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The concepts of order and type associated with an entire function over the
complex plane admit different "natural" extensions, most of which are in vogue,
for the case of an entire function over <€k, the cartesian product of k copies of the
complex plane. This work is concerned with the relations among such extended
concepts and with the analogous properties of the concepts.

Throughout we write / to denote an entire function over ^k and Ji = Jt's
to denote its maximum modulus defined at each point r of the set

| (£k\ = [r : r = (rlt •••,rk), where each r} is real and S: 0]
by

^T(r) = max[ | / ( z ) | : z e « * . \z\ = (| zh\,-,\ zk\) = r ] .

Fuks and Ronkin (see §26.2 of [2], cf. [5]) introduced the concepts of orders and
types of/ based on an asymptotic comparison, as

I r fl = E rj -» + oc (in | «* |),

of \n+Jt{r) with E lgy^jt Tjrf corresponding to different positive real numbers
Tj, OLJ (1 f^j ^ k). One might consider r -» +"oc = ( + oc, •••, + oc) instead of
II *" II —" + oc. In §3 we show that (see (3.1)) such a consideration gives rise to no
new concepts and indicate how advantage may be taken of this fact in discussing
the properties of the Fuks-Ronkin concepts.

Another natural approach is to compare ln+^#(r) with

as r-> + oo, for different positive real numbers T, txj (1 ^j :g k) (see [3], [4];
cf. [1] with the help of §5). We attempt a systematic study of the properties of
the concepts, the product orders and the product types of/, arising out of such
a comparison, in §2. The product orders (of/) , in particular, adimt properties
more elegant although less easily established than their analogues for Fuks orders
(see (2.1)).
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In §4 we consider the concepts of orders and types of/, based on special
exhaustions of <€k, due to Gol'dberg. It turns out that the nondependence of
Gol'dberg order on the "fundamental domain" is only a property of \n+j? as a
real valued "increasing" (see §1) function with no further reference t o / . In §§3
and 4 we attempt to characterise the relations (see (3.7), (4.3)) among the dif-
ferent concepts of orders of/. The relations, in particular, show that the property
tha t / i s of "finite order" (see §1) is independent of the particular order-concept
among the ones under consideration. We however have certain interesting ques-
tions, which we indicate at the appropriate places, for which this paper has no
answers (in particular see remark (4.6)).

1. Notation

We freely make use of the standard notation and conventions of [2] and
the ones mentioned earlier. We refer to (a1,---,ak),(n1,---,nk),(z1, •••,zJt),etc. E ^ *
by their respective unsuffixed symbols; a,n,z, etc. We take the Taylor expansion
of/ about 0 = (0, • • •, 0) e «* to be specified by

/(z) = S anz", for z e f ,
nel

where I = Ik = \_n: ne <tfk , where each n} is a rational integer].
We throughout regard \<&k\ as a subspace of a Euclidean space and write

int£ for the interior of any £c |<g* | . Corresponding to r,se|<£*|, we write

' — " l '2 'k '

where rs/ should be taken as 1 if r} = Sj = 0 and we say that r ^ s or s ^ r iff
(if and only if) r,- :g Sj for 1 g j ^ k, that r < s or s > r iff r ^s but not = s and
that r <4 s or s > r Iff rs < Sj for 1 ̂  j ^ k. We write

<g*+ = [ r : r e | <g* | and > 0 ]

and rjs = max(rj/sj: 1 ̂ j ^ fc), when re\^k\ and s e ^ t + . We say that a real
valued function (j) with domain £ £ | ̂ *| is increasing, iff $(/•) ^ </>(s) whenever
r,seE and r ^ s.

Let ^ be a nonnegative real valued function over | #* j . The closure P of the
set (possibly empty),

[oc:oiE<#k+,<t>(r) ^ r" as r -> + o5]

will be referred to as the product order set of <t> and only a boundary point of P
will be referred to as a product order of <f>. We say that </> is of infinite or finite
product order according as P is empty or nonempty. Corresponding to a product
order pe'£k+ of <j>, we define the product type x (of <j)) as + GO or

inf[T: T e ^ 1 + , 0(r) ^ 7>" as
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according as the set under consideration is empty or nonempty. By the sum order
set S of 4> we mean the closure of the set

£ X rj as r -• + o7, where I = S 1

and by a sum order of <j) we only mean a boundary point of S. As in the case of
product orders we say that (j> is of infinite or finite sum order according as S is
empty or nonempty. By a sum type corresponding to a sum order pec€k+ of (j>,
we only mean a boundary point of the sum type set corresponding to p, viz, the
closure of

[*: te%k+, 4>{r) ^ E tfi3 as r-> + oo].

