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Let Q C RY (N > 3) be a C? bounded domain and ¥ C 99 be a C? compact
submanifold without boundary, of dimension k, 0 < k < N — 1. We assume that
Y={0}ifk=0and T =0Qif k = N — 1. Let dx.(z) = dist (z,X) and

L,=A+ pwdy?, where 1 € R. We study boundary value problems (Px)

—Lyu = |uP~'u=0in Q and tr, s (u) = v on 9, where p > 1, v is a given
measure on 02 and tr, s:(u) denotes the boundary trace of u associated to L.
Different critical exponents for the existence of a solution to (P+) appear according
to concentration of v. The solvability for problem (P4 ) was proved in [3, 29] in
subcritical ranges for p, namely for p smaller than one of the critical exponents. In
this paper, assuming the positivity of the first eigenvalue of —L,,, we provide
conditions on v expressed in terms of capacities for the existence of a (unique)
solution to (P4) in supercritical ranges for p, i.e. for p equal or bigger than one of
the critical exponents. We also establish various equivalent criteria for the existence
of a solution to (P—_) under a smallness assumption on v.

Keywords: Hardy potentials; boundary singularities; capacities; critical exponents;
removable singularity; Keller-Osserman estimates
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1. Introduction

1.1. A survey of the relevant literature

Let N >3, Q c RY be a C? bounded domain and ¥ C 99 be a C? compact
submanifold in R"V without boundary, of dimension 0 < k < N — 1. We assume that
Y={0}ifk=0and ¥ =0Qif k = N — 1. Let dgq(z) = dist (x,0Q) and dx(z) =
dist (x,¥). Two typical semilinear elliptic equations involving power nonlinearities
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2 K. T. Gkikas and P.T. Nguyen
and Hardy-type potentials are of the form

Lyu=uflu=0 inQ, (E1)
where p > 1, u € R is a parameter and

Lyu:= Au+ d%u

D
The nonlinearity |ulP~'u in (E4) is referred to as an absorption or a source
depending whether the plus sign or minus sign appears in (E4).

Boundary value problems for (E1) with g = 0 became a central research subject
in the area of partial differential equations with abundant literature. A rich theory
has been developed for a boundary value problem with a power absorption in the
case 1 = 0, namely for the problem

—Au+ uPlu=0 in Q,
{u =v on 0f), (1.1)
where v is a measure on 9. Throughout this paper, we denote by 9(9€2) and
M (09Q) the space of finite measures on I and its positive cone respectively. The
first study of (1.1) was carried out by Gmira and Véron in [22] where the existence
of a solution is obtained for any v € 9M(9N) in the subcritical case 1 < p < %
In the supercritical case p > %, a breakthrough was achieved by Marcus and
Véron [32], asserting that problem (1.1) possesses a solution if and only if v is
absolutely continuous with respect to the capacity Capgﬂp,7 namely v(E) =0 for

2

any Borel set E C 02 such that Capag?p,(E) =0 [see (2.9) for the definition of the

above capacities and see (2.10) for the meaning of the absolute continuity].
When ¢ # 0, let Cq s be the optimal Hardy constant defined by

Vul?d
Cosx:=  inf M (1.2)
weH ({0} [, [u|?dg” dx
and put
H = N-k
2

It is known that Cq s € (0, H?] (see e.g. [7, 26] for k = N — 1 and [14] for 0 < k <
N —2).

Consider the eigen problem

- inf fQ |Vu|? dz — ufﬂ |u|2d§2 dzx
s = .

1.3
we HL(Q)\{0} Jo lul? dz (1.3)

Note that A, 5 > —oc0 if u < H? and A\, x >0 if p < Cqyx. Moreover, when
p < H?, problem (1.3) admits a minimizer ¢, € Hg(2) which satisfies L, ¢, » =
A éus in Q (see [14, corollary 1.3]). When p = H?, there is no minimizer of prob-
lem (1.3) in H}(2), but there exists a function ¢, 5, € HL () such that L,¢, s =
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Aux¢us in Q in the sense of distributions. In addition, by [3, proposition A.2]
(see also [29, lemma 2.2]), for any p < H?, there holds

bz~ doadg” in Q\ X, (1.4)
where
oy :=H+\/H? —p. (1.5)

It is known that, when ;1 < Cq 5, there exists a Green function associated with
—L,,, denoted by G, (see e.g. [2, 24] for more general potentials, and [17] for
¥ =00 and p < 1). In addition, by Ancona [2], there exists a Martin kernel asso-
ciated with —L,,, denoted by K, which is unique up to a normalization. Marcus
and Nguyen 28] applied results for a class of more general Schrodinger operators in
[24] to the model case L, and showed two-sided estimates of G, and K ,. Recently,
Barbatis et al. [3] followed a different approach to obtain the existence and sharp
two-sided estimates of G,, and K, for the whole range p < H? provided Ag2 > 0.
These estimates will be quoted in § 3.1.

We denote by MM(; ¢,.x) the space of measures 7 such that [, ¢, v d|7| < 400
and by MMT(Q; ¢, ) the positive cone of M(Y; ¢, ). The Green operator and the
Martin operator are respectively defined by

Gulr() = /Q Gl y) dr(y), 7€ M dyx),

K,[v](z) = . K, (z,y)dv(y), veMOQ).
These operators are an important tool in the study of nonhomogenous linear equa-
tions involving —L,,. Main properties of the above operators were established in [3]
and will be presented in subsections 3.2.

There is a vast literature on boundary value problems for (E.y). We list below
some relevant works.

The extreme case ¥ = {0} C 9 was considered by Chen and Véron in [8] in
which necessary and sufficient conditions in terms of suitable capacities for the
existence of a solution to (£ ) with a prescribed boundary measure were established
under the condition px < H?.

In the other extreme case ¥ = 92, Marcus and Nguyen [28] introduced a notion
of normalized boundary trace to study a boundary value problem for equation ()
with 0 < p < Cq,pq. In this range of u, they showed that if 1 <p < % then
the problem admits a unique solution for any v € 9™ (9€2). Marcus and Moroz
[27] extended the notion of normalized boundary trace and the results in [28] to
the range —oo < p < 1/4. Independently, under the assumption A, go > 0, Gkikas
and Véron [21] investigated a boundary value problem for (E ;) with a prescribed
boundary trace defined in a dynamic way and obtained various existence results.
Then it was shown in [18] that the two notions of boundary trace in [28] and in
[21] coincide.

Afterwards, Marcus and Nguyen [29] generalized the notion of normalized bound-
ary trace in [28] to the case ¥ C 90 with dimension 0 < k < N — 2, under the
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restriction p < min{Cq x,H — 1/4}. They proved the solvability for the bound-
ary value problem for (EF.) with any prescribed normalized boundary trace v €

IMT(0Q) in subceritical ranges for p, namely for 1 < p < % if v has compact

1
support in IQ\ X or for 1 <p < % if v has compact support in 3. They

also showed that the problem has no solution either if v = 4, (the Dirac measure

concentrated at y) in supercritical ranges for p, namely p > X+t if y € 9Q\ ¥ or

N—1
D= %%:E if y € ¥. Very recently, under the condition A, s > 0, Barbatis et al.

[3] obtained similar existence results in subcritical ranges for p and for the whole
range p < H 2,

For boundary value problems with more general potentials singular on 0f2, we
refer to Marcus [25] and Bhakta et al. [4].

The case of source nonlinearity is sharply different from the case of absorption
nonlinearity in the sense that existence results hold under a smallness condition of
boundary data, while nonexistence results hold if boundary data are large enough,
even in subcritical ranges of p. When p = 0, this phenomenon can be seen in [6].
When ¥ = 99, Bidaut-Véron et al. [5] established existence results for a boundary
value problem with measure for (E_) in a capacity framework under a smallness
condition on boundary data. Afterwards, various necessary and sufficient conditions
for the existence of a solution to (E_) were obtained by Nguyen [33], Gkikas and
Nguyen [18].

When X C (2, the corresponding boundary problems involving operator L,, with
an absorption and with a source were extensively studied by Gkikas and Nguyen
in [19, 20] respectively. See also the papers by Davila and Dupaigne [11, 12],
Dupaigne and Nedev [13], Fall [15] and Chen and Zhou [9] for related results on
semilinear equations with a source term.

1.2. Aim of the paper

Motivated by the above mentioned works, in the present paper, we aim to study
boundary value problems for (E), where ¥ C 99 of dimension 0 < k < N — 2, for

nw< H 2,
e First, we will establish removability results for equation (Fy) when p >
% or p= % We will also provide conditions in terms of suitable

capacities for the existence of a solution to boundary value problems for (F).

e Then we will give various criteria for the existence of a solution to boundary
value problems for (E_).

The precise statement of these results will be presented in § 2.

2. Main results

2.1. Boundary trace, capacitary setting and main results

Throughout this paper, we assume that

0<k<N-2 pu<H? and M\, x>0 (2.1)
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Under assumption (2.1), a theory for linear equations involving L, was established
in [3, 29|, which forms a basis for the study of equation (E). We also note that
the first and second inequalities in (2.1) imply that o > H > 1. Moreover a4 =1
if and only if k = N — 2 and p = 1; in this case, we have a_ = 1.

First we focus on the equation with an absorption power nonlinearity

—Lyu+uff'u=0 inQ. (EL)

Before stating the main results for equation (F ), we introduce some notations.
For any 8 > 0, we set

Yg:={r e RV \D: ds(zr) < 8} and Qp:={r€Q:doq(z)<p}. (2.2)

It is well known that (see appendix A.1) there is a small enough number 3y > 0
such that for any = € Qg, there exists a unique &, € 02 satisfying dpq(z) = |z — &,
Now set

ds(z) 1= /| dist?2 (&, D) + o — &, 12, (2.3)

where dist ?? denotes the geodesic distance on 0.
Let B3 > 0 be the constant in proposition A.1. (One may choose 33 < (p.) Let
N, be a smooth cut-off function such that 0 < ng, <1 such that ng, =1 in Xz,

a

with compact support in X s, . We define
2

doa(z) + ds (2)2)ds; (z) ~*+, if p < H?,
W(m)::{( ola) e () g reQns,,
(doo(x) + ds(x)?) ds(x)~"|lnds(z)], if p=H?,
where a4 is defined in (1.5), and define
W () i= (1 = ng, (@) + np (2)W (2), @€ Q. (2.4)

In the particular case =0 and ¥ = 012, we have ay =1, whence W(m) ~ 1. We
note that W is an appropriate function to describe the boundary behaviour in a
normalization sense of solutions to (E.). For more detail, see (4.1) and (4.2) (see
also [3, lemma 6.8]).

Our first theorem provides a removability result when p > 211

ap—1
if a nonnegative solution ‘vanishes’ on 92\ ¥ as in (2.5), then it must be identically
Z€ro.

in the sense that

THEOREM 2.1. Assume p < H? if k<N -2 or u< H? if k=N —2, and p >
4t We additionally assume that Q is a C3 open bounded domain. If u € C2(£2)

ap—1"
is a nonnegative solution of (E) such that

lim lf(x)
z€Q, r—E& W(x)

=0, VE€IN\I, (2.5)

locally uniformly in 0Q\ X, then u =0 in Q.

We remark that if k& = 0 the result in the theorem 2.1 coincides with the result
in [8, theorem J with & = 0]. In addition, when p > O‘f_r}, boundary behaviour of

[e3
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N— 1
solutions on ¥ is not imposed. However, when — +1 <p< , zero boundary

condition on ¥ is additionally required for the removablhty of 1solated singularities,
as stated in the following theorem.

a++1

THEOREM 2.2. Assume k> 1, u < H?, z€ X and %:Z:ﬂ <p< a++ T ifay>1
or % < p if ay = 1. We additionally assume that Q is a C3 bounded domain. If

u € C?(Q) is a nonnegative solution of (E4) such that

lim 1}(93)
e, z—¢& W(I)
locally uniformly in OQ\ {z}, then v = 0.

=0 VE€an\ {z}, (2.6)

Next, we discuss existence results for a boundary value problem for (E ). In order
to formulate the boundary value problem for (£ ), we use a notion of boundary
trace, introduced in [3], the definition of which is recalled below.

A family {Q,} is called a C? ezhaustion of Q if 2, is a C? bounded domain,
Q, € Qpyq € Q for any n € N and Uy, en2, = Q.

Let xg € Q be a fixed reference point.

DEFINITION 2.3 Boundary trace. We say that a function u € W2 (Q) (k > 1) pos-

loc
sesses a boundary trace if there exists a measure v € IMM(IN) such that for any C?

exhaustion {2,} of Q containing xq, there holds

n—oo

lim pudwey —/ odv Vo € C(Q).
00, o0

The boundary trace of u is denoted by try,x(u). Here wg’ is the L,-harmonic
measure on 0Ky, relative to xo (see § 4.1).

It is known by [3, lemmas 8.1 and 8.2] that

tr,w(Kulv]) =v VveMON) and tr,s(Gulr]) =0 Y7reMEo.xn).
(2.7)
For g € [1,+00), denote by L4(Q; ¢, 5;) the weighted Lebesgue space

LUQ; ¢ y) = {u : Q — R measurable such that |[ul|z¢(0;e, v

(/ |95 dx) ! < +oo} )
Q

Let H'((; ¢372) be the weighted Sobolev space

Hl(Q; ¢;21,,Z> : {u € Hl{)c(Q) : ||u||H1(Q;¢;24,):)

</ | q&izdx—f—/wu\ gb#zdx) <+oo}
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Semilinear elliptic equations 7
We also denote by Hj(Q;¢7 ) the closure of Cg°(€) with respect to the
norm H'HHl(Q;dﬁ,z)' It is worth mentioning here that Hj(Q;¢? o) = H'(Q; ¢, )

(see [3, theorem 4.5]).
Weak solutions of the boundary value problem for (E) with prescribed boundary
trace are defined below.

DEFINITION 2.4. Let p > 1. We say that u is a weak solution of

—Lyu+ uP~lu=0 in Q,
tr, w(u) =r.

if u € LY bux), lulP € LY(; ¢ux) and

—/ uL#(dx—i—/ |u|P*1ugdx:—/ K,V L.(dr V¢ e X, (Q),
Q Q Q
where
X, (Q) = {C € Hige(Q) : ¢, 5¢ € H (67 5), $nLuC € L=} (28)

We remark that in light of [3, theorem 2.12], a function u is a weak solution to
problem (P ) if and only if

u+GpllulP'u] = K,[v] ae. in Q.

