order along [𝑤𝑛,0, 𝜌(𝛾𝑛)𝑤𝑛,0]; that is,

𝑤𝑛,0 = 𝑧𝑛,0 < 𝑧𝑛,1 < · · · < 𝑧𝑛,𝑚𝑛−1 < 𝑧𝑛,𝑚𝑛 = 𝜌(𝛾𝑛)𝑤𝑛,0.

For any 𝑗 ∈ {1, . . . , 𝑚𝑛}, we then define 𝛼 𝑗 ,𝑛 := 𝛽𝑛, 𝑗 𝛽
−1
𝑛, 𝑗−1.

Property (i). The identity 𝛼𝑛,𝑚𝑛 · · · 𝛼𝑛,1 = 𝛽𝑛,𝑚𝑛 = 𝛾𝑛 follows directly from our construction.

Property (ii). Notice that

𝑤𝑛,0 ∈ 𝑈 (𝜖 ′) ∩ ℓ̂𝑛,0, 𝑤𝑛, 𝑗 = 𝜌(𝛽𝑛, 𝑗 )−1𝑧𝑛, 𝑗 = 𝜌(𝛼𝑛, 𝑗 · · · 𝛼𝑛,1)−1𝑧𝑛, 𝑗 ∈ 𝑈 (𝜖 ′) ∩ ℓ̂𝑛, 𝑗 .

Because the leaves ℓ𝑛,0 and ℓ𝑛, 𝑗 are lifts of a common simple closed curve in S, the union of their
geometric realizations ℓ̂𝑛,0 ∪ ℓ̂𝑛, 𝑗 is acausal. In particular, it follows from Claim 1 part (iii) that

𝑑H2,1 (𝜌(𝛼 𝑗 · · · 𝛼1)𝑧𝑛,0, 𝑧𝑛, 𝑗 ) = 𝑑H2,1 (𝑤𝑛,0, 𝜌(𝛼𝑛, 𝑗 · · · 𝛼𝑛,1)−1𝑧𝑛, 𝑗 ) < 𝜖 ′.

Property (iii). We deduce the last property from the stability of quasi-geodesics inside 𝑆𝑛, the pleated
set associated with the lamination 𝜆𝑛 consisting of the closed geodesic 𝛾𝑛 suitably completed to a
maximal lamination of Σ by adding finitely many leaves spiraling around 𝛾𝑛.

Let us explain how. For any 𝑗 ∈ {1, . . . , 𝑚𝑛}, consider the concatenation of the translates

𝑔𝑛, 𝑗 =
⋃
𝑘∈Z

𝜌(𝛼𝑛, 𝑗 )𝑘
(
[𝑧𝑛, 𝑗−1, 𝑧𝑛, 𝑗 ]𝑆̂𝑛 ∪ [𝑧𝑛, 𝑗 , 𝜌(𝛼𝑛, 𝑗 )𝑧𝑛, 𝑗−1]𝑆̂𝑛

)
,

where [𝑎, 𝑏]𝑆̂𝑛 denotes the length-minimizing path inside 𝑆𝑛 between 𝑎, 𝑏 ∈ 𝑆𝑛. Notice that

𝑑𝑆̂𝑛
(𝑧𝑛, 𝑗 , 𝜌(𝛼𝑛, 𝑗 )𝑧𝑛, 𝑗−1) = 𝑑𝑆̂𝑛

(𝜌(𝛽𝑛, 𝑗 )−1𝑧𝑛, 𝑗 , 𝜌(𝛽−1
𝑛, 𝑗−1) 𝑧𝑛, 𝑗−1)

= 𝑑𝑆̂𝑛
(𝑤𝑛, 𝑗 , 𝑤𝑛, 𝑗−1)

