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EXTENDED ASYMPTOTIC IDENTIFIABILITY OF NONPARAMETRIC ITEM
RESPONSE MODELS
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Nonparametric item response models provide a flexible framework in psychological and educational
measurements. Douglas (Psychometrika 66(4):531–540, 2001) established asymptotic identifiability for
a class of models with nonparametric response functions for long assessments. Nevertheless, the model
class examined in Douglas (2001) excludes several popular parametric item response models. This limi-
tation can hinder the applications in which nonparametric and parametric models are compared, such as
evaluating model goodness-of-fit. To address this issue, We consider an extended nonparametric model
class that encompasses most parametric models and establish asymptotic identifiability. The results bridge
the parametric and nonparametric item response models and provide a solid theoretical foundation for the
applications of nonparametric item response models for assessments with many items.
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Item response theory (IRT)models play a crucial role in psychological measurements, educa-
tional testing, and political science (Van der Linden, 2018) . The parametric IRT models include
a broad class of models that assume parametric forms of item characteristic curves (ICCs), such as
the normal ogivemodels and the three-parameter logistic models. Nevertheless, it has been widely
recognized that parametric families cannot always model ICCs well. This has spurred extensive
research into the theory and applications of nonparametric IRT models; see reviews in Sijtsma
(1998), Sijtsma and Molenaar (2002), and Chen et al. (2021). Nonparametric IRT models have
been popularly used in assessing the goodness-of-fit of parametric IRT models and in providing
robust measurements against model misfitting.

In the pursuit of nonparametric modeling of IRT models, one research line has focused
on modeling nonparametric ICCs. These studies relax the assumptions of parametric ICCs via
nonparametric functions such as splines or polynomials (Winsberg et al., 1984; Ramsay &
Abrahamowicz, 1989; Ramsay&Winsberg, 1991; Ramsay, 1991; Douglas, 1997; Johnson, 2007;
Peress, 2012; Falk & Cai, 2016).

When the true ICCs are assumed to belong to a very general function space, there may exist
different sets of distinct ICCs that yield identical distributions ofmanifest variables.Understanding
the identifiability of nonparametric IRT models is critical for relating the obtained estimates to
the underlying true models. To address this issue, Douglas (2001) established the identifiability of
nonparametric IRTmodels in an asymptotic sensewith the number of items n going to infinity. The
theoretical results provide foundations for various applications of nonparametric IRTs, including
assessing the parametric model fit (Douglas & Cohen, 2001; Lee et al., 2009).

Nevertheless, as pointed out in Douglas (2001), their identifiability result relies on restrictive
assumptions about the model class of ICCs, which are not met by some popular parametric
item response models such as the normal ogive model. But in applications such as assessing
the parametric model fit, it is often desired to consider a class of nonparametric IRTs that can
encompass the widely used parametric IRTs. For example, Lee et al. (2009) proposed to evaluate
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the fit of a two-parameter logistic (2PL) model by comparing the estimated 2PL with another
estimated nonparametric IRT. However, as the existing identifiability results in Douglas (2001)
do not include 2PL in the model class, there may exist a nonparametric ICC that differs from the
2PL ICC but yields the same manifest distribution. Consequently, the discrepancy between the
nonparametric and the 2PL ICCsmight be a trivial result fromnon-identifiability rather thanmodel
misfit. This could lead to unreliability in goodness-of-fit measurements based on nonparametric
IRTs.

To lay a solid theoretical foundation for related applications, it is imperative to establish
identifiability for a model class that extends that in Douglas (2001). In this paper, we relax the
assumptions made in Douglas (2001) so that the model class can encompass a broader range of
parametric item response models, such as the normal ogive model and the four-parameter logistic
model.

Following Douglas (2001), we focus on monotone, unidimensional, and locally independent
item response models. Specifically, let Yn = (Y1, . . . ,Yn) represent n observed dichotomous
variables, and denote the i-th ICC as Pi (θ) = P(Yi = 1 | � = θ) ∈ [0, 1], which is unidimen-
sional and strictly increasing for i = 1, . . . , n. Here, Pi (θ) represents the probability that a person
with a given ability level θ will answer the i-th item correctly. Then for the manifest distribution
of Yn , a locally independent IRT model consists of a collection of functions {P1, P2, . . . , Pn} and
a probability density function f of θ that satisfy

