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Homological Properties Relative to
Injectively Resolving Subcategories

Zenghui Gao

Abstract. LetE be an injectively resolving subcategory of le� R-modules. A le� R-moduleM (resp.
right R-module N) is called E-injective (resp. E-�at) if Ext1R(G,M) = 0 (resp. TorR1 (N ,G) = 0)
for any G ∈ E. Let E be a covering subcategory. We prove that a le� R-module M is E-injective if
and only ifM is a direct sum of an injective le� R-module and a reducedE-injective le� R-module.
Suppose F is a preenveloping subcategory of right R-modules such that E+ ⊆ F and F+ ⊆ E. It
is shown that a ûnitely presented right R-module M is E-�at if and only if M is a cokernel of an
F-preenvelope of a right R-module. In addition, we introduce and investigate the E-injective and
E-�at dimensions of modules and rings. We also introduce E-(semi)hereditary rings and E-von
Neumann regular rings and characterize them in terms of E-injective and E-�at modules.

1 Introduction

In classical homological algebra, homological dimensions are important and funda-
mental research objects, and every homological dimension of modules is deûned rel-
ative to some certain subcategory of modules. When injective modules are general-
ized to FP-injective modules, divisible modules, cotorsion modules, and Gorenstein
injective modules, respectively, FP-injective, divisible, cotorsion, and Gorenstein in-
jective dimensions appear, and they share many nice properties of injective dimen-
sions (see [2,6, 11, 17, 19,21,23,26,27]). _en a natural question is: given a subcategory
X of modules containing all injective modules, can we deûne X-dimension of mod-
ules relative to the subcategory X in general? However, the answer is negative by the
following example. Assume that R has inûnite le� self-injective dimension and sup-
pose that X = {M ∈ ModR ∶ M is injective} ∪ {M ∈ ModR ∶ M ≅ RR}. _en RR
has, trivially, X-dimension less than or equal to 1. But in each injective resolution
0 → R → E → N → 0, N does not belong to X. _is is because N is not injective, as
the le� self-injective dimension of R is inûnite, and N is not isomorphic to R, since,
otherwise, the sequence would be split and RR would be injective. To ûll the gap, we
shall deûne a new homological dimension, named E-dimension of modules, relative
to an injectively resolving subcategory E of modules. Also, we will extend the ideas
of Enochs and Jenda in [8, 9] and introduce E-injectivity and E-�atness relative to
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the subcategory E, which unify some important properties possessed by some known
modules.

In Section 2, we give the deûnition of E-dimension of modules relative to an in-
jectively resolving subcategory E of modules and a criterion for computing the E-di-
mension of modules. Some notations and preliminary results are also given.

In Section 3, we introduce the notions of E-injective and E-�at modules and unify
some important properties possessed by some known modules. For any ring R, it
is shown that a le� R-module M is E-injective if and only if M is a kernel of an
E-precover f ∶A→ B of a le� R-module B with A injective. Let R be a ring such that
E is a covering subcategory. _en a le� R-module M is E-injective if and only if M
is a direct sum of an injective le� R-module and a reduced E-injective le� R-module.
We also prove that if F is a preenveloping subcategory of right R-modules such that
E+ ⊆ F and F+ ⊆ E, then a ûnitely presented right R-module M is E-�at if and only
if M is a cokernel of an F-preenvelope K → F of a right R-module K with F �at.

Section 4 is devoted toE-injective andE-�at dimensions ofmodules and rings. We
also characterize a generalization of (semi)hereditary rings, calledE-(semi)hereditary
rings, in terms of the E-injective and E-�at modules. As applications, some known
results can be obtained as corollaries.

_roughout this paper, R is an associative ring with identity, all modules are uni-
tary, ModR (resp. ModRop) is the category of le� (resp. right) R-modules, and all
subcategories of ModR (resp. ModRop) are full and closed under isomorphisms. For
an R-module M, the character module HomZ(M ,Q/Z) is denoted by M+. For un-
explained concepts and notations, we refer the reader to [9, 11, 25].

2 E-dimension of Modules and Preliminaries

In this section, we give the deûnition of E-dimension of modules relative to an in-
jectively resolving subcategory E of modules and a criterion for computing the E-di-
mension of modules. Some deûnitions and preliminary results are also given.

Deûnition 2.1 ([17]) Let E be a subcategory of ModR. _en E is called injectively
resolving if it satisûes the following conditions:
(i) E contains all injective le� R-modules;
(ii) E is closed under extensions;
(iii) E is closed under cokernels of monomorphisms.
In what follows, E always denotes an injectively resolving subcategory of le� R-mod-
ules which is closed under ûnite direct products and direct summands.