≤ 𝑑H2,1 (𝑤𝑛, 𝑗 , 𝑤𝑛, 𝑗−1) (1-Lipschitz dev. map)
< 𝜖 ′,

where in the last step we applied Claim 1 part (iii) to 𝑤𝑛, 𝑗−1 ∈ 𝑈 (𝜖 ′) ∩ ℓ̂𝑛, 𝑗−1, 𝑤𝑛, 𝑗 ∈ 𝑈 (𝜖 ′) ∩ ℓ̂𝑛, 𝑗 . By
basic hyperbolic geometry, 𝑔𝑛, 𝑗 is a uniform quasi-geodesic on 𝑆𝑛 with respect to the intrinsic hyperbolic
metric, with quasi-geodesic constants that are 𝑂 (𝜖 ′)-close to 1 (see, for example, Section I.4.2 of [10]).
Hence, the invariant axis of 𝜌(𝛼𝑛, 𝑗 ) on 𝑆𝑛 lies in the 𝑂 (𝜖 ′)-neighborhood of 𝑔𝑛, 𝑗 with respect to the
hyperbolic metric. In particular, such endpoints are close to the endpoints of (𝛼𝑛, 𝑗−1 · · · 𝛼𝑛,1)ℓ𝑛 on the
Gromov boundary 𝜕∞𝑆𝑛.

Let 𝜙𝑛 : 𝜕∞𝑆𝑛 → 𝜕Γ be the unique Γ-equivariant homeomorphism. By Lemma 3.17, the hyperbolic
structures 𝑆𝑛/𝜌(Γ) lie in a compact subspace of Teichmüller space T . Thus, as the boundary maps
𝜙𝑛 depend continuously on 𝑆𝑛, they are uniformly equicontinuous. In particular, it is not restrictive to
assume that the function 𝑂 (𝜖 ′) is independent of the hyperbolic structure of 𝑆𝑛, the leaf ℓ𝑛 and the
weighted simple closed curves 𝑎𝑛𝛾𝑛. It follows that, if 𝜖 ′ is small enough (or, equivalently, if 𝑀 > 1
is sufficiently large and 𝜖 ′ := 𝜖/𝑀), the endpoints of the axis of 𝛼 𝑗 are contained in 𝐾 (𝜖) for every
𝑗 ≤ 𝑚𝑛. �
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Let 𝛼 𝑗 = 𝛼𝑛, 𝑗 ∈ Γ and 𝑧 𝑗 = 𝑧𝑛, 𝑗 ∈ ℓ̂𝑛 be the elements provided by Claim 3 and define 𝑥 𝑗 :=
𝜌(𝛼 𝑗 · · · 𝛼1)𝑥 and 𝑦 𝑗 = 𝜌(𝛼 𝑗 · · · 𝛼1)𝑦, where 𝑥0 := 𝑥 ∈ ℓ̂ and 𝑦0 := 𝑦 ∈ 𝑆𝜆 maximize the timelike
distance between ℓ̂ and 𝑆𝜆.

For any 𝑗 ∈ {0, . . . , 𝑚𝑛 − 1}, let 𝛿 𝑗 := 𝛿H2,1 (𝑦 𝑗 , ℓ̂𝛼𝑗+1) be the timelike distance of 𝑦 𝑗 ∈ 𝑆𝜆 from ℓ̂𝛼𝑗+1 ,
the axis of 𝜌(𝛼 𝑗+1). By Property (iii) of Claim 2, we have (𝛼 𝑗 · · · 𝛼1)−1ℓ𝛼𝑗+1 ∈ 𝐾 (𝜖). Hence, Claim 1
part (i) implies that

𝛿 𝑗 = 𝛿H2,1 (𝑦 𝑗 , ℓ̂𝛼𝑗+1) = 𝛿H2,1 (𝑦, 𝜌(𝛼 𝑗 · · · 𝛼1)−1ℓ̂𝛼𝑗+1) > 𝛿/2. (1)

Claim 3. There exists 𝜅 > 0, depending only on 𝑋,𝑌 ∈ T and on 𝛿 > 0, such that for every
𝑗 ∈ {0, . . . , 𝑚𝑛 − 1},

cosh(𝑑H2,1 (𝑦 𝑗 , 𝑦 𝑗+1)) = cos(𝛿 𝑗 )2 cosh(𝐿𝜌 (𝛼 𝑗+1)) + sin(𝛿 𝑗 )2 cosh(𝜃𝜌 (𝛼 𝑗+1))
≤ cosh(𝐿𝜌 (𝛼 𝑗+1) − 𝜅).

