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Homological Properties Relative to
Injectively Resolving Subcategories

Zenghui Gao

Abstract. Let € be an injectively resolving subcategory of left R-modules. A left R-module M (resp.
right R-module N) is called &-injective (resp. E-flat) if Ext, (G, M) = 0 (resp. Torf (N, G) = 0)
for any G € €. Let € be a covering subcategory. We prove that a left R-module M is E-injective if
and only if M is a direct sum of an injective left R-module and a reduced € -injective left R-module.
Suppose F is a preenveloping subcategory of right R-modules such that E* ¢ Fand F* c €. It
is shown that a finitely presented right R-module M is E-flat if and only if M is a cokernel of an
F-preenvelope of a right R-module. In addition, we introduce and investigate the €-injective and
&-flat dimensions of modules and rings. We also introduce &-(semi)hereditary rings and €-von
Neumann regular rings and characterize them in terms of €-injective and €-flat modules.

1 Introduction

In classical homological algebra, homological dimensions are important and funda-
mental research objects, and every homological dimension of modules is defined rel-
ative to some certain subcategory of modules. When injective modules are general-
ized to FP-injective modules, divisible modules, cotorsion modules, and Gorenstein
injective modules, respectively, FP-injective, divisible, cotorsion, and Gorenstein in-
jective dimensions appear, and they share many nice properties of injective dimen-
sions (see [2,6,11,17,19,21,23,26,27]). Then a natural question is: given a subcategory
X of modules containing all injective modules, can we define X-dimension of mod-
ules relative to the subcategory X in general? However, the answer is negative by the
following example. Assume that R has infinite left self-injective dimension and sup-
pose that X = {M € ModR : M is injective} U {M € ModR : M = rR}. Then zR
has, trivially, X-dimension less than or equal to 1. But in each injective resolution
0 - R — E— N — 0, N does not belong to X. This is because N is not injective, as
the left self-injective dimension of R is infinite, and N is not isomorphic to R, since,
otherwise, the sequence would be split and g R would be injective. To fill the gap, we
shall define a new homological dimension, named &-dimension of modules, relative
to an injectively resolving subcategory € of modules. Also, we will extend the ideas
of Enochs and Jenda in [8, 9] and introduce &-injectivity and E-flatness relative to
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the subcategory €, which unify some important properties possessed by some known
modules.

In Section 2, we give the definition of £-dimension of modules relative to an in-
jectively resolving subcategory £ of modules and a criterion for computing the €-di-
mension of modules. Some notations and preliminary results are also given.

In Section 3, we introduce the notions of -injective and €-flat modules and unify
some important properties possessed by some known modules. For any ring R, it
is shown that a left R-module M is E-injective if and only if M is a kernel of an
E-precover f: A — B of aleft R-module B with A injective. Let R be a ring such that
€ is a covering subcategory. Then a left R-module M is E-injective if and only if M
is a direct sum of an injective left R-module and a reduced &-injective left R-module.
We also prove that if J is a preenveloping subcategory of right R-modules such that
&* ¢ Fand F* ¢ &, then a finitely presented right R-module M is £-flat if and only
if M is a cokernel of an F-preenvelope K — F of a right R-module K with F flat.

Section 4 is devoted to E-injective and €-flat dimensions of modules and rings. We
also characterize a generalization of (semi)hereditary rings, called €-(semi)hereditary
rings, in terms of the €-injective and £-flat modules. As applications, some known
results can be obtained as corollaries.

Throughout this paper, R is an associative ring with identity, all modules are uni-
tary, Mod R (resp. Mod R°P) is the category of left (resp. right) R-modules, and all
subcategories of Mod R (resp. Mod R°P) are full and closed under isomorphisms. For
an R-module M, the character module Homz (M, Q/Z) is denoted by M*. For un-
explained concepts and notations, we refer the reader to [9,11,25].

2 E&-dimension of Modules and Preliminaries

In this section, we give the definition of €-dimension of modules relative to an in-
jectively resolving subcategory £ of modules and a criterion for computing the £-di-
mension of modules. Some definitions and preliminary results are also given.

Definition 2.1 ([17]) Let € be a subcategory of Mod R. Then € is called injectively
resolving if it satisfies the following conditions:

(i) € contains all injective left R-modules;
(ii) € is closed under extensions;
(iii) € is closed under cokernels of monomorphisms.

In what follows, € always denotes an injectively resolving subcategory of left R-mod-
ules which is closed under finite direct products and direct summands.