Deûnition 2.2 For a module M in ModR, the E-dimension of M, denoted by
E-dimM, is deûned to be the smallest n ≥ 0 such that there is an exact sequence

0Ð→ M Ð→ E0 Ð→ ⋅ ⋅ ⋅ Ð→ En Ð→ 0

with all E i in E. Set E-dim M=∞ if no such integer exists.
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Proposition 2.3 Let 0 → M → E0
f
→ E1 → K → 0 be an exact sequence in ModR

with both E0 and E1 in E. _en we have an exact sequence

0Ð→ M Ð→ I Ð→ E Ð→ K Ð→ 0

in ModR with I injective and E in E.

Proof Let 0 → M → E0
f
→ E1 → K → 0 be an exact sequence in ModR with both

E0 and E1 in E. Since E0 ∈ E, there exists an exact sequence 0 → E0 → I → E2 → 0
with I injective and E2 in E. _en we have the following pushout diagram:

0

��

0

��
0 // M // E0 //

��

Im( f )

��

// 0

0 // M // I //

��

D

��

// 0

E2

��

E2

��
0 0.

We consider the following pushout diagram:

0

��

0

��
0 // Im( f ) //

��

E1 //

��

K // 0

0 // D //

��

E //

��

K // 0

E2

��

E2

��
0 0.

In the sequence 0→ E1 → E → E2 → 0, if both E1 and E2 belong to E, then so does E,
since E is closed under extensions. Assembling the sequences 0 → M → I → D → 0
and 0→ D → E → K → 0, we obtain the desired exact sequence.

_eorem 2.4 Let n ≥ 1 and

0Ð→ M Ð→ E0 Ð→ E1 Ð→ ⋅ ⋅ ⋅ Ð→ En−1 Ð→ AÐ→ 0

be an exact sequence in ModR with all E i in E. _en there exist exact sequences

0Ð→ M Ð→ I0 Ð→ I1 Ð→ ⋅ ⋅ ⋅ Ð→ In−1 Ð→ B Ð→ 0

and 0→ A→ B → E → 0 in ModR with all I i injective and E in E.
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Proof We assume that n ≥ 1, and then proceed by induction on n. If n = 1, then
0 → M → E0 → A → 0 is exact with E0 in E. _us, we have an exact sequence
0 → E0 → I0 → E → 0 with I0 injective. Because E is injectively resolving, we have E
belongs to E. _e desired result follows from the pushout diagram

0

��

0

��
0 // M // E0 //

��

A

��

// 0

0 // M // I0 //

��

B

��

// 0

E

��

E

��
0 0.

Now let n ≥ 2 and let 0 → M → E0 → E1 → ⋅ ⋅ ⋅ → En−1 → A → 0 be an exact
sequence inModRwith all E i inE. SetW = Coker(E0 → E1). _enwe have the exact
sequence 0→ M → E0 → E1 →W → 0. By Proposition 2.3, we get an exact sequence
0 → M → I0 → E′1 → W → 0 with I0 injective and E′1 in E. Put M′ = Im(I0 → E′1).
_en we obtain the exactness of

0→ M′
Ð→ E′1 Ð→ E2 Ð→ ⋅ ⋅ ⋅ Ð→ En−1 Ð→ AÐ→ 0.

_erefore, the assertion follows by the induction hypothesis.

Corollary 2.5 _e following statements are equivalent for any M inModR and n ≥ 0.
(i) E-dimM ≤ n.
(ii) _ere exists an exact sequence 0 → M → I0 → I1 → ⋅ ⋅ ⋅ → In−1 → E → 0 in

ModR with all I i injective and E in E.

Proof (ii)⇒ (i) holds by deûnition.
(i)⇒ (ii) follows from _eorem 2.4 and the fact that E is closed under extensions.

In the following, we collect some known notions and facts needed in the article.

Deûnition 2.6 ([7]) Let F be a subcategory of ModR. _e morphism f ∶ F → M
in ModR with F ∈ F is called an F-precover of M if for any morphism g∶ F0 → M
in ModR with F0 ∈ F, there exists a morphism h∶ F0 → F such that the following
diagram commutes:

F0
g
��

h

~~
F

f // M .
_e morphism f ∶ F → M is called right minimal if an endomorphism h∶ F → F is an
automorphism whenever f = f h. AnF-precover f ∶ F → M is called anF-cover if f is
right minimal. F is called a covering subcategory of ModR if every module in ModR
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has an F-cover. Dually, the notions of an F-preenvelope, a le� minimal morphism, an
F-envelope, and an enveloping subcategory are deûned.

Recall that a module M ∈ ModR is said to be FP-injective if Ext1R(F ,M) = 0 for
any ûnitely presented le� R-module F (see [26]). A module M ∈ ModR is said to
be divisible if Ext1R(R/aR,M) = 0 for all a ∈ R (see [23]). In [22, 23], Mao and Ding
introduced the notions of FI-injective (D-injective) and FI-�at (D-�at) modules as
follows.

Deûnition 2.7 ([22, 23]) A module M ∈ ModR is called FI-injective (resp. D-injec-
tive) if Ext1R(G ,M) = 0 for any FP-injective (resp. divisible) le� R-module G.
A module N ∈ ModRop is said to be FI-�at (resp. D-�at) if TorR1 (N ,G) = 0 for

any FP-injective (resp. divisible) le� R-module G.