Proof of the claim. Let 𝜋 𝑗+1 (𝑝) ∈ ℓ̂𝛼𝑗+1 be the unique point such that the segment [𝑝, 𝜋 𝑗+1 (𝑝)] is
orthogonal to ℓ̂𝛼𝑗+1 . Observe that 𝜋 𝑗+1 (𝑦 𝑗+1) = 𝜌(𝛼 𝑗+1)𝜋 𝑗+1(𝑦 𝑗 ). Lemma 5.1 applied to the spacelike
segment [𝜋 𝑗+1 (𝑦 𝑗 ), 𝜋 𝑗+1 (𝑦 𝑗+1)] of length 𝐿𝜌 (𝛼 𝑗+1) and the orthogonal timelike segments

[𝑦 𝑗 , 𝜋 𝑗+1 (𝑦 𝑗 )], 𝜌(𝛼 𝑗+1) [𝑦 𝑗 , 𝜋 𝑗+1 (𝑦 𝑗 )] = [𝑦 𝑗+1, 𝜌(𝛼 𝑗+1)𝜋 𝑗+1(𝑦 𝑗 )]

implies the first identity of our statement. To deduce the upper bound, we argue as follows. By relation
(4), 𝛿 𝑗 > 𝛿/2 for every 𝑗 ∈ {0, . . . , 𝑚𝑛 − 1} and

𝐿𝜌 (𝛼 𝑗+1) − 𝜃𝜌 (𝛼 𝑗+1) = 𝐿𝑌 (𝛼 𝑗 ) ≥ min{sys(𝑋), sys(𝑌 )} =: 𝑟 > 0,

where 𝜌 = 𝜌𝑋,𝑌 and sys(𝑍) > 0 denotes the systole of the hyperbolic structure 𝑍 ∈ T . In particular, it
follows that

cosh(𝑑H2,1 (𝑦 𝑗 , 𝑦 𝑗+1)) = cos(𝛿 𝑗 )2 cosh(𝐿𝜌 (𝛼 𝑗+1)) + sin(𝛿 𝑗 )2 cosh(𝜃𝜌 (𝛼 𝑗+1))
≤ cos(𝛿 𝑗 )2 cosh(𝐿𝜌 (𝛼 𝑗+1)) + sin(𝛿 𝑗 )2 cosh(𝐿𝜌 (𝛼 𝑗+1) − 𝑟).

However, we have

𝐿𝜌 (𝛼 𝑗+1) =
1
2
(𝐿𝑋 (𝛼 𝑗+1) + 𝐿𝑌 (𝛼 𝑗+1)) ≥ 𝑟

for every 𝑗 ∈ {0, . . . , 𝑚𝑛 − 1}. The conclusion now follows from Lemma 5.2 part (1) applied to 𝑎0 = 𝑟 ,
𝑏0 = 𝛿/2, 𝑎 = 𝐿𝜌 (𝛼 𝑗+1) and 𝑏 = 𝛿 𝑗 . Notice in particular that the resulting 𝜅 depends only on r and 𝛿,
as desired. �

Claim 4. There exist constants 𝐶, 𝜖0 > 0 that depend only on the representation 𝜌 such that for every
𝜖 ∈ (0, 𝜖0) and for every 𝑗 ∈ {0, . . . , 𝑚𝑛 − 1} as in Claim 2, we have

𝐿𝜌 (𝛼 𝑗+1) − 𝑑H2,1 (𝑧 𝑗 , 𝑧 𝑗+1) ≤ 𝐶𝜖.

Proof of the claim. As a first step, we show that

|𝑑H2,1 (𝜌(𝛼 𝑗+1)𝑧 𝑗 , 𝑧 𝑗 ) − 𝑑H2,1 (𝑧 𝑗+1, 𝑧 𝑗 ) | ≤ 𝑑H2,1 (𝜌(𝛼 𝑗+1)𝑧 𝑗 , 𝑧 𝑗+1).

To see this, notice that 𝑧 𝑗 , 𝑧 𝑗+1 and 𝜌(𝛼 𝑗+1)𝑧 𝑗 lie on a common spacelike plane, since 𝑧 𝑗 , 𝑧 𝑗+1 ∈ ℓ̂𝑛
and 𝜌(𝛼 𝑗+1)𝑧 𝑗 belongs to 𝜌(𝛼 𝑗+1)ℓ̂𝑛, which are entirely contained in 𝑆𝑛. Therefore, the inequality
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is a reformulation of the standard triangle inequality. Since both points 𝜌(𝛼 𝑗+1)𝑧 𝑗 , 𝑧 𝑗+1 lie inside
𝜌(𝛼 𝑗+1 · · · 𝛼1)𝑈 (𝜖/𝑀), it follows from Claim 2 part (ii) and Claim 1 that

|𝑑H2,1 (𝜌(𝛼 𝑗+1)𝑧 𝑗 , 𝑧 𝑗 ) − 𝑑H2,1 (𝑧 𝑗+1, 𝑧 𝑗 ) | < 𝜖/𝑀.