Definition 2.2  For a module M in ModR, the £-dimension of M, denoted by
€-dim M, is defined to be the smallest # > 0 such that there is an exact sequence

0O—M-—Ey—---—E,—0

with all E; in €. Set £-dim M=o0 if no such integer exists.
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Proposition 2.3 Let0 - M — E, EA E; = K — 0 be an exact sequence in Mod R
with both Ey and E; in E. Then we have an exact sequence

0—M-—I]—E—K—0
in Mod R with I injective and E in €.
Proof Let0 - M — E, EA E; - K — 0 be an exact sequence in Mod R with both

Ey and E; in €. Since E, € &, there exists an exact sequence 0 - Eg - [ - E; - 0
with I injective and E; in €. Then we have the following pushout diagram:

0 0

I

0—M—Ey—Im(f) —0

|
é

;

We consider the following pushout diagram:

0—M

8]

O H<—tg=<—

0 D E K—0
oo
E,——E,

b
0 0.

In the sequence 0 - E; - E — E; — 0, if both E; and E; belong to &, then so does E,
since € is closed under extensions. Assembling the sequences0 > M - I - D - 0
and 0 > D - E —» K — 0, we obtain the desired exact sequence. ]

Theorem 2.4 Letn >1and
0O—M-—Ey—E —-+—E, 1 —A—0

be an exact sequence in Mod R with all E; in E. Then there exist exact sequences
0O—M—Iy—L)——I1,1,—B—0

and 0 - A — B — E — 0 in Mod R with all I; injective and E in E.
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Proof We assume that n > 1, and then proceed by induction on n. If n = 1, then
0 > M —> Ey > A — 0is exact with Eq in €. Thus, we have an exact sequence
0 - Ey — Iy - E — 0 with I, injective. Because € is injectively resolving, we have E
belongs to €. The desired result follows from the pushout diagram

0 0

b

00— M —Ey—A—0

.

0—M—1p—B—0

Nowletn >2andlet0 - M - Ey - E; -» --- - E,_; - A — 0 be an exact
sequence in Mod R with all E; in €. Set W = Coker(Eq — E;). Then we have the exact
sequence 0 - M — Eq — E; - W — 0. By Proposition 2.3, we get an exact sequence
0 > M — Iy > E{ > W — 0 with I, injective and E; in &. Put M’ = Im(Ip — Ej).
Then we obtain the exactness of

0>M —E —E——E,;,— A—0.

Therefore, the assertion follows by the induction hypothesis. [ |

Corollary 2.5  The following statements are equivalent for any M in Mod R and n > 0.

i) E&-dimM<n.

(ii) There exists an exact sequence 0 - M - Iy - I - --- > I,_;, - E - 0in
Mod R with all I; injective and E in €.

Proof (ii) = (i) holds by definition.
(i) = (ii) follows from Theorem 2.4 and the fact that € is closed under extensions.
|

In the following, we collect some known notions and facts needed in the article.

Definition 2.6 ([7]) Let J be a subcategory of Mod R. The morphism f:F - M
in Mod R with F € J is called an F-precover of M if for any morphism g: Fp - M
in Mod R with Fy € F, there exists a morphism h: Fy — F such that the following
diagram commutes:

Fy
7/
h
£ f
F—— M.
The morphism f: F — M is called right minimal if an endomorphism h: F — F is an

automorphism whenever f = fh. An F-precover f: F — M is called an F-cover if f is
right minimal. F is called a covering subcategory of Mod R if every module in Mod R
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has an F-cover. Dually, the notions of an F-preenvelope, a left minimal morphism, an
F-envelope, and an enveloping subcategory are defined.

Recall that a module M € ModR is said to be FP-injective if Exty (F, M) = 0 for
any finitely presented left R-module F (see [26]). A module M € ModR is said to
be divisible if Exty (R/aR, M) = 0 for all a € R (see [23]). In [22, 23], Mao and Ding
introduced the notions of FI-injective (D-injective) and FI-flat (D-flat) modules as
follows.

Definition 2.7 ([22,23]) A module M € Mod R is called Fl-injective (resp. D-injec-
tive) if Ext (G, M) = 0 for any FP-injective (resp. divisible) left R-module G.

A module N € Mod R is said to be FI-flat (resp. D-flat) if TorR (N, G) = 0 for
any FP-injective (resp. divisible) left R-module G.