By a Fuks order of <j> we only mean a boundary point of the Fuks order set of 4> viz,
the closure of

[ a : c t e ^ + , <f>(r) < X r*/ as || r || -• + oo]

(note " < " and " | r -> + oo", see remark (3.12)). By a Ronkin type correspond-
ing to a Fuks order p e ^ t + of (j) we only mean a boundary point of the Ronkin
type set corresponding to p viz, the closure of the set

[t: te<Z?k+, 4>{r) < £ trf as || r \\ -+ + oo].

We postpone the introduction of the less similar concepts due to Gol'dberg until
they become relevant (see §4).

As usual we attribute all the concepts of orders, types and the related ones
associated with In+J? to/itself.

2. Product orders and types

Throughout this section we write i/r to stand for a real valued function on
I with the property that the lim sup and the lim inf of \j/{n) j | n | , as || n || -> + oo,
are both finite and positive, so that in particular, \jj(ri) could be | n || or n joe
= max(ny/ay. 1 ^ j g k) for nel, where ae«* + and is independent of n. The
simpler nature of the product order set P(f) of/ over that of its Fuks order set
is brought out by the less easily proved (cf. §26.2 of [2])

THEOREM 2.1. Let the product order set P(f) of f be nonempty. Then it
is an "infinite rectangle with a unique minimal element p" i.e. there exists a

such that
[a:ae|<g*| and Z p].

Further this minimal element p of P(f) is given (under certain obvious con-
ventions followed in [2]) by

Pj = lim sup {nj In \j/(n)}/(— In) an\), for l g j ^ f c .
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It is convenient, for later use as well, to distinguish the different stages of the
proof as lemmas. We encounter an intricacy characteristic of the discussions in
the case of the product concepts in the crucial

LEMMA 2.2. (a) Let Te&1+ and R,a.eVk + and n e | « * | but > 0. Let g be
the function denned by

g(r) = (1 /r") exp (Tr*), for r e j <€k \.

Then Mr^Rg{r) = minlgj.gfc [inf {#(/•) :r,-;^ Rj, rm = Rm for 1 ̂  m ̂  k, m # j } ] .

(b) Let further n jo. > TR*. Then infr^Rg(r) = \eTRa /(n/a)]"/ot jRn.

PROOF OF 2.2. We prove (a) by induction on k. (a) is trivial if k = 1. We shall
assume (a) with k — 1 in the place of k. Now the technique essentially consists of
considering the infimum of g over the different "rays from 0 into <&*+". Let
a e^k +. It is easily seen that the function h denned by h{i) = g(ta), for te^1 + ,
is decreasing in (0, t'~\ and increasing in \t', + oo), where the point r = t'a satisfies:
Tr* = I n I /j| a ||. By considering different o e ^ + we get that

infr^Rg(r) — inf \_g(r): r^R and either Tr* = || n || / | a | or r,- = Rj for some j'].

But in case the set

£ = [ r r £ ^ , r^K, Tr* = ||n||/|a|]

is not nul, the infimum of # over E is necessarily attained at a point r of it with
rj = .R; for some j . To see this let ns /as = nja and let H be the set of all positive
integers g /c and different from s. We observe that, for r e E,

g{r) = A n r j " * ^ - " ^ ,
JEfl

where Ae%"i+ and is independent of r. We are thus in a position to conclude that

inf g(r) = inf [g(r): r^.R, r} = Rj for some j ]