It was known by [3, theorem B.4 (b)] (see also [29, theorem 1.18]) that, in the

subcritical case 1 < p <%, problem (P ) admits a unique weak solution for
N—a_+1
>

any v € 9M(0Q) with support in ¥X. The supercritical case p >x—5—7
challenging. In order to treat this case, we will make use of appropriate capacities.
For 0 € R, we define the Bessel kernel of order  in R? by By (&) := F~1((1 +
|12)=%)(¢), where F is the Fourier transform in the space &'(R?) of moderate
distributions in R?. For k > 1, the Bessel space Ly ,(R?) is defined by

is more

Lo (RY) := {f = Bag*g:gc LR},
with norm

£z, == llgllr = 11Ba,—0 * fll L~
The Bessel capacity is defined for compact set A C R? by

Capy.(A) == f{||f||,, : g€ LER?), f=Bao*g>1La},

and is extended to open sets and arbitrary sets in R? in the standard way. Here 1 4
denotes the indicator function of A.
We denote by BY(z,r) the open ball of centre x € R? and radius 7 > 0 in R%,
Using the Bessel capacities, we are able to define capacities for subsets of OS2
as follows. If I' C 09 is a C? submanifold without boundary, of dimension d with
1 < d < N —1 then there exist open sets O1,...,0,, in RY, diffeomorphisms 7; :
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O; — B%0,1) x BN=971(0,1) x (=1,1),i = 1,...,m, and compact sets K1, ..., K,
in I' such that

(i) K;CO;,1<i<mand ' =U" K;;

(ii) TZ(Oz N F) = Bd(O, 1) X {(.’lﬁd+1, R ,LUN,1) = ORN—d—l} X {,TN = 0}, Tl(Ol n
Q) = B40,1) x BN=4-1(0,1) x (0,1);

(iii) For any x € O; N, there exists y € O; NT such that dr(x) = |z — y| (here
dr(x) denotes the distance from x to T).

We then define the Capgﬁ—capacity of a compact set £ C I' by

Capy,.(E anpw (ENK;)), (2.9)

where T;(E N K;) = Ty(E N K;) X {(€ay1,...,on_1) = Ogn-a—1} x {xn = 0}.

We remark that the definition of the capacities does not depend on O,
i=1,...,m

In the sequel, we will say that v € 9T (9RQ) is absolutely continuous with respect
to a capacity € if

V Borel set E C 92 such that €(F) =0 = v(E) = 0. (2.10)

Our next main result gives a sufficient condition in terms of appropriate capacities
for the solvability of problem (P,) in the range % <p< gif when the
boundary trace is supported in .

THEOREM 2.5. Assumek > 1, n < H?, % <p< a++ T ifay >1or NN2 <P

if oy = 1. Let v € MT(9Q) with compact support in 3. Ifl/ is absolutely continuous
with respect to Cap?_’p,, where p' = %, then problem (PL) admits a unique weak
solution.

When v has support in 90\ 3, we provide a necessary and sufficient condi-
tion on the boundary trace for the existence of a solution to problem (P) in the
supercritical range p > {1
THEOREM 2.6. Assume u < H?, p > % and v € MT(OQ) with compact support
in OQ\ 3. Then problem (P) admzts a unique weak solution if and only if 1pv is
absolutely continuous with respect to Capggp, for any compact set F C 00\ X.

2,

Next we investigate boundary value problem for (E_) of the form

(P2)

—Lyu—|ufflu=0 in Q,
tr, »(u) = ov,

where o > 0 is a parameter and v € IMT(9NQ).
Weak solutions to problem (P7) are defined similarly as in definition 2.4 with
obvious modifications.

https://doi.org/10.1017/prm.2023.122 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2023.122

Semilinear elliptic equations 9

In the following theorems, for any v € MH(IQ), we extend it to be a measure
defined on Q by setting v(2) = 0 and use the same notation v for the extension.

When v is concentrated on Y, various equivalent criteria for the existence of a
weak solution to problem (P?) are described in the following result.

THEOREM 2.7. Assume that p < NTQ and

a_+1
1<p<

1z'foz_>1 or p>1lifa_ <1. (2.11)
o —

Let v € MT(OQ) with compact support in Y. Then the following statements are
equivalent.

1. Problem (P?) has a positive weak solution for o > 0 small.

2. For any Borel set E C Q, there holds

/ K,[1gv)P¢,sdr < Cv(E). (2.12)
E
3. The following inequality holds

GuK,[V]P] < CK,[v] < 400 a.e. in Q. (2.13)

Assume, in addition, that k > 1 and

N—-—k—a_+1 1
max{l,a—i_}<p<a++ if ay >1
O[+—].

(2.14)
N -k )
or max 1,m <p if ap = 1.

Put
ap +1—plag —1)
) )

Then any of the above statements is equivalent to the following statement

Y=

(2.15)

4. For any Borel set E C X, there holds
v(E) < CCap?ﬁp,(E).

We remark that the case ¥ = {0} and u = NTQ is treated in § 6.3 with slightly
modified capacities; see in particular remark 6.15.

When v is concentrated on 92 \ ¥, we obtain necessary and sufficient conditions
N

for the existence of a weak solution of (P?) for the whole range p < 5.

THEOREM 2.8. Assume that p < NT2, p satisfies (P7) and v € MY (9Q) with
compact support in 02\ X. Then the following statements are equivalent.

1. Equation (P?) has a positive solution for o > 0 small.
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2. For any Borel set E C €, (2.12) holds.
3. Estimate (2.13) holds.

4. For any Borel set E C 0%, there holds v(E) < C’Capggfn, (E).

a_+1
a_—1

We note that the case p >
method.

(if — > 1) is still open and requires a different

2.2. Proof strategies and comparison with relevant works in the
literature

The distinctive feature of the problems (P, ) and (P?) is characterized by the
interplay between the concentration of Y, the type of nonlinearity, the exponent
p and the parameter y. By employing a fine analysis in capacitary setting, we are
able to obtain existence and nonexistence results in the supercritical ranges for p
and the critical case for the parameter p, which justifies the novelty of our paper
in comparison with related works in the literature. This is discussed in more detail
below.

To establish the removability results (theorems 2.1 and 2.2), we treat the
cases p = ziﬂ % separately. When p > zii,
the heart of which is the assertion that all nonnegative solutions u of problem
(E,)—(2.5) are dominated by W in light of Keller-Osserman type estimates (see
proposition 5.2), hence are uniformly bounded in L?(Q; ¢,, 51). Consequently, thanks
to the representation theorem (see theorem 3.3), these solutions admit bound-
ary traces concentrated on ¥ with uniformly bounded total mass. Therefore, by
contradiction, if there is a nontrivial nonnegative solution with positive bound-
ary trace then there is a sequence of solutions whose total mass are unbounded,
which clearly contradicts the above assertion. In the larger range p > %, the
above assertion is no longer valid and we focus on solutions with possible isolated
boundary singularities concentrated at a point on X depicted by (2.6). We offer a
proof, which relies on a combination of localization techniques, Keller—Osserman
type estimates and weak formulation for nonhomogneous linear equations, to show
the removability of isolated singularities. Our results are new and cover [29,
theorem 1.17].

We prove the solvability for problem (P,) (theorems 2.5 and 2.6) by extend-
ing the method in [31]. When the boundary trace v has support in X, a crucial
ingredient in the proof of theorem 2.5 is the equivalence between the quantities
1K, [Vl e (4, ) and [[v]|g—v.p(s), where B~7P(%) is the dual of an appropriate
Besov space (see theorem 5.4). This allows us to utilize an approximation argu-
ment to prove the existence of a (unique) weak solution to problem (P.). When
v has support in 92\ X, we construct the Poisson kernel associated to —L,, and
adapt the idea in [32] to prove theorem 2.6. In this case, the effect of the potential
dgz is not pivotal as it can be seen that the critical exponent and the involved
capacities are the same as in the free potential case. To our knowledge, theorems
2.5 and 2.6 are the first existence results for problem (Py) expressed in terms

and p > we provide a proof
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of capacities in case 1 <k < N — 2, which complements or extends the results
in [21, 29, 32].

The source case is sharply different from the absorption case in several aspects
due to the distinct effect of the source nonlinearity and hence require a completely
different approach. Theorems 2.7 and 2.8 provide various necessary and sufficient
conditions for the existence of a weak solution to problems with source nonlinearity
(P?) for suppr C X and suppr C 99 \ X respectively. The proofs are in the spirit
of [5], requiring several sharp estimates to adapt nontrivially an abstract result in
[23] to our setting. Our theorems extend the existence results in [5, 6, 18, 33| and
can be regarded as a counterpart of the results in [20].

It is worth pointing out that the optimal Hardy constant Cq s defined in (1.2),
as well as the asymptotic behaviour of the first eigenfunction ¢, » in (1.4), the
Green function and the Martin kernel, are different from those in the case where
the potentials blow up on subsets of €. As a result, the critical exponents for the
existence of a solution to (P;) and (P?) and the employed capacities are different
from those in the [19, 20].

Organization of the paper. In § 3, we quote two-sided estimates of the Green
function and the Martin kernel from [3], recall the representation theorem and
results for linear and semilinear equations with an absorption established in [3].
In § 4, we give the definition of the L,-harmonic measures and show identi-
ties regarding the Poisson kernel and Martin kernel. Section 5 is devoted to
the derivation of various results for equation (EFL) such as a prior estimate,
removable singularities (theorems 2.1 and 2.2) and existence results (theorems
2.5 and 2.6). In § 6, we demonstrate necessary and sufficient conditions for
the existence of a weak solution to (P?) (theorems 2.7 and 2.8). Finally, in
appendix A, we provide the local representation of ¥ and € and construct
a barrier function for solutions under assumption that Q is a C? bounded
domain.

Notations. We denote by ¢, ¢, C... the constants which depend on initial param-
eters and may change from one appearance to another. The notation A 2 B (resp.
A < B) means A > ¢ B (resp. A < ¢ B) where ¢ is a positive constant depending
on some initial parameters. If A > B and A < B, we write A ~ B. Throughout the
paper, most of the implicit constants depend on some (or all) of the initial param-
eters such as N,Q, %k, n and we will omit these dependencies in the notations
(except when it is necessary). For a set D C RN, 1p denotes the indicator function
of D.

3. Preliminaries

3.1. Two-sided estimates on Green function and Martin kernel

In this subsection, we recall sharp two-sided estimates on the Green function G,
and the Martin kernel K, associated to —L, in 2, as well as the representation
formula for nonnegative L,-harmonic functions.

PROPOSITION 3.1 [3, proposition 5.3]. Assume that u < H? and A, 5 > 0.
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(i) If u < H? or p= H? and k > 0 then for any x,y € Q and x # y, there holds

. 1 doa(x) doa(y) }
G, (r,y) ~ min ,
pooy) = i { ey, PO

NCECESS ORI
ds; () ds(y)
(ii) If k =0 and p = H? then for any x,y € Q and x # y, there holds

1 doa(r) daa(y) }
lz —y[N=2" o —yV

(3.1)

Gu(x,y) = min{

vl

" <(|l”| + |z —yl) (yl + |« —y))_
|z[[y
doa(x)d . - -
A0 G0G) 1y (i {2 — y12, (o) o 1))
(lzlly[)=
(3.2)
PROPOSITION 3.2 [3, theorem 2.8]. Assume that p < H? and A\, 5 > 0.

(i) If u < H? or p= H? and k > 0 then

2 o
K (z,6) ~ Safgj)v <(d2(x)d;|f)_ ) ) for allz € Q, € € OQ.
(3.3)
(i) If k=0 and p = H? and then
d —g?)*
K (z,8) =~ |$BQ(§J)\1 <(|$|+||;3| < >
+d|8;(;)|1n(x—§)|, for all x € Q, £ € 05). (3.4)

Recall that the Green operator and Martin operator are respectively defined by
Gulrl(@) = [ Gulwp)drly). 7€ M),

() = | Ku(wy)av(y), ve mon).

A function u € L{ () is called an L,-harmonic function in Q if L,u = 0 in the
sense of distributions in 2.
Next we state the representation theorem which provides a bijection between the

class of positive L,-harmonic functions in € and the measure space M*(9Q).

THEOREM 3.3 [3, theorem 2.9]. For any v € M (9N), the function K, [v] is a posi-
tiwe L,-harmonic function in Q. Conversely, for any positive L, -harmonic function
w in €, there exists a unique measure v € IMMT(0N) such that u =K, [v] a.e. in Q.

https://doi.org/10.1017/prm.2023.122 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2023.122

Semilinear elliptic equations 13

3.2. Boundary value problems for linear equations and semilinear
equations

We recall the existence, uniqueness and Kato-type inequalities for solutions to
boundary value problems for linear equations.

THEOREM 3.4 [3, theorem 2.12]. Let 7 € M(Q; ¢, 5) and v € M(OQ). Then there
exists a unique weak solution u € L'(; ¢,.5) of

—Lyu=T m €,
tr, s (u) = v,

in the sense

- /Q WL € do — /Q cdr - /Q KWL, &de Ve € X, (),

where X,,(Q2) has been defined in (2.8). Furthermore
u=G,lr]+K,[v] ae inQ,

and for any ¢ € X,(Q), there holds

1
[l (i, 5) < )\*HTHM(Q;@@) + Cllvllaman),
m

where C' = C(N,$, %, n). In addition, if dT = fdx +dp with p € M(Q; P x2) and
[ €LY Qs ¢,5), then, for any 0 < ¢ € X, (), the following Kato-type inequalities
are valid

- [ iz ds < [ sentscas+ [ cdiol- [ Kbz,

- / utL,¢dx < / sign (u) f¢ dx —|—/ (dp+—/ K,[vT]L,Cdx.
Q Q Q Q
Here u™ = max{u, 0}.
PROPOSITION 3.5 [3, theorem 9.7]. Let v € MM(IN) and g € C(R) be a nondecreas-

ing function such that g(0) = 0 and g(K,[v+]), 9(K,[v-]) € LY(Q; ¢,.2). Then there
exists a unique weak solution u € L'(; ¢,.5) of

—Lyu+g(u)=0 in Q,
tr, s (u) = v,

in the sense that g(u) € L*(; ¢, %) and

—/uL#Cdx—l—/g(u)Cdx:—/KM[V]L#Cd:c V¢ e X, (9).
Q Q Q
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4. L,-harmonic measures and Poisson kernel
4.1. L,-harmonic measures

Let h € C(99). Then by [3, lemma 6.8], there exists a unique solution vy, of the
Dirichlet problem

L,wv=0 in
{v =h on 0. (4.1)
Let W be as in (2.4). The boundary value condition in (4.1) is understood as
) v(x)
lim = h for every compact set F C 0fd. (4.2)

dist (z,F)—0 W(.’IJ)
Let z € Q and set £, .(h) := up(2), then the mapping h — L, .(h) is a linear pos-

itive functional on C'(9€2). Thus, there exists a unique Borel measure on 9%, called
L,,-harmonic measure on OS2 relative to z and denoted by wg, such that

on(2) = [ h(y) dwi(y).
o0

Let 2o € Q be a fixed reference point. Let {€2,} be a C? ezhaustion of Q, i.e. {Q,}
is an increasing sequence of bounded C? domains such that

0, C i1, U, =9Q, HYH09Q,) — HYH09),
where HV~1 denotes the (N — 1)-dimensional Hausdorff measure in RY.