In 1995, Enochs and Jenda in [10] introduced the notion of Gorenstein injective
modules. A left R-module M is called Gorenstein injective if there is an exact sequence
of injective left R-modules

~~—>Il—>IO—>IO—>Il—>~~-

with M = ker(I° — I') such that Hompg (E, -) leaves the sequence exact whenever
E is an injective left R-module. The Gorenstein projective and Gorenstein flat mod-
ules are defined respectively (see [11]). In order to characterize the projective and flat
dimension of Gorenstein injective modules, the notions of GI-injective and GI-flat
modules were introduced respectively in [13,14], that is, FP-injective (or divisible)
modules are replaced by Gorenstein injective modules in Definition 2.7.

In a recent article [16], we introduced the notions of weak injective and weak flat
modules, and many results of a homological nature have been generalized from co-
herent rings to arbitrary rings.

Definition 2.8 ([16]) A module M € ModR (resp. N € Mod RP) is called weak
injective (resp. weak flat) if Exty (F, M) = 0 (resp. Tory (N, F)) for any super finitely
presented left R-module F, that is, for any left R-module F satisfying that there is an
exact sequence: -+ > P, - .-+ - P| > Py > F — 0 in ModR with each P; finitely
generated projective. We use WI (resp. WF) to denote the full subcategory of ModR
(resp. Mod R°P) consisting of weak injective (resp. weak flat) modules.

Remark 2.9  For any ring R, it is known that all left R-modules have WJ-covers
by [15, Theorem 3.1], and all right R-modules have WJ-preenvelopes by [16, Theo-
rem 2.15]. Also, we have WJ* ¢ WF and WF" c W by [16, Remark 2.2(2) and
Theorem 2.10], respectively. By taking € (resp. F) as the subcategory of Mod R (resp.
Mod R°P) consisting of weak injective (resp. weak flat) modules in the article, one can
deduce that the corresponding results also hold true.

3 E-injective and E-flat modules

In this section, we give a treatment of €-injective and €-flat modules, and we discuss
some general properties of these modules.
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Definition 3.1 A module M € Mod R is called &-injective if Exty (G, M) = 0 for any
G € &. A module N € Mod R is called &-flat if TorX (N, G) = 0 for any G € €.

Remark 3.2 (i) If R is a ring such that € is a covering subcategory, then any
kernel of an €-cover is E-injective by Wakamutsu’s Lemma ([27, Lemma 2.1.1]). Also,
one can easily verify that the class of E-injective left R-modules (resp. E-flat right
R-modules) is closed under extensions, and the class of £-flat right R-modules is
closed under pure submodules.

(ii) Let € be the category of all left R-modules. Then E-injective left R-modules
and E-flat right R-modules are just injective left R-modules and flat right R-modules,
respectively.

(iii) Let € be the subcategory of injective left R-modules. Then E-injective left
R-modules and E-flat right R-modules coincide with copure injective left R-modules
and copure flat right R-modules in [9], respectively.

(iv) Let € be the subcategory of Gorenstein injective left R-modules. Then &-
injective left R-modules and E-flat right R-modules coincide with GI-injective left
R-modules [13] and GI-flat right R-modules [14], respectively.

(v) Let R be aleft coherent ring and € the subcategory of FP-injective left R-mod-
ules. Then € is injectively resolving by [26, Lemma 3.1], and E-injective left R-modules
and E-flat right R-modules coincide with FI-injective left R-modules and FI-flat right
R-modules in [22], respectively.

(vi) Let R be aleft strongly P-coherent ring and & the subcategory of divisible left
R-modules. Then € is injectively resolving by [23, Lemmas 4.9 and 4.10]; and &-in-
jective left R-modules and E-flat right R-modules are just D-injective left R-modules
and D-flat right R-modules in [23], respectively.

(vi)) A module M € Mod R°? is E-flat if and only if M* is E-injective by the stan-
dard isomorphism

Exty (G, M") = Tor{ (M, G)*

for any G € €.

Proposition 3.3 (i) Amodule M € Mod R is injective if and only if M is E-injective
and E-dim M < 1.
(ii) A module N € Mod R°P is flat if and only if N is E-flat and E-dim N* < 1.

Proof (i) The “only if” part is trivial.

The “if” part: let M be an -injective left R-module and £-dim M < 1. There exists
an exact sequence 0 - M — E — N — 0 with E injective. Then N ¢ &, since €-dim
M < 1. Thus, we have Exty (N, M) = 0, and the sequence 0 > M — E - N — 0 is
split. It follows that M is injective, as desired.