P
[
Yi1 = 1,Yi2 = 1, . . . ,Yik = 1

] =
∫ k∏

j=1

Pi j (θ) f (θ)dθ (1)

for any nonempty subsets {i1, i2, . . . , ik} of the integers {1, 2, . . . , n}. Given a fixed probability
density function f (θ), we say that the ICCs are identifiable, if for any other collection of ICCs{
P∗
1 , P∗

2 , . . . , P∗
n

}
satisfying (1), we have Pi = P∗

i for all i ∈ {1, 2, . . . , n}.
It is worth noting that the analyses in this paper and Douglas (2001) restrict f to be a fixed

density function. Allowing the transformation of f can introduce non-identifiability issues that
may not contribute meaningfully to the analysis. To illustrate, consider a smooth and invertible
function F(·), and define a transformed latent trait λ = F−1(θ), where F−1(·) represents the
inverse function of F(·). Then the manifest distribution (1) is equivalent to

P
[
Yi1 = 1,Yi2 = 1, . . . ,Yik = 1

] =
∫ k∏

j=1

Pi j [F(λ)] f [F(λ)]F ′(λ)dλ,

which gives rise to another IRT model with a different set of ICCs {P1[F(λ)], . . . , Pn[F(λ)]}
coupledwith the latent trait density f [F(λ)]F ′(λ). As the choice of f can be arbitrary,we consider
a fixed f for theoretical convenience. In Sect. 1.2, we will show that our results encompass the
commonly used normal distribution of the latent trait with a proper transformation.

In Sect. 1, we introduce an analysis framework of triangular sequences similarly to Dou-
glas (2001). Under this framework, we introduce conditions on the nonparametric item response
models and present examples to demonstrate that the new conditions can significantly relax
assumptions in Douglas (2001). Section2 presents the asymptotic identifiability results under
relaxed assumptions and proofs. Section3 discusses the practical implications of the results. Then
appendix provides technical lemmas and the proofs of lemmas and propositions.

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 03:16:00, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


960 PSYCHOMETRIKA

1. Set-Up

We consider the triangular sequence of item response variables that can be expressed as

Y k = (
Yk,1,Yk,2, . . . ,Yk,k

)

Y k+1 = (
Yk+1,1,Yk+1,2, . . . ,Yk+1,k,Yk+1,k+1

)

Y k+2 = (
Yk+2,1,Yk+2, . . . , 2,Yk+2,k+1,Yk+2,k+2

)

. . . . . .

Item response vectors in the sequence are not required to share any items with one another. That
is to say, the vectors in the sequence are allowed to be disjoint, or they may overlap to any
extent. Moreover, we let Fk denote the probability distribution of Y k . Then {Fk,Fk+1, . . .} form
a triangle sequence of distributions of item response vectors. In addition, we define a triangular
sequence of ICCs as

Pk = {
Pk,1, Pk,2, . . . , Pk,k

}

Pk+1 = {
Pk+1,1, Pk+1,2, . . . , Pk+1,k, Pk+1,k+1

}

Pk+2 = {
Pk+2,1, Pk+2,2, . . . , Pk+2,k+1, Pk+2,k+2

}

. . . . . .

Let f (θ) be a fixed probability density function of the latent trait �. We say that {Pk,Pk+1, . . .},
coupled with f , is a model for the sequence of manifest distributions {Fk,Fk+1, . . .}, if for
each k, all equations between the manifest distributions and the integrals, specified as in (1),
are satisfied. We establish the asymptotic identifiability in the sense that if the two sequences of
models, {Pk,Pk+1, . . .} and {P∗

k ,P∗
k+1, . . .}, are for the same sequence of manifest distributions,

their pointwise difference converges to as the number of items n increase to infinity.
We next state conditions that specify the class of item response models to consider. Then

we provide examples showing that the specified model class can include a wide range of popular
item response models and greatly extends the model class in Douglas (2001).

1.1. Conditions

Condition 1. Unidimensionality and local independence: The latent variable � is a scalar-
valued random variable and item responses are mutually independent conditioning on �.

Condition 2. � follows U (0, 1), a uniform distribution on the interval (0, 1).

Given the unidimensionality in Condition 1, Condition 2 can be viewed as the choice of a
specific parameterization for �. In particular, when � is a random variable with a continuous
cumulative distribution function F : R → (0, 1), we define � = F(�), resulting in � ∼
U (0, 1). This transformation suggests that any latent trait following a continuous distribution can
be equivalently transformed to U (0, 1).

