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Abstract

Drensky and Lakatos (Lecture Notes in Computer Science, 357 (Springer, Berlin, 1989), pp. 181–188)
have established a convenient property of certain ideals in polynomial quotient rings, which can now
be used to determine error-correcting capabilities of combined multiple classifiers following a standard
approach explained in the well-known monograph by Witten and Frank (Data Mining: Practical Machine
Learning Tools and Techniques (Elsevier, Amsterdam, 2005)). We strengthen and generalise the result
of Drensky and Lakatos by demonstrating that the corresponding nice property remains valid in a much
larger variety of constructions and applies to more general types of ideals. Examples show that our
theorems do not extend to larger classes of ring constructions and cannot be simplified or generalised.
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1. Introduction

The classification of data plays one of the central roles in data mining and other
applications of mathematical methods, see, for example, [4, 16, 20, 23, 24]. A
well-known method of designing efficient multiple classifiers consists in representing
them as several individual classifiers combined into one scheme. This method is
very effective, and it is often advisable to apply it even in situations where it is
possible to build multiple classifiers analysing the data directly, see Witten and Frank
[22, Section 7.5]. The main advantage of this method is in the ability of multiple
classifiers to correct the errors of individual classifiers. This is why the problem of
determining the error-correcting capabilities of the combined multiple classifiers is
crucial.

Polynomial quotient rings can be used to introduce additional structure to the class
sets of multiple classifiers and generate these sets with small numbers of generators.
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Drensky and Lakatos [7] have established a convenient property of some ideals in
polynomial quotient rings, which can now be used to determine error-correcting
capabilities of combined multiple classifiers (see Proposition 3.4 in Section 3).

We strengthen and generalise the result of Drensky and Lakatos [7] by
demonstrating that the corresponding nice property remains valid in a much
larger variety of constructions and applies to more general types of ideals (see
Theorems 4.1, 4.2 and 4.4 in Section 4). Examples show that our theorems do not
extend to larger classes of ring constructions and cannot be simplified or generalised.

2. Motivation

We are using standard terminology and refer the reader to, for example, [8, 9, 14]
for preliminaries on ring constructions and to [20, 22, 24] for background information
on classification methods.

Consider the problem of combining several classifiers into a larger multiple
classifier. Let p be a prime number, q a power of p, and let F= G F(q) be the finite
field of order q . Suppose that there are N > 1 classifiers to be combined and that these
classifiers divide their input data into classes by producing outputs o1, . . . , oN ∈ F for
each input element. Then the sequence (o1, . . . , oN ) ∈ FN is called a class vector of
the combined multiple classifier, and the set of all class vectors is called the class set.

Let V be an N -dimensional linear space over F with a basis B = {b1, . . . , bN }.
The number of nonzero coordinates of v with respect to the basis B is denoted by
wt(v)= wtB(v) and is called the weight, or Hamming weight, of v in the basis B. If
it is clear from the context which basis B is being considered, then the weight of v in
the basis B is called the weight of v.

The weight of a class set C is the minimum weight of a nonzero element in C .
The minimum distance of a class set C is the minimum weight among all weights of
nonzero differences between pairs of elements in C . If C is a linear space, then its
minimum distance is equal to its weight. For any real number x , denote by bxc the
integral part of x , or the floor of x , that is, the largest integer which does not exceed x .
It is well known and easy to verify that the number of errors of binary classifiers that
the multiple classifier can correct is equal to b(d − 1)/2c, where d is the minimum
distance of the class set of the classifier.

Instead of storing the whole large class set C in computer memory, it is convenient
to be able to generate C with one or more generators. To this end we are going to
take a polynomial ring and use it to introduce additional structure on the class set of a
multiple classifier. This will allow us to multiply the generators with arbitrary elements
of FN and to take their sums. The structure will enable us to find small generating sets
for the classifier and to determine error-correcting capabilities of the whole class set
by looking only at its generators.
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3. Polynomial generators for class sets

Let N0 be the set of nonnegative integers, X = {x1, . . . , xm} a set of commuting
variables, and let F[X ] stand for the ring of polynomials in X over F. Denote by

MX = {x
a1
1 · · · x

am
m | a1, . . . , am ∈N0}

the free commutative monoid generated by X . Choose any subset P of the set
M2

X = MX × MX of all pairs (u, v), where u, v ∈ MX . A binomial ideal of F[X ]
is the ideal

IP = (u − v | for all (u, v) ∈ P) (3.1)

generated by all binomials u − v, for all (u, v) ∈ P . The binomials u − v, for
u, v ∈ MX , are also sometimes called pure difference binomials. We are going to use
the polynomial quotient ring F[X ]/IP to generate multiple classifiers.

