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Abstract

The formal power series (fps) f(z) = X2, a; z* is homozygous mod k if a;# 0 and a,5 0 implies
i=jmod k. This generalizes even and odd fps. If fis homozygous mod k then all iterates of
f(fn = fo fa-y) are also homozygous mod k, but the converse is false—there are many non-odd
fps f for which f(f(z)) = z. It is shown that if fis not homozygous mod & but f,, is homozygous,
then f,,(z) = z for some r. If all coefficients are real then, in fact, f(f(z)) = z.

Subject classification (Amer. Math. Soc. (MOS) 1970): 39 A 05.

1. Introduction

A formal power series (fps) may be classified as even or odd if all exponents which
appear are even or odd integers. Any iterate of an even or odd fps is itself an even
or odd fps, but the converse is not true. For example, the fps

f@=ct '§1( ~cz)t=—z(l+cz)!

satisfies f(f(z)) = z. Roughly speaking, this will turn out to be the only type of
exception; if an fps function which is not odd (or even) has an iterate which is odd
(or even), then some further iterate is z.

The work in this paper grew out of an NSF Summer Undergraduate Research
Project on f(f(x))=sinx. My advisor at that time was Professor W. A. J.
Luxemburg, and I wish to express my general gratitude to him. I also wish to thank
the referee for suggesting the germ of the final corollary as well as several simpli-
fications of the proofs.

Author supported in part by an NSF undergraduate research grant.
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2. Notation and preliminaries

Throughout we shall consider formal power series with fixpoint 0 (that is,
f(0) =0). All theorems may be easily recast to allow for different fixpoints.
Iteration without fixpoints requires conditions on convergence which remove us
from the realm of the fps.

An fps f, f(z) = X2, a;2¢, a; complex, will be called homozygous mod k if
a;#0, a;#0 implies i=;jmod k. If f is not homozygous mod k it will be called
hybrid mod k. Every fps is homozygous mod 1, even or odd fps are homozygous
mod 2. The composition of the two fps f and g is written fog and the iterates of f
are defined inductively by f,, = fof,_,. If a,#0 then the coefficients of an fps g
satisfying f(g(z)) = z may be determined recursively; g(z) = a;'z+... is written
S7Yz). The fps f and g commute if fog = gof. Any two iterates of f commute.

The first lemma is trivial but useful. The proof is omitted.

LEMMA 1. The following are equivalent.

(i) The fps f(2) is homozygous mod k.

(ii) For some primitive kth root of unity € and some integer r, 0<r<k-—1,
flez) = & f(2).

(iii) One can write f(2) = X241, 2+ (1< <k).
LeEMMA 2. If f is homozygous mod k then all iterates of f are homozygous mod k.

Proor. If f(ez) = &"f(z) then f(e™z) = ¢™ f(z) by induction, hence

Sulez) = " f(2).

The remainder of this paper is devoted to finding a converse for Lemma 2.
We shall need several results of Baker (1962). Baker’s proofs are relatively short and
will not be reproduced here.

THEOREM. (Baker (1962).)
@) If g and h commute, where g(z) = 32, a;z* and h(z) =z+3XL2,,.1b;2%,
b1 #0, m>1, then o = 1.

() If, in (i), ay = 1, then ay = ... = a,, = 0 while a,,, is arbitrary and to each A,
there is a unique fps g, denoted hy, with a,, ., = Ab, ;.
(iii) For each a, with ap* =1, there is exactly one fps H(z) = X2, c;z* with

e=ay, H(z)=z and Hoh=hoH. The series g(z)=X%®,a;z" with a;z as
leading term are precisely Hoh, for various A.
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3. Spadework

Suppose f(z) = TR, a,,z% (a, #0) is a hybrid fps mod k. Write f~(ny,n);
where j is the smallest index for which n;%n, mod £.

LeMMA 3. If f~(c,d);, and c¢>1, then any iterate f,, is also hybrid mod k and
S~ (€™ ™ +d—c).

PRrOOF. Suppose f(2) = XL, a,,z™ and f(2) = X%, b, z™* where a,, b, #0.
Then f;,1(2) = 22, @, (B4 by, 2™ and so 2" will appear in f;,(z) only if r is
a sum of n; terms each of which is an m,. Even so, there may be cancellations:
S(2) = X2, (—1)2% f(f(z)) = z. The lemma will be proved by induction on m;
the result is true for m = 1. Assume it for m = s; then, keeping the previous
notation, n, = ¢, my = c®, my =c*+d—c and m;=m; mod k for 1<i<j’. The
smallest exponent in f;,, will come from the smallest possible sum %, m; ,
which is clearly c#+1. The coefficient of z¢*** derived from fof, is a(b,)° which does
not vanish. If n,=n, and each m, =m,, then the sum is congruent to c*+1. The
smallest exponent not congruent to ¢#+! thus arises either when n;%n, and each
my, =my (giving c*d) or when n; = n;, one my_ is m;, and the rest are m, (giving
c*14-d—c). The latter is smaller and the coefficient of z¢'*'+4— derived in this way
is ca(b)* by 4 Which does not vanish. Accordingly, the induction hypothesis
is verified for m =s+1.