Condition 3. Given each pair (n, i), the first-order derivative P ′
n,i (θ) exists and is continuous

in the open interval (0, 1). For 0 < α < β < 1, there exist constants mαβ and Mαβ that do not
depend on (n, i) such that for θ ∈ [α, β], 0 < mαβ < P ′

n,i (θ) < Mαβ < ∞.
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Condition 3 requires that the derivatives P ′
n,i (θ)’s are uniformly bounded from below and

above on a compact interval [α, β] ⊆ (0, 1). This is a notable relaxation of Assumption 4 in
Douglas (2001), which requires that P ′

n,i (θ)’s are uniformly bounded over the entire interval
(0, 1). With mαβ > 0 in Condition 3, we ensure that Pn,i (θ)’s are strictly increasing with respect
to θ , which is a commonly accepted assumption in the literature. Nevertheless, we point out that
all the analyses can be readily extended to cases where Pn,i (θ)’s are strictly decreasing with
respect to θ by consider the transformation �̃ = 1 − � ∼ U (0, 1) and P̃n,i (θ) = Pn,i (1 − θ) so
that P̃ ′

n,i (θ) = −P ′
n,i (1 − θ).

Condition 4. For each i ∈ {1, . . . , n}, there exist constants κn,i < γn,i ∈ [0, 1] such that
Pn,i (θ) ∈ [κn,i , γn,i ]. Moreover, for any ε > 0, there exist constants lε and uε ∈ (0, 1) such that
for all (n, i),

sup
θ∈[0,lε ]

[Pn,i (θ) − κn,i ] � ε, and sup
θ∈[uε ,1]

[γn,i − Pn,i (θ)] � ε.

Condition 4 implies that for each (n, i), limθ↓0 Pn,i (θ) = κn,i and limθ↑1 Pn,i (θ) = γn,i ,
where θ ↓ 0 and θ ↑ 0 represent the one-sided limits “fromabove” and “frombelow”, respectively.
When choosing κn,i = 0 and γn,i = 1, Condition 4 implies that Assumption 5 in Douglas (2001)
holds, i.e., the ICCs converge to 0 and 1 on the two end points of (0, 1), respectively. In contrast,
Condition 4 allows more flexible limiting values. This would enlarge the model class to include
models with guessing and missing parameters; please see more detailed discussions in Example
2 below.

In summary, Conditions 1–2 are the same as Assumptions 1–3 in Douglas (2001), whereas
Conditions 3 and 4 considerably relax Assumptions 4 and 5 in Douglas (2001), respectively. To
demonstrate this, we next provide examples with rigorous theoretical justifications.

1.2. Examples

Before presenting specific examples, we point out that the model of manifest distributions
consists of both the ICCs and the distribution of the latent trait. In practice, a non-uniform dis-
tribution of the latent trait, e.g., the standard normal distribution, may be more commonly used.
As discussed as after Condition 2, � ∼ U (0, 1) represents just one specific parameterization
of the latent trait. Given a continuous distribution of the latent trait that is not U (0, 1), we can
reparametrize the latent trait and the ICCs to obtain an equivalent model.

For instance, consider an item response model with an ICC denote as Q(·), and it is coupled
with the latent trait � following a distribution with a smooth cumulative distribution function
denoted as F . Suppose � has a density function f (λ), and F has an inverse function denoted
as F−1. Then � = F(�) ∼ U (0, 1), and F−1(�) is a random variable with the cumulative
distribution F . Then we can construct an equivalent item response model with the ICC

P(θ) = Q[F−1(θ)]. (2)

By the chain rule and the inverse function theorem in calculus,

P ′(θ) = Q′[F−1(θ)]
f [F−1(θ)] .

In the classical IRT models, it is common to assume that the latent trait � ∼ N (0, 1), i.e.,
the standard normal distribution. Then we can plug in F(·) = �(·), where �(·) represents the
cumulative distribution function of N (0, 1).
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Figure 1.
Pn,i (θ) and P ′

n,i (θ) for the normal ogive model in (3) with an,i = bn,i = 1.

Example 1. Two-Parameter Normal Ogive Model. Consider the normal ogive model where the
latent trait � ∼ N (0, 1), and each ICC Qn,i (λ) = �(an,i (λ − bn,i )) is determined by two
parameters (an,i , bn,i ). By (2), we have an equivalent model with � ∼ U (0, 1) and the ICC

Pn,i (θ) = �(an,i [�−1(θ) − bn,i ]), and P ′
n,i (θ) = an,iφ(an,i [�−1(θ) − bn,i ])

φ[�−1(θ)] , (3)

where φ(x) denotes the density function of N (0, 1). Douglas (2001) has pointed out that this
model would violate their Assumption 4. In Proposition 1 below, we formally demonstrate that
P ′
n,i (θ) cannot be uniformly bounded over the entire interval (0, 1), Furthermore, we prove that

Conditions 3 and 4 are satisfied as long as the parameters (an,i , bn,i ) are uniformly bounded.