= min inf [#(/): r ^ R, rj = Rj~],

which by our induction hypothesis implies (2.2) (a).
We now prove (b). It is easily seen, as in the case of the function h in the proof

of (a), that

inf [g{r): Tj ^ Rj, rm = Rm for 1 ̂  m ^ k, m *j] = g(U) or g(R)

according as ni\a.j~^1 or < TR", where U = U(j)e\^k\ and is such that TV
= tij/aj and Um = Rm for 1 ̂  m <; /c, m # j . By the hypothesis of (2.2) (b), the set
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is not empty and hence by (a) it follows that

(2.3) inf flf(r) =

But, for jeJ, g(U) ^ inf[#(r): r 2: R, Tr" = n^/a,] , which again as in (a)
may be shown to be = g(S), where S = S(j)e'£k+ and is such that Sm = Rm for
l g m ^ f c , m^s (njas being = n /a). Clearly g(S(j))^ g(U(s)), so that
g(U(j)) ^ g(U(s)), for 1 < ^ ^ k, which by (2.3) implies (b) and hence completes
the proof of the lemma.

Our next lemma adds to the information provided by theorem 2.1.

LEMMA 2.4. Let f denote the formal power series S n e J anz" in the indeter-
minates zx, •••,zk over the field "if1. Let pe\'£k\. Then

(a) / defines an entire function over <&k admitting p as a product order,
iff to each cce'i^k+ and P p , but to no ae^k+ and -4 p (v/hen p> 0) correspond
an R = R{u)e<£k+ and a finite subset J = J(a) £ / such that

(2.5) \an\ ^ inf[l/r")expra], for nel-J;

(b) part (a) holds with the last line of the same replaced by

(2.6) | an | ^ leR" j{n /a)]"/01 /R", for nel-J;

(c) f defines an entire function of finite product order and aeintP(f), iff
and

(2.7) lim sup {(n /a) In tfr(n)} /( - In | an |) < 1.

PROOF OF 2.4. In case/ defines an entire function and there exist a,Re'£k +

such that ln+^#(r) ^ ra for r ^ i?, we get, by Cauchy's Inequality (see [2]), that
(2.5) holds with J as the null set.

Let now a, R, 5e(£k+ and let J be a finite subset of/ and let further (2.5) hold.
To complete the proof of (a) at this stage we need only observe that / defines an
entire function and that

ln+^(r) ^ r I + \ as r-> + oo.

But for any r 2; R, the set [| an | r": n eJ] is bounded so that the power series
represented by / converges in

[z:ze<<gk, \zj\< rj for 1 ^ j ^ fe].

Thus/defines an entire function over tSk. Further for r ~2i R and a e ^ u and > 1,

I | an | r
n ^ E {rn /(or)"} exp (ar)" ^ {a /(a - 1)}" exp (ar)*,
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so that
Jf(r) g p(r)exp(r)*+d, as r-> + oo,

where p(r)-*0 as r-> +"00, which implies what we are attempting to conclude.
Hence follows (a).

(b) follows from (a) and lemma (2.2) (b).
We finally turn to (c). Let / define an entire function of finite product order

and let a e intP(/). There exists a positive real t < 1 such that fa e intP(/). Hence
there exists an Rec£k+ and a finite subset J c / such that (2.6) holds with ta
instead of a. Now since n/(fa) = (n/a)/f and |an[1/(n/a) -> 0 as | n || -> + 00
(see §3 of [2]), we get that

(2.8) -tln\an\-£ (n/a)ln^(n) + x(n), as || n \\ -> + 00,

where the function 7 is such that #(n)/In | an | -• 0 as | |n | -» + 00. Thus our
assumptions imply (2.7). To prove the other part of (c) we start with ae'&* + for
which (2.7) holds. Hence there exists a positive real t < 1 such that (2.8) holds where
X(n) = 0 as ! n || -» + 00, which implies that | an\

1/(n/a) -* 0 as || n || ->• + 00
and the fact that (2.6) holds with (t + l)a/2 instead of a, with any particular
Re^k+ and with J — J(t,oc,R) as some finite subset of/. Hence by (b) /defines
an entire function in ^k and oce intP(/).

PROOF OF 2.1. The theorem follows from lemma (2.4) (c) by noticing the
fact that (2.7) is equivalent to the assertion that

lim sup {(n,. /a;) In \j/(n)} /( - In | an \) < 1, for l^j^k.