LEMMA 4. Suppose f(z) = 2, a,,z™, a, #0 and f~(1,t),. Then the coefficients
of z and Z! in f,, are a} and a,a}~1 Y- Nab L) respectively.

PrOOF. The arguments of the last lemma demonstrate that any power of z less
than ¢ which appears in f,, is congruent to 1 mod k. This lemma is also proved by
induction on n and is evidently true for n = 1. Assume it true for n = r. We have
f2) =32 a,2% n =1, a;#0, n;=t, t#1 mod k, n;=1mod k for 1 <i<jand
@) =32, b,,2™, m=1, by=d}, my=t, m=1modk for 1<i<j’. Also,
Sr11(@) = f(1(2) = ay f(2) + T2y an (f(2))™. If d(s) is the coefficient of z' in fy(z),
then d(1) = g, and d(r) = q,a;~! 31=1(aY) by hypothesis. Considering how z‘ can
appear in f,,,(z), we have

—1 . r .
d(r+1) = a,d() + a(@) = aa} 3, (a5 + a0} = a,8] 3 (@
i=0 EE ]

and the lemma is proved.
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4. On the inheritance of the homozygous trait

The following theorem is a converse to Lemma 2.

THEOREM. If f is hybrid mod k and f,, is homozygous mod k, then f,(z) = z for
some integer s. Further, if f(z) = X2, a2, then a, is a primitive nsth root of unity.

In particular, if f is real, then f(f(2)) = z.

PROOF. Suppose f~(c, ). In the light of Lemma 3, we must have ¢ = 1, and,
by Lemma 4, the coefficient of z' in f,, is a?~1q, X2} a{ 1) . As f,, is homozygous
modk and t=1modk, this coefficient must vanish. Hence, (ai)"» =1 and
@1#1. Let h =f,4_y; h is homozygous with leading term a{-V"z = z. Let ¢ be
a primitive kth root of unity and define g(z) = ¢~1f(ez). As f is hybrid mod %,
S(e2)# €f(2), so f#g. The leading term of both f and g is a, z. Since f,, is homo-
Zygous, f,(e2) = &f,(2) and 50 g,(2) = f(). It follows that fyy_y) = gaa_ = h.

Suppose that h(z)#z, then h(z) = z+32_ ., b, 2" b, ,#0 and k divides m
since h is homozygous. We now apply the several parts of Baker’s theorem.
Since both f and g commute with # and have the same leading coefficient, there
exists H(z) = 32, ¢c;z* and hy(z) = z+ Ab,,, z™+1+ ... such that f= Hoh, and
g = Hoh,. By construction, the coefficient of z™+! in Hoh, is Acy b,y 1+ Cpyyys UL
the coefficient of z™+1 is the same in f and g because m+1=1mod k. Thus
pey by =g b+, and, since ¢, b,,,1#0, p=q so that f=g, a
contradiction. Therefore, 4(z) = z.

Finally, suppose af =1 for r<n(t—1); we may take rr' =n(t—1), r'>1. Let
k=f, then k.(z) =z If k(z)#z, then k(z) =z+qz*+...4#0. By lemma 4,
k(z) = z+r'aqz'+ ...z, a contradiction, so f(z) = z in any case. In particular,
if fis real, then a, is real hence @, = —1 and f(f(z)) = z.

5. Examples

We may characterize the fps fin the last theorem still further. Suppose f,(z) = z
and f(z) = ¢,z+..., where ¢, in general, is an mth root of unity. There is a
canonical fps T such that f(z) = T-(¢, T(z)). Indeed, let

r—1
T(z) =r'X &7fi(2);
j=o
T(z) =z+... is invertible. It is readily verified that T(f(z)) = ¢,7(z); this is a

solution to the Schroder equation. Further, the expressions of fand T in terms of
3
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each other show that they are either both homozygous mod k or both hybrid
mod k. (Note that, if an fps 4 is invertible and homozygous, then so is A7)

COROLLARY. Using the previous notation, f is hybrid mod k and f,, is homozygous
mod k (and so f,(z) =2z) if and only if f(z) = T (e, T(2)), where T= RoU,
R is hybrid mod k and homozygous mod s, and U is homozygous mod k, and both
R and U are invertible.

PRrOOF. If 4 is invertible and homozygous mod k and h; = hoh,, then by = h™1o by
so that &, and A, are either both homozygous or both hybrid. Suppose first that
T, R and U are as described and f(z) = T, T(z)). By the previous argument,
T is hybrid mod k and so f is too. Let ¢, be the coefficient of z in f,(z); it is the
sth root &7, We have f,(z) = TX(e? T (2)) = T Y&, T(2)) = U Y (R (e, R(U(2)))).
Since R is homozygous mod s, & R(U(z)) = R(e™(U(2))), so f(z) = U1 U(z))
and is homozygous mod k.

On the other hand, suppose f is hybrid mod k£ and f,, is homozygous mod k.
Define T as before and let U(z) = s~ X5 ¢;7f,;(z). Then U is homozygous
mod k (since f,, is) and £,(z) = U, U(2)) = TYe, T(z)). Therefore,

T(U(es U(2))) = £, T(2).

Let R=ToU ! and z = U7Y(y), then R(e,y) = & R(y), so that R is homozygous
mod s. Since T is hybrid and U is homozygous mod k, R is hybrid mod k.
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