Proposition 1. Suppose ICCs in the sequence {Qn,i (λ)} follow the normal ogive models with
parameters (an,i , bn,i ) and the latent trait � ∼ N (0, 1). Let {Pn,i (θ)} denote the corresponding
transformed ICCs following (3) with the latent trait � = �(�) ∼ U (0, 1).

(i) When |an,i | �= 1 or bn,i �= 0, limθ↓0 P ′
n,i (θ) and limθ↑1 P ′

n,i (θ) are either 0 or +∞.
(ii) Assume there exist constants Ca,Cb > 0 independent with (n, i) such that an,i ∈

[1/Ca,Ca] and |bn,i | ∈ [1/Cb,Cb] for all (n, i). Then the transformed ICCs {Pn,i (θ)}
satisfy Conditions 3 and 4 with κn,i = 0 and γn,i = 1.

We visually illustrate Proposition 1 by plotting Pn,i (θ) over (0, 1) and P ′
n,i (θ) when θ is

close to 0 and 1, respectively. Figure1 suggests that P ′
n,i (θ) approaches infinitesimal proximity

to 0 and ∞ as θ converges to 0 and 1, respectively, which is consistent with Proposition 1 (a).
Nevertheless, when θ is bounded away from 0 and 1, P ′(θ) is finite and strictly positive. The
above discussions focus on two-parameter normal ogive model, chosen for simplicity and to align
with the discussions in Douglas (2001). Similar conclusions can also be established beyond this
model class, even with additional parameters in the model. As an example, we next examine the
four-parameter logistic model.

Example 2. Four-Parameter Logistic Model. Typically, the four-parameter logistic (4PL)
model assumes that the latent trait � ∼ N (0, 1) and the ICC Qn,i (λ) = cn,i + (dn,i −
cn,i )g[an,i (λ − bn,i )] depends on four parameters (an,i , bn,i , cn,i , dn,i ) and g(x) = ex/(1 + ex ).
Whenwe consider the reparametrized latent trait� = �−1(�) ∼ U (0, 1), by (2), the equivalently
transformed ICC is

Pn,i (θ) = cn,i + (
dn,i − cn,i

)
g

[
an,i

(
�−1(θ) − bn,i

)]
. (4)
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Figure 2.
Pn,i (θ) and P ′

n,i (θ) for the 4PL in (4) with an,i = bn,i = 1, cn,i = 0.2, and dn,i = 0.8.

This formulation can cover the Rasch model, 2PL, and 3PL models as special cases by setting
some parameters to 0. In (4), limθ↓0 Pn,i (θ) = cn,i , limθ↑1 Pn,i (θ) = dn,i , and

P ′
n,i (θ) = (dn,i − cn,i )an,i

g′ [an,i
(
�−1(θ) − bn,i

)]

φ[�−1(θ)] .

In Proposition 2 below, we formally show that P ′
n,i (θ) is unbounded over the entire interval (0, 1)

and prove that Conditions 3 and 4 can be satisfied.

Proposition 2. Suppose ICCs in the sequence {Qn,i (λ)} follow the 4PL models with the latent
trait � ∼ N (0, 1) and the parameters (an,i , bn,i , cn,i , dn,i ) satisfying cn,i < dn,i ∈ [0, 1]. Let
{Pn,i (θ)} denote the corresponding transformed ICCs following (4) with the latent trait � =
�(�) ∼ U (0, 1).

(i) When an,i �= 0, limθ↓0 P ′
n,i (θ) = limθ↑1 P ′

n,i (θ) = +∞.
(ii) Assume there exist constants Ca,Cb,Cc,d > 0 independent with (n, i) such that an,i ∈

[1/Ca,Ca], |bn,i | ∈ [1/Cb,Cb], and dn,i −cn,i ∈ [1/Cc,d ,Cc,d ] for all (n, i). Then the
transformed ICCs {Pn,i (θ)} satisfy Conditions 3 and 4 with κn,i = cn,i and γn,i = dn,i .

We visually illustrate Proposition 2 by plotting Pn,i (θ) over (0, 1) and P ′
n,i (θ) when θ is

close to 0 and 1, respectively. Figure2a shows that Pn,i (θ) converges to 0.2 and 0.8 at the two
ends points of (0,1), respectively. Therefore, Assumption 5 in Douglas (2001) is violated in this
case. Moreover, Fig. 2b, c suggests that P ′

n,i (θ) diverges to ∞ as θ converges to 0 and 1, which
aligns with Proposition 2a and shows that Assumption 4 in Douglas (1997) is violated.