To compare our results with the ones known in the case of the Fuks orders
of/(see theorem 26.2, §26 of [2]) we state a trivial consequence of theorem (2.1)
viz,

COROLLARY 2.9. Let pe^k+. Then p is a product order off, iff

lim sup {(n jp) In «/<«)} /( - In | a. |) = 1.
I M I - + CO

To complete a characterization of the product order set of an entire function
over <ek (cf. theorem 26.3, §26, of [2]) we present

THEOREM 2.10. Let pe\<tfk\. Then there exists an entire function f over
Wk such that P(/) = [a: a e \ <#k\, a ^ p].

PROOF OF 2.10. Let us first suppose that p > 0 and consider the power
series defined by

/(z) = £ anz
n, for ze<Zk, where an = ^~(n/">(n).

n I
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We observe that {(n /p) In \j/(n)} /( — In an) = 1 for n e I and that for any particular
positive integer j :g k, nip = n} jpj for infinitely many n eI so that

lim sup [n, In ̂ (n)] /( - In | an)) = py

which by lemma (2.4) (c) and theorem (2.1) shows that/defines an entire function
of the required kind.

Let now J = [j: pj > 0]. In the general case we understand by njp the
number max \n} \pj: j e J ] , which we take as 0 if J is null, and modify the definition
of / by taking the summation Z over

[«: nel, rij = 0 whenever j$f]

instead of over / and observe that the / has the required property.
The product type of/corresponding to a product order e<&k+ does not seem

to admit an elegant expression in terms of the Taylor coefficients of/. However
the expression given below is an extension of the one well-known when k = 1
and is good enough to serve our purpose (see theorem (2.16)).

THEOREM 2.11. Let pe^k + be a product order off and let T (possibly + oo)
be the corresponding product type of the function. Then

(a) T = lim sup lim sup [(n /p) (j an \ R»)iK"Mj(eR»)'];

(2.12)

(b) x ^ L = lim sup [(n/p) | an \
 1/(n/p)/e]

IMI- + "
and T < + oo, iff L < + oo.

It is desirable to establish

LEMMA 2.13. Let f be the formal power series 2 n e / anz" in the indeter-
minates Zj (1 £j ^ k) over the field V1. Let pe%k+ and let xej1?1) . Then f
defines an entire function over *2* and either p is a product order and x is the
corresponding product type off or % = 0 and peintP(f), iff (2.12) holds.

PROOF OF 2.13. Analogous to lemma (2.4) (a) we observe that / defines
and entire function over tfk and either p is a product order and T is the correspond-
ing product type o f / o r T = 0 and p e i n t P ( / ) , iff to each Te1f1+ and > z, but
to no T e<^1 + and < T (when % > 0) corresponds an R e ^k+ such that

j an\ ^ inf [(l/r")exp(TV)] as | n || -> + oo,
rgR

which by lemma (2.2) (b) is equivalent to the fact that

| an\ ^ {eTS"l(nlp)rMISn as | n fl -» + oo,

for any S S: R (Se^k+) which implies the lemma.
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P R O O F OF 2.11. Lemma (2.13) implies (a), (a) and the fact that

imply that x ^ L and that to each r e "^ 1 + and > T, when T < + oo, corresponds
an Re^k+ such that L ^ TRP. We are thus in a position to conclude that (b)
also holds.

REMARK 2.14. In the absence of a more elegant expression for x in theorem
(2.11) than the one provided by (2.12), it might be desirable to judge its nature
through its relations with more elegant expressions like L. We however realise
the falsehood of the statement (when k> 1) that x = L and even that of the state-
ment that T = 0 iff L = 0, because of

EXAMPLE 2.15. Let / be the function specified by

/(z) = I

for ze«*(fc> 1). It is easily seen that P(f) = \_r:retfk+,r ^ (1,- ,1)] so that
in particular p — (1,•••, 1) is a product order for/. It is also easily seen that the
product type of / corresponding to p is T = 0, while the corresponding L (of
theorem (2.11)) is 1.