To this end let us now review an alternative representation for the quotient ring
F[X ]/IP . Let M be a monoid. The monoid algebra F[M] is the F-algebra spanned
by the elements of M with multiplication defined by the distributive law and the
multiplication of M . Note that the polynomial ring F[X ] coincides with the monoid
algebra F[MX ]. If M is a group, then F[M] is called a group algebra. These
constructions were considered, for example, in [2, 3, 5, 10–12, 17].

Denote by %P the congruence generated in MX by all pairs (u, v), for all (u, v) ∈ P .
Then the quotient ring F[X ]/IP is isomorphic to the monoid algebra F[MX/%P ],
see [14]. We identify the polynomial quotient ring F[X ]/IP and the monoid algebra
F[MX/%P ] so that

F[X ]/IP = F[MX/%P ]. (3.2)

Hence, the dimension of the quotient ring F[X ]/IP over F is equal to the
cardinality |M | of the quotient monoid M = MX/%P .

Further, we assume that the dimension of the quotient ring is equal to the number
of classifiers being combined. This means that |M | = N and so M = {m1, . . . , m N }.
In order to use two operations of the quotient ring F[X ]/IP = F[M] for FN , let us
identify F[M] with FN by identifying every element

r =
N∑

i=1

ri mi ∈ F[M] (3.3)

with the sequence
(r1, . . . , rN ) ∈ FN . (3.4)

This makes sense since the standard addition of vectors is defined on the linear space
FN componentwise, and so it coincides with the definition of addition in the monoid
algebra F[M].

We can now use two operations to generate classifiers. An element r ∈ FN is said
to be generated by the elements g1, . . . , gk ∈ FN if it belongs to the ideal generated
by these elements, that is, if it is equal to a sum of multiples of these generators.
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Accordingly, the whole class set C of a multiple classifier is said to be generated
by the elements g1, . . . , gk in FN if C coincides with the ideal generated by these
elements, that is, if C is equal to the set of all sums of multiples of these generators,

C = C(g1, . . . , gk)

=

{ m1∑
i=1

r1i g1 + · · · +

mk∑
i=1

rki gk

∣∣∣∣ where r j i ∈ FN
}
. (3.5)

In this case the notation C = C(g1, . . . , gk) is used when it is necessary to indicate
the generators explicitly.

Fix a set P ⊆ M2
X and consider the ring F[X ]/IP . Let D ⊆Nm

0 . Denote by UD the
set of polynomials

ud =

m∏
i=1

(x2
i − xi )

di ∈ F[X ], (3.6)

for all d = (d1, . . . , dm) ∈ D. As is customary, it is assumed that all zero powers
(x2

i − xi )
0 are equal to the identity element 1 of F[X ]/IP . Let ID be the ideal

generated in the polynomial quotient ring F[X ]/IP by the set UD .

DEFINITION 3.1. A class set C ⊆ FN will be called a Drensky class set if C = ID for
some D ⊆Nm

0 .

Drensky class sets were considered in [7] using a different terminology.

DEFINITION 3.2. A set U ⊆ FN will be called a visible generating set, or a visible set
of generators, if the weight of the class set C = C(U ) generated by U in FN is equal
to the minimum of the weights of the generators u ∈U .

This concept is analogous to the notion of a visible basis introduced in [21],
see also [6].

DEFINITION 3.3. We say that a Drensky class set ID with D ⊆Nm
0 is visible if its

standard generating set UD is visible.

A convenient method for finding the minimal distances of some Drensky class sets
has been obtained in [7, Proposition 1.2]. An elementary abelian p-group is a group
isomorphic to a direct product Zk

p, where Zp stands for the cyclic group of order p
and k is a nonnegative integer.

PROPOSITION 3.4 (Drensky and Lakatos [7]). Let F be a finite field, and let P be a
subset of M2

X such that MX/%P is an elementary abelian p-group. Then every Drensky
class set ID in the polynomial quotient ring F[X ]/IP is visible.