(ii) The “only if” part is trivial.

The “if” part: let N be an £-flat right R-module and €-dim N* < 1. Then there
exists an exact sequence 0 - N* — E — L — 0, where E is injective and L € E.
It follows that Exty (L, N*) = 0 since N* is £-injective by Remark 3.2(vii). So the
sequence 0 > N* — E — L — 0is split, and thus N* is injective. Hence, N is flat. W

Proposition 3.4  The following are equivalent for a module M in Mod R.
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(i) M is E-injective.

(ii) For each exact sequence0 - M — E - L - OwithE € £, E — L is an E-precover
of L.

(iii) The map E(M) — E(M)/M is an E-precover.

(iv) M is a kernel of an E-precover f: A — B with A injective.

Proof (i) = (ii) is by definition.
(ii) = (iii) Since there exists a short exact sequence

and E(M) € &, then (iii) follows from (ii).

(iii) = (iv) follows immediately from (iii).

(iv) = (i) Let M be a kernel of an E-precover f: A — B with A injective. Then
there exists an exact sequence 0 > M - A - A/M — 0. For any G ¢ &, the se-
quence Homg (G, A) - Homg(G, A/M) — Exty (G, M) — 0 is exact. The sequence
Homg (G, A) -~ Homg (G, A/M) — 0 is exact by (iv). Thus, Exty (G, M) = 0, and so
(i) follows. [ |

Recall from [11] that a module M € ModR is called reduced if M has no nonzero
injective submodules.

Proposition 3.5 Assume that R is a ring such that € is a covering subcategory. The
following are equivalent for a module M in Mod R.

(i) M is a reduced E-injective left R-module.
(ii) M is a kernel of an E-cover f: A — B with A injective.

Proof (i)=(ii) By Proposition 3.4, the natural map m: E(M) — E(M)/M is an
&-precover. Note that E(M)/M has an €-cover, and E(M) has no nonzero direct
summand K contained in M, since M is reduced. It follows from [27, Corollary 1.2.8]
that 7: E(M) — E(M)/M is an &-cover, and so (ii) follows.

(ii)=(i) Let M be a kernel of an &-cover f: A — B with A injective. Then M is
&-injective by Proposition 3.4. Now let K be an injective submodule of M. Suppose
that A= K& L, p: A — L is the projection, and i: L — A is the inclusion. It is easy
to see that f(ip) = f, since f(K) = 0. Thus, ip is an isomorphism since f is a cover.
Therefore, i is epic, and so A = L, K = 0. Consequently, M is reduced. ]

Proposition 3.6  Assume that R is a ring such that € is a covering subcategory. If M
is E-injective, then M has an E-cover f: E — M with E injective. In particular, ker f is
a reduced E-injective left R-module.

Proof Let f:E — M be an &-cover of M. There is an exact sequence 0 — E — Eg —
L — 0 with Ey injective. Note that L € &, since E € €. So there exists g: Eg - M such
that gi = f, since Exty (L, M) = 0. Thus, there is h: Ey — E such that fh = g, since
f is a cover. Therefore, fhi = f, and hence hi is an isomorphism. It follows that E is
injective.

The second assertion follows directly by Proposition 3.5. ]
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Theorem 3.7 Let R be a ring such that € is a covering subcategory. Then a module
M e Mod R is E-injective if and only if M is a direct sum of an injective left R-module
and a reduced E-injective left R-module.

Proof The “if” part holds by definition.

The “only if” part: let M be an C-injective left R-module. Then there exists an
exact sequence 0 > M — E(M) - E(M)/M — 0. Then E(M) - E(M)/M is
an &-precover of E(M)/M by Proposition 3.4. But E(M)/M has an &-cover L —
E(M)/M, so we have the following commutative diagram with exact rows:

0—K—>L——>EM)/M—0
bl

0—> M —> E(M) — E(M)/M —> 0
o H

0—K—>L——>E(M)/M—0.