We conclude this section with (cf. theorem 26.4, §26 of [2]),

THEOREM 2.16. Let pe^k+ and xe\^1\ or = + oo. Then there exists
an entire function f over ^k with p as a product order and z as the corresponding
product type.

PROOF OF 2.16. Let us consider the three power series £ unz", X vnz
n

and 2 wnz" for z e <€k, where the summations £ are over n e / — (0) and

vn =

To each te^i+, let us write n(t) = ([fiit'],---,[pkt']), where [/>/] denotes
the integer part of pjt and observe that

as t~> + oo, while in general njKn/p) ^ pj for nel — 0 (1 ^j ^ k). Hence we
are in a position to say that,

O 1 7 , lim sup [*"«"/'>/*'] = 1 ,

forReVk+ and ^ ( l . - . l ) .
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for Re^k+ and jg(l ,--- , l) . (2.17) and lemma (2.13) together imply that the
series E uttz" defines an entire function u over <$k with p as a product order and
1/e as the corresponding product type. Hence, when 0 < x < + oo, the function
/defined by/(z) = M(z(eT)1/""11) for z e f ' , stands to prove the theorem. Using
lemma (2.4) (c) (see also corollary (2.9)) we observe that the remaining two series
respectively define entire functions, say v and w, over (€k, each with p as a product
order. Now by (2.17) and theorem (2.11) (a), it follows that v and w are respectively
of product types 0 and + oo corresponding to p.

3. Sum concepts and their relations with the product concepts

Throughout this section S(/) denotes the sum order set of/, while P(f)
and ip continue to have the same meanings as in the previous section. We start
with

THEOREM 3.1. Let (j> be a nonnegative real valued increasing function
over | <€k |.

(a) pe\(€k\ is a Fuks order of <f>, iff it is a sum order of <f>.

(b) Let pe^k+ be a Fuks order and hence a sum order of <j>. Then xe\'€k\

is a Ronkin type of $ corresponding to p, iff it is a sum type of <j> corresponding
to p.

The proof of theorem 3.1 follows from the

LEMMA 3.2. Let the function h be defined by

h(r) = L Ttf

for r e | *g* | , where T,xe'£k+. Then the following two propositions are equivalent:

(i) for any particular Se'£i + , <p(r) ^ (1 + S)h(r), as r-> +"oo;

(ii) for any particular 5eVl + , <j>{r) g (1 + S)h{r), as\r\= £ r} -> + oo.

PROOF OF 3.2. That (ii) implies (i) is obvious and we need only show that (i)
implies (ii). Let (i) hold and let 5 e V1+. By our assumption there exists an R e #*+
such that

<£(s) £(1 + S I2)h (s), for s

Now let # be the class of all nonempty subsets of the set of positive integers
•$. k and corresponding to any s e | "g* |, J e^/, let s(J) e\'%k\ and be such that Sj(J)
= Sj for j e J and = 0 otherwise. To each J sf corresponds an S(J) which e tf1+,
is > \\R I and is such that

h(s)Z 1(1+ d)!(l+

whenever se'£k+, Sj = Rj for j £ J and | s || ^ S(J). Let us consider any r e | ̂  I

such that | | r | ^ S = max [S ( J ) : J e / ] .
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Let s = s(r,R)e'tfk+ be such that Sj = max(r,-,.R,), for 1 ̂ j ^ k. It follows that
<j>(r) <| 0(s) which, since s 2: R,

g (1 + 812)h(s)

£ (1 + 5)/z(s(J)), where J = \J:r}> Rj\,

£ (1 + <5)/z(r)

Theorem (3.1) practically takes away the need to discuss in detail the various
properties of the sum concepts associated with / in the presence of the literature
on the Ronkin Fuks concepts (see §26.2 of [2]). However it might be of interest
to observe that through a development analogous to the one of our §2 and through
considerations as " r ->• + oo" instead of " | r || -> + oo" one might reach deeper
results with ease. We consider in particular (cf. theorem 26.2 §26 of [2]).

THEOREM 3.3. Let f denote the formal power series X anz" over ft1 in
the indeterminates z^,---,zk. Let p,te^k+.