4. Main results

Our new theorems generalise Proposition 3.4 and give us an efficient method
for finding the error-correcting capabilities of the corresponding multiple classifiers.
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Indeed, when a class set has a visible generating set, then it is very easy to determine its
weight and the number of errors it can correct. Recall that a commutative semigroup
is called a semilattice if it entirely consists of idempotents (see [6] for a recent
related result).

THEOREM 4.1. Let F be a finite field, and let P be a subset of M2
X such that MX/%P

is a subsemigroup of a direct product of a semilattice, an elementary abelian 2-group
and an elementary abelian p-group. Then every Drensky class set ID in the polynomial
quotient ring F[X ]/IP is visible.

In the case of char(F)= 2, it turns out to be possible to prove even more.

THEOREM 4.2. Let F be a finite field with char(F)= 2, and let P be a subset of M2
X

containing all pairs (x3, x), for all x ∈ X. Then every Drensky class set ID in the
polynomial quotient ring F[X ]/IP is visible.

In addition, we show that more general types of generating sets are also visible.

DEFINITION 4.3. A class set C in R = F[X ]/IP will be called a binomial class set if
C = C(b1, . . . , bk), where

bi =

ki∏
j=1

(w2
i, j − wi, j )

di, j , (4.1)

for some wi, j ∈ MX , di, j ∈N0.

Obviously, every Drensky class set is a binomial class set.

THEOREM 4.4. Let P be a subset of M2
X containing all pairs (x p+1, x), for all x ∈ X.

Then the following conditions are equivalent.

(i) Every Drensky class set in R = F[X ]/IP is visible.
(ii) Every binomial class set in R is visible.

REMARK 4.5. Theorem 4.1 generalises Proposition 3.4 in any characteristic. In
the case of characteristic char(F)= 2, Theorem 4.2 generalises Proposition 3.4 and
Theorem 4.1, see the beginning of proof of Theorem 4.1 in Section 6.

Examples given in Section 5 show that our theorems cannot be simplified or
generalised. In particular, in the case of char(F) > 2, it is impossible to generalise
Theorem 4.1 to an analogous version of Theorem 4.2.

5. Examples

Our first example demonstrates that Theorem 4.1 and Proposition 3.4 cannot be
extended to groups which are not p-groups.
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EXAMPLE 5.1. Let p′ be a prime such that 2 < p′ 6= p, and let X = {x},
P = {(x, x p′+1)}. Then F[X ]/IP is isomorphic to the group algebra F[G] of the
cyclic group G = Zp′ of order p′. Consider the ideal J generated in F[G] by
g = (1− x)p′−1. Since p′ 6= p, it follows that wt(g)= p′ in F[G]. However,
every commutative F-algebra satisfies the identity (y + z)p

= y p
+ z p for all y, z.

Choose k such that pk > p′ − 1. Then we obtain (1− x)pk
= 1− x pk

, and so
wt((1− x)pk

)I
= 2 in F[G]. Therefore, wt(J )= 2 < wt(g), because (1− x)pp′

∈ J .

The next two examples show that Theorem 4.1 cannot be generalised to p-groups
which are not elementary abelian groups.

EXAMPLE 5.2. Let p = 2, F= F2 = G F(2), X = {x}, and let P = {(x, x3p+1)}.
Then F2[X ]/IP is isomorphic to the group algebra F2[G] of the cyclic group
G = Zp3 of order p3. Consider the ideal J generated in F2[G] by g = (1− x)3.
Clearly, g = 1+ x + x2

+ x3
∈ F2[G] and so wt(g)= 4. However, we see that

wt((1− x)g)= 2. Therefore, wt(J )= 2 < wt(g). This demonstrates that, in the case
of p = 2, Theorem 4.1 does not generalise to p-groups which are not elementary
abelian.

EXAMPLE 5.3. Let p > 2, X = {x}, and let P = {(x, x2p+1)}. Now F[X ]/IP is
isomorphic to the group algebra F[G] of the cyclic group G = Zp2 of order p2.
This time we look at the ideal J generated in F[G] by g = (1− x)2

= 1− 2x +
x2
∈ F[G]. Here wt(g)= 3, because p 6= 2. However, (1− x)p

= 1− x p in F[G].
Therefore, wt((1− x)p)= 2 and wt(J )= 2 < wt(g). Thus, in the case where p > 2,
Theorem 4.1 cannot be generalised to p-groups which are not elementary abelian.

Our next example shows that Theorem 4.1 cannot be generalised to monoids which
are unions of p-groups but are not contained in a direct product of an elementary
abelian 2-group, an elementary abelian p-group and a semilattice.