Remark 1. We point out that Douglas (2001) proposed another two Assumptions 4′ and 5′
and established Proposition 1 showing that an ICC satisfying their Assumptions 1–5 can be
approximated by another ICC satisfying Assumptions 1–3, 4′, and 5′. In this paper, Condition
3 is similar to Assumption 4′, and Condition 4 further relaxes Assumption 5′ by allowing more
general limits at the two end points 0 and 1. For instance, Assumptions 4′ and 5′ are satisfied by
Example 1 above, but Assumption 5′ is violated by Example 2. Furthermore, we note that Douglas
(2001) didn’t directly establish asymptotic identifiability under the extended model class in this
paper.
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2. Results

We next present Theorem 1, the main result for the asymptotic equivalence between two
sequences of ICCs under relaxed assumptions.

Theorem 1. For any two sequences of ICCs {Pk,Pk+1, . . .} and {P∗
k ,P∗

k+1, . . .}, given the
sequence of the manifest distribution {Fk,Fk+1, . . . , }, under Conditions 1–4,

lim
n→∞ max

1≤i≤n
sup

θ∈(0,1)

∣∣Pn,i (θ) − P∗
n,i (θ)

∣∣ = 0.

It is important to note that the asymptotic equivalence in Theorem 1 holds over the entire
interval (0, 1) even though that Condition 3 only assumes bounded derivatives on compact subsets
of (0, 1). Intuitively, this is achievable because the value of Pn,i (θ) has limited variation near the
two end points of (0, 1), as specified by Condition 4. However, we emphasize that the proof is not
a simple application of Condition 4. The relaxations introduced by Conditions 3–4 necessitate
the development of novel theoretical techniques. Due to the relaxations introduced by Conditions
3–4, many arguments in Douglas (2001) are no longer applicable. We need to develop novel
theoretical techniques that adapt to different ranges of θ . Please also see the detailed proofs and
more technical discussions in Remark 2.

2.1. Proof

We first provide an outline for the proof of Theorem 1. To prove Theorem 1, we will split
the domain of θ into three parts and define three terms B1, B2, and B3 below. Upper bounds of
B1 and B2 can be obtained by Condition 4. We then derive an upper bound of B3 in Theorem 2,
which is proved in two steps. Step 1 introduces a grid of θk ∈ (0, 1) (which becomes finer as n
increases) and shows that ICC evaluated at any θ can be well approximated by a θk on the grid.
Step 2 establishes that P and P∗ evaluated on the grids are close.

Proof. To prove Theorem 1, it suffices to prove that for any ε > 0, there exists Nε > 0 such
that when n � Nε , max1≤i≤n supθ∈(0,1) |Pn,i (θ) − P∗

n,i (θ)| � Cε where C > 0 is a uni-
versal constant. Given any ε > 0, let lε and uε be defined as in Condition 4. Then we have
max1�i�n supθ∈(0,1) |Pn,i (θ) − P∗

n,i (θ)| � max{B1, B2, B3}, where

B1 = max
1�i�n

sup
θ∈(0,lε ]

∣∣Pn,i (θ) − P∗
n,i (θ)

∣∣ , B2 = max
1�i�n

sup
θ∈[uε ,1)

∣∣Pn,i (θ) − P∗
n,i (θ)

∣∣

B3 = max
1�i�n

sup
θ∈(lε ,uε )

∣∣Pn,i (θ) − P∗
n,i (θ)

∣∣ .

By Condition 4,

B1 = max
1�i�n

sup
θ∈(0,lε ]

∣∣(Pn,i (θ) − κn,i ) − (P∗
n,i (θ) − κn,i )

∣∣

� max
1�i�n

sup
θ∈(0,lε ]

{∣∣Pn,i (θ) − κn,i
∣∣ + ∣∣P∗

n,i (θ) − κn,i
∣∣} � 2ε,

B2 � max
1�i�n

sup
θ∈[uε ,1)

{∣∣Pn,i (θ) − γn,i
∣∣ + ∣∣P∗

n,i (θ) − γn,i
∣∣} � 2ε.