( a ) / defines an entire function over tfk and aeintS(f), iff ae'$k+ and

l i m s u p f ( ( I «,/«,•) h i > K n ) ) / ( - I n a n | ) l < 1
(3.4) ||n|| —+ oo L I Vlgj^fc / ) J

(b) / defines an entire function over <€k and either p is a sum order for f
while t belongs to the interior of the sum type set of f corresponding to p or
peintS(f),iff

(3.5)
r n

limsup | a, | f l {"jlVjePj)}""" I
H n | | - • + oo L ISjSfc J

where {nJ/(fJepJ)}"j/p^ should be taken as 1 if n} = 0.

REMARK 3.6. We observe that (3.4) and (3.5) may be stated in the language
of asymptotic bounds for | an | as n || -» + oo (cf. lemma (2.2) to (2.4) of [5]).

PROOF OF 3.3. The proof of (a) is similar to that of lemma (2.4) (c) and the
proof of (b) employs the same techniques as the pfoor of lemma (2.13). The entire
discussion of this theorem is primarily based on a more easily proved analogue
of lemma (2.2) viz, that if R, t, a e %k+ and n e J «*| but > 0, then

r / \ 1 T - T r - • , - T

inf (1 /r")exp| 2 Or/I = 11 in* Vj exP(0r7 )J = FI

where
ictjlnj)""" if nj/ccj^tjR'j

((_ RJ "' exp (tjRf) otherwise.
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We next discuss the relations among the sum and product orders of/ in

THEOREM 3.7. Let St be the class of all sets of the form [x: x e ] «*|, x ^ a
where a.e\'tfk\. Let P and S be nonempty closed subsets of\'£k\. Then P and S
are respectively the product order set and the sum order set of an entire function
f over<gk, iff

(a) P = n [ £ : £ e ^ 2 , £ 2 S ]
(b) S is octant shaped, i.e. seS whenever s e j^ ' j and is ^ some reS, and

is reciprocally convex, i.e., the set [a: ae^*+ , ( l /a^ ' -^ l /aJe in tS] is convex.

At this stage of the development the proof requires

LEMMA 3.8. Let & be as in theorem (3.7). Then

P ( / ) = O [ £

PROOF OF 3.8. Let us write

It is easy to see that intS(/) £ p(/) and hence that S(f) £ p(J). Hence by
theorem (2.1) it follows that Q £ P(/).

Now let c5eintP(/), let

oceFs = [ x : x e ^ + , 2 (SJ/XJ) g 1].

There exists a pe%k+ such that [| p || = 1 and 5j g ^a, for 1 g.j <>k. For any
-'- and ^ (1,—,1), we get that

r* ^ n (o)""^ £ ^ when n = n
because of the fact that || p | = 1 and because of the well-known relations between
the weighed arithemetic and geometric means of the reals rf taken with weights pj
( 1 ^ 7 ^ k). Thus we see that Fd s S(f). Hence

[ r x 6 « * + , x ^ 5 ] = n[£:£e<%, £ 2 F j s 2,

and this being true for every 5eintP(f) it follows that P(f) £ Q. This together
with the already proved fact that Q c P(/) implies the lemma.

PROOF OF 3.7. If S = S(f) and P = P(/) for some entire function /, then (a)
follows from lemma (3.8) while (b) follows from theorem (3.1) and the known
properties of the Fuks order set of/ (see §26.2 of [2]). Now let (a) and (b) hold.
By theorem 26.3 of [2] and theorem (3.1) there exists an / such that S = S(/).
Hence by lemma (3.8) P = P(/) and this completes the proof.

REMARK 3.9. Theorem 26.3 of [2] and lemma (3.8) imply theorem (2.10).
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THEOREM 3.10. (a) Let S be a closed subset of\(£k\ which is octant shaped
and reciprocally convex (as explained in (3.7) (b)). Then S is also convex.

(b) S(f) is convex.

PROOF OF 3.10. Let a , ^ 6 S n ^ + and let y = p<x + qfi where p,qetfl + and
p + q = 1. The reciprocal convexity of S implies that SeS, where

for 1 :gj g? k. But we notice that for any 1 g j j ^ k,

(Vj - Sj)(PPj + q*j) = (P2 + q2)XjPj + pq{0LJ + ft) - ajPj £ (p + q)2 ccrfj - aflj
= 0,

which shows that S ^ y. Since S is octant-shaped it now follows that yeSne£k+,
which shows that S n^k+ is convex. Hence follows (a), (b) is implied by (a) and
theorem (3.7).