EXAMPLE 5.4. Let X = {x1, x2, x3}, and let

P = {(xi , x p+1
i ) | i = 1, 2, 3} ∪ {(x p

2 , x p
3 ), (x p

1 x2, x1)}, (x p
1 x3, x1)}.

Then MP is a union of two elementary abelian groups: 〈x2, x3〉 ∼= Zp × Zp and
〈x1〉 ∼= Zp. Consider the ideal J generated in R = F[X ]/IP by g = (1− x2)(1− x3).
We have wt(g)= 4. However, x1g = 1+ 2x1 + x2

1 in R. If p = 2, then wt(x1g)= 2.
On the other hand, if p > 2, then wt(x1g)= 3. In any case we obtain wt(J ) < wt(g).

The following example demonstrates that Theorem 4.1 does not generalise to
monoids which are not unions of groups.

EXAMPLE 5.5. Let X = {x1, x2}, and let

P = {(x4
1 , x5

1), (x4
2 , x5

2), (x4
1 , x4

2), (x3
1 x1, x4

1), (x2
1 x2

1 , x4
1), (x1x3

2 , x4
1)}.
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Consider the ideal J generated in R = F[X ]/IP by g = (x1 − x2
1)(x2 − x2

2). We have
wt(g)= 4. However, x1g = x2

1 x2 − x4
1 in R. Hence, wt(x1g)= 2 < wt(g). Therefore,

wt(J ) < wt(g).

The next example shows that, for a set P satisfying the hypothesis of Theorem 4.2,
there may exist another set Q such that IP = IQ , but Q does not contain all pairs
(x p+1, x), for all x ∈ X .

EXAMPLE 5.6. Let m = 1, X = {x}, P = {(x, x p+1)} and Q = {(x, x2p+1), (x p+1,

x2p+1)}. Then it is clear that IP = IQ and so condition (ii) of Theorem 4.1 is satisfied.
However, P does not contain the pair (x p+1, x).

The following example shows that the analogue of Theorem 4.2 is not valid for the
case of char(F) > 2. In other words, Theorem 4.1 cannot be generalised to include the
case of all unions of p-groups.

EXAMPLE 5.7. Let p > 2, m = 3, X = {x1, x2, x3}, P = {(x1, x3
1), (x2, x3

2), (x3, x3
3),

(x1x3, x2
3), (x2x3, x2

3)}, and let g = {(x1 − x2
1)(x2 − x2

2)}. Then MX/%P is a union
of 2-groups 〈x1, x2〉 and 〈x3〉. Consider the ideal J generated by g in F[X ]/IP .
Obviously, wt(g)= 4. Since x3g = 2x2

3 − 2x3, we obtain x3g = 2 in F[X ]/IP .
Therefore, wt(J ) < wt(g).

6. Proofs

LEMMA 6.1. Let P be an arbitrary subset of M2
X , R = F[X ]/IP , and let b ∈ R be a

polynomial of the form (4.1), that is,

b =
k∏

j=1

(w2
j − w j )

d j , (6.1)

for some w j ∈ MX , d j ∈N0. Then b can be represented in the form

b =
∑̀
i=1

ri

k∏
j=1

(x2
i, j − xi, j )

d j , (6.2)

for some ri ∈ R, xi, j ∈ X, di ∈N0.

Representation (6.2) is equivalent to saying that b belongs to the Drensky class set
generated by the products

∏k
j=1(x2

i, j − xi, j )
d j , for i = 1, . . . , `.

PROOF. We proceed by induction on the maximum degree dm of all monomials
w j ∈ MX , j = 1, . . . , k. The induction basis, where dm = 1 and all w j ∈ X , is trivial,
because then b itself is of the form (6.2). Further, we assume that dm > 1 and that the
assertion has been proved for smaller values of dm .
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Consider any 1≤ j ≤ k. If deg(w j ) < dm , then the induction assumption allows us
to express (w2

j − w j )
d j as

(w2
j − w j )

d j =

m∑
i=1

ai

k∏
j=1

(x2
i, j − xi, j )

d j , (6.3)

for some ai ∈ R. On the other hand, if deg(w j )= dm , then there exist u, v ∈ MX
such that w j = uv and deg(u), deg(v) < dm . Then we can represent each of the
elements u2

− u and v2
− v in the form (6.3) and substitute these representations into

the equality

(u2v2
− uv)= u2(v2

− v)+ v(u2
− u).