Because L — E(M)/M is an E-cover, $J is an isomorphism, and so E(M) =
Im(8) @ker(B). Thus, L and ker(3) are injective, where L ~ Im(Jd). So K is a reduced
€-injective module by Proposition 3.5. By the five lemma, ay is an isomorphism, and
so M = Im(y)@ker(a), whereIm(y) = K. By the snake lemma, we have the following
commutative diagram:

0 0

| |

0 — ker(a) — ker(f3)

i |

0——=M——>E(M)—EM)/M—0

b H

K L E(M)/M —=0
i | J
0 0

0

<~ O <—0

From the 3x3 lemma, it follows that ker(«) = ker(3). Thus, the desired result follows.
|

Lemma 3.8 Let J be a preenveloping subcategory of Mod R°P such that E* ¢ F and
Frcé.

(i) If M is a cokernel of an F-preenvelope f: K — F of a right R-module K with F
flat, then M is E-flat.

(ii) If M is a finitely presented E-flat right R-module, then M is a cokernel of an
JF-preenvelope K — F of a right R-module K with F flat.

Proof (i) Assume that M is a cokernel of an F-preenvelope f: K — F of a right R-

module K with F flat. Then we have an exact sequence K LFoMoo. Putting
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L=Imf,then0 - L - F - M — 0 is exact. We claim that L - F is an -
preenvelope of L. In fact, for any Fy € F, we consider the following commutative
diagram:

Homg (F, Fp) =—— Homg(F, Fy) 0 0

\L lHomR(f,Fo) \L

0 — Hompg(L, Fy) — Homg (K, Fy) — Hompg/(ker f, Fy).

Because f:K — F is an F-preenvelope, Homg(f, Fy) is an epimorphism. By the
snake lemma, we obtain that Homg (F, Fy) - Homg(L, Fy) — 0 is exact. Therefore,
L — Fisan J-preenvelope of L. For each E € £, we have E* € F by assumption. So we
obtain the exactness of Homg (F, E*) - Homg (L, E*) — 0, which induces the exact
sequence (F ®g E)* - (L ®g E)* — 0. Thus, the sequence 0 > L®g E - F®g E is
exact. Note that F is flat; it follows that 0 - Tor® (M, E) - L®g E - F ® E is exact,
and hence Torf (M, E) = 0. Thus, M is &-flat.

(ii) Let M be a finitely presented right R-module. Then there exists an exact se-
quence 0 - N - P - M — 0 with P finitely generated projective and N finitely
generated. Next we will prove that N — P is an J-preenvelope. For any F € J, we
have F* ¢ & by assumption, and so TorX (M, F*) = 0 since M is &-flat. Thus, we get
the following exact commutative diagram:

0 — N@rF* — = P@r F*

N o

Homg(N, F)* —> Homg(P, F)*.

Note that if N is finitely generated and P is finitely presented, we obtain that Oy is
epic and 0p is isomorphic by [3, Lemma 2]. It follows that 6 is a monomorphism.
Hence the sequence Homg (P, F) - Homg(N, F) — 0 is exact, and thus N — P is
an F-preenvelope. ]

By Lemma 3.8, we immediately get the following theorem.

Theorem 3.9  Assume that J is a preenveloping subcategory of Mod R°P such that
" € Fand F* c E. Then a finitely presented right R-module M is E-flat if and only if
M is a cokernel of an F-preenvelope f: K — F of a right R-module K with F flat.

Remark 3.10 (i) Let R be aleft Noetherian ring. Since the subcategory of all injective
left R-modules is covering by [7, Theorem 2.1], it follows that a left R-module M is
copure injective if and only if it is a direct sum of an injective left R-module and a
reduced copure injective left R-module.

(ii) Let R be a left coherent ring. Then the subcategory of all flat right R-modules
is preenveloping by [7, Proposition 5.1], and so a finitely presented right R-module M
is copure flat if and only if it is a cokernel of a flat preenvelope f: K — F of a right
R-module K.
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Eklof and Trlifaj proved in [5, Theorem 12] that if B is a class of left R-modules,
then every right R-module has a ker Tor (-, B)-cover, where

ker Torf (=, B) = {A | Torf (A, B) = 0 for any B € B}.

By taking B as the subcategory of £, we can deduce that every right R-module has an
&-flat cover. For a module M € Mod R°P, the £-flat cover and the injective envelope
of M are denoted by EFy(M) and E°(M), respectively.

Proposition 3.11  The following statements are equivalent:
(i) E°(M) is E-flat for any E-flat right R-module M;
(ii) EFy(I) is injective for any injective right R-module 1.