REMARK 3.11. The techniques of this paper are not powerful enough to
decide whether certain properties of the product and sum concepts such as the
reciprocal convexity of the sum order set would be true in the case of a more
general real valued function than ln+^#.

REMARK 3.12. The considerations "as | r || -» + oo" seem to require cautious
handling at the outset, particularly in view of the perennial possibility "0 ^ r ,< 1".
As an instance we consider (check around the relation (5.49), chapter V. of [2]),

EXAMPLE 3.13. L e t / be denned by

/(z) = exp Uzy + I zj- (1/25)1
L 2^jgk J

Here ln^#(r) < S lgysii rj a s | r | -> + oo, but it is not true that

r\ + E rjr\ + E rj
2

as I r || -> + oo

as the relation fails to hold when rx = 1/3.
However if aeA = [x:xe^k+, ln + ^(r ) < £ r)1 as | rfl -» + oo

/?e<g*+ and > a, it is easy to see that /? also e A.

4. Gol'dberg concepts and their relations with the sum and product concepts

Throughout this section stf denotes the class of all bounded subsets A
which are open (w.r.t. | ^ * | ) , have nonempty intersection with ^k+ and have the
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Abel property viz. that re A, whenever re\^k\ and is <̂  some seA. Throughout
(j> denotes a nonnegative real valued increasing function over | <£k | and

>,A) = sup|>(r): re |«*J, r / R e i ]

for Re^1+ and Aesf. We refer to

/? = p(<£,,4)=inf[a:ae'<f1+ora = + oo,M(R,(j>,A) ̂  £aasl?-> + ooO

as the Goldberg order of 0 w.r.t. 4̂ and when 0 < p < + oo we refer to

= inf[T: T 6 ^ 1 + or T = + oo, Af(K,<M) ^ Ttf'as K-> + oo (in \<£l\)~]

as the GoVdberg type of (/> w.r.t. /I and say that <j> is of maximal, minimal, or
mean GoVdberg type (type-class) w.r.t. A according as x — + oo, T = 0, or
0 < T < + oo.

We attribute all the Gol'dberg concepts associated with ln+^# w.r.t. Aesf
to/w.r.t. A or the set

We first prove the preliminary result.

THEOREM 4.1. (a) the Gol'dberg order p = p(<j),A) of <$> is independent
of Aestf.

(b) IfO<p< + oo, the Gol'dberg type-class of <j> is independent of Aestf.
(c) / / 0 < p < + oo, <j> is of mean Gol'dberg type-class and Telf1, then

there exists an Aes/ such that t(<j>,A) = T.

The proof essentially depends on the easily proved

LEMMA 4.2. Let Aes/. Let, for any Bes/, /*e#1 + , p.B denote the set

[x: xe\'£k\, x = fia. for some <xeB\. Then

(a)
(b) T(^ ,^)=l imsup^ + oo[M(i?,0,^)/JR"], if P =
(c) for any p e ^ 1 + , p{<f>,pA) = p(<j>,A) and if this e # 1 + , then z(<j>,pA)

= P"T(<I>,A), when p = p(<j>,A).

PROOF OF 4.2. (a) and (b) admit direct proofs and we only need consider (c).

p(4>,A) = lira sup [{ln+ M{pR, </>,A)} /In(pR)]

= lim sup [{ln+ M(R, <j>,pA)}/In(pRj]
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which proves a part of (c) and brings out the basic ideas useful for proving the
remainder of (c).

PROOF OF 4.1. Let A,BEJ&. There exist p,q e%1+ such that pBzAsqB.
Now by Lemma (4.2)

p{(j>,E) = p((f>,pB) ^ p(<l>,A) ̂  p(<t>,qB) = p((f),B),

which implies (a). The proof of (b) is similar, (c) is a trivial consequence of (b) and
(4.2) (c).