This demonstrates that (w2
j − w j )

d j can be expressed in the form (6.3) in this case
again.

If we substitute all expressions (6.3) for all w j into (6.1) and apply the distributive
law, then a representation (6.2) for b follows. This completes the proof. 2

PROOF OF THEOREM 4.4. The implication (ii)⇒ (i) is trivial, because every Drensky
class set is a binomial class set. Let us prove the reverse implication.

(i) ⇒ (ii): Suppose that condition (i) holds. Choose any binomial class set
C = C(B), generated by a set B = {b1, . . . , bk}, where all of the bi satisfy (4.1).
Lemma 6.1 implies that each polynomial bi can be represented in the form (6.2). Since
bi 6= 0 and P contains all pairs (x p+1, x), we see that the monogenic subsemigroup
generated by each wi, j is a cyclic group of order p. The same is also true of every
xi, j occurring in (6.3) and in the resulting expression (6.2) for bi . It follows that bi
belongs to a Drensky class set with standard generator polynomials having the same
weights as bi . Since the Drensky class set is visible, its weight is equal to the minimum
weight of these generators. Hence, it follows that the weight of C is also equal to the
minimum of the weights of the generating elements bi . This completes our proof. 2

Let S be a semigroup. An F-algebra R is said to be S-graded, if R =
⊕

s∈S Rs is a
direct sum of F-modules Rs and Rs Rt ⊆ Rst , for all s, t ∈ S (see [14] and [13]). The F-
modules Rs are called the homogeneous components of the grading. Let R =

⊕
s∈S Rs

be an S-graded ring. An element of R is said to be S-homogeneous, or homogeneous,
if it belongs to the union

⋃
s∈S Rs of the homogeneous components. An ideal I of R

is said to be homogeneous, or S-homogeneous, if it is equal to the sum

I =
⊕
s∈S

I ∩ Rs . (6.4)

LEMMA 6.2. Let S be a semigroup,
⊕

s∈S A ∩ Rs a finite-dimensional S-graded F-
algebra, and let B be a basis of R regarded as a linear space over F. Suppose that B
consists entirely of homogeneous elements, and I is a homogeneous ideal of R. Then
every nonzero element of minimum weight in I is homogeneous, and in particular the
weight of I is equal to the minimum weight of a nonzero homogeneous element in I .
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PROOF. Denote the elements of B by b1, . . . , bk , so that B = {b1, . . . , bk}. Choose
a nonzero element r with minimum weight in I . Look at the expression r = r1b1
+ · · · + rkbk . Since r 6= 0, there are nonzero coefficients ri in this expression. Without
loss of generality, we may assume that r1 6= 0. Since B consists of homogeneous
elements, for each i = 1, . . . , k, there exists si ∈ S such that bi ∈ Rsi . We can reorder
the vectors in the basis and collect all basis vectors, which belong to Rs1 , in the
beginning of the basis. Then we may assume that s1 = · · · = s`, for some 1≤ `≤ k,
and that si 6= s1 for all i = `+ 1, . . . , k. It follows that the s1-component rs1 of r is
equal to

rs1 =

∑̀
i=1

ri bi .

Since I is homogeneous, (6.4) implies that rs1 ∈ I . By the minimality of wt(r), we
obtain r = rs1 . Thus, r is a homogeneous element, as required. 2

LEMMA 6.3. Let G = G2 × G p be a direct product of an elementary abelian 2-group
G2 and an elementary abelian p-group G p. Then every Drensky class set ID , D ⊆Nm

0 ,
in the group algebra F[G] is visible.

PROOF. If p = 2, then G2 × G p is an elementary abelian p-group, and our lemma
coincides with the assertion of Proposition 3.4. Further, we assume that p > 2.

There exist positive integers m1 and m2 such that G2 ∼= Zm1
2 and G p ∼= Zm2

p .
Put X1 = {x1, . . . , xm1}, X2 = {xm1+1, . . . , xm1+m2} and X = X1 ∪ X2. Then
F[G] ∼= F[X ]/IP , where

P = {(1, x2
i ) | i ∈ [1, m1]} ∪ {(1, x p

i ) | i ∈ [m1 + 1, m1 + m2]}.