In 1995, Enochs and Jenda in [10] introduced the notion of Gorenstein injective
modules. A le� R-moduleM is calledGorenstein injective if there is an exact sequence
of injective le� R-modules

⋅ ⋅ ⋅ Ð→ I1 Ð→ I0 Ð→ I0 Ð→ I1 Ð→ ⋅ ⋅ ⋅

with M = ker(I0 → I1) such that HomR(E ,−) leaves the sequence exact whenever
E is an injective le� R-module. _e Gorenstein projective and Gorenstein �at mod-
ules are deûned respectively (see [11]). In order to characterize the projective and �at
dimension of Gorenstein injective modules, the notions of GI-injective and GI-�at
modules were introduced respectively in [13, 14], that is, FP-injective (or divisible)
modules are replaced by Gorenstein injective modules in Deûnition 2.7.

In a recent article [16], we introduced the notions of weak injective and weak �at
modules, and many results of a homological nature have been generalized from co-
herent rings to arbitrary rings.

Deûnition 2.8 ([16]) A module M ∈ ModR (resp. N ∈ ModRop) is called weak
injective (resp. weak �at) if Ext1R(F ,M) = 0 (resp. TorR1 (N , F)) for any super ûnitely
presented le� R-module F, that is, for any le� R-module F satisfying that there is an
exact sequence: ⋅ ⋅ ⋅ → Pn → ⋅ ⋅ ⋅ → P1 → P0 → F → 0 in ModR with each Pi ûnitely
generated projective. We useWI (resp.WF) to denote the full subcategory of ModR
(resp. ModRop) consisting of weak injective (resp. weak �at) modules.

Remark 2.9 For any ring R, it is known that all le� R-modules have WI-covers
by [15, _eorem 3.1], and all right R-modules have WF-preenvelopes by [16, _eo-
rem 2.15]. Also, we have WI

+
⊆ WF and WF

+
⊆ WI by [16, Remark 2.2(2) and

_eorem 2.10], respectively. By taking E (resp. F) as the subcategory of ModR (resp.
ModRop) consisting of weak injective (resp. weak �at) modules in the article, one can
deduce that the corresponding results also hold true.

3 E-injective and E-flat modules

In this section, we give a treatment of E-injective and E-�at modules, and we discuss
some general properties of these modules.
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Deûnition 3.1 AmoduleM ∈ ModR is called E-injective if Ext1R(G ,M) = 0 for any
G ∈ E. A module N ∈ ModRop is called E-�at if TorR1 (N ,G) = 0 for any G ∈ E.

Remark 3.2 (i) If R is a ring such that E is a covering subcategory, then any
kernel of an E-cover is E-injective byWakamutsu’s Lemma ([27, Lemma 2.1.1]). Also,
one can easily verify that the class of E-injective le� R-modules (resp. E-�at right
R-modules) is closed under extensions, and the class of E-�at right R-modules is
closed under pure submodules.

(ii) Let E be the category of all le� R-modules. _en E-injective le� R-modules
and E-�at right R-modules are just injective le� R-modules and �at right R-modules,
respectively.

(iii) Let E be the subcategory of injective le� R-modules. _en E-injective le�
R-modules and E-�at right R-modules coincide with copure injective le� R-modules
and copure �at right R-modules in [9], respectively.

(iv) Let E be the subcategory of Gorenstein injective le� R-modules. _en E-
injective le� R-modules and E-�at right R-modules coincide with GI-injective le�
R-modules [13] and GI-�at right R-modules [14], respectively.

(v) Let R be a le� coherent ring and E the subcategory of FP-injective le� R-mod-
ules. _enE is injectively resolving by [26, Lemma 3.1], andE-injective le�R-modules
and E-�at right R-modules coincide with FI-injective le� R-modules and FI-�at right
R-modules in [22], respectively.

(vi) Let R be a le� strongly P-coherent ring and E the subcategory of divisible le�
R-modules. _en E is injectively resolving by [23, Lemmas 4.9 and 4.10]; and E-in-
jective le� R-modules and E-�at right R-modules are just D-injective le� R-modules
and D-�at right R-modules in [23], respectively.

(vii) A moduleM ∈ ModRop is E-�at if and only ifM+ is E-injective by the stan-
dard isomorphism

Ext1R(G ,M
+
) ≅ TorR1 (M ,G)+

for any G ∈ E.

Proposition 3.3 (i) Amodule M ∈ ModR is injective if and only if M isE-injective
and E-dim M ≤ 1.

(ii) A module N ∈ ModRop is �at if and only if N is E-�at and E-dim N+ ≤ 1.