We next establish Theorem 2 showing that there exists Nε > 0 such that when n � Nε , B3 � ε.
Then the proof of Theorem 1 is finished.
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Theorem 2. Assume Conditions 1–4. For any given ε > 0 and α < β ∈ (0, 1), there exists
Nε,α,β such that when n � Nε,α,β ,

max
1≤i≤n

sup
θ∈(α,β)

∣∣Pn,i (θ) − P∗
n,i (θ)

∣∣ < ε.

Proof. Consider an arbitrary item i ∈ {1, . . . , n} and θ ∈ (α, β). For each integer k such that
α < k/(n − 1) < β, define θk and θ∗

k to satisfy

P̄n,−i (θk) = P̄∗
n,−i

(
θ∗
k

) = k/(n − 1), (5)

where we define the functions

P̄n,−i (θ) =
∑

j �=i

Pn,i (θ)/(n − 1), and P̄∗
n,−i (θ) =

∑

j �=i

P∗
n,i (θ)/(n − 1),

representing the means of the ICCs of their respective sequences. Note that θk and θ∗
k depend

on n and i , but this is suppressed in the notation for simplicity of presentation. For any given
θ ∈ (α, β), select the integer k such that θk ∈ (α, β) and |θ − θk | is minimized. (The definition
of θk depends on a given θ in the analysis, and this is not emphasized for notational simplicity.)
Then

|Pn,i (θ) − P∗
n,i (θ)|

� |Pn,i (θ) − Pn,i (θk)| + |Pn,i (θk) − P∗
n,i (θ

∗
k )| + |P∗

n,i (θ
∗
k ) − P∗

n,i (θ)|.

The following proof consists of two main steps showing that

Step 1: max{|Pn,i (θ) − Pn,i (θk)|, |P∗
n,i (θ

∗
k ) − P∗

n,i (θ)|} � 4Mαβ

mαβn
,

Step 2: |Pn,i (θk) − P∗
n,i (θ

∗
k )| � ε,

respectively, wheremαβ and Mαβ are constants specified as in Condition 3. It is worth mentioning
that Mαβ and mαβ are constants that depend on (α, β) but are independent with (n, i).

Step 1.
As θ and θk ∈ (α, β),

|Pn,i (θ) − Pn,i (θk)| � sup
η∈(α,β)

|P ′
n,i (η)| × |θ − θk | � Mαβ × |θ − θk |. (6)

By the definition in (5) and Condition 4, there exist (lα,β, uα,β) independent with (n, i) such that
0 < lα,β < θk−1, θk+1 < uα,β < 1 when n is sufficiently large. By Condition 3, Pn,i (θ) and
P̄n,−i (θ) are non-decreasing functions with respect to θ on a fixed interval (lα,β, uα,β). Therefore,
we know θk−1 < θk < θk+1. Moreover, by θ, θk ∈ (α, β), we have

α � λk− < θk < λk+ � β,
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where we define λk− = max{θk−1, α} and λk+ = min{θk+1, β}. As k is the integer that minimizes
|θ − θk |,

|θ − θk | � |λk− − λk+| � |P̄n,−i (λk−) − P̄n,−i (λk+)|
infη∈[α,β] |P̄ ′

n,−i (η)| . (7)

By Condition 3, there exists a constant mαβ > 0 independent with (n, i) such that
infη∈(α,β) |P ′

n,i (η)| > mαβ . Thus,

(7) � 1

mαβ

|P̄n,−i (λk−) − P̄n,−i (λk+)|

� 1

mαβ

|P̄n,−i (θk−1) − P̄n,−i (θk+1)| = 2

mαβ(n − 1)
� 4

mαβn

where the second inequality is obtained by the monotonicity of P̄n,−i (θ) under Condition 4. In
summary, we have (6) � 4Mαβ/(mαβn). The same upper bound can be obtained for |P∗

n,i (θ
∗
k ) −

P∗
n,i (θ)| following a similar analysis, and thus, Step 1 is proved.

Step 2. Define Ȳn,−i = ∑
j �=i Yn,i/(n − 1) and the event En,k = {Ȳn,−i = k/(n − 1)}. Let

δ ∈ (0, 1/2) be a fixed small number. Define an interval Iδ = (δ, 1 − δ). Then we have

|Pn,i (θk) − P∗
n,i (θ

∗
k )|

� |Pn,i (θk) − P(Yn,i = 1, � ∈ Iδ | En,k)| + |P(Yn,i = 1, � ∈ Iδ | En,k) − P∗
n,i (θ

∗
k )|

� A1 + A2 + A∗
1 + A∗

2,

where we define

A1 = ∣
∣Pn,i (θk)

{
1 − P(� ∈ Iδ | En,k)

}∣∣

A2 = ∣∣Pn,i (θk) P
(
� ∈ Iδ | En,k

) − P
(
Yn,i = 1,� ∈ Iδ | En,k

)∣∣

A∗
1 = ∣∣P∗

n,i

(
θ∗
k

) {
1 − P(� ∈ Iδ | En,k)

}∣∣

A∗
2 = ∣∣P∗

n,i

(
θ∗
k

)
P

(
� ∈ Iδ | En,k

) − P
(
Yn,i = 1,� ∈ Iδ | En,k

)∣∣ .