Fix any i such that 1≤ i ≤ m1. It is known that every Drensky class set is visible
in the group algebra F[xi ]/(1− x p

i )∼= F[Zp]; and this fact was used in the proof of
Proposition 3.4 in [7]. Now we claim that, in a similar fashion, for p 6= 2, every
Drensky class set is also visible in the group algebra Ri = F[xi ]/(1− x2

i )∼= F[Z2].
Indeed, let us first consider the ideal J generated by g = 1− xi in Ri . It is easily

seen that J is equal to the augmentation ideal of Ri , that is, the set{∑
s∈Z2

rss

∣∣∣∣ ∑
s∈Z2

rs = 0
}
.

Therefore, wt(J )= 2= wt(g), and so J is visible.
Further, consider the element gd , for a positive integer d . Easy induction on d

shows that gd
= 2d−1g. Since p > 2, it follows that gd generates the same ideal J

as g and wt(gd)= 2. Therefore, wt(J )= wt(gd) again. Thus, every Drensky class set
in the group algebra Ri coincides with J and is visible.

Keeping this fact in mind it is routine to verify that all steps of the proof of
Proposition 3.4 given in [7] remain valid in our more general situation. It follows that
the exact analogue of Proposition 3.4 holds for every direct product of an elementary
abelian 2-group and an elementary abelian p-group. This completes the proof. 2
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REMARK 6.4. An alternative proof of Lemma 6.3 follows from the main theorem of
[21, Section 2], which uses the notion of a visible basis of a vector space. Indeed, it
is easily seen that every visible generating set of an ideal generates (with respect to
multiplication) a visible basis of the ideal regarded as a vector space.

PROOF OF THEOREM 4.2. Let F be a finite field with char(F)= 2. Since MX is
commutative and P contains all pairs (x3, x), for all x ∈ X , it follows that the monoid
M = MX/%P satisfies the identity x3

= x , for all x ∈ M . Therefore, the monogenic
subsemigroup 〈x〉 is isomorphic to the cyclic group Z3, for each x ∈ M . Hence, M is
a union of cyclic groups isomorphic to Z3.

Let Y be a semilattice. A semigroup S is said to be a Y -semilattice of subsemigroups
Sy , y ∈ Y , if S =

⋃
y∈Y Sy is a disjoint union of the Sy , and Sx Sy ⊆ Sxy for

all x, y ∈ Y .
Denote by Y the subsemigroup generated in M by all elements x2 for all x ∈ X . For

any y ∈ Y , put
G y = {x ∈ M | x2

= y}.

It is straightforward to verify that Y is a semilattice, every G y is an elementary
abelian 2-group, and M =

⋃
y∈Y G y is a semilattice of groups G y . This fact is well

known and is recorded, for example, as [15, Proposition 2.1]. Hence, it follows that
F[M] =

⊕
y∈Y F[G y] is a Y -graded ring.

For y ∈ Y , denote by ey the identity of the elementary abelian 2-group G y . It is
convenient to keep in mind the fact that every semilattice is a partially ordered set with
respect to the natural order ≤ defined by the rule x ≤ y⇔ xy = x .

Choose an arbitrary subset D of N2
0, and consider the Drensky class set ID in

R = F[X ]/IP . We claim that the weight of ID is equal to the minimum of the weights
of the generators in the set UD defined by (3.6).

Take a nonzero element r of minimal weight in ID . It follows from (3.5) that
r ∈ ID = C(UD) can be represented in the form

r =
∑
d∈D

rdud , (6.5)

where rd ∈ F[M]. Here rd =
∑

y∈Y rd,y , where rd,y = (rd)y ∈ F[G y] for each y ∈ Y .
Therefore,

r =
∑
d∈D

∑
y∈Y

rd,yud , (6.6)

where rd,y ∈ F[G y].
Lemma 6.2 implies that r is Y -homogeneous, and so r = rv for some

v ∈ Y . Obviously, every generator ud belongs to the ring F[G yd ] for some yd ∈ Y .
Therefore, (6.6) can be rewritten as

r = rv =

∑
yyd=v

rd,yud . (6.7)
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We may assume that all summands in (6.7) are nonzero and similar terms have been
combined.

Let us consider any term rd,yud in (6.7). By (3.6), ud =
∏m

i=1(x2
i − xi )

di ∈ F[G yd ].
Let e = eyd be the identity of G yd . Then we get ud = eud =

∏m
i=1((exi )

2
− exi ))

di .
Since M is a union of 2-groups, char(F)= 2 and ud 6= 0, we see that di ∈ {0, 1} for
all i . Therefore,

ud = eud =

m∏
i=1

((exi )
2
− exi ). (6.8)

It follows from the definition of R = F[X ]/IP that exi ∈ MX for all i . Hence, ud
generates a binomial class set C(ud) in F[G yd ].