Proof (i) _e “only if ” part is trivial.
_e “if ” part: let M be an E-injective le� R-module and E-dim M ≤ 1. _ere exists

an exact sequence 0 → M → E → N → 0 with E injective. _en N ∈ E, since E-dim
M ≤ 1. _us, we have Ext1R(N ,M) = 0, and the sequence 0 → M → E → N → 0 is
split. It follows that M is injective, as desired.

(ii) _e “only if ” part is trivial.
_e “if ” part: let N be an E-�at right R-module and E-dim N+ ≤ 1. _en there

exists an exact sequence 0 → N+ → E → L → 0, where E is injective and L ∈ E.
It follows that Ext1R(L,N+) = 0 since N+ is E-injective by Remark 3.2(vii). So the
sequence 0→ N+ → E → L → 0 is split, and thus N+ is injective. Hence, N is �at.

Proposition 3.4 _e following are equivalent for a module M in ModR.
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(i) M is E-injective.
(ii) For each exact sequence 0→ M → E → L → 0with E ∈ E, E → L is an E-precover

of L.
(iii) _e map E(M) → E(M)/M is an E-precover.
(iv) M is a kernel of an E-precover f ∶A→ B with A injective.

Proof (i)⇒ (ii) is by deûnition.
(ii)⇒ (iii) Since there exists a short exact sequence

0Ð→ M Ð→ E(M) Ð→ E(M)/M Ð→ 0,

and E(M) ∈ E, then (iii) follows from (ii).
(iii)⇒ (iv) follows immediately from (iii).
(iv) ⇒ (i) Let M be a kernel of an E-precover f ∶A → B with A injective. _en

there exists an exact sequence 0 → M → A → A/M → 0. For any G ∈ E, the se-
quence HomR(G ,A) → HomR(G ,A/M) → Ext1R(G ,M) → 0 is exact. _e sequence
HomR(G ,A) → HomR(G ,A/M) → 0 is exact by (iv). _us, Ext1R(G ,M) = 0, and so
(i) follows.

Recall from [11] that a module M ∈ ModR is called reduced if M has no nonzero
injective submodules.

Proposition 3.5 Assume that R is a ring such that E is a covering subcategory. _e
following are equivalent for a module M in ModR.
(i) M is a reduced E-injective le� R-module.
(ii) M is a kernel of an E-cover f ∶A→ B with A injective.

Proof (i)⇒(ii) By Proposition 3.4, the natural map π∶ E(M) → E(M)/M is an
E-precover. Note that E(M)/M has an E-cover, and E(M) has no nonzero direct
summand K contained in M, sinceM is reduced. It follows from [27, Corollary 1.2.8]
that π∶ E(M) → E(M)/M is an E-cover, and so (ii) follows.

(ii)⇒(i) Let M be a kernel of an E-cover f ∶A → B with A injective. _en M is
E-injective by Proposition 3.4. Now let K be an injective submodule of M. Suppose
that A = K ⊕ L, p∶A → L is the projection, and i∶ L → A is the inclusion. It is easy
to see that f (ip) = f , since f (K) = 0. _us, ip is an isomorphism since f is a cover.
_erefore, i is epic, and so A = L,K = 0. Consequently, M is reduced.

Proposition 3.6 Assume that R is a ring such that E is a covering subcategory. If M
is E-injective, then M has an E-cover f ∶ E → M with E injective. In particular, ker f is
a reduced E-injective le� R-module.

Proof Let f ∶ E → M be an E-cover ofM. _ere is an exact sequence 0→ E
i
→ E0 →

L → 0 with E0 injective. Note that L ∈ E, since E ∈ E. So there exists g∶ E0 → M such
that gi = f , since Ext1R(L,M) = 0. _us, there is h∶ E0 → E such that f h = g, since
f is a cover. _erefore, f hi = f , and hence hi is an isomorphism. It follows that E is
injective.

_e second assertion follows directly by Proposition 3.5.
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_eorem 3.7 Let R be a ring such that E is a covering subcategory. _en a module
M ∈ ModR is E-injective if and only if M is a direct sum of an injective le� R-module
and a reduced E-injective le� R-module.

Proof _e “if ” part holds by deûnition.
_e “only if ” part: let M be an E-injective le� R-module. _en there exists an

exact sequence 0 → M → E(M) → E(M)/M → 0. _en E(M) → E(M)/M is
an E-precover of E(M)/M by Proposition 3.4. But E(M)/M has an E-cover L →
E(M)/M, so we have the following commutative diagram with exact rows:

0 // K //

γ
��

L //

δ��

E(M)/M // 0

0 // M //

α
��

E(M) //

β
��

E(M)/M // 0

0 // K // L // E(M)/M // 0.

Because L → E(M)/M is an E-cover, βδ is an isomorphism, and so E(M) =

Im(δ)⊕ker(β). _us, L and ker(β) are injective, where L ≅ Im(δ). So K is a reduced
E-injective module by Proposition 3.5. By the ûve lemma, αγ is an isomorphism, and
soM = Im(γ)⊕ker(α), where Im(γ) ≅ K. By the snake lemma, we have the following
commutative diagram:

0

��

0

��

0

��
0 // ker(α) //

��

ker(β) //

��

0

��

// 0

0 // M //

α
��

E(M) //

β
��

E(M)/M // 0

0 // K

��

// L

��

// E(M)/M

��

// 0

0 0 0

From the 3×3 lemma, it follows that ker(α) ≅ ker(β). _us, the desired result follows.