We now proceed to the central result of this section viz,

THEOREM 4.3. Let P and S be closed subsets of\^k\ and p e | If1 \ or = + oo.
Then P,S and p are respectively the product order set, the sum order set and
the Gol'dberg order of an entire function over c€k, iff either P and S are empty
and p = + oo or P and S are nonempty, p&\<€x\ and (a) and (b) of theorem (3.7)
hold along with the requirement that (p,---,p) of\^k\ is a boundary point ofS.

The theorem easily follows from theorem (3.7) and the

LEMMA 4.4. p i the Gol'dberg order of <j>, iff either (p,---,p)e\'tfk\ and
is a sum order of (j> or p = + oo and <j> is of infinite sum order.

PROOF OF 4.4. Let p be the Gol'dberg order of <j> and let q be + oo or be

such that (q, • • •, q) is a sum order of <f> (there being one and only one such) accord-
ing as (j> is of infinite or finite sum order. Let V be the unit cell \x: x e | <$k\ and
:£ (1, •••, 1)]. The lemma is equivalent to the statement that p = q.

We first show that p^q. This being obvious if p = + 00, we shall suppose
that p < + 00. Let ^ G " ^ 1 + . NOW there exists an S e ^ 1 + such that M(R,4>, V)
^ Rp+5ior R^S(Re<#1+) and hence for re|<g*| such that \\r\\ ^kS,

4>{r) ^ <MR,-,R) = M(R,<j),V) = max[0(r): re|«*|, r/Re F] ^ Rp+*

^ I rpj+a ,

where R = max [>,-: 1 ̂ 7 ̂  fe], which shows that (p + 8, •••,/> + <5) e the sum
order set of (j), which, being true for any 8 eft1*, implies that p ̂  q.

To show that p g q we need only observe that, for any

M(R,4>, V) = 4>(R,--,R) ^ kRq+s, as R -> + 00.

Hence follows the lemma.

Further Theorem (4.3) enables us to take advantage of theorem (3.3) to

give
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THEOREM 4.5. (a) Let f denote, for the purpose of this theorem, the formal

power series 2 anz" in the indeterminates zu---,zk over the field (€l. Let

l. Then f defines an entire function of Goldberg order p over tfk, iff

p = lim sup [{|| n I ln<K«)}/( - lnj an|)] .
I I H +II» H-*+ 00

(b) Iff defines an entire function of Goldberg order p over c€k, then the last
line of (a) holds (even if p = + oo).

REMARK 4.6. This paper is essentially concerned with the "upper growth
concepts" associated with the entire function/. The extensive literature in the case
of one complex variable stimulates one to think about a number of other aspects
associated with/ such as the "lower growth concepts", the concepts of "regular
and other finer growths", their relevance and appropriateness in the context of
the solution spaces of differential equations over •&* (as further indicated in [3]
and other applications of theirs (cf. [5]). Once again the techniques of this paper
are not powerful enough to handle even all the analogous issues that might be
raised in the case of the "lower growth concepts", which (among others) are
reserved to be pursued separately.

5. Appendix

We briefly consider a recorded attempt by Bose and Sharma (see (5.2), §6
and §7 of [1]) at introducing the order p and type T (when 0 < p < + co) of /
and obtaining their relations with the Taylor coefficients of/, when k — 2, which
we shall suppose hereafter. According to them,

p = inf[oc:e#1+ or = + oo, ln+~#(r) ^ (rlr2f as r-» + oo]

and when 0 < p < + oo,

T = inf[T: TeVi+ or = + <x>,ln+j?(r) g T(rp + r"2) (andnot T{r1r2)
p) as

r-+ +•»] .

They, in particular, arrive at some expressions for p and x in terms of the lim sup's
of certain functions formed from am, as m -> + oo (and not as m || -> + oo) (see
theorems IV, V of [1]).

Apart from the questions of interest (in the T in particular) and of the soundness
of reasoning, the conclusions (with "m-> + oo") of Bose and Sharma, under
consideration, are basically invorrect, for the simple reason that one might easily
give counter examples by considering entire functions over tf2 which are "essential-
ly bad functions over(^1". For example the function /defined by/(z) = expexp z
for z e ̂ 2 , contradicts their theorem IV.
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