We point out that (A1, A∗
1, A2, A∗

2) depend on (n, i, k, δ), but this is suppressed in the notation
for simplicity. By Lemma 2 in the appendix,

A1 + A∗
1 � 2nδ exp(−nC̃αβ,1)

C̃αβ,2
. (8)

As the exponential term converges to 0 faster than polynomial n−r for any r > 0, for any ε > 0,
there exists Nε,α,β,δ such that for n � Nε,α,β,δ , A1 + A∗

1 � ε/2.
We next prove that for any fixed ε > 0 and δ > 0, when n is sufficiently large,

A2 + A∗
2 � ε/2. (9)
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In particular, define an interval Ik,η = (θk − n−η, θk + n−η) with 0 < η < 1/2. Then

A2 = ∣∣Pn,i (θk) P
(
� ∈ Iδ | En,k

) − P
(
Yn,i = 1,� ∈ Iδ | En,k

)∣∣

�
∣∣Pn,i (θk) [P(� ∈ Iδ | En,k) − P(� ∈ Iδ ∩ Ik,η | En,k)]

∣∣

+ ∣∣Pn,i (θk)P
(
� ∈ Iδ ∩ Ik,η | En,k

) − P(Yn,i = 1,� ∈ Iδ ∩ Ik,η | En,k)
∣∣

+ ∣∣P(Yn,i = 1,� ∈ Iδ ∩ Ik,η | En,k) − P(Yn,i = 1,� ∈ Iδ | En,k)
∣∣

� A21 + A22 + A23,

where we define

A21 = ∣∣P
(
� ∈ Iδ | En,k

) − P
(
� ∈ Iδ ∩ Ik,η | En,k

) ∣∣ = P
(
� ∈ Iδ ∩ I ck,η | En,k

)
,

A22 =
∫

|Pn,i (θk) − Pn,i (θ)| fn,k,−i (θ) I (θ ∈ Iδ ∩ Ik,η) dθ,

A23 = P(Yn,i = 1,� ∈ Iδ ∩ I ck,η | En,k),

where in the definition of A22, we let fn,k,−i (θ) denote the probability density of � conditioning
on En,k . Since A23 � A21 and A2 and A∗

2 can be analyzed similarly, to prove (9), it suffices to
show A21 � ε/12 and A22 � ε/12 below.

First, A21 = A21,num/P(En,k), where we define A21,num = P(� ∈ Iδ ∩ I ck,η, En,k) satisfying

A21,num = P

(
|� − θk | > n−η, � ∈ Iδ, Ȳn,−i = k

n − 1

)
. (10)

By P̄n,−i (θk) = k/(n − 1) and Ȳn,−i = k/(n − 1) in (10), we know θk = P̄−1
n,−i (Ȳn,−i ), where

P̄−1
n,−i represents the inverse of the function P̄n,−i (·). Then

(10) =P

(∣∣� − P̄−1
n,−i

(
Ȳn,−i

)∣∣ > n−η, � ∈ Iδ, Ȳn,−i = k

n − 1

)

=
∫

P

{
P̄−1
n,−i (Ȳn,−i ) > θ + n−η or < θ − n−η, Ȳn,−i = k

n − 1
| � = θ

}
I(θ ∈ Iδ)dθ

�
∫

P

{
Ȳn,−i > P̄n,−i (θ + n−η) or < P̄n,−i (θ − n−η), Ȳn,−i = k

n − 1

∣∣
∣
∣ � = θ

}
I(θ ∈ Iδ)dθ

�
∫

P
{∣
∣Ȳn,−i − P̄n,−i (θ)

∣
∣ > |P̄ ′

n,−i (θη)|n−η | � = θ
}
I(θ ∈ Iδ)dθ (11)

where the last inequality is obtained by the intermediate value theorem, P̄ ′
n,−i (·) represents the

first-order derivative of P̄n,−i (·), and θη is between θ − n−η and θ + n−η. When n is sufficiently
large, θη ∈ (δ/2, 1 − δ/2) given θ ∈ (δ, 1 − δ). Thus, by Condition 3, there exists a constant
mδ/2 > 0 independent with (n, i) such that |P ′

n,−i (θη)| > mδ/2. Therefore,

(11) �
∫

P
{∣∣Ȳn,−i − P̄n,−i (θ)