Lemma 3.8 Let F be a preenveloping subcategory ofModRop such that E+ ⊆ F and
F+ ⊆ E.
(i) If M is a cokernel of an F-preenvelope f ∶K → F of a right R-module K with F

�at, then M is E-�at.
(ii) If M is a ûnitely presented E-�at right R-module, then M is a cokernel of an

F-preenvelope K → F of a right R-module K with F �at.

Proof (i) Assume that M is a cokernel of an F-preenvelope f ∶K → F of a right R-
module K with F �at. _en we have an exact sequence K

f
→ F → M → 0. Putting
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L = Im f , then 0 → L → F → M → 0 is exact. We claim that L → F is an F-
preenvelope of L. In fact, for any F0 ∈ F, we consider the following commutative
diagram:

HomR(F , F0)

��

HomR(F , F0)

HomR( f ,F0)
��

// 0 //

��

0

0 // HomR(L, F0) // HomR(K , F0) // HomR(ker f , F0).

Because f ∶K → F is an F-preenvelope, HomR( f , F0) is an epimorphism. By the
snake lemma, we obtain that HomR(F , F0) → HomR(L, F0) → 0 is exact. _erefore,
L → F is anF-preenvelope of L. For each E ∈ E, we have E+ ∈ F by assumption. So we
obtain the exactness of HomR(F , E+) → HomR(L, E+) → 0, which induces the exact
sequence (F ⊗R E)+ → (L ⊗R E)+ → 0. _us, the sequence 0→ L ⊗R E → F ⊗R E is
exact. Note that F is �at; it follows that 0→ TorR1 (M , E) → L⊗R E → F⊗R E is exact,
and hence TorR1 (M , E) = 0. _us, M is E-�at.

(ii) Let M be a ûnitely presented right R-module. _en there exists an exact se-
quence 0 → N → P → M → 0 with P ûnitely generated projective and N ûnitely
generated. Next we will prove that N → P is an F-preenvelope. For any F ∈ F, we
have F+ ∈ E by assumption, and so TorR1 (M , F+) = 0 since M is E-�at. _us, we get
the following exact commutative diagram:

0 // N ⊗R F+ //

θN
��

P ⊗R F+

θP
��

HomR(N , F)+
θ // HomR(P, F)+ .

Note that if N is ûnitely generated and P is ûnitely presented, we obtain that θN is
epic and θP is isomorphic by [3, Lemma 2]. It follows that θ is a monomorphism.
Hence the sequence HomR(P, F) → HomR(N , F) → 0 is exact, and thus N → P is
an F-preenvelope.

By Lemma 3.8, we immediately get the following theorem.

_eorem 3.9 Assume that F is a preenveloping subcategory of ModRop such that
E+ ⊆ F and F+ ⊆ E. _en a ûnitely presented right R-module M is E-�at if and only if
M is a cokernel of an F-preenvelope f ∶K → F of a right R-module K with F �at.

Remark 3.10 (i) LetR be a le�Noetherian ring. Since the subcategory of all injective
le� R-modules is covering by [7, _eorem 2.1], it follows that a le� R-module M is
copure injective if and only if it is a direct sum of an injective le� R-module and a
reduced copure injective le� R-module.

(ii) Let R be a le� coherent ring. _en the subcategory of all �at right R-modules
is preenveloping by [7, Proposition 5.1], and so a ûnitely presented right R-moduleM
is copure �at if and only if it is a cokernel of a �at preenvelope f ∶K → F of a right
R-module K.
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Eklof and Trlifaj proved in [5, _eorem 12] that if B is a class of le� R-modules,
then every right R-module has a kerTorR1 (−,B)-cover, where

kerTorR1 (−,B) = {A ∣ Tor
R
1 (A, B) = 0 for any B ∈ B}.

By takingB as the subcategory of E, we can deduce that every right R-module has an
E-�at cover. For a module M ∈ ModRop, the E-�at cover and the injective envelope
of M are denoted by EF0(M) and E0(M), respectively.

Proposition 3.11 _e following statements are equivalent:
(i) E0(M) is E-�at for any E-�at right R-module M;
(ii) EF0(I) is injective for any injective right R-module I.

Proof (i)⇒(ii) Suppose that I is an injective right R-module and α∶EF0(I) → I is the
E-�at cover of I, and β∶EF0(I) → E0(EF0(I)) is the injective envelope. _en there
exists θ∶ E0(EF0(I)) → I such that α = θβ. On the other hand, since E0(EF0(I)) is
E-�at by (i), there exists λ∶ E0(EF0(I)) → EF0(I) such that αλ = θ. _us, α = αλβ,
and hence λβ is an isomorphism since α is a cover. _erefore, EF0(I) is a direct
summand of E0(EF0(I)), and hence it is injective.