Proof (i)=(ii) Suppose that I is an injective right R-module and a: EFy(I) — Iisthe
&-flat cover of I, and B: EFy(I) — E°(EFy(I)) is the injective envelope. Then there
exists 0: E°(EFy(I)) — I such that & = 6. On the other hand, since E°(EF, (1)) is
&-flat by (i), there exists A: E®(EFy(I)) — EF,(I) such that a) = 6. Thus, a = aAp,
and hence Af is an isomorphism since « is a cover. Therefore, EFy(I) is a direct
summand of E°(EF,(I)), and hence it is injective.

(ii)=(i) Suppose that M is an &-flat right R-module and ¢: M — E°(M) is the
injective envelope, and ¢: EFy(E®(M)) — E°(M) is the E-flat cover of E°(M). Then
there exists y: M — EF(E°(M)) such that ¢ = ¢u. On the other hand, because
EFy(E°(M)) is injective by (ii), there exists y: E®(M) — EFy(E°(M)) such that y =
y¢. Thus, ¢ = ¢y = ¢y¢, and so ¢y is an isomorphism, since ¢ is an envelope. It
follows that E®(M) is &-flat. [ |

It is well known that every module over any ring R has a flat cover ([1]). The fol-
lowing result was proved in [20, Theorem 2.2] when R is a commutative Noetherian
ring.

Corollary 3.12  The following statements are equivalent:

(i)  E°(F) is flat for any flat right R-module F;
(ii) Fo(I) (the flat cover of I) is injective for any injective right R-module I.

4 The E-injective and E-flat Dimensions of Modules and Rings

In this section, we introduce and investigate the E-injective and €-flat dimensions of
modules and rings. Then we characterize €-(semi)hereditary rings, which is a gener-
alization of (semi)hereditary rings, in terms of E-injective and E-flat modules.

Definition 4.1 For a module M in Mod R, the €-injective dimension €-idg (M) of
M is defined as max{n | Extz (G, M) # 0 for some G € £}. The left global €-injective
dimension [.£J- dim(R) of R is defined as

1.£J-dim(R) = sup{&€-idg (M) | M € Mod R}.
The &-flat dimension, &-fdg (N), of a module N in Mod R? is defined as
max{n | Tor® (N, G) # 0 for some G € £}.
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The right global &-flat dimension r.£F-dim(R) of R is defined as [.£F-dim(R) =
sup{€-fdg(N) | N € Mod R°P}.

Similarly, we have r.£J- dim(R) and I.£F- dim(R), respectively (when R is com-
mutative, we drop the unneeded letters r and 1).

Remark 4.2 Ttis clear that cidg (M) < €-idg (M) < idr (M) for every M € Mod R.
If a module M € Mod R with idg(M) < oo, then cidg(M) = E-idg(M) = idg(M)
by [9, Corollary 3.2]. Also, we have cfdg(N) < €-fdr(N) < fdg(N) for every N in
Mod R°P.

We shall say that a module M in Mod R (resp. N in Mod R°P) is strongly E-injective
(resp. strongly E-flat) if Exth (G, M) = 0 (resp. Torx (G, N) = 0) for all i > 1and all
G € & Weset &-idg(M) = 0 (E-fdr(M) = 0) if M is strongly E-injective (strongly
E-flat).

The proofs of the next two propositions are standard homological algebra.

Proposition 4.3  The following are equivalent for a module M in Mod R:

(i) 8-idR‘(M) <n;

(i) Exty’(G,M)=0forallGe&andall j>1;

(iii) for every exact sequence 0 - M — E° — ... — E™'!' - C" - 0 where
E°, ..., E"! are injective, then C" is strongly E-injective.

Proposition 4.4  The following are equivalent for a module M in Mod R°P:

(i) &-fdp(M) < m;

(ii) Tor§+j(M, G)=0forallGeandallj>1;

(iii) for every exact sequence 0 - K, - F,_y--- - Fy - M — 0 where Fy, -+, F,4
are flat, then K,, is strongly E-flat.

Theorem 4.5 'The following quantities are identical:
(i) 1.£J-dim(R);

(ii) sup{pdpg(M)| Mel};

(iii) sup{pdzp(M) | M € Mod R with E-dim M < co}.

Proof (i) < (ii) We may suppose that sup{pd,(M) | M € E} = m < co. Let M be a
left R-module. Then Exty *'(N, M) = 0 for any N € &, since pdz (N) < m, and hence
&-idr(M) < m by Proposition 4.3. Thus I.£J- dim(R) < m.