Then —L,, is uniformly elliptic and coercive in Hj(€2,) and its first eigenvalue

)\2’”2 in €2, is larger than its first eigenvalue A, x in Q.
For h € C(09,,), the following problem

—L,v=0 1inQ,
v=nh on 09y,

admits a unique solution which allows to define the L,-harmonic measure wg‘i on
02, by

o(zo) = /8 () e, )

Let G/?" (x,y) be the Green kernel of —L, on ,. Then Gf}n (,y) T Gu(z,y) for
x,y € Q,x #y.

PROPOSITION 4.1 [3, proposition 7.7]. Assume xg € Q1. Then for every Z € C(Q),

lim Z(2)W (z) dwl’ (z) = /6 . Z(x) dwd (z).

n—oo BQ"
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4.2. Poisson kernel

By the standard elliptic theory, we can easily show that for any = € 2, G uw(z,) €
CH7(Q\ (Zu{z}))NC?(Q\ {z}) for all v € (0,1). Therefore, we may define the
Poisson kernel associated to —L,, in © x (0Q\ X) as

P (z,y) = —aa%(w,y% re, yed\x, (4.3)

where n is the unit outer normal vector of 2. This kernel satisfies the following
properties.

PROPOSITION 4.2. Let xg € Q2 be a fixed reference point.

(i) Then there holds
Pu(@,y) = Pu(zo,y) Ku(z,y), 2 €Q, y€oQ\X. (4.4)

(ii) For any h € LY(99; dws?) with compact support in O\ X, there holds

/‘dedﬂm=PAmmmw. (4.5)
oN
Here

Pmm@:&&mWWWM%M,NQ

where Spq is the (N — 1)-dimensional surface measure on 0S).

Proof.

(i) We note that P,(-,y) is L,-harmonic in Q and

Pﬂ(m7y)_
xeﬂ,mﬂgm_o for all £ € 902\ {y} and ye€ I\ X.

Hence, Pu(@) iq 5 kernel function with pole at y and basis at xg in the sense
PIL(ZO 7y)

of [3, definition 2.7]. This, together with the fact that any kernel function
with pole at y and basis at z( is unique (see [3, proposition 7.3]), implies
(4.4).

(ii) Let ¢ € C(092) with compact support in 92\ ¥ such that dist (supp ¢, %) =
r > 0. Let Z € C(Q) be such that Z(y) = ((y) for any y € 9Q and Z(y) =0
in ¥z. Set ro = 1 min{f3, r} where 3 is the constant in (A.7). We consider
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a decreasing sequence of bounded C? domains {%,} such that
ECE1 CEpy1 C B C Xy C Brpy MypEy =3 (4.6)
Let ¢, be the unique solution of

{Lugﬁ* =0 inQ

o, =1 on 012, (4.7)

where the boundary condition in (4.7) is understood as

P« ()
1m =
dist (z,F)—0 W(:c)

=1 for every compact set F C 0f.

Then, by [3, lemma 6.8 and estimate (6.21)], there exist constants
o =c(§,25,8,, 1) and co =c2(, X, N, ) such that 0 < ¢ < du(x) <
cody,(z) =+ for all x € Q\ 3,,. By the standard elliptic theory, ¢. € C?(Q) N
C17(Q\ %) for any 0 <y < 1.

Now, for any n € C(02), we can easily show that w, is a solution of

—L,o=0 inQ\X%,
v=rn on 9(Q\ 3,)

if and only if w, = ¥ is a solution of

on
—div(¢2Vw) =0 inQ\ %,
w= - on 9(Q\ Xp).
o
Since the operator Ly, w := —div(¢?Vw) is uniformly elliptic and has smooth coef-

ficients, we may deduce the existence of L,-harmonic measure w on 9(Q2 \ £,,) and
the Green kernel G of —L, in \ X,
Let v,, be the unique solution of

—L,w=0 inQ\X, (4.8)
v=ZW ond(Q\X,). '
Then by the representation formula we have
w)= [ zWase)= [ vd),
A(Q\Z,) OQNsupp ¢
Proceeding as in the proof of [3, proposition 7.7], we may show that
vn(w) — C(y) dwiy(y) = v(z) asn — oo.
o0QNsupp ¢
On the other hand, the Poisson kernel P} of —L, in 2\, is well defined and
given by
oG,
Pl(zy) = =5 5 (@y), z€Q\Bn yed(Q)\ ),
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where n™ is the unit outer normal vector to 9(Q2\ X,,). Hence,
w@) = [ P26 ) dSil)
A(OQ\2,)

— [ Reww) W) dSen().
OQNsupp ¢

where Spq is the (N — 1)-dimensional surface measure on 9(2\ ,,). Combining
all above, we obtain

/ C(y) dut (y) = / Pl y)W()C(y) dSanly).  (49)
OQNsupp ¢ OQNsupp ¢

Put 8 = § min{dpq(z),ro}. Since Gh(z,y) / Gu(z,y) for any x # y and z,y €
Q, {G};(w,-) }n is uniformly bounded in VV2 *(Qg \ ZTO) for any > 1. Thus, by the
standard compact Sobolev embedding, there exists a subsequence, still denoted by
index n, which converges to G, (z,-) in C*'(Qg \ X,,) as n — oco. This implies that
P (x,-) — P.(z,-) uniformly on 0Q\ ¥, as n — oo.

Therefore, by letting n — oo in (4.9), we obtain

() dwh(y) = lim | ((y)W(y) dwi(y)

o0 n—o0 Jon

= lim [ P (x,y)¢(y)W(y) dSaa(y)

n—oo Jon

/8 P )W () dSon(v) (4.10)

By (4.10) and the fact that inf,cpo\x, Pu(zo,y) >0 Vr >0, we deduce that
W (E) = Bu[LW](x)

for any Borel set E C E C 9\ ¥. This implies in particular that wg’ and Saq are
mutually absolutely continuous with respect to compact subsets of 9\ X.

Now, assume 0 < h € LY(0Q;dws’) has compact support in 9Q\ X and
dist (supp h, 3) = 4r > 0. Then there exists a sequence of nonnegative functions
{hn} C C(09) with compact support in 9 \ ¥ such that dist (supp hy,, %) = 2r >0
for any n € N and h,, — h in L*(99; dw’) as n — oo.

Applying (4.10) with ¢ replaced by |h,, — hy,| for m,n € N and using the fact
that inf,ex, noa (P (20, y)W (y)) > 0, we have

[ n0) = mal st ) = [ Putzo, (o) = ha ) (4) dSon)
o0
/c/ 1 (9) = hn ()] S0 (0).
o0

This implies that {h,} is a Cauchy sequence in L'(9€). Therefore, there exists
h € L*(982) such that h,, — hin L*(9€). Since wg’ and Spq are mutually absolutely
continuous with respect to compact subsets of 9 \ ¥ and h and h have compact
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support in 9 \ X, we deduce that h = h wi-a.e. and Spo-a.e. in 9Q. In particular,
h e L'(09).
Applying (4.10) with ¢ replaced by h,,, for any n € N, we have

[ ) sy o / (20, 9)n (1) (3) dSo0a(1). (4.11)
By letting n — oo in (4.11), we obtain (4.5).

Next, we assume h € L'(99Q;dw(’) and drop the assumption that h > 0, then
we write h = hy —h_ where hy € L'(0Q;dw¢’). By applying (4.5) for hy, we
deduce that (4.5) holds true for h € L'(99Q; dwg?). Moreover, we can show that
hy € LY(99), which implies h € L' (9Q). O

PROPOSITION 4.3.

(i) For any h € L'(09Q; dwg?) with compact support in O\ X, there holds

T 0 T
- [ Buhdegpitmde = [ SL@h)W @) dSon(), ¥ € X, (@)
Q o0 On
(4.12)
(ii) For any v € M(IN) with compact support in O\ X, there holds
_/KML de=— [ Py—L quy), wex. ), @13)
o w a0 On """ Py(xo,y) g S .

where P, (zo,y) ts defined in (4.3) and X, (Q) is defined by (2.8).
Proof.

(i) Let ¢ € C(09) with compact support in 92\ X such that dist (supp ¢, ¥) =
r > 0. We consider a function Z € C'(Q) such that Z(y) = ((y) for any y €
C(09) and Z(y) =0 in Xz. Set ro = § min{/3y,r} where 3, is the constant
n (A.7). Let {X,} be as in (4.6), n € X,,(?) and v, be the solution of (4.8).

In view of the proof of proposition 4.2, v, € C'(2\ 3,) and

on(@) = [ )W (y) dw(y) = / PP ()W (1)C(y) dSoa(y).
oN o0
Put

@)= | Cw)dud(y) and w(z)= /m\c(yndwé(y).

o0
Then v, (xz) — v(x) for any = € Q and |v,(z)| < w(z) in Q\ 3,. By [30,
proposition 1.3.7],

—/ vnL,Z dx = — W( dsm, VZ € C2(Q\2,).  (4.14)
o\Z, I9)

By approximation, the above equality is valid for any Z e C(Q \ Zn), for
some v € (0,1) and AZ € L>*(Q2\ X,,). Hence, we may choose Z =,
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(4.14), where 7, satisfies

{ —L,n, =—L,n inQ\3%,

N =0 on 9(Q\ X,)
to obtain
T ann
— v Lynde = — W(—— dSsq. (4.15)
O\Z, o9 on

We note that 1,, — 1 locally uniformly in  and in C*(2\ 3;). Therefore, by
the dominated convergence theorem, letting n — oo in (4.15), we obtain

—/uLwdx:— VT/C@ dSsq. (4.16)
Q o0 On

Now, let h € L'(0Q;dwd) with compact support in 9Q\ ¥ such that
dist (supp b, X) = 4r > 0. By (4.5) we may construct a sequence {h,} C
C'(09) such that h,, has compact support in 9Q \ 3 with dist (supp hy,,2) > r
for any n € N. In addition, the same sequence can be constructed such that
hy — h in LY(09Q; dwg?) and in L1 (092).

Set

Up(x) = - K, (z,y)h,(y) dwd (y) = Kby dwd’](z), =€ Q.

Since K, (-, y) € C?*(2) for any y € 9, by the above equality, we deduce that
Uy — u locally uniformly in 2, where

u(z) = - K, (z,y)h(y) dw (y) = Ky[hdwP|(z), z € Q.

By (4.16) with v = u,, and ¢ = h,,, there holds

— / w, Lynde = — Whn@ dSsq. (4.17)
Q o0 On

Now, by [3, theorem 9.2], there exists a positive constant C' = C'(N,Q, 3, i, &)
such that [[un | zx (0, ) < C [ lhn|dwd (y) for all n € N and for any 1 <
K < min {—%ﬂ, %ig:i
in LY(Q; ¢u,x). Therefore, by Vitali’s convergence theorem, u, — u in
LY(Q; ¢, %) Letting n — oo in (4.17), we obtain (4.12).

}. This in turn implies that {u,} is equi-integrable

(ii) Assume dist (supp v, ) = 4r > 0 and let {h,} be a sequence of functions in
C(09) with compact support in 92\ ¥ such that dist (supp h,, %) > r and
h, — v, ie.

/ ChadSoq — [ ¢dv YC e C(o9). (4.18)
o0 o0
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In addition, we assume that [|h,||z190) < C||v|lom@q) for every n > 1, for

some positive constant C' independent of n.
Set

() — . hn(y) L
" oo )

By (4.5) and (4.18), we have

un(@) = | Ku(2,9)ha(y) dSealy) — | Ku(z,y)dv(y)
a0 a9

It means u,, — u a.e. in Q.

Finally, equality (4.13) can be obtained by proceeding as in the proof of (i)

and hence we omit its proof.

5. Semilinear equations with a power absorption nonlinearity

5.1. Keller-Osserman estimates

O

In this section, we prove Keller-Osserman type estimates for nonnegative

solutions of equation (F.).

LEMMA 5.1. Assume p > 1. Let u € C?(Q) be a nonnegative solution of equation

(E4). Then there exists a positive constant C' = C (2, %, p, p) such that

0 <u(z) < Cdag(x)_rfj, Vo € Q.
Proof. Let (B be as in § A.1 and 75, € C°(RY) such that

0<ng, <1, ng,=1inQs and suppng, C Qs

4 2

where Q, is defined in (2.2). For € € (0, f—%), we define

Vei=1—ng, + ngo(dag - 6)_% in \QE

(5.1)

Then V. >0 in Q\ Q.. It can be checked that there exists C' = C(€, By, pt,p) > 1

such that the function W, := C'V_ satisfies
—L,W.+WP=C(-L,V.+CP"'VP) >0 inQ\Q..
Combining (F4) and (5.2) yields

—Ly(u—Wo)+u? —WP <0 inQ)\ Q.
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We see that (u— W)t € Hj(Q2\ Q.) and (u — W.)* has compact support in Q'
Q.. By using (u — W)™ as a test function for (5.3), we deduce that

_ +12
02/ |V(u—W5)+|2dx—,u/ wdx
o\Q. 2\Q. ds,

—l—/ (uP — WP)(u— W)t da
0\Q.

_ +12
2/ |V(u—WE)+|2dm—,u/ w(ﬂx
o\Q. o\Q. ds,

> )\“72/ |(u— W) T2 da.
o\Q.

This and the assumption A, s > 0 imply (u — W.)* = 0, whence u < W, in Q \ Q..
Letting € — 0, we obtain the desired result. O

The following theorem is the main tool in the study of the boundary removable
singularities for nonnegative solutions of equation (E,). We assume additionally
that € is a C® domain which is needed to apply proposition A.2.