(ii)⇒(i) Suppose that M is an E-�at right R-module and ϕ∶M → E0(M) is the
injective envelope, and ϕ∶EF0(E0(M)) → E0(M) is the E-�at cover of E0(M). _en
there exists µ∶M → EF0(E0(M)) such that ϕ = ϕµ. On the other hand, because
EF0(E0(M)) is injective by (ii), there exists γ∶ E0(M) → EF0(E0(M)) such that µ =

γϕ. _us, ϕ = ϕµ = ϕγϕ, and so ϕγ is an isomorphism, since ϕ is an envelope. It
follows that E0(M) is E-�at.

It is well known that every module over any ring R has a �at cover ([1]). _e fol-
lowing result was proved in [20, _eorem 2.2] when R is a commutative Noetherian
ring.

Corollary 3.12 _e following statements are equivalent:
(i) E0(F) is �at for any �at right R-module F;
(ii) F0(I) (the �at cover of I) is injective for any injective right R-module I.

4 The E-injective and E-flat Dimensions of Modules and Rings

In this section, we introduce and investigate the E-injective and E-�at dimensions of
modules and rings. _en we characterize E-(semi)hereditary rings, which is a gener-
alization of (semi)hereditary rings, in terms of E-injective and E-�at modules.

Deûnition 4.1 For a moduleM in ModR, the E-injective dimension E- idR(M) of
M is deûned as max{n ∣ ExtnR(G ,M) ≠ 0 for some G ∈ E}. _e le� global E-injective
dimension l .EI- dim(R) of R is deûned as

l .EI- dim(R) = sup{E- idR(M) ∣ M ∈ ModR}.

_e E-�at dimension, E- fdR(N), of a module N in ModRop is deûned as

max{n ∣ TorRn(N ,G) ≠ 0 for some G ∈ E}.
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_e right global E-�at dimension r.EF- dim(R) of R is deûned as l .EF- dim(R) =
sup{E- fdR(N) ∣ N ∈ ModRop}.

Similarly, we have r.EI- dim(R) and l .EF- dim(R), respectively (when R is com-
mutative, we drop the unneeded letters r and l).

Remark 4.2 It is clear that cidR(M) ≤ E- idR(M) ≤ idR(M) for every M ∈ ModR.
If a module M ∈ ModR with idR(M) < ∞, then cidR(M) = E- idR(M) = idR(M)
by [9, Corollary 3.2]. Also, we have cfdR(N) ≤ E- fdR(N) ≤ fdR(N) for every N in
ModRop.

We shall say that a moduleM inModR (resp. N inModRop) is strongly E-injective
(resp. strongly E-�at) if ExtiR(G ,M) = 0 (resp. TorRi (G ,N) = 0) for all i ≥ 1 and all
G ∈ E. We set E- idR(M) = 0 (E- fdR(M) = 0) if M is strongly E-injective (strongly
E-�at).

_e proofs of the next two propositions are standard homological algebra.

Proposition 4.3 _e following are equivalent for a module M in ModR:
(i) E- idR(M) ≤ n;
(ii) Extn+ j

R (G ,M) = 0 for all G ∈ E and all j ≥ 1;
(iii) for every exact sequence 0 → M → E0 → ⋅ ⋅ ⋅ → En−1 → Cn → 0 where

E0 , . . . , En−1 are injective, then Cn is strongly E-injective.

Proposition 4.4 _e following are equivalent for a module M in ModRop:
(i) E- fdR(M) ≤ n;
(ii) TorRn+ j(M ,G) = 0 for all G ∈ E and all j ≥ 1;
(iii) for every exact sequence 0 → Kn → Fn−1 ⋅ ⋅ ⋅ → F0 → M → 0 where F0 , ⋅ ⋅ ⋅ , Fn−1

are �at, then Kn is strongly E-�at.

_eorem 4.5 _e following quantities are identical:
(i) l .EI-dim(R);
(ii) sup{pdR(M) ∣ M ∈ E};
(iii) sup{pdR(M) ∣ M ∈ ModR with E-dimM < ∞}.

Proof (i) ≤ (ii) We may suppose that sup{pdR(M) ∣ M ∈ E} = m < ∞. Let M be a
le� R-module. _en Extm+1

R (N ,M) = 0 for any N ∈ E, since pdR(N) ≤ m, and hence
E- idR(M) ≤ m by Proposition 4.3. _us l .EI- dim(R) ≤ m.

(ii) ≤ (i) Assume that l .EI- dim(R) = n < ∞. For any le� R-module M, we have
E- idR(M) ≤ n. Let N ∈ E. _en Extn+1

R (N ,M) = 0 by Proposition 4.3, which implies
that pdR(N) ≤ n, as desired.