(ii) < (i) Assume that [.£J-dim(R) = n < co. For any left R-module M, we have
€-idg(M) < n. Let N € €. Then Ext"' (N, M) = 0 by Proposition 4.3, which implies
that pdy (N) < n, as desired.

(ii) < (iii) is obvious.

(iii) < (i) We suppose that [.£J- dim(R) = n < co. Let N € Mod R with - dim N <
o0, we may assume that - dim N = m < co. Then there exists an exact sequence

0—N-E —E —...—FE" —0

in ModR with E' in €. From the equality between (i) and (ii), it follows that
pdg (E") < n. Consequently pd, (N) < n, and so (iii) < (i) holds. [ |
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Similarly, we have the following result.

Theorem 4.6  The following quantities are identical:
(i) r.EF-dim(R);

(i) sup{fdr(M)| Meé&};

(iii) sup{fdr(M) | M € Mod R with &-dim M < oo }.

Definition 4.7 A ring R is called left E-hereditary if pdy(B) < 1for any B € &; and
R is called left &-semihereditary if fdr (B) < 1for any B € €.

A ring R is called E-semisimple if every module in € is projective; and R is called
&-von Neumann regular if every module in € is flat.

Mahdou and Tamekkante [24] introduced the notion of Gorenstein (semi) hered-
itary rings. Recall a ring R is called Gorenstein hereditary if every submodule of a
projective module is Gorenstein projective; R is called Gorenstein semihereditary if it
is coherent and every submodule of a flat module is Gorenstein flat. We say a ring R
is n-IF if fdr (M) < n for every injective left R-module M.

Remark 4.8 (i) Let € be the class of all left R-modules. Then left £-(semi)hereditary
rings are just the well-known left (semi)hereditary rings. A ring R is €-semisimple if
and only if it is semisimple; and R is €-von Neumann regular if and only if it is a von
Neumann regular ring.

(ii) Let € be the class of (FP-)injective left R-modules. Then a (coherent) ring R is
left £-semihereditary if and only if R is a left 1-IF ring by [4, Theorem 3.5] (if and only
if R is left Gorenstein semihereditary by [24, Proposition 3.3]); a commutative ring R
is E-hereditary if and only if pd, (I) < 1 for all injective R-modules I if and only if
R is Gorenstein hereditary by [24, Theorem 2.3] and [18, Corollary 1.3]. Moreover, a
ring R is €-semisimple if and only if R is quasi-Frobenius, and R is £-von Neumann
regular if and only if R is a left IF ring.

(iil) Let € be the class of Gorentein injective left R-modules. Then R is left £-here-
ditary (resp. £-semihereditary) if and only if 1.GI-dim(R) < 1 (resp. r.GIFD(R) < 1);
a ring R is €-semisimple if and only if R is semisimple by [13, Theorem 2.13]; and
a commutative ring R is €-von Neumann regular if and only if R is von Neumann
regular by [14, Theorem 3.16].

We now are in position to characterize €-(semi)hereditary rings.

Theorem 4.9  The following statements are equivalent:

(i) Risan E-hereditary ring;

(i) 1.€J-dim(R) <L

(iii) every quotient module of any injective left R-module is strongly E-injective;

(iv) every quotient module of any strongly E-injective left R-module is strongly E-in-
jective.

Proof (i) < (ii) is by definition.
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(i) = (iil) Let E be an injective left R-module and K a submodule of E. For any
G € Eandall i > 1, the exactness of 0 - K — E - E/K — 0 induces the exact
sequence

0 = Exty (G, E) — Exty(G, E/K) — Exty (G, K).

Note that Exty' (G, K) = 0 by (i). Then we have Exty (G, E/K) = 0, which implies
E/K is strongly €-injective, and hence (iii) follows.

(iii) = (ii) Let M be a left R-module. There exists an exact sequence0 > M — E —
E/M — 0 with E injective. Then E/M is strongly €-injective by (iii), and it follows
that €-idg (M) < 1by Proposition 4.3. Thus, (ii) holds.

(iv) = (iii) follows from the fact that every injective module is strongly £-injective.

(iii) = (iv) Let M be a strongly E-injective left R-module and K a submodule of M.
There exists an exact sequence 0 > K - E(K) - L — 0. We consider the pushout

diagram
0 0
0 K M M/K —=0
|
0 E(K) H M/K —>0
L L
0 0

Then L is strongly E-injective by (iii). Since M is strongly E-injective, one easily
checks that H is strongly €-injective. For any G € € and all i > 1, we get the exactness
of

0 = Exty (G, H) — Exth(G, M/K) — Exty (G, E(K)) = 0.