THEOREM 5.2. Letp > 1, F C X be a compact subset of 3 and dp(x) = dist (z, F).
We additionally assume that Q is a C® bounded domain. If u e C?(Q) is a
nonnegative solution of (EL) satisfying

lim — =0 V&€ I\ F, locally uniformly in 0OQ\ F, 5.4
e ) 3 \ y uniformly \ (5.4)

then there exists a positive constant C = C'(N,Q, %, i, p) such that

u(x) < Cdpo(x) dz(ﬂ?)_o“dF(x)fﬁﬂlffl Yz € (), (5.5)

\Vu(z)| < Cds(z) " dp(z) 71t "1 vz eq. (5.6)

Proof. The proof is in the spirit of [30, proposition 3.4.3]. Let 85 be the positive con-
stant defined in proposition A.2. Let £ € (3g, N99Q) \ F and put dpe = dp(€) <
1. Denote

1 1
Qf = EQz{yERN: drey€Q} and %6 := EZ:{yERN: dreyeX}.

If w is a nonnegative solution of (E) in  then the function
2
uﬁ(y) = d;‘jflu(dF,Ey)a y e an
is a nonnegative solution of

— Aub — K 2ué + (uf)p =0 (5.7)

|dist (y, X¢)|

in QF.
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Now we note that u¢ is a nonnegative L,, subharmonic function and satisfies
[by (5.4)]

ut(y)
im =
yeQs, y—P Wé(y)

1
=0 VPcB (5,2> N o0s,
drg

where
We(y) =1—n s +n 2 Wi(y) inQ°\ X,
dF.¢ aF,¢

n_ss is the scaled version of the function 7, defined before (2.4), and

dF.¢

We(y) =

{(dam (4) + dse (1) e (9) Eu<H g\

(doqs (y) + dse (y))dse (y) 7| Indse ()| if p= H?,

Set Rp = min{0s, 1}. In view of the proof of [3, lemma 6.2 and estimate (6.7)],
there exists a positive constant ¢ depending on €2, 3, 1 and

/ () dosss () dise (4)~~ dy (58)
B(ﬁf,ﬂ%o) nQs
such that
_ 1
ut(y) < cdpae(y) dse(y)™*~ Vye B (&Ro) nQs. (5.9)
dr(§)
Let rg = If—g and let w,, ¢ be the supersolution of (5.7) in %’(ﬁ{,ro) nQs
constructed in proposition A.2 with R = rg and z = ﬁf .

Taking into account of (5.9) and using a similar argument as in the proof of
lemma 5.1, we can show that

1
W (y) Swrely) Vye B (dpf’”)) N Qs

By (5.8), (5.9) and the above inequality, we may deduce that

W) < cdons)dse () W B (1s6 )05 G10)

where ¢ depends only on Q, 3, 1, p, the C? characteristic of Q¢ and the C? character-
istic of 2¢. As d re < 1the C? characteristic of Q (respectively the C? characteristic
of ¥) is also a C? characteristic of Q¢ (respectively a C2 characteristic of X%),
therefore this constant ¢ can be taken to be independent of £. Thus, for any
€ € (X3, NON) \ F such that dp(z) < 16, there holds

u(z) < edaa(z) ds(x) " dp(€) 7T Vo e B(6,mdp(€) N, (5.11)

where r1 = 75
Now, we consider three cases.
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Case 1: z € ¥y NQ and dp(z) <1. If dopa(x) < g dp(z) then there exits a
unique point in £ € 9N\ F such that |z — &| = dgq(x). Hence,
4+m

8—|—T‘1

dp(z) < B dp(€) and doo(z) < Zdp(€). This, combined with (5.11), (5.12) and
the fact that dp(z) ~ dp(§), yields

dp(€) < dpa(z) +dp(xz) <2

dp(x) <16, (5.12)

u(z) < Cds () dp(§) 717071 < Cdy(2) " dp(z) 717071,

If dgq(z) > g7 dp(z) > g ds(x) then by (5.1) and the fact that doo(z) ~

dp(x) ~ ds(x), we obtain

u(z) < Cdpa(2) 77 < Cdoa(x) ds(2) = dp(x) 7171,
Thus, (5.5) holds for every x € E% such that dp(z) < 1.

Case 2: z € Xy NQand dr(x) > 1. Let £ be the unique point in 9Q \ F' such that
|z —&| = daa(x). Since u is an L,-subharmonic function in B(¢,r1) N €, in view of
the proof of (5.10), we obtain

u(z) < Cdpg(z)ds(z) "~ < Cdag(z) ds(x) - dp(z) 71T~
Vr € B (&ﬁ;’) neQ,

where C' depend only on €2, 3, i, p.

Case 3: 2 € Q) E%. The proof is similar to the one of [21, proposition A.3] and
we omit it. (i) Let xg € Q. Put £ = dpq(z0) and

QE::%Q:{yGRN: ly € Q) and EK::%E:{yGRN: ly € &}

If © € B (0, 5) then y = ¢~z belongs to B (yo, ), where yg = {~1zg. Also we
have that 1 < dqe(y) < 2 and £ < dyse(y) for each y € B (yo, 2). Set v(y) = u(fy)
for y € B(yo, %) then v satisfies

1
—Av—%v+£2|v|p:0 in B yo, = |-
ds,, 2

By the standard elliptic estimates and (5.1) we have

sup  [Vou(y)| <C  sup  |u(y)] < Co(yo),
yeB(yo,}) yeB(yo,3)

This, together with the equality Vu(y) = ¢Vu(z), estimate (5.5) implies
|Vu($0)| < C€*1daﬂ(x0)d£a* (‘TO) dF(xO)—%-i-Ol,—l
< Cdz(x())_a*dF(xO)_pzﬁ"r(l_—l.

Therefore, estimate (5.6) follows since xg is an arbitrary point. The proof is
complete. O
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5.2. Removable boundary singularities

This subsection is devoted to the study of removable boundary singularities for
nonnegative solutions of equation (£ ) in the supercritical range. More precisely
we will prove theorems 2.1 and 2.2.

OL++1
04+71 ’
the proof in the other cases is very similar. Let u be a nonnegative solution of (E )

satisfying (2.5). By (5.5) with F' = 3, there holds

since

Proof of theorem 2.1. We will only consider the case u < H? and p =

u(z) < Cdpq(x) ds(z)™ Ve e, (5.13)

for some constant C' independent of .
Let {Q,} be a C? exhaustion of  and we write

a1 aqt1

o |u | @ = [ Gl

By the representation formula in €2,,, we have that

a++1

o)+ 6 (15 o0 = [ ut)auty () (5.14)

By (5.13), the definition of W in (2.4), estimate (A.9) and proposition 4.1, we
deduce

lim sup/ u(y) dwgy (y) < Climsup W(y) dwy (y) = Cwgy (092). (5.15)
o,

n—oo n—00 aﬂn

Since Gf}" (z,y) 1 Gulz,y) for z,y € Q,z # y, (5.14) and (5.15) yield

a++1

Gpulu+7"](zo) < Cwgy (09).

Hence, there exists another positive constant C' independent of u such that

[T austay < c. (5.16)

a++1
Consequently, the function v = w+ G, [u*+~"] is a nonnegative L,-harmonic in .
This, together with theorem 3.3, implies the existence of a measure v € IMT(IN)

such that

ay +1
u+ Gy [u“i‘l} =K,[v] inQ. (5.17)

By proposition 4.1 and (5.13), we may deduce that v has compact support in X.
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Next we will show that v = 0. Suppose by contradiction that v £ 0. Let 1 < M €
N and vy, be the positive solution of

Oé++1
—LS"UM,TLJ'_U]\%:;_I =0 in Qn
Vi = Mu on 08,,.

Since Mwu is a supersolution of the above problem, we have that 0 < vz, < Mu

in Q, for any n € N. As a result, there exists vy, € C*(Q) such that var, — v
a++l

locally uniformly in ©Q and L vy + v;;’*l =0in Q. As vy < Mu, it follows that
vy satisfies (2.5) and hence thanks to theorem 5.2, estimate (5.5) holds for vy,
with F' = ¥, namely

vp () < Cdpq(x) ds ()™ Vo e Q, (5.18)

for some constant C' independent of vy;. By using an argument similar to the one
leading to (5.16), we derive

oy +1

[ ow) ™ 65 dy < Co (5.19)
Q

for some constant Cy independent of vy;. Also, by the representation formula we

have

a++1

M (T) + Gf}" U;\an] () =M u(y) dwg, (y), Vo e (5.20)

oy,

From (5.17), we have

g +1

/a uly) deta, (v) = /8 (K, [v)() - G, [} (v)) o, (v)

a++1

~K ) - [ e[ ] wauh, )

n

By proposition 2.7 (ii), we find
oy +1
lim G, [u‘”‘l} (y) dwg, (y) = 0.
n—o0 Joq.

Hence, letting n — oo in (5.20), we obtain

oy +1

v;fI]—M]K#[u] inQ, VM >0.

v + Gy

We see that the above display contradicts with (5.18) and (5.19). The proof is
complete. O

Next we turn to
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Proof of theorem 2.2. Without loss of generality, we may assume that z = 0. Let
¢ :R —[0,00) be a smooth function such that 0 < ¢ <1, ¢(¢t) =0 for |[¢{] <1 and

¢(t) =1 for [t| > 2. For € > 0, we set (.(x) = ((li—‘) Since u € C?%(Q2), there holds
L, (Cu) = uAl + (uP +2V(. - Vu in Q.

By (5.5) and (5.6) with F={0} C X, (1.4) and the estimate fzg ds(z) > dx <
BN~ for a < N — k, we have

/ CuPg, zdﬂ:ﬁsf%ﬂa,fl)p/ dsy(z) PTD=02) gz < 8,%“%71){
« 7 QN {lz|>e}
(5.21)
/U|AC5|¢M,Z dr < 67%7%"**3/ d2<x)2—2a, dr
@ Qn{e<|z|<2e}
seET s, (5.22)
/ IV Vulgusdr S 57%““”/ ds(z) 72l da
@ Qn{e<|z|<2e}
sV s (5.23)
The estimates in (5.21) hold because of the assumption p > 1if oy =1lorp < %
if ay > 1. For the last estimate in (5.22) and (5.23), we have used the assumption

N—a_+1
p 2 N—a_—1°

Estimates (5.21)—(5.23) imply that L,(C.u) € L' (% ¢, 5). By [3, lemma 8.5], we
have

— /Q Cul,nde = —/Q (uAC + CuP +2V(. - Vu)ndz, Vne X, ().
Taking 1 = ¢,,,5;, we obtain
Aus /Q Ceugy s de + /Q CuPo,sdr=— /Q (uAC +2V(. - Vu) ¢, 5 du.
By (5.22)—(5.23), we have
Aus /Q Cudys dz + /Q CP s de < CeN—rTa-—1

By letting ¢ — 0 and Fatou’s lemma, we deduce that

. N+a_+1

0 lfp> ﬁ;

)\H,E/ UGy, s dx+/ upq/)u)z de < N—i—g:—l—l
Q Q 1 ifp= ——.
N—a_—1

This implies that uw =0 if p > x:g:i oru€ LP(Q0,x)ifp= %:Ziﬂ
The rest of the proof can proceed as in the proof of theorem 2.1 and we omit
it. O
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5.3. Existence of solutions in the supercritical range

In this subsection, we discuss the existence of solutions for the following problem

—Lyu+|uftu=0in Q,
{ el (5.24)

tr, s (u) = v,

where p>1 and v € M(IN). We will focus on the supercritical case p >
N+1 N—a_+1
N—1"N—-a_

the existence of Solutlons to (5.24).

To this purpose, we use Besov space (see e.g. [1, 35]). For 0 >0, 1 < k < 00,
we denote by W?*(R?) the Sobolev space over R If ¢ is not an integer the
Besov space B7"(R%) coincides with W7*(R%). When o is an integer we denote

Apyf = flz+y)+ fl@—y) —2f(x) and

min{ 1}. In particular, we will give various sufficient conditions for

BY (R = {f € L*(RY): Aﬁ’i{f € L*(R* x Rd)} 7
y K

with norm

||fBM:—(||f|L~ L1 |j3ﬂ“dxdy)”.

Then
B™" (RY) : ={fewm " #(RY) - DO f e B (RY) Va e N? such that |a| = m—1},

with norm

DS AL, 1
o= W+ X [ [ PealE aeay

|a]=m—1

These spaces are fundamental because they are stable under the real interpolation
method developed by Lions and Petree.

It is well known that if 1 <k < oo and a >0, L, .(R?) = W*H(R?) if o €
N. If a ¢ N then the positive cone of their dual coincide, i.e. (L_q . (R%))" =

(B~ (R4)) | always with equivalent norms.

LEMMA 5.3. Let k> 1, p be as in (2.14), and v € MT(R*) with compact support
in BF (0, %) for some R > 0. Set

o +1—plag —1)
; :

Y=

(5.25)
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For x € RF*Y we write = (v1,2') € R x RF. Then there ewists a constant
C =C(R,N,k,pu,p) >1 such that

ct ||V||%70,p(Rk)

R
</ / e G
B*(0,R) J0

P
x / (21 + |2’ — y’|)_(N_2a_) dv(y) | dayda’
BF(0,R)

<C HVH%w,p(RIg .

Proof. The proof is very similar to that of [19, lemma 8.1], and hence we omit
it. O

THEOREM 5.4. Let k > 1, p be as in (2.14), and v € MT(9Q) with compact support
in X. Then there exists a constant C = C(Q, %, 1) > 1 such that

c HVHBfﬂ,p(E) < ||KN[V]||LP(Q;¢M‘E) <C HV||B,19,,,(E) ’
where 9 is given in (5.25).

Proof. By (A.7), there exists &/ € 2, j =1,2,...,my (where my € N depends on
N,3%), and B € (0, 2) such that QN ¥, C U2 Vs(&, 2) nQ.

Assume v € MT(IQ) with compact support in EﬂVz(fj,%) for some j €
{1, ey mz}.