We now prove that 𝑑H2,1 (𝜌(𝛼 𝑗+1)𝑧 𝑗 , 𝑧 𝑗 ) > 𝐿𝜌 (𝛼 𝑗+1) − 𝑂 (𝜖). Consider the orthogonal projection 𝜋 𝑗+1
onto ℓ̂𝛼𝑗+1 . By Claim 2 part (ii) and 1 part (iv), the quantity

𝐷 𝑗 = min
𝑡 ∈ℓ̂𝛼𝑗+1

{−〈𝑧 𝑗 , 𝑡〉} =

√√√
2〈𝑧 𝑗 , ℓ̂

+
𝛼𝑗+1〉〈𝑧 𝑗 , ℓ̂

−
𝛼𝑗+1〉

−〈ℓ̂+𝛼𝑗+1 , ℓ̂
−
𝛼𝑗+1〉

= −〈𝑧 𝑗 , 𝜋 𝑗+1 (𝑧 𝑗 )〉

is contained in the interval (cos(𝜖/𝑀), cosh(𝜖/𝑀)).
If 𝐷 𝑗 > 1, then the segment [𝑧 𝑗 , 𝜋 𝑗+1 (𝑧 𝑗 )] is spacelike. Write 𝐷 𝑗 = cosh(𝑑 𝑗 ) and 𝑧 𝑗 =

cosh(𝑑 𝑗 ) 𝜋 𝑗+1 (𝑧 𝑗 ) + sinh(𝑑 𝑗 ) 𝑣 𝑗 with 𝑣 𝑗 orthogonal to ℓ̂𝛼𝑗+1 at 𝜋 𝑗+1 (𝑧 𝑗 ). We have

cosh(𝑑H2,1 (𝑧 𝑗 , 𝜌(𝛼 𝑗+1)𝑧 𝑗 )) = −〈𝑧 𝑗 , 𝜌(𝛼 𝑗+1)𝑧 𝑗〉
= cosh(𝑑 𝑗 )2 cosh(𝐿𝜌 (𝛼 𝑗+1)) − sinh(𝑑 𝑗 )2 cosh(𝜃𝜌 (𝛼 𝑗+1)).

Hence, as 𝐿𝜌 (𝛼 𝑗+1) > 𝜃𝜌 (𝛼 𝑗+1), we get

cosh(𝑑H2,1 (𝑧 𝑗 , 𝜌(𝛼 𝑗+1)𝑧 𝑗 )) > cosh(𝐿𝜌 (𝛼 𝑗+1)).

If 𝐷 𝑗 < 1, then the segment [𝑧 𝑗 , 𝜋 𝑗+1 (𝑧 𝑗 )] is timelike. Write 𝐷 𝑗 = cos(𝑑 𝑗 ) and 𝑧 𝑗 =
cos(𝑑 𝑗 )𝜋 𝑗+1(𝑧 𝑗 ) + sin(𝑑 𝑗 )𝑣 𝑗 with 𝑣 𝑗 orthogonal to ℓ̂𝛼𝑗+1 at 𝜋 𝑗+1 (𝑧 𝑗 ). We have

cosh(𝑑H2,1 (𝑧 𝑗 , 𝜌(𝛼 𝑗+1)𝑧 𝑗 )) = −〈𝑧 𝑗 , 𝜌(𝛼 𝑗+1)𝑧 𝑗〉
= cos(𝑑 𝑗 )2 cosh(𝐿𝜌 (𝛼 𝑗+1)) + sin(𝑑 𝑗 )2 cosh(𝜃𝜌 (𝛼 𝑗+1)).