(ii) ≤ (iii) is obvious.
(iii) ≤ (i) We suppose that l .EI- dim(R) = n < ∞. Let N ∈ ModR with E- dimN <

∞, we may assume that E- dimN = m < ∞. _en there exists an exact sequence

0Ð→ N → E0
Ð→ E1

Ð→ ⋅ ⋅ ⋅ Ð→ Em
Ð→ 0

in ModR with E i in E. From the equality between (i) and (ii), it follows that
pdR(E

i) ≤ n. Consequently pdR(N) ≤ n, and so (iii) ≤ (i) holds.
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Similarly, we have the following result.

_eorem 4.6 _e following quantities are identical:
(i) r.EF-dim(R);
(ii) sup{fdR(M) ∣ M ∈ E};
(iii) sup{fdR(M) ∣ M ∈ ModR with E-dimM < ∞}.

Deûnition 4.7 A ring R is called le� E-hereditary if pdR(B) ≤ 1 for any B ∈ E; and
R is called le� E-semihereditary if fdR(B) ≤ 1 for any B ∈ E.
A ring R is called E-semisimple if every module in E is projective; and R is called

E-von Neumann regular if every module in E is �at.

Mahdou and Tamekkante [24] introduced the notion of Gorenstein (semi) hered-
itary rings. Recall a ring R is called Gorenstein hereditary if every submodule of a
projective module is Gorenstein projective; R is called Gorenstein semihereditary if it
is coherent and every submodule of a �at module is Gorenstein �at. We say a ring R
is n-IF if fdR(M) ≤ n for every injective le� R-module M.

Remark 4.8 (i) LetE be the class of all le� R-modules. _en le�E-(semi)hereditary
rings are just the well-known le� (semi)hereditary rings. A ring R is E-semisimple if
and only if it is semisimple; and R is E-von Neumann regular if and only if it is a von
Neumann regular ring.

(ii) Let E be the class of (FP-)injective le� R-modules. _en a (coherent) ring R is
le� E-semihereditary if and only if R is a le� 1-IF ring by [4,_eorem 3.5] (if and only
if R is le� Gorenstein semihereditary by [24, Proposition 3.3]); a commutative ring R
is E-hereditary if and only if pdR(I) ≤ 1 for all injective R-modules I if and only if
R is Gorenstein hereditary by [24, _eorem 2.3] and [18, Corollary 1.3]. Moreover, a
ring R is E-semisimple if and only if R is quasi-Frobenius, and R is E-von Neumann
regular if and only if R is a le� IF ring.

(iii) Let E be the class of Gorentein injective le� R-modules. _en R is le� E-here-
ditary (resp. E-semihereditary) if and only if l.GI-dim(R) ≤ 1 (resp. r.GIFD(R) ≤ 1);
a ring R is E-semisimple if and only if R is semisimple by [13, _eorem 2.13]; and
a commutative ring R is E-von Neumann regular if and only if R is von Neumann
regular by [14, _eorem 3.16].

We now are in position to characterize E-(semi)hereditary rings.

_eorem 4.9 _e following statements are equivalent:
(i) R is an E-hereditary ring;
(ii) l .EI-dim(R) ≤ 1;
(iii) every quotient module of any injective le� R-module is strongly E-injective;
(iv) every quotient module of any strongly E-injective le� R-module is strongly E-in-

jective.

Proof (i)⇔ (ii) is by deûnition.
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(i)⇒ (iii) Let E be an injective le� R-module and K a submodule of E. For any
G ∈ E and all i ≥ 1, the exactness of 0 → K → E → E/K → 0 induces the exact
sequence

0 = ExtiR(G , E) Ð→ ExtiR(G , E/K) Ð→ Exti+1
R (G ,K).

Note that Exti+1
R (G ,K) = 0 by (i). _en we have ExtiR(G , E/K) = 0, which implies

E/K is strongly E-injective, and hence (iii) follows.
(iii)⇒ (ii) Let M be a le� R-module. _ere exists an exact sequence 0→ M → E →

E/M → 0 with E injective. _en E/M is strongly E-injective by (iii), and it follows
that E- idR(M) ≤ 1 by Proposition 4.3. _us, (ii) holds.

(iv)⇒ (iii) follows from the fact that every injectivemodule is stronglyE-injective.
(iii)⇒ (iv) Let M be a stronglyE-injective le� R-module and K a submodule ofM.

_ere exists an exact sequence 0 → K → E(K) → L → 0. We consider the pushout
diagram

0

��

0

��
0 // K //

��

M //

��

M/K // 0

0 // E(K) //

��

H

��

// M/K // 0

L

��

L

��
0 0

_en L is strongly E-injective by (iii). Since M is strongly E-injective, one easily
checks that H is strongly E-injective. For any G ∈ E and all i ≥ 1, we get the exactness
of

0 = ExtiR(G ,H) Ð→ ExtiR(G ,M/K) Ð→ Exti+1
R (G , E(K)) = 0.