On one hand, from (1.4), (3.3) and since p <

K, [v]P dz
/vag(gﬂ'/’;) u[ ] ¢u72

Z v(0)? / doq(x)P T ds (2) PV da > v(9Q)P.
QNVs (¢, 50)

ap+1
ap—1

and ay > a_, we have

On the other hand,

/ K,[v]Pé, s dx
Q\Vs(67,50)

< v(09)P / doq(x)P T ds (2) =P da < v(9Q)P.
O\Vs(69,52)

Combining the above estimates, we obtain

/ 6, 5K u[]P d = / 6K [V der + / 65K [V dr
Q Q\Vs(e7,52) Qnvs(¢7,52)

2

~ Pdzx. .
AQVE(EJ750) ¢H’ZKH [V] . (5 26)

2
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For any z € RN, we write = = (z/,2",zy) where ' = (zy,...,23), 2" =
(Tpit1,-..,zn_1) and define the C? function
i J i
D(z):= (x’,ka—I‘iJrLE(x’), C O TN-1— Fi{,l,z(ﬂcl)ﬂﬁN - 1"%,739(331, ceyTN_1))-

Taking into account the local representation of ¥ and 92 in § A.1, we may deduce
that ® : Vs (€7, By) — B*(0, 8y) x BN =17(0, By) x (— P, Bo) is C? diffeomorphism
and ®(z) = (2/,0gn-x) for x = (2/,2"",2n) € E. In view of the proof of [1, lemma

5.2.2], there exists a measure 7 € 9+ (R*) with compact support in B* (O, %) such
that for any Borel E C B* <0, %) , there holds 7(E) = v(® 1 (E x {Og~n—+1})).
Set ¢ = (¢, 4", 1pn) = ®(z) then

w/ = ,CC/, w”l = (:L'kJrl — Fi;l’z(l'/), vy N1 — Ff\;q,z(x/)) and wN

g
=y — I‘%ag(xl, CeyTN—1)-

By (1.4), (A.6) and (3.3), we have

bus(@) = Yn (N + [0"]) 7,
K. (z,y) = On(n + [9") 7 (W + 7|+ |9 =y [)~ 720,
Ve e V(E,8)NQ, Yy =,y yn) € V(E,B) NE.

Therefore,

/ ¢u,ZK£[V] dx
QNV(&7,60/2)

Ba
N : o = (p+1)c—
/’3’“(07@)/0 /BN—k_1(07;32()) 77[]]\] (¢N+|w |)

P

(/ ; (¢N+w“'|+|¢'—y’)—<N—2“>du(y’)> g dyw dv' - (5.27)

B*(0,52)
Bo

m/ /T PN—k—1—(p+1)(a——1)
B*(0,52) Jo
P
( / <r+|w’y’|><““2>du(y’)> dr de/.
B (0.5)

Since v—rvo®~l is a C? diffeomorphism between 9 (3N Vs(&7,5y)) N
B7UP(SN Vs (¢, Bo)) and M (B*(0, 60)) N B="2(B*(0, Bo)), using (5.26), (5.27)
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and lemma 5.3, we derive that

O Wl -0y < KW g, o) < C IVl pongsy -

ma

If v € MT(AN) has compact support in ¥, we may write v = ijl
v; € IMH(0Q) with compact support in V(£7, %) N Y. By (5.26), we can show that

v;, where

mo ma2
I 2o 0, ™S a5 s, o S C S 15l omisy ~ € [l
j=1 7j=1

The proof is complete. O
Using theorem 5.4 and proposition 3.5, we are ready to prove theorem 2.5.

Proof of theorem 2.5. If v is a positive measure which vanishes on Borel sets £ C X
with Capﬂsfp,-capacity zero then there exists an increasing sequence {v,, } of positive
measures in B~?P(X) which converges weakly to v (see [10, 16]). By theorem 5.4,
we have K,[v,| € LP(Q; ¢, x), hence we may apply proposition 3.5 with g(t) =
[t|P~1t to deduce that there exists a unique nonnegative weak solution wu,, of (5.24)
with tr, s (u,) = vy,

Since {v,} is an increasing sequence of positive measures, by theorem 3.4, {u, }
is increasing and its limit is denoted by u. Moreover,

- / un L, der/ uP(dr = 7/ K,[vn]L,(dx V¢ e X, (). (5.28)
Q Q Q

By taking ¢ = ¢, = in (5.28), we obtain

/Q (Austn +up) ¢psde = Ay s /Q Kyu[vn]opus dz,

which implies that {u, } and {u?} are uniformly bounded in L*($; ¢,, 52). Therefore,
up, — uin L' (Q; ¢, x) and in LP(2; ¢, ). By letting n — oo in (5.28), we deduce

/ —ulL,(dz Jr/ uP¢de = 7/ K,[v]L,(dzx V(e X,(Q).
Q Q Q
This means u is the unique weak solution of (5.24) with tr, »(u) = v. O

Proof of theorem 2.6.

1. Suppose u is a weak solution of (5.24) with tr, »(u) = v. Let 5 > 0. Since

Sz (7) = C(B) dopa(r) and K, (z,y) ~ C(B) doa(w)|z — y| =",
V(z,y) € (Q\ Xg) x 0Q, (5.29)

proceeding as in the proof of [32, theorem 3.1], we may prove that v is

N-—1
absolutely continuous with respect to the Bessel capacity Cap’s oo
2,
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2. We assume that v € M+ (9Q) N Bfﬁ’p(aQ) has compact support F € 9\
Y. Then by (5.29), we may apply [32, Theorem A] to deduce that K,[v] €
LP(Q2\ Xg; ¢,.5) for any 3 > 0. Denote g,,(t) = max{min{|¢t|P~ ¢, n}, —n}. By
applying proposition 3.5 with g = g,,, we deduce that there exists a unique
weak solution v, € L'(%; ¢, 5) of

{_L;ﬂjn + gn(vn) =0 in O (530)

tr, n(vn) = v,

such that 0 < v, < K,[v] in Q. Furthermore, by (3.5), {v,,} is non-increasing.
Set v = limy, o0 Uy, then 0 < v <K, [v] in Q.
Since vy, is a weak solution of (5.30), we have

7/ an“Cder/ gn(vn)(dx:f/ K,[vn]L,(dr V¢ e X, ().
Q Q Q

By taking ¢, 5 as a test function, we obtain

/ Apztn + gn(vn)) dpxde = Ay s / K[V, s dz, (5.31)
Q Q

which, together with by Fatou’s lemma, implies that v,v? € L'(; ¢, ) and

/Q (Apzv+0P) gpsde < Ay /Q Ky [v]op,s dz.

Hence, v + G,[v?] is a nonnegative L,-harmonic function. By the representa-
tion theorem 3.3, there exists a unique 7 € M (9N) such that v + G, [vP] =
K, [7]. Since v < K, [v], by proposition 2.7 (i), 7 = tr, n(v) < tr, s(K,[v]) =
v and hence 7 has compact support in F'.

Let 8> 0 be small enough such that F ﬂiw = (). We consider a cut-off
function 1 € C°(RY) such that 0 < 5 < 1in RY, ¢35 =11in Q\ E% and
Yz =01n i%" Let ¢g be the eigenfunction associated to —A in €2 such that
SUP,eq @0 = 1. Let n € C°°(99Q) such that n =0 on 9Q N Xy3. We consider
the lifting R[n] in [32, (1.11)]. Then R € C*(Q) has compact support in Qg,
for some [y > 0 small enough. In addition, |VR[n]- Vo| < ¢ in ©Q, and
R[n] = n for any = € 99.

Then the function g, = YgR[n]¢o € C7(Q) NX,(Q) for any v € (0,1),
g, =0 on 09 and has compact support in €2\ E% Hence, by (4.13) and

the fact that alg% = %n on 952, we obtain

0
AFMWM+WWM®=—/ bo__1

- %71%(%0, o) dv(y). (5.32)

Also,

0o m

” 877Pu(mo,y) dv(y). (5.33)

LP%%%WWWMWMM=—
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Since v < v, < K,[v] and K, [v] € LP(Q\ D ¢u,x), by letting n — oo in

(5.33), we obtain by the dominated convergence theorem that

Do n

. 8?7Pu(xo, m dv(y). (5.34)

/Q(_”L;ﬂ/}ﬁ,c +vPYp,c) dr = —

From (5.32) and (5.34), we deduce that

dpo 1 dpo 1 _
S BT gy =— [ LT g
/asz on P,(xo,y) v(v) /aQ on Py(zo,y) 7w,

which implies that v = 7, since f% ~1in 09, P,(xo,y) =1 in 0Q\ E%
and v, 7 have compact support in 92 \545.

3. If v € MH(9N) vanishes on Borel sets £ C 9Q with zero Capﬂg\;l-capacity
2

and has compact support in 92 \ ¥ then there exists a nondecreasing sequence

{vn} of positive measures in B*%’P(m) which converges to v (see [10, 16]).

Let u,, be the unique weak solution of (5.24) with tr,, s;(u,) = v,. Since {v, } is

nondecreasing, by (3.5), {u,} is nondecreasing. Moreover, 0 < u, < K,[v,] <

K,[v]. Denote u = lim,,_, o u,. By an argument similar to the one leading to
(5.31), we obtain

/Q (A;L,Zun + U%) (b;L,E dz = AM,E /Q Ku [Vn]¢u,2 dl‘,

which yields that u,u? € L'(;¢, ). By the dominated convergence
theorem, we derive

/ (—uL,C +uP¢) do = f/ K, [v]L.dz V¢ € X, (Q),
Q Q

and thus u is the unique weak solution of (5.24).

4. If 1 pv is absolutely continuous with respect to Capﬂg\;l for any compact set
2,
F C o0\ X, we set v, = lgpo\x, ¥ and u,, the weak solution of (5.24) with

tr, s (un) = Vp. By using an argument similar to that in case 3, we obtain the
desired result. ]

6. Semilinear equations with a power source nonlinearity

In this section, we study the following problem

(BVP?)

—Lyu=|uP™'u in Q,
tr, n(u) =ov,

where p > 1, ¢ is a positive parameter and v € 9™ (9Q).
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We remark that a positive function u is a weak solution of (BVP?) if and only if
u=G,[uf] +0K,[v] ae. in Q. (6.1)

In the following proposition, we give a necessary and sufficient condition for the
existence of solutions to problem (BVP7).

PROPOSITION 6.1. Assume u< H?, p>1 and v €M (0N). Then problem
(BVP?) admits a weak solution if and only if there exists a positive constant C' > 0
such that

GuK,[V]P] < CK,[v] a.e. in Q.
Proof. The proof is similar to that of [20, proposition 6.2] with some minor
modifications, and hence we omit it. O
6.1. Preparative results
For aa < N, set

max{|z — y|, ds(x), ds(y)}*
|z — yIN =2 max{|z — y[, doa (), doa (y)}*’

Na(z,y) == (z,y) €QxQz#y,

Ny [w](z) := ﬁ./\/@(3,‘,3/) dw(y), weMm(Q). (6.2)

Let « < N, b>0,0>—N+k and s > 1. We define the capacity Capﬁff’s by

Caply’ (E) = inf{ [ Bodhd® do: ¢ > 0, Naldigdld) >1E}
Q

for any Borel set £ C Q.

Here 15 denotes the indicator function of E. By [1, theorem 2.5.1], we have
(Capri” . (E)

If p < NTZ and v € MH(99Q), then, by (3.1) and (3.3), we can show that
Gulz,y) = doa(x) doa(y)(ds(z) ds(y)) " Noa_(z,y) Vz,y€eQa#y (6.3)

1
s

= sup{w(E) : w € M (E), |Ny[w]|

L' (QidY,d%) < 1}-

and
K, (z,y) = doa(x) ds(z) " Naq_(z,y) Y(z,y) € Q x Q. (6.4)
Therefore, if the integral equation
v = Nay_ [(doads” ™ )PP + Ny, _[V] (6.5)

has a solution v for some ¢ > 0 then © = dpady," v satisfies
0~ GL[0P] + 1K, [v]. (6.6)

This, together with [5, proposition 2.7], implies that equation (6.1) has a positive
solution u for some o > 0, whence problem (BVP?) has a weak positive solution u
for some o > 0.
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In order to show that (6.5) possesses a solution, we will apply the results in [23]
which we recall here for the sake of completeness.

Let Z be a metric space and w € M (Z). Let J:Z x Z — (0,00] be a Borel
positive kernel such that J is symmetric and 1/J satisfies a quasi-metric inequality,
i.e. there is a constant C' > 1 such that for all z,y, z € Z,

1 1 1
7o < eyt 7)) (67)

Under these conditions, one can define the quasi-metric d by

1
J(z,y)

and denote by B(x,r) :={y € Z: d(x,y) < r} the open d-ball of radius » > 0 and
centre x. Note that this set can be empty.

For w € M™(Z) and a positive function ¢, we define the potentials J[w] and J[¢, w]
by

d(z,y) :=

waw:AJ@ymmw wdﬂmﬂ@%:LJ@wW@MMm

For t > 1 the capacity Capj; in Z is defined for any Borel set E' C Z by

Capy,(E) := inf {/ o(z) dw(z) : ¢ >0, J[¢,w] > ]IE}.
z
PROPOSITION 6.2. ([23]) Let p > 1 and A\,w € MT(Z) such that

/Qrw(%(z,S)) dsgc/r&f’s))ds, (6.8)
0 0 S

52

o [[eBu) o [ Bs)
sp)/o d<0/ ds, (6.9)

2 2
yEB(z,r B} 0 S

for anyr >0, x € Z, where C' > 0 is a constant. Then the following statements are
equivalent.

1. The equation v = J[|v|?,w] 4+ LJ[A] has a positive solution for £ > 0 small.
2. For any Borel set E C Z, there holds fEJ[]lE)\]pdw < CAE).

3. The following inequality holds J[J[A]P,w] < CI[A] < 0o w — a.e.

4. For any Borel set EE C Z there holds \(E) < C Capy ,, (E).

We will point out below that N, defined in (6.2) with dw = dpq () ds(z)%1q(x)
dx satisfies all assumptions of J in proposition 6.2, for some appropriate b,0 € R.
Let us first prove the quasi-metric inequality.
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LEMMA 6.3. Let a < N. There exists a positive constant C = C(Q, X, ) such that

1 1 1 _

Proof. Case 1: 0 < a < N. We first assume that |z — y| < 2|z — z|. Then by the
triangle inequality, we have dx(z) < |z — z| + ds(z) < 2max{|z — z|,ds(z)} hence

max{|x — z|,ds(z),ds(2)} < 2max{|z — z|,ds(x)}.