Thus,

cosh(𝑑H2,1 (𝑧 𝑗 , 𝜌(𝛼 𝑗+1)𝑧 𝑗 )) > cos(𝑑 𝑗 )2 cosh(𝐿𝜌 (𝛼 𝑗+1)).

Now let 𝑟 > 0 be the systole of the representation 𝜌. By part (2) of Lemma 5.2 applied to 𝑎0 = 𝑟 , there
exists a constant 𝑐0 ∈ (0, 1) such that

cos(𝑑 𝑗 )2 cosh(𝐿𝜌 (𝛼 𝑗+1)) ≥ cosh(𝐿𝜌 (𝛼 𝑗+1) − 𝜂(cos(𝑑 𝑗 )2)),

for every j that satisfies cos(𝑑 𝑗 )2 ≥ 𝑐0, where 𝜂(𝑐) := arccosh(1/𝑐). Since 𝑑 𝑗 ≤ 𝜖/𝑀 , there exists a
𝜖0 such that for any 𝜖 ≤ 𝜖0, the condition cos(𝑑 𝑗 )2 ≥ 𝑐0 holds for any j. A simple estimate shows that
𝜂(𝑐) ≤ 3

𝑐

√
1 − 𝑐 for every 𝑐 ∈ (0, 1), implying that

𝐿𝜌 (𝛼 𝑗+1) − 𝜂(cos(𝑑 𝑗 )2) ≥ 𝐿𝜌 (𝛼 𝑗+1) −
3 sin(𝑑 𝑗 )
cos(𝑑 𝑗 )2

≥ 𝐿𝜌 (𝛼 𝑗+1) −
3 sin(𝜖/𝑀)
cos(𝜖/𝑀)2

≥ 𝐿𝜌 (𝛼 𝑗+1) − 𝐶𝜖,

for some constant 𝐶 > 0 depending only on 𝜖0, 𝑀 > 0. Finally, combining the estimates obtained above,
we conclude that
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cosh(𝑑H2,1 (𝑧 𝑗 , 𝜌(𝛼 𝑗+1)𝑧 𝑗 )) > cos(𝑑 𝑗 )2 cosh(𝐿𝜌 (𝛼 𝑗+1))
≥ cosh(𝐿𝜌 (𝛼 𝑗+1) − 𝐶𝜖)

for every 𝑗 ∈ {0, . . . , 𝑚𝑛 − 1}, which concludes the proof of the assertion. �

Let 𝜅, 𝜖0, 𝐶 > 0 be the constants provided by Claims 3 and 4 and choose 𝜖 = 1
2 min{𝜖0, 𝜅/𝐶}. Then

for every 𝑛 ∈ N, we have

𝐿𝑍 (𝛾𝑛) ≤ 𝑑𝑆̂ (𝑦, 𝛾𝑛𝑦)

≤
∑
𝑗

𝑑𝑆̂ (𝑦 𝑗 , 𝑦 𝑗+1) (Triangle inequality)

≤
∑
𝑗

𝑑H2,1 (𝑦 𝑗 , 𝑦 𝑗+1) (1-Lipschitz dev. map)

≤
∑
𝑗

(𝐿𝜌 (𝛼 𝑗+1) − 𝜅) (Claim 3)

≤
∑
𝑗

(𝑑H2,1 (𝑧 𝑗 , 𝑧 𝑗+1) + 𝐶𝜖 − 𝜅) (Claim 4)

≤ 𝐿𝜌 (𝛾𝑛) −
𝑚𝑛𝜅

2
.

Multiplying by 𝑎𝑛 and taking the limit as 𝑛 → ∞, we deduce the desired assertion. �

6.3. Second variation along earthquakes

In the case of earthquakes, we make quantitative estimates and compute the second variation of length
functions as given in Theorem 4.

Proof of Theorem 4. Let 𝑍𝑡 := 𝜖𝜇 (𝑡) and consider the Mess representation 𝜌𝑡 := 𝜌𝑍−𝑡 ,𝑍𝑡 with parameters
𝑍−𝑡 , 𝑍𝑡 ∈ T . Notice that, by Theorem 1, we have 𝜇+𝑡 = 𝑡𝜇 and 𝑍𝜆+

𝑡
= 𝑍 is constant. For convenience, we

introduce 𝐿𝑡 := 𝐿𝜌𝑡 (𝛾) and 𝜃𝑡 := 𝜃𝜌𝑡 (𝛾).
By Propositions 5.4 and 5.5, we have

cosh(ℒ𝛾 (𝑍)) ≤ cos(𝛿±𝑡 )2 cosh(𝐿𝑡 ) + sin(𝛿±𝑡 )2 cosh(𝜃𝑡 )

and

cosh(𝑖(𝜇±𝑡 , 𝛾)) ≤ sin(𝛿±𝑡 )2 cosh(𝐿𝑡 ) + cos(𝛿±𝑡 )2 cosh(𝜃𝑡 ).