_us, ExtiR(G ,M/K) = 0 for all i ≥ 1, and so M/K is strongly E-injective.

For a module M ∈ ModR, we have E-fdR(M) = E- idR(M+) by the standard
isomorphism: TorRj (G ,M)+ ≅ Ext

j
R(G ,M

+) for all G ∈ E and all j ≥ 1.

_eorem 4.10 _e following statements are equivalent:
(i) R is an E-semihereditary ring;
(ii) r.EF-dim(R) ≤ 1;
(iii) E- idR(M) ≤ 1 for all cotorsion le� R-modules M;
(iv) E- idR(M) ≤ 1 for all pure injective le� R-modules M;
(v) E- f dR(M) ≤ 1 for all ûnitely presented right R-modules M;
(vi) every submodule of a projective right R-module is E-�at;
(vii) every submodule of a �at right R-module is E-�at;
(viii) every submodule of an E-�at right R-module is E-�at;
(ix) idR HomR(G , I) ≤ 1 for all G ∈ E and all injective le� R-modules I.
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Proof (i)⇔ (ii) is by deûnition.
(ii)⇒ (iii) Let M be a cotorsion le� R-module. For any N ∈ E, we have fdR(N) ≤ 1

by the deûnition of E-semihereditary rings. _us, N has a �at resolution: 0 → F1 →

F0 → N → 0. It is easy to check that Ext j+1
R (N ,M) = 0 for all j ≥ 1, and hence

E- idR(M) ≤ 1.
(iii)⇒ (iv) follows from the fact that every pure injective module is cotorsion.
(iv)⇒ (ii) Let M be a right R-module. _en M+ is pure injective by [11, Proposi-

tion 5.3.7], and so E- idR(M+) ≤ 1 by (iv). Hence E- fdR(M) ≤ 1.
(ii)⇒ (v) is trivial.
(v)⇒ (i) LetG ∈ E andM a ûnitely presented right R-module. _enTorRj (M ,G) =

0 for any j ≥ 2 by (v) and Proposition 3.5. Hence, fdR(G) ≤ 1, and thus R is E-semi-
hereditary, as desired.

(i)⇒ (viii) Let N be a submodule of an E-�at right R-module M. _ere exists an
exact sequence 0→ N → M → M/N → 0. For any G ∈ E, we have the exactness of

TorR2 (M/N ,G) Ð→ TorR1 (N ,G) Ð→ TorR1 (M ,G).
_e ûrst term is zero, since fdR(G) ≤ 1 by (i), and the last term is zero, since M is
E-�at. Consequently, TorR1 (N ,G) = 0, and hence (viii) holds.

(viii)⇒ (vii)⇒ (vi) are trivial.
(vi)⇒ (i) LetG ∈ E andM any rightR-module. _en there exists an exact sequence

0→ K → P → M → 0 with P projective. _us we obtain the exactness of

0Ð→ TorR2 (M ,G) Ð→ TorR1 (K ,G).

_e last term is zero, since K is E-�at by (vi). _erefore, TorR2 (M ,G) = 0, which
implies fdR(G) ≤ 1, and so (i) follows.

(i)⇒ (ix) Let G ∈ E and let I be an injective le� R-module. _en fdR(G) ≤ 1 by
(i), and there exists a �at resolution of G∶ 0 → F1 → F0 → G → 0, which induces the
exactness of the sequence

0Ð→ HomR(G , I) Ð→ HomR(F0 , I) Ð→ HomR(F1 , I) Ð→ 0.
Since each Fi (i = 0, 1) is �at and I is injective, it follows that HomR(Fi , I) is injective
by [25, _eorem 3.44]. Consequently, idR HomR(G , I) ≤ 1, and so (ix) holds.

(ix)⇒ (i) Let G ∈ E and let ⋅ ⋅ ⋅ → F1 → F0 → G → 0 be a �at resolution of G. Set
K = Im(F1 → F0). _en we get a short exact sequence 0 → K → F0 → G → 0. For
any injective R-module I, the sequence

0Ð→ HomR(G , I) Ð→ HomR(F0 , I) Ð→ HomR(K , I) Ð→ 0
is exact. Since idR HomR(G , I) ≤ 1 and HomR(F0 , I) is injective, HomR(K , I) is in-
jective for any injective R-module I. Hence, K is �at by [12, Proposition 11.35], and so
fdR(G) ≤ 1. _us (i) follows.

Specializing_eorem4.10, we obtain the following characterizations ofE-vonNeu-
mann regular rings.

Corollary 4.11 _e following statements are equivalent:
(i) R is E-von Neumann regular;
(ii) every right R-module is E-�at;
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(iii) every cotorsion le� R-module is E-injective;
(iv) every pure injective le� R-module is E-injective;
(v) every ûnitely presented right R-module is E-�at;
(vi) HomR(G , I) is injective for any G ∈ E and any injective le� R-module I.

Acknowledgment _e author thanks the referee for the useful suggestions.
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