If | — z| 2 ds(x) then |z — z| = dsq(x) which implies that |z — z| > W.
Now,

|z — 2|N "2 max{|x — 2|, doq (), doa(2)}?
max{|z — z|,dx(x),ds(z)}*

> 27a|x o Z‘Nfa > 272N+a(|x o y| + dag(l’))Nﬁa

2

_ g-2nta ([T =yl + doa(@)™ | |o —y|V "2 max{|z — y|, daa(), don(y)}

>
(Jz —y| + doa(z))> ~ max{|z — y|, ds (), ds(y)}* ’
(6.11)
since dpq(z) < ds(z).
If |z — z| < ds(x) then
|z — 2|V "2 max{|x — 2|, daq (), daa(2)}?
max{|z — z[, ds(z), ds(2)}*
> 27 2 dy(x) Y x — z:|N_2 max{|z — y|, daq (2)}?
N-2 2
> |$ — y| max{|x - y\,dag(x), daﬂ(y)} (6.12)

~ max{|z — yl|,ds(x),ds(y)}* 7

since daq(y) < |z — y| + doa(z) < 2max{|z — y|,ds(z)}. Combining (6.11)—-(6.12),
we obtain (6.10).

Next we consider the case 2|z — z| < |z — y|. Then 1|z —y| < |y — z|, thus by
symmetry we obtain (6.10).

Case 2: a < 0. Let b € [0, 2], since ds(z) < |z — y| + ds(y), it follows that
max{|z — yl,ds(z),ds(y)} < |z -yl + min{dz (), ds(y)}-
Using the above estimate, we obtain

| — y[N " max{|z - y|, ds(2), ds(y)}

< e —yN 77+ min{ds (), ds(y)} e —y[V
Sl = 2Ny — 2N min{ds(2), ds(y)} (o — 2V 0+ y - 2V
- |z — 2|V ° N |z —y[V P .
~ max{|z — z|,ds(z),ds(2)}*  max{|z —y|,ds(2),ds(y)}*

(6.13)
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Since doq(x) < |z — y| + doa(y), we can easily show that max{|z — y|, doq(x),
doa(y)} < |z —y| + min{dpa(z), doa(y)}. Hence,

1 max{le —y| doa(z), doa(y) |z — y|¥ 2
Na(xvy) maX{\m —y\,dg(x),dg(y)}“
2|z —y|V 2min{dao(x), daa(y) }*lz — y/N >

S max{fe =yl ds (@), d@)}" | max{fe — yl ds(2), ds(y)}°
The desired result follows by the above inequality and (6.13). |
Next we give sufficient conditions for (6.8) and (6.9) to hold.
LEMMA 6.4. Let b >0, 0 +b >k — N and dw = dapg(z)? ds () 1q(z) dz. Then

w(B(z, 5)) ~ max{dpq(z), s}’ max{ds(z), s}?s",

for all z € Q and 0 < s < 4diam(2). (6.14)

Proof. Let By, 31,32 be asin § A.1 and s < % We first assume that x € X, .

3 &

Case 1: dpg(z) > 2s. Let I' = 09 or . Then 3dr(z) < dr(y) < 3dr(z) for any
y € B(z,s), therefore (6.14) follows easily in this case.

Case 2: dopg () < 2s and ds(x) > 2s. By estimate (2.9) in [5, Lemma 2.3], we have
that

/ daa(y)? dy ~ max{daq (), s}’s". (6.15)
B(z,s)NO

Therefore,
[ don(w) (o)’ dy = (o)
B(x,s)NQ
/ daa(y)bdy ~ max{dsq(z), S}b max{ds(z), s}esN.
B(z,s)NQ

Case 3: dogg(x) < 2s and dx(z) < 2s. By (A.2), there exists £ € ¥ such that
B(z,s)NQ C Vx(§,00). fy € B(x, s), then |y — 2’| < s and ds(y) < ds(x) + |z —
y| < 3s. Thus, by (A.3), 5%(@/) < Cys for any y € B(z,s) N Q, where C depends on
IX||cz, N and k. Therefore,

/ dm@MmM@S/ / (05,(1)"+ dy"dy’ = sV
B(z,s)NQ (o' —y'|<s} {5§(y)<C15}

~ max{dpq(z), s}’ max{ds(z), s}?s".

Here the similar constants depend on N, k, ||X||c2 and Sy.
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Case 4: dpq(r) < 2s and dx(r) < 2s and 6 < 0. We have that dx(y)? > 3%s% for
any y € B(x, s). Hence,

/ do(y)’ ds(y)° dy = s° / dosa(y)® dy
B(x,s)N B(x,s)N

~ max{dpq(z), s}* max{ds(z), s}?s".

Case 5: dpq(x) < 2s and dx(z) < 2s and 6 > 0. By (A.7), there exists £ € ¥ such
that B(z,s) NQ C V(& Fo). Let Cx, Chq be as in (A.3), A be as in (A.5) and
Cz = max{Cs|Zlc2, Con[|09]lc2}(A +1).

We first assume that dgq(z) < 12NC ds(x) < 121\5[C2. Set

A={ = ¢") €Q: o' = | <ro, [6()] < 7o, [625()] <70},

where rg = m. By (A.3), we have 5%(:10) < 712N(‘5;4+1) and 559(;10) < 712N(5;4+1).
In addition for any y € A, we have

|2 — 4| < 85(2) + 65 (y) (Z D5 (@) — Ty ’)|2>

i=k+1

<o+ (N =B)|IS]lez2’ — | + A85 5 (y) + 65 (y)) < s,

i
3
where in the last inequality we used (A.5). This implies that A C B(z,s).
Consequently,

/ doa(y)" ds(y)’dy
B(z,s)N$2
<[ W) 2 [ 500 + 85 ) dy
B(z,s)N A
~ sV ~ O ~ max{daq (), s}° max{ds(z), s}?s". (6.16)

If doo(z) < 3xe; and ds(2) > re; then
b 0 b 0
/ doa(y)’ ds(y)" dy > / doa(y)” ds(y)” dy
B(z,s) B(z,m)

and hence (6.16) follovvs by case 2.
If dag(a)‘) = 12NC then

/ doa(y)’ ds(y)’ dy > / doa(y)’ ds(y)’ dy
B(x,s) B(J;,m

and hence (6.16) follows by case 1.
Next we consider z € Q\ X, and s < % Then ds(y) =1 for any y € QN
4

B(z,s). This, together with (6.15), implies the desired result.
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If % < s < 4diam(Q) then w(B(x, s)) & 1, hence estimate (6.14) follows straight-
forward. The proof is complete. O

LEMMA 6.5. Let a« < N, b>0, 0 >max{k— N —b,—b—a} and dw = dpq(x)"
ds(z)? 1g(z)dz. Then (6.8) holds.

Proof. We note that if s > (4diam (Q))V =% then w(B(z,s)) = w(Q) < oo, where
B(x,s) is defined after (6.7), namely B(z,s) ={y € Q\X:d(z,y) < s} and
d(z,y) = 5~ (196 o7 Let M = (4diam )NV~ We first note that it is enough to show

that
, 2N . aN N
= g
dag(ﬂ?) NﬁZdE(I) N—-24N -2 ifsgdag(x)ng(:c)’a,
b+ N , b+ N
o ta
s N ds(x) N if d@g(x)ng(x)fo‘
w(B(x,t)) =~ < s <dg(x)Ne,
b+60+N
s N—a ifdg(z)V " <s< M,
b+0+ N
M N-—«a if M < s.
(6.17)
Indeed, by the above display, we can easily deduce that
[ e,
2
0
, 2N . alN 2
e n _c
doo(z) N —2ds(x) N—=25N—-2 ifs<da(x)Nds(z)™?,
b , b+ N
il ‘o
sN dx(x) N if dpq ()N ds(z)~*
~ < s <dg(x)N7e, (6.18)
b+ 60+«
s N—« if ds(2)N-% < s < M,
b+ 60+ «
M N—-«a if M < s,

since b > 0 and b+ 6 4+ « > 0. This in turn implies (6.8).
In order to show (6.17), we will consider three cases.

Case 1: s < dgq(7)N ds(x)~.

(a) Let y € B(z, s) be such that dpo(z) < |z —y| and dx(x) < |z — y|. Then

v
Na(z,y)

y|Ne,

~r—
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thus if |z —y|V = < s < dpa(z)N ds(x) ™ < doa(z)V = then dpq(r) ~ ds(z) ~
| — y|. Hence, there exist constants Cy, Cs depending only on «, N such that

{veQ:la—yl < ilds(@) don(2)25) %2, don(x) < |z —yl, ds(@) < |o — y|}
1
e i <o donte) <l dsto) < lo o}
c {ye:ila—yl < Cods(w) don(x) %) 77, doo(x)
<le—yl, de(@) <o — 9|} (6.19)
(b) Let y € B(x, s) be such that dpo(z) < | — y| and ds(x) > |z — y|. Then

1 N _
—_— x|z — d @
Na(x,y) |J} y‘ E(‘T) )

thus if |z — y|Nds(z)~* < s, then |2 — y|V < sds(2)® < dpa(z)N. Thus, daqo(z) ~
| — y|. Hence, there exist constants C, Cy depending only on «, N such that

{veQila—yl < O1(ds(@) don(@) %) ¥, doa(@) < [z — 9], ds(@) > |~ yl}
C {y €N m < s, doa(z) < |z —yl, du(z) > |x—y|}
c {ye o~y < Calds (@) don(x)25) 72, doa(w)
<o —yl, ds(@) > 2 gl |-
(c) Let y € B(z, s) be such that dpq(x) > |x — y|. Then, ds(z) > doa(z) > |z — y|
and

v
Nalz,y)

Hence, there exist constants C7,C5 depending only on «, N such that

2 |3: — y|N_2dQQ($)2dz ($)_a.

{x €Q: |z — y| < Cids(z)don(z)"28) T2, doa(z) > |z — y|}
1
0:—— <s.d _

c {x €|z — y| < Colds(2)%don(x)"28) T2, doa(z) > |z — y|} . (6.20)

Combining (6.19)—(6.20) and lemma 6.4, we deduce

alN N

w(B(z,s)) = w(B(zx,s1)) ~ dag(x)b_% ds(x)0 T N=2 572

where 51 = (dg(:v)o‘dag(x)”s)ﬁ.

Case 2: doq(z)N ds(z)™ < s < dg(z)N >,
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(a) Let y € B(z, s) be such that doo(z) < |z —y| and dx(x) < |z — y|. Then

1
~ o —y N

Na(z,y) ~

Thus, if |z —y|N =% < s <ds(z)V~* then dx(z)~ |r —y|. Hence, there exist
constants C,Cy which depending only on a, N such that

{veQilo—yl < ilds@)9), don() < |z — ], ds(x) < |z — |}
1
Q:——— <5 < |z —yl, <z —
C{ye No(oy) s, doqa(z) < |z —yl, ds(z) < |z y}

c {yeila—yl < Calds(@))¥, don(w) < |z — g, d(2) <|a—yl} .
(6.21)
(b) Let y € B(z, s) be such that dpq(x) < |z —y| and dx(z) > |x — y|. Then

1
Nalz,y)

~ |z =y ds (@),
Hence, there exist constants C7, Cy depending only on «, N such that
{veQ:lo—yl <Cilds@)*9)?, don(a) < 2=y, ds(x) > |z I}
1
CRyeN: ——— < s, dopa(z) < |z —yl, de(x) > :cy}
{ven: i (@) < lo — ), ds(@) > [z — 3]
c{ye Qo —yl < Calds(@)s)¥, don(x) < |z —yl, ds(x) > |z — 9|}

(c) Let y € B(x,s) be such that doo(z) > |z —y|. Then ds(z) > |z —y|. In
addition,

1
Nao(z,y)

~ |z —y|N Pdoa(x)? ds ()",

|l — y|V Pdoq(2)? ds(x)™* = |z — y|N ds(x) ™,

and
jz—y| < (ds(x)s)™ =(ds(2)s) V7 (ds(x)s) VN < (dz(:c)adasz(x)_QS)ﬁ ,

since dpq (z)N ds(z)~ < s. Hence, there exist constants Cy, Cy depending only on
«, N such that

{veQila—yl <Cildn@)°9) Y, doalw) > |z~ y1}
1
C {y cQ: No(oy) < s, doa(z) > o — y|} (6.22)

c{ye:lo -yl < Calds(@)s)¥, doala) > o~ y|}
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Combining (6.21)—(6.22) and lemma 6.4, we derive

b+ N

w(B(z,s)) mw(B(x,s2)) = s N ds(zx )”O‘HN,

where sy = (dg(2)*s) ™.
Case 3: dx(z)V = < s < (4ddiam (Q))V .

)
(a) Let y € B(x, s) be such that dpq(z) < |z — y| and dx(x) < |z — y|. Then

_ v
Nao(z,y)

Hence, there exist constants C,Cy which depend only on «a, N such that

|N7a.

~ |z

{veilz—yl <™, don(e) < o —yl, du(e) < |z —y|
1
0:—— <5 d <lz—yl, dg(z) < |z — 6.23
c{reti i <sdm@ <lo—ul ds@ <lo-ol} 629

c{yeila—yl < Cos™=, doal@) <o —yl, ds(@) < |o —yl} .

ety € x,s) be such that dpg(z) < |z — y| and ds(x) > |z — y|. en
b) L B b h that d dd Th
e~ o=yl ds()
Na(z,y)

On one hand, if @ > 0, we have

|~y ds(x)™ < Jo -y

N—«

and since dx () < s, we have

|z —y| < (dg(m)as)% = §¥ra g NN-w dsy (7)™ < sWa

On the other hand, if o < 0 then
2 —y[Vds(z)* > o —y[V "
and since dx,(z)V =% < s, we obtain

|z —y| < s¥E = gV gNIN-® < (ds(z)s)N .

Hence, there exist constants C7, Cy which depend only on «, N such that
{yeQilz—yl <C1s™=, dgala) <|o —yl, ds(@) > o~ yl |
1
C yeﬂsgs,dagxgxy,dgz>xy} 6.24
{ven: i (@) < Jo— ], ds(@) > 2 3] (6.24)

c{yeilr—y < Cos™7, doa(w) < o —yl, ds(e) > 2 — ]}
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(c) Let y € B(x, s) be such that dpq(x) > |x — y|. Then dx(z) > |z — y| and

o
Na(z,y)

~ |z —y|N 2daq(z)?ds (z) 7.

In view of the proof of (6.22), we may deduce the existence of positive constants
C1,C5 depending only on a, N such that

{yeQilz—yl < Cildn(@)"5) ¥, doa(w) > |z — yl}
1
Q:——>s,d _
C {y c No(eoy) s, doa(z) > |x y|}
c {y €0 |r —y| < Calds(2)%s)¥, don(z) > |z — y\}.

This and (6.24) imply the existence of two positive constants C4, Cy depending
only on «, N such that

{yEQ:|m—y|<é’15ﬁ,dgg(x)>|x—y|}
1

—— <, d > |x — 6.25

Mo <5 don(@) > o= 1} (6.25

C{yEQ:|m—y\<C~’gsﬁ,dag(m)>\x—y|}.