Summing the inequalities, we get

cosh(𝑡 · 𝑖(𝜇, 𝛾)) − cosh(𝜃𝑡 ) ≤ cosh(𝐿𝑡 ) − cosh(ℒ𝛾 (𝑍)).

By the mean value theorem, we can write

cosh(𝑡 · 𝑖(𝜇, 𝛾)) − cosh(𝜃𝑡 ) = sinh(𝜉𝑡 ) (𝑡 · 𝑖(𝜇, 𝛾) − |𝜃𝑡 |),

where 𝜉𝑡 ∈ [|𝜃𝑡 |, 𝑡 · 𝑖(𝜇, 𝛾)], and

cosh(𝐿𝑡 ) − cosh(ℒ𝛾 (𝑍)) = sinh(𝜁𝑡 )
(
𝐿𝑡 −ℒ𝛾 (𝑍)

)
,

where 𝜁𝑡 ∈ [ℒ𝛾 (𝑍), 𝐿𝑡 ].
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We now divide both right- and left-hand sides by 𝑡2 as follows:

sinh(𝜉𝑡 )
𝑡

(
𝑖(𝜇, 𝛾) − |𝜃𝑡 |

𝑡

)
≤ sinh(𝜁𝑡 )

𝐿𝑡 −ℒ𝛾 (𝑍)
𝑡2

.

We observe that as 𝑡 → 0, the terms converge to the following:
In the left-hand side,

◦ |𝜃𝑡 |/𝑡 =
��ℒ𝛾 (𝑡) −ℒ𝛾 (−𝑡)

��/2𝑡 → 
ℒ𝛾 .
◦ sinh(𝜉𝑡 )/𝑡 ≥ sinh(|𝜃𝑡 |)/𝑡 as 𝜉𝑡 ≥ |𝜃𝑡 |.
◦ sinh(|𝜃𝑡 |)/𝑡 → cosh(𝜃0) 
𝜃0 = 
ℒ𝛾 .

In the right-hand side,

◦ sinh(𝜁𝑡 ) → sinh(ℒ𝛾 (𝑍)) as 𝐿𝑡 = (ℒ𝛾 (𝑡) +ℒ𝛾 (−𝑡))/2 → ℒ𝛾 (𝑍).
◦ (𝐿𝑡 −ℒ𝛾 (𝑍))/𝑡2 = (ℒ𝛾 (𝑡) +ℒ𝛾 (−𝑡) − 2ℒ𝛾 (𝑍))/2𝑡2 → �ℒ𝛾/2.

The conclusion follows. �

Let us conclude by recalling that an exact formula for the first variation of length functions along
earthquakes has been computed by Kerckhoff [13].

Theorem 6.4 (Kerckhoff [13]). Let 𝜇 ∈ ML be a measured lamination. Let 𝜖𝜇 : [𝑎, 𝑏] → T be an
earthquake path driven by 𝜇. Let 𝛾 ∈ Γ − {1} be a nontrivial loop. Set ℒ𝛾 (𝑡) := 𝐿 𝜖𝜇 (𝑡) (𝛾). We have


ℒ𝛾 (𝑡) =
∫
I/𝜌𝜖𝜇 (𝑡 ) (Γ)

cos(𝜃𝑡 ) d𝜇 × 𝛿𝛾 ,

where I is the space of intersecting geodesics of H2 and 𝜃𝑡 (ℓ, ℓ′) is the angle of intersection between
(the 𝜖𝜇 (𝑡)-geodesic realizations of) the leaves ℓ, ℓ′.

In particular, we always have | 
ℒ𝛾 | ≤ 𝑖(𝛾, 𝜇) with strict inequality if 𝛾 intersects the support of 𝜇
essentially.
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