It follows from (6.8) that there exists a subgroup Hyd of G yd such that ud =∑
h∈Hy

h. Condition yyd = v in (6.7) implies that eyeyd = ev . Therefore, we can
rewrite the term rd,yud as follows

rd,yud = (evrd,y)(evud)

= (evrd,y)

(
ev

∑
h∈Hy

h

)
. (6.9)

Obviously, ev Hy is a subgroup of Gv . Lagrange’s theorem implies that |ev Hy |

divides |Gv|, and so it is a power of two. Likewise, |ev Hy | divides |Hy |. Hence,
|Hy |/|ev Hy | is a power of two. It is straightforward to verify that

ev

∑
h∈Hy

h =
|Hy |

|ev Hy |

∑
h∈ev Hy

h. (6.10)

Since char(F)= 2, we see that evud 6= 0 implies |Hy | = |ev Hy |. It follows that every
nonzero element evud in (6.9) has weight equal to wt(ud), and is a binomial generator
of the form (4.1). Hence, all of the evud generate a binomial class set CB in F[Gv].
Proposition 3.4 and Theorem 4.4 show that CB is visible. Hence, it follows that
wt(r) is not less than the minimum weight wt(ud) for some d ∈ D. Therefore,
wt(r)= wt(ud). This completes our proof. 2

PROOF OF THEOREM 4.1. First, consider the case where p = 2. Then M = MX/%P
is a subsemigroup of a product of a semilattice and an elementary abelian 2-group.
Hence, M satisfies the identity x3

= x , for all x ∈ M . Therefore, there exists Q ⊆ M2
X

such that IP = IQ and Q contains all pairs (x3, x), for all x ∈ X . Thus, the hypotheses
of Theorem 4.2 are satisfied for the set Q. Theorem 4.2 implies that every Drensky
class set in F[X ]/IQ is visible. Since F[X ]/IP = F[X ]/IQ , we see that Theorem 4.1
holds in this case.

Further, we assume that p > 2. Let Y be the subsemigroup generated in M =
MX/%P by the set E of all elements ei = x2

i , i = 1, . . . , m1, and all elements ei = x p
i ,

i = m1, . . . , m. Let z be the product of all elements in Y . Denote by G2 the
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multiplicative subgroup generated in M by all elements zx1, . . . , zxm1 . Let G p be the
multiplicative subgroup generated in M by all elements zxm1+1, . . . , zxm . Given that
M is isomorphic to a subsemigroup of a direct product of a semilattice, an elementary
abelian 2-group, and an elementary abelian p-group, a tedious but routine verification
shows that Y is a semilattice with zero z, G2 is an elementary abelian 2-group,
G p is an elementary abelian p-group, and M is isomorphic to a subsemigroup of
Y × G2 × G p. Therefore, R = F[X ]/IP is isomorphic to a subring of the monoid
algebra F[Y × G2 × G p].

Choose a subset D of N2
0 and consider the Drensky class set ID . We claim that the

weight of ID is equal to wt(UD), that is, the minimum of the weights of the generators
in the set UD . Obviously, it is enough to prove the inequality wt(ID)≥ wt(UD).

Take a nonzero element r of minimal weight in ID . It follows from (3.5) that

r =
∑
d∈D

rdud , (6.11)

where rd ∈ F[M]. Lemma 6.2 implies that r is Y -homogeneous, and so r = rv for
some v ∈ Y .

It is easily seen that z R is an ideal of R isomorphic to the group algebra F[G],
where G = zMX ∼= G2 × G p. This and (6.11) imply that r has the same weight as the
element

zr =
∑
d∈D

(zrd)(zud), (6.12)

which belongs to the Drensky class set generated in the group algebra F[G] by
the elements zud , for d ∈ D. Since wt(zud)= wt(ud), for all d , it follows from
Lemma 6.3 that the weight of r is not less than the minimum of the weights of ud ,
for d ∈ D. This completes our proof, because wt(r)= wt(ID). 2

In conclusion let us note that formulas for the maximum number of errors, which
can be corrected by multiple classifiers and clusterers defined by ideals and one-sided
ideals in the algebras of Brandt semigroups and Rees matrix semigroups have been
obtained in [18] and [19], respectively.
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