C{yeﬂ:

Combining (6.23)-(6.25) and lemma 6.4, we obtain

b+6+N

w(B(x,5)) = w(B(x,s3)) = 5 V=,

where s3 = sV=a,
The proof is complete. O

LEMMA 6.6. Let a« <N, b>0, 6 >max{k— N —b,—b—a} and dw = dpq(x)"
ds(z)? 1g(z)dz. Then (6.9) holds.

Proof. Let y € B(x,s). We will consider three cases.

Case 1: dgo(x) < 2|z — y| and dx(x) < 2|z — y|. We can easily show that doqo(y) <
3o —yl, du(y) < 3|z —y| and

v
Nao(z,9)

y|N—oz.

~ | —

1

¥ . By (6.18),

Therefore, |z —y| < sﬁ, which implies that ds(z) 4+ ds(y) < s
we can easily show that

/SMdt%/SMdt%s%.
0 0

t2 t2
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Case 2: dyo(z) < 2|z —y| and dx(x) > 2|z —y|. In this case, we have that
doa(y) < 3lz —yl, 5 ds(x) < ds(y) < 5 ds(@) and
1

~ |z =y dg®(z) & |z — gV ds(y) "

Na(z,y)
This implies

doa(z)N ds(z)"* <s and  dpa(y)" ds(y) > < s.

~

By (6.18), we obtain

b+ 0+«

P w(B(x,1)) " w(B(y,t)) s N—o if dy (z)N- < s,
———=dt = —— = di =~
0 t2 o 12 b 0+ab+N
sN ds(z) N ifs <dsg(x)VN—o.

Case 3: dpq(x) > 2|z — y|. We first note that ds(z) > 2|z — y/,

1 3 1 3
5d00(2) < doa(y) < Jdoa(z) and 5 ds(z) <ds(y) < 5 ds(2).
From (6.18), we infer that
[eB g @),
2 2
0 0
Combining cases 1-3, we derive (6.9). O

By applying proposition 6.2 with J(x,y) = Noo_(z,y), dw = (daa(z)ds
(x)~*-)PTldz and d\ = dv, we obtain the following result for any v € I+ (99Q).

THEOREM 6.7. Let p satisfy (2.11). Then the following statements are equivalent.

1. The equation

—a_\Pt1L
v =Naa_[lof" (donds™ )" ]+ Maa_[V]
has a positive solution for £ > 0 small.

2. For any Borel set E C €, there holds
/ Noo_ [Lgv]? (doq(z) dg(;v)_‘)‘*)p+1 dz < Cv(E).
E
3. The following inequality holds
—a_\PTL
Noo_ [Noo_ [1]? (dmdE *) ] < CNao_[v] <0 ace.

4. For any Borel set E C Q there holds

v(E) < C Caph ! o= H(B).

Here we implicitly extend v to whole Q by setting v(Q) = 0.
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N2

6.2. Existence and nonexistence results in the case p < -

We first show that theorem 2.7 is a direct consequence of theorem 6.7.

Proof of theorem 2.7. We will use theorem 6.7 and show that statements 1-4 of the
present theorem are equivalent to statements 1-4 of theorem 6.7 respectively. By
(6.3)—(6.6) and [5, proposition 2.7], we can easily show that equation (6.5) has a
solution v for some ¢ > 0 if and only if equation

u = G,uf] + oK, [v] (6.26)

has a positive solution u for some o > 0. This and the fact that u is a weak solution
of (P?) if and only if u is represented by (6.26) imply that statement 1 of theorem
6.7 is equivalent to statement 1 of the present theorem. In addition, in light of
(6.3) and (6.4), we can deduce that statements 2-3 of theorem 6.7 are equivalent
to statements 2-3 of the present theorem respectively.

Therefore, it remains to prove that, under condition (2.14), statement 4 of this
theorem is equivalent to statement 4 of theorem 6.7. It is enough to show that for
any compact subset £ C X, there holds

1,—a_ 1
Capy i (B) ~ Capli! =" H(B),

where ¥ is defined in (2.15). Under condition (2.14), in view of (5.26)—-(5.27), we
may employ a similar argument as in the proof of [20, Estimate (6.36)] to reach
the desired result. O

REMARK 6.8. By [3, theorems B.1 and B.2], the following statements are valid.

(i) f 1 < p < min{ ¥£L V=0-F2% then

[ EulvlPonnde < CQEmp PI@P, Wwemen). (620
Q

(i) If 1 < p < &L and v € M(H2) has compact support in I\ T then (6.27)
holds true.

i) f l<p< % and v € M(IN) has compact support in X then (6.27)
holds true.

Hence, if one of the above cases occurs, we see that statement 2 of theorem 6.7
holds true, which implies the existence of solution of (BVP?) for some o > 0.

N2 N—a_+1
REMARK 6.9. Assume 1% < e andp 2 Nea_ —1°

problem (6.26) with v = §, does not admit any positive weak solution. Indeed, sup-
pose by contradiction that for some z € ¥ and o > 0, there exists a positive solution
u € LP(; ¢,.5) of equation (6.26). Without loss of generality, we can assume that
z=0¢€ X and o0 = 1. From (6.26), u(x) > K,[d](z) = K,(z,0) for a.e. z € Q. Let

Then for any z € ¥ and any o > 0,
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C be a cone of vertex 0 such that C C Q and there exist » > 0, 0 < £ < 1 satisfying
for any « € C, |z| < r and dx(x) > doq(z) > £|z|. Then, by (3.3) and (1.4),

/ (@) 5 (o /K 2,07y () x}/\x“_o‘*_w_a*_l)pdx
Q C
m/TtN*“**N*“**UPdt.
0

N 1
Since p > a7+

to a contradlction.

, the last integral is divergent, hence u ¢ L?(€2; ¢,, 5;), which leads

REMARK 6.10. Assume p < —2 and p > N— Proceeding as in remark 6.10, we

may show that any z € 9Q \ E and any o > 0 problem (6.26) with v = d, does not
admit any positive weak solution.

By using the above capacities and theorem 6.7, we are able to prove theorem 2.8.

Proof of theorem 2.8 when p < NT2. The fact that statements 1-3 are equivalent
follows by using a similar argument as in the proof of theorem 2.7. Hence, it remains
to show that statement 4 is equivalent to statements 1-3. Since

K, (z,2) = Cdist (2,%) doq(z) ds ()" |z — 2|, VzeQ, 2€00\%,

we may proceed as in the proof of [20, estimate (6.40)] to obtain the desired result.
O

1
When p > O‘++ , the nonexistence occurs, as shown in the following remark.

REMARK 6.11. We additionally assume that Q is C3. If p > O”’H then, for any

measure v € MT(JQ) with compact support in ¥ and any o > 0, there is no solution
of problem (6.26). Indeed, it can be proved by contradiction. Suppose that we can
find ¢ > 0 and a measure v € IMT(9N) with compact support in X such that there
exists a solution 0 < u € L?(Q; ¢, ») of (6.26). It follows that K, [v] € LP(Q; ¢, 5).
Therefore, by proposition 3.5, there is a unique nontrivial nonnegative solution v
of

—Lv+ P lv=0 in Q,
tr, n(v) =v.

Moreover, v < K,,[v] in Q. This, together with proposition 3.2 and the fact that v
has compact support in X, implies v(z) < K, [v](z) < doo(z)v(X) for 2 near 00\ X.
Therefore, by theorem 2.1, we have that v = 0, which leads to a contradiction.

REMARK 6.12. If a_ > 1 and p > ’+ then for any measure v € 9T (9Q) with

compact support in 02 and any o > 07 there is no solution of (6.26). Indeed, it
can be proved by contradiction. Suppose that we can find a measure v € IM¥(9N)
with compact support in 92 \ ¥ and o > 0 such that there exists a solution 0 < u €
LP(2; ¢, ) of (6.26). Then by theorem 2.8, estimate (2.13) holds for some constant
C > 0.
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For simplicity, we assume that 0€ X. Let {z,} CQ be such that
dist (x,,suppr) > & > 0 for any n € N and x,, — 0 as n — oo. Then there exists a
positive constant Cy; = C(g,€, 3, i) such that

s Jo Gpulan, y)Ku[v](y)Pdy

Ky [v)(zn)
22Cﬁdan(wn)_ldz(xn)a*V(aQ)p_ljé(dag(y)dz(y)_a*)th(xnvy)dy~
Set
F(zn,y) = doa(wn) ™" ds(2a)" (doa(y) ds(y) ™ )" Gpul@n, y).
Then

liminf F(z,,y) = doq(y)Py[2* —N-o- @+,

n—oo

Let C be a cone of vertex 0 such that C C 2 and there exist » > 0, 0 < £ < 1 sat-
isfying for any z € C, |z| < r and dx(z) > dsq(x) > ¢|z|. Combining all above we
have that

CZ/daﬂ(y)p"rl|y‘2a,—N_a7(p+1)dyz/|y‘p+1+2a,—N—a7(P+l) dy
¢ c

%/ Sp(l_o‘—)+04— dS — +OO,
0

o

a,—i' This is clearly a contradiction.

since p >

. . N2
6.3. Existence results in the case ¥ = {0} and p = -

Let 0 <& < N. For any (z,y) € Q x Q such that x # y, we set

N
max{ |z — yl, |z,
Nie(z,y) = {lz =yl =], [y}

|z —yIN 2 max{|z — y|, doa(x), doa(y) }?
+ max{|x - y‘v d39($)7 daﬂ(y)}_E

and
}N—s

N —el@, . maX{|1’ - y|7 |{,C|, |y| .
N ( y) |$—y|N—2 max{|x—y|,daQ(gj)7d89(y)}2
Put

N
2

Groo(3,y) = |z — y N <1 A daﬂ(x)%(y)) (1 o _lallyl )

|z —y|? |z —y[?

n doa(z) das]?v(y)
(J=l[y])=

r,y € Q\ {0}, x #y

max{|z — yl|, dsqa (), dsa(y)} %,
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and
- _N
Guz o (2,y) = doa(x) doa(y)(J2]|y)) " 2 Ny-c(2,y), Vr,y € Q\{0}, z #y.
(6.28)
Note that
|In (min {|z — y| 72, (doa () doa(y)) "' }) | < C(Q, &) max{|z—yl, doq (z), doa(y)} ~°,
which, together with (3.2), implies
GH2(xay) SJ GH278(x7y)’ Vﬂ%y € Q? € 7é Y. (629)
Next, from the estimates
GHz,s(xvy) ~ dc’m(fﬂ) dﬁQ(y)(|xHy|)7%NLs(mvy)a T,y € Qv &€ 7& Y,
NI,E(I,y) <C<€7Q)NN7€(‘xay)? 1'79697557&%
we obtain
GHZ,E(%y) S éHz_’E(.’L',y% vay € Qv xz 7& Y. (630)
Set
Gz o[JulP)(x) ::/QéHz7g(ac,y)|u|pdy,
Ny_.[r /NNaxwdT()

Proceeding as in the proof of theorem 6.7, we obtain the following result

THEOREM 6.13. Let 0 <e <2, 1 <p< M¥E2222 and v € MF(09Q). Then the fol-
lowing statements are equivalent.

1. The equation
u=Gp2 . [u”] + odaq| - |~ F Ny_.[V] (6.31)
has a positive solution for o > 0 small.

2. For any Borel set E C Q, there holds
/ Ny_c [P (z)¢ e s(x)PT dz < Cv(E).
E
3. The following inequality holds
_n\ptl
Ny_o[Ny_c[v]? (dmdE 2 ) ] <CNy_.[v] <o ae.
4. For any Borel set E C € there holds

_N
v(E) < CCapht " 20 (),
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THEOREM 6.14. We assume that at least one of the statements 1-4 of theorem 6.13
is valid. Then problem (P°) with n = H? admits a positive weak solution for o > 0
small.

Proof. By theorem 6.13, there exists a solution u to equation (6.31) for o > 0 small.
By (6.29) and (6.30), we have u = Gg2[uP] + cKgyz[v]. By [5, proposition 2.7], we
deduce that equation

u = Gpz[uP] + cKp=[V] (6.32)

has a solution for ¢ > 0 small. This means that it admits a positive weak solution
for o > 0. O

REMARK 6.15. Let = {0} C 0Q, p= 22 1 =6, and 1 < p < N2 Then there

4
exists € > 0 small enough such that 1 <p < N]—V;f2s < NX,2:225

have

. In addition, we

/ Ny_e[80]P (@) e 5(@)PH de < / 2] DO $)p 4 < oo,
Q Q

Hence, statement 2 of theorem 6.13 is satisfied. This and theorem 6.14 imply that
equation (6.32) has a solution for ¢ > 0 small.

Proof of theorem 2.8 when ¥ = {0} and p = sz. Let € > 0 be small enough such
that 1 < p < 2525 Let K = supp (v) € 9\ {0} and g = 1dist (K, {0}) > 0. By
(3.4), we can easily show that

K2 e[v] = donds; * Ny _c[v] ~ K ya v, (6.33)
Hence, by proposition 6.1, (6.33), theorems 6.13 and 6.14, it is enough to show that
@H2,5[KH2,5[VJP] ~ Gp2[Ky2[v]P] in Q.
By (6.29) and (6.30), it is sufficient to show that
Gz [Ku2[V]!] S Guz[Kp2[v]?] in Q. (6.34)

Indeed, on one hand, since 1 < p < & #:225, for any = € €2 there holds
[ Gmle ) Km b)) dy ~ ()
B(0,5)n
~ N
/ o Gaeo(m,y) doay)’lyl~ " dy
B(0,5)ne

S UE) doa(a)lal ™3 / ) e |z —y|~° (dm(y)\yl‘%)zﬂr1 dy

B(O,g
_ N _ ()N
b Pdon@lel F [ ey Y (Y
B(0,5)ne
< v(K)Pdyo(z)|z| > . (6.35)

The implicit constants in the above inequalities depend only on Q, K, B, p,E.
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On the other hand, we have

/ ey K () dy 2 (K Pdoa()]a] ¥ /  doay)t dy
B(o,g)m B(0,2)n0

> v(K)Pdyo(z)|z| 7, (6.36)

where the implicit constants in the above inequalities depend only on €2, K, B, p.
Hence, by (6.35) and (6.36), we have that

[ GmdeyKebwrdyS [ G gKipl)rdy vee s
B(0,2)nq B(0,2)n
(6.37)

Next, by (3.2) and (6.28), for any z €  and y € Q\ B(0, g), we have

G2 o(2,y) ~ doa(x) doa(y) (|2lly) =7 Na(@,9) S Gua(2,y).