Thus, Exth (G, M/K) = 0 for all i > 1, and so M/K is strongly &-injective. [ |

For a module M ¢ ModR, we have E-fdg(M) = E-idg(M") by the standard
isomorphism: Torf(G, M)* 2 Extp(G,M*) forall G € € and all j > 1.

Theorem 4.10  The following statements are equivalent:

(i) R isan E-semihereditary ring;

(i) r.EF-dim(R) <L

(iii) E-idr(M) <1 for all cotorsion left R-modules M;

(iv) E-idgr(M) <1 for all pure injective left R-modules M;

(v) E-fdr(M) <1 for all finitely presented right R-modules M;

(vi) every submodule of a projective right R-module is E-flat;

(vii) every submodule of a flat right R-module is E-flat;

(viii) every submodule of an E-flat right R-module is E-flat;

(ix) idg Homg(G,I) <1 forall G € € and all injective left R-modules I.
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Proof (i) < (ii) is by definition.

(ii) = (iii) Let M be a cotorsion left R-module. For any N € &, we have fdg (N) <1
by the definition of €-semihereditary rings. Thus, N has a flat resolution: 0 — F; —
Fy - N — 0. It is easy to check that Extgl(N, M) = 0 for all j > 1, and hence
E-idr(M) <L

(iii) = (iv) follows from the fact that every pure injective module is cotorsion.

(iv) = (ii) Let M be a right R-module. Then M™* is pure injective by [11, Proposi-
tion 5.3.7], and so €-idg (M™) < 1by (iv). Hence £-fdg (M) < 1.

(ii) = (v) is trivial.

(v) = (i) Let G € € and M a finitely presented right R-module. Then Torj»z (M,G) =
0 for any j > 2 by (v) and Proposition 3.5. Hence, fdg(G) < 1, and thus R is £-semi-
hereditary, as desired.

(i) = (viii) Let N be a submodule of an E-flat right R-module M. There exists an
exact sequence 0 > N - M — M/N — 0. For any G € &, we have the exactness of

TorX(M/N, G) — Tor® (N, G) — TorR (M, G).
The first term is zero, since fdg(G) < 1by (i), and the last term is zero, since M is
&-flat. Consequently, TorX (N, G) = 0, and hence (viii) holds.
(viii) = (vii) = (vi) are trivial.
(vi) = (i) Let G € € and M any right R-module. Then there exists an exact sequence
0 - K - P - M — 0 with P projective. Thus we obtain the exactness of

0 — Tory (M, G) —> Tork (K, G).
The last term is zero, since K is &-flat by (vi). Therefore, TorX(M,G) = 0, which
implies fdg (G) < 1, and so (i) follows.
(i) = (ix) Let G € € and let I be an injective left R-module. Then fdz(G) < 1by

(i), and there exists a flat resolution of G:0 - F; - Fy - G — 0, which induces the
exactness of the sequence

0 — Homg(G,I) — Homg(F,,I) — Homg(F;,I) — 0.

Since each F; (i = 0,1) is flat and I is injective, it follows that Homp (F;, I) is injective
by [25, Theorem 3.44]. Consequently, idg Homg (G, I) <1, and so (ix) holds.

(ix) = (i) Let G e Eand let--- > F; > Fy > G — 0 be a flat resolution of G. Set
K = Im(F, - Fy). Then we get a short exact sequence 0 - K - Fy - G — 0. For
any injective R-module I, the sequence

0 — Homg(G,I) — Homg(Fp,I) — Homg(K,I) — 0

is exact. Since idg Homg (G, I) < 1and Homg(Fy, I) is injective, Homg (K, I) is in-
jective for any injective R-module I. Hence, K is flat by [12, Proposition 11.35], and so
fdr(G) < 1. Thus (i) follows. [ |

Specializing Theorem 4.10, we obtain the following characterizations of £-von Neu-
mann regular rings.

Corollary 4.11 The following statements are equivalent:

(i) R is E-von Neumann regular;
(ii) every right R-module is E-flat;
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(iii) every cotorsion left R-module is E-injective;

(iv) every pure injective left R-module is E-injective;

(v) every finitely presented right R-module is C-flat;

(vi) Homg(G,I) is injective for any G € € and any injective left R-module I.

Acknowledgment The author thanks the referee for the useful suggestions.
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