This and (6.33) yield

/ Gz (2, y) K[V (y)P dy S / - Gr2(z,y)Kp:[v](y)P dy V€ Q.
O\B(0,) \B(0,)

(6.38)

Combining (6.37) and (6.38), we deduce (6.34). The proof is complete. O

REMARK 6.16. If p < %, by using a similar argument to the one in remark 6.15,
we obtain that statement 2 of theorem 6.13 holds true. Consequently, under the
assumptions of theorem 2.8, equation (6.26) has a positive solution for o > 0 small.
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Appendix A. Barriers

Appendix A.1. Local representation of 3 and 912

In this subsection, we present the local representation of ¥ and 0f.

If K =0 we always assume that ¥ = {0}. If £ € N such that 1 <k < N —1, we
set & = (1,...,%k, That,...,2n) € RY and z = (2/,2") where 2’ = (z1,..,7%) €
R* and 2" = (z441,...,2n5) € RY=F, For 8 > 0, we denote by B(z, () the ball in
RY with centre x € RV and radius 3, and by B*(2/,3) the ball in R¥ with centre
at 2’ € R* and radius . For any £ € ¥, we set

Va(E,0) = {z = (a',a"): |&' = €| < B, | —TS(2')| < B, Vi=k+1,...,N},

for some functions Ff:RkHR,i:k—l—l,...,N.
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Since ¥ is a C? compact submanifold in RY without boundary, there exists Gy > 0
such that the followings hold.

(i) For any = € Xgg,, there is a unique £ € ¥ satisfying |z — £| = ds ().
(ii) ds € C?(Z4p,), |[Vds| =1 in X4, and there exists n € L°°(X4p,) such that

N—-—k—-1 .
Adg(;{;) = T(g;) + n(m) n 2450.

(See [34, lemma 2.2] and [13, lemma 6.2].)

(iii) For any & € 3, there exist C? functions F§,E € C?2(R¥;R), i=k+1,...,N,
such that for any g€ (0,60p) and Vx(£,8) C Q (upon relabelling and
reorienting the coordinate axes if necessary), there holds

Ve, p)NE={z= (2" 2"): |2’ — ¢| < B, xi:FiZ(m'L Vi=k+1,...,N}L
(A1)

(iv) There exist m; € N and points &/ € 3, j =1,...,mq, and 3; € (0,p) such
that

s, C U Va(€, Bo). (A.2)

Now for £ € 3, set

N 3
5%(1‘) = ( Z |x1 - Ff,E(x/)|2> y L= (x/,x//) € VZ(§74ﬁO)'
i=k+1
Then we see that there exists a constant Cy, depending only on N, ¥ such that
d(2) < 6% (@) < Cs|[Sllceds (@), Vo € V(€ 260), (A.3)
where

||E||C2 = Sup{||F§’E||02(B§BO((§]‘)/)) T = k+ 1, .. .,N, j = 17. . .,ml} < 00,

with &7 = ((¢7),(¢7)") € &, j = 1,...,m1, being the points in (A.2).
Moreover, /1 can be chosen small enough such that for any = € ¥z, ,

B(l‘7ﬁ1) - VZ(€760),
where £ € ¥ satisfies |x — &| = dx ().

In the following, when ¥ = 99 or ¥ C 9 is a C? submanifold, we will keep the
same notations y and f; for which (i)—(iv) hold.
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When ¥ = 09, we assume that

N-1
V(‘)Q(f,ﬁ)mﬂ = {3?: ($17~-~7$N) : Z |.’131 _§1|2 < ﬁ27 0
=1

<IN — F?V’aﬂ(xl, - 71'N—1) < ﬂ} .

We also find that (A.1) with ¥ = 9Q becomes

Vaa(&, B) N o

N-1
= {1’ = (xlv"'axN) : Z |:EZ 7£1|2 < 623 TN = F§V76Q(xlv"'axN—l)} .
=1

Thus, when ¥ C 99 is a C? compact submanifold in RY without boundary, of
dimension 0 < kK < N — 1, for any z € X, we have that

Tiys(@') =T on(@ T s (@), T (@), (A4)
Let £ € X. For any x € Vs (&, By) N2, we define
6 (z) == an — F§V7ag(ac1, Ce O XN—T1)s
and

N-1 3
05 () = ( > Ixi—Ff,z(x’)F) :

i=k+1

Then by (A.4), there exists a constant A > 1 which depends only on N, k, ||X||c2,
|092]|c2 and By such that

ATHE5 (@) + 05 (2)) < 05(2) < A(S5 s (2) +0%(2)), Vo € V(€ B0) N Q. (AD)

Thus, by (A.3) and (A.5), for any v € R, we can show that there exists a constant
C' > 1 which depends on N, k, || X||c2, [|09||c2, Bo, v such that

C715(2)*(02.n(z) + 6(2))" < dpa(z)?ds(z)? < Co(z)*(d2x(z) + 6(2))7.  (A.6)
We set
Vs(§, fo) == {(a',2") : |a" = &'| < Bo, |6(x)] < Bo, 02, < Bo}.

We may assume that

Vsi(&,B0) NQ = {(a',2") : |2 — &'| < Bo,0 < 6(x) < Bo, |02, < Bo}»
Vsi(&, B0) N0 = {(a',2") : 2" = &'| < fo,d(x) =0, |d22] < Bo},
VE(&?ﬂO) n¥x= {(xlvx//) : |£L'/ - £I| < ,60,5(%) = 0? |52,2| = 0} .
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We also assume that there exist mo € N and points &/ € &, j =1,...,ma, and
B2 € (0,61) such that

S, N2 C UM Vs (€7, fo) N . (AT

We recall that the distance dy is defined in (2.3) as

dsy(z) = \/|distm(£z7 22 4 |z — &2,
where dist ?? denotes the geodesic distance on 9.

PROPOSITION A.1 [14, lemma 2.1]. There exists 3 = (3(3, ) small enough such
that, for any x € QN Xg, the following expansions hold

d3(z) = d&(z)(1 + fi(z)),

Vdag (:L’) . V(iz; (l’) = C?Q((x)),
>\ T

Vds (@) = 1+ fola),
ds(2)Ads (¢) = N — k= 1+ fu(),

where f;, 1 =1,2,3, satisfy

3
> (@) < Ci(Bs, N)ds(2), Vo € QN 3, (A-8)
i=1
We may choose 3 small enough such that
1 -
§ dz(ﬂ?) < dz(l‘) < QdE(JZ) in Q2N 253. (A9)

Appendix A.2. Barriers

In this subsection, we assume that € is a C® open bounded domain. Then there
exists B4 > 0 depending on C? characteristic of Q such that for any = € Qg, the
followings hold.

(i) There exists a unique o(z) € 9 such that
doo(z) = |z —o(z)], o(r) =z —doa(r)Vdaa(z)

x —o(x)

and Vdgg(z) = o)

(ii) J(.’E) € 02(654) and dgq € 03(554).
(iii) For any ¢ = 1,..., N there holds
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Vo, (x) - Vdaa(x)| < HDQd@QHLN(ﬁM) doa(x).

For any (z,2) € Qg, x 09, set

=/ d(@) +|o(z) - 22

1
§|:1: — 2| < d.(z) < V5|z — 2.

Then

Finally, for any 0 < R < 34, we set
B(2,R) :={x €Qg, : d.(z) < R}
PROPOSITION A.2. Let 5 = 4 L min{3s, B4}, Ro € (0,85] and 0 < R < Rg. For any
z € YR, NOKY, there is a supersolution w := wg , of (E4) in B(z, R) such that
)
T€QNB(2,R), z—¢ W (x)

we C(QNB(z,R)), =0 forany &€ 00N HB(z,R),

w(z) — oo as dist (z, F) — 0, for any compact subset F C QN 0AB(z, R).
More precisely, for v € (a—,a4), w can be constructed as
A(R? — d,(x)?)0 eMdoo(@) daq (2)dg ()~ if w< H?,

w\r) = I !

if p=H?,

with M < 0 depending only on the C? characteristic of 9Q, b > 2(p+1)_2(£:i) min{y.0}

and A > 0 large enough depending only on v, N,b,p, M, Ry, the C? characteristic
of ¥ and the C® characteristic of OS).

Proof. Without loss of generality, we assume z = 0 € X, N €.
Case 1: u < H?. Set
w(z) = AR? — d3(z)) "bdoq(x) eM2@) ds(2)™7  for x € QN A(0,R),

where v > 0,b and A > 0 will be determined later on.
Then, by straightforward computation and using proposition A.1, we obtain

—Lyw + wP = AR? — do(2)?) ™" 2dao(z) M0 @ d 72 (2)(I + In + I3 + L),
where

I := —d% (4b(b + 1)|Vdo |22 + 2b(R? — d2)(|Vdo|? + doAdy)) ,

I :=—(R* = d3)* (v = v(N — k) + p+v(y + 1) fa = vfs + pfi — 2yMdaq) ,

I3 := —(R* — d2)*d%dyg (Adoa(1 + Mdaq) + 2M + M?dq) |

do -~ - B
I := —4b(R? — dg)da%(dgwowmu + Mdpq) — vdsdsaVdy - Vds),

Iy = Ap—l(R2 - d%)—(p—l)b+2 eM(p—l)dagdg;llgg(l’—l)’%"?.
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By (i)—(iii), we have
II,] < C1(Ro,b,Q, N)d%. (A.10)
Also,
|I4] < Co(Ro,Q, N, M,~,b)(R* — d3)ds. (A.11)

Next we choose v € (a—, o), then v — (N — k) 4+ p < 0. In addition, there exist
0<>9< 1, 69 >0 and M < 0 such that if dy, < dg then

Adpa(1 4+ Mdaq) +2M + M?dpa < — >0
and by (A.8),
V=N = k) + p+y(y + Dfe = vf3 + pfi — 27Mdpa < —<o.
It follows that if ds; < dp then

1-2 2 60(R2 o d(?))? (Al?)

We set
= : I < 2 — ? - 6—0
A, {erﬂ%’(O,R) ds(z) <cr (R — do(x) )} where ¢, 4max{/Cy,Cy}’

Ay = {x € QNB(0,R): ds(z) < 50}, Az = {z € QN B(0, R) : ds(x) = &)
In A; N Ay, by (A.10), (A.11) and (A.12), we have

go(R? — d3)?
—s

In A§ N Ay, we have ds, > ¢ (R? — d3). If dopo(x) < c2(R? — do(2)?)?, where
c2 = min <o —E%C%
° 3C,79C2 [°

—10

h+L+Is+ 12> (A.13)

then we can show that

Ig 2 dz + CQ ledg( d%),

This, together with (A.10) and (A.ll), implies (A.13). If dga(x) = c2(R? — do(x)?)?,
then by proposition A.1, ds(x) > cacs(f3, 8)(R? — do(x)?)?. Therefore,
Is > C4(R0,M p,’)/,Cl,CQ,Cg,)Ap_l(RQ d2) (p—1)b+24+2(p—1)—2(p—1) min{~,0}+2 ds.

If we choose b> 2+l 2(£ Dmin{y.0} _. p  then there exists A large enough
depending on ¢4, Ro, b, p, such that

Iy > I + I (A.14)

This and (A.14) yield
L+L+Is+1,+1; > 0. (A15)

Similarly we may show that (A.15) is valid in A3 for some positive constant A
depending on M, Ry, b, p,, 2, X.
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Combining the above estimates, we deduce that for v € (a_,ay), b > by and
A > 0 large enough, there holds

—L,w+wP >0 in QNA0,R).

Case 2: = H?. First we note that 1?1% <1inQNB0,R). Set

w(x) — A(R2 _ d0($)2)7bdaﬂ(-r) eMdaQ(I)C‘iE(x)fH (— In C]Z_E(Rx())>

for x € QN A0, R),

where v > 0,b and A > 0 will be determined later on. Then, by straightforward

calculations we have
_3

—Lyw+w? = AR* = d2)7"2d" 2 [ —In dz (I + I+ I3+ 1),
16Ry
where

I = —d% ( > (4b(b + 1)|Vdo|*df + 2b(R* — d3)(|Vdo|* + doAdy)) ,

. 1 ds, 1

I, = —(R%* - - In —(N—-Fk—-1 i

2 (R? — dg)? <2< 16R><f3 (N—k=1f) -

ds )
+ (I (H(H+1)f, — Hfs+ H?fi — 2HMdpg)
0

ds
M(—daq 1
+ M( BQH16RO)>’

2
d .
I := —(R* — d&2)? (m 16]%) d2dyd (Adpa(1+ Mdao) + 2M + M?dag)

-~ CZE JE
o 2 _ _ 72
I, == —4b(R? — d? )daQ ( In 16R0> (( In 16R0> A2V doVdaa (1 + Mdyg)
H| -1 dy dsdpaVdy - Vd 1ci Vdy - Vd
HIGRO S UHO 0" > 2 > 0 b )

_ +2
- d : + (p
Iy := AP7Y(R? — g2)~ (P~ 1)b+2 <ln 16]2%()) eM(p’l)d‘?”d’galdz(p DH+2

By (i)—(iii) and the fact that —In g%o > In 2, we have

~ 2
d
II;| < C1(Ro, b, Q, N)d2 ( 16;{)) . (A.16)
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Also,
- d
14| < Co(Ro,Q, N, M, k,b)(R* — d2)ds, [In —= (A.17)
16 Ry
Next we choose dy > 0 and M < 0 such that if ds < &y then
i 2
~ ) S
I3 > eo(R* — d3)? mE dsdyg,
and
I~2 > Eo(R2 — dg)2 (AIB)
We set

~ 2_ 2
A = erﬂ%(O,R)dg(x)géw
o 5552

[y

€
4max{\/ ég,ég},
Ay = {CE eQNAO0,R) :ds(x) < 50} , Az ={zcQNB0,R):ds(z) >}

where ¢ =

In A; N Ay, by (A.16), (A.17) and (A.18), we have

60(R2 — d%)2

h+L+L+1> 5

(A.19)

In AS N Ay, we have ds > & M If dpo(z) < é2(R? — do(x)?)?, where

In 15R0 |

_ , { g0 €& }
Co =min{ ——, —= ¢.
3C, 9C3
Then, we can easily show that (A.19) is valid. The rest of the proof is the same as
in case 1 with obvious modifications so we omit it. The proof is complete. O
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