∣∣ > mδ/2n
−η | � = θ

}
I(θ ∈ Iδ)dθ.
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By Lemma 3, i.e., Hoeffding’s inequality of bounded variables, we have

(11) � 2
∫

e−2(n−1)n−2ηm2
δ/2 I(θ ∈ Iδ)dθ � 2δe−2(n−1)n−2ηm2

δ/2 .

Combining the above inequality with Lemma 1, we have

A21 = A21,num

P(En,k)
� 2δe−(n−1)n−2ηm2

δ/2
n

C̃αβ

.

When 0 < η < 1/2, the exponential term converges to 0 faster than n−r for any r > 0. Thus, for
any ε > 0, there exists Nε,α,β,δ such that for n � Nε,α,β,δ , A21 � ε/12.

Second, by θk ∈ (α, β), when n is sufficiently large, Ik,η ⊆ (α/2, (1 + β)/2). Therefore,

sup
θ∈Ik,η

∣∣Pn,i (θ) − Pn,i (θk)
∣∣ � sup

η∈Ik,η
|P ′

n,i (η)| sup
θ∈Ik,η

|θ − θk | � Mαβ,2n
−η,

where Mαβ,2 is a constant that is independent of (n, i) by Condition 3. It follows that

A22 �
∫

Mαβ,2n
−η fn,k,−i (θ) I(θ ∈ Iδ ∩ Ik,η)dθ

� Mαβ,2n
−η × P(� ∈ Iδ ∩ Ik,η | En,k)

� Mαβ,2n
−η � ε/12,

when n is sufficiently large.

Remark 2. Although Theorem 2 concerns a strict subset of (0, 1), its proof markedly differs
from Theorem 1 in Douglas (2001), since Assumptions 4–5 in Douglas (2001) cannot be directly
applied. Notably, in Step 2 of the preceding proof, an interval Iδ is introduced to establish the
necessary inequalities, which is not required in Douglas (2001).

3. Discussions

Nonparametric IRT models provide a versatile framework and play an important role in
ensuring robust measurement against model misspecification and in assessing parametric IRT
model fit. In practical applications, it is often imperative to consider a large space of functions that
embraces popular parametric IRT models. This requirement, however, considerably complicates
the study of model identifiability. In this paper, we show that the assumptions restricting themodel
class in Douglas (2001) can be substantially relaxed, and we establish asymptotic identifiability
for an extended model class that includes many popular parametric IRT models.

The result implies that as the number of items increases, an IRT in the extended model class
can be uniquely identified, which provides a solid theoretical foundation for assessing the model
fit. For instance, existing literature has proposed to assess the goodness-of-fit of a parametric IRT
model by measuring its discrepancy to a nonparametric IRT on the same data (Douglas & Cohen,
2001; Lee et al., 2009) . When the measured discrepancy passes a suitable significant threshold,
one can infer that the parametric and nonparametric IRTs are significantly different, indicating
the inadequacy of the parametric IRT model fit. Our asymptotic identifiability suggests that this
approach is applicable to popular 2PL, 3PL, and 4PL models asymptotically, as they are included
in the extended model class. In future, it would also be an interesting research direction to develop
appropriate goodness-of-fit test under finite number of items with rigorous theoretical guarantee.
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Appendix

We present all the lemmas in Section A and provide their proofs in Section B. The proofs of
propositions are provided in Section C.

A. Lemmas

Lemma 1. Consider an integer k such that θk ∈ (α, β). There exist constants C̃αβ > 0 and Nαβ

independent with (n, i) such that when n � Nαβ ,

P

(
Ȳn,−i = k

n − 1

)
� C̃αβn

−1.

Lemma 2. Under the conditions of Theorem 2, there exist constants C̃αβ,1 and C̃αβ,2 independent
with (n, i) such that

∣∣1 − P
(
� ∈ Iδ | En,k

)∣∣ � nδ exp(−nC̃αβ,1)

C̃αβ,2
.

Lemma 3. (Hoeffding inequality of bounded variables) For any (n, i), and m > 0,

P(|Ȳn,−i − P̄n,−i (θ)| > m | � = θ) � 2 exp[−2(n − 1)m2].

B. Proofs of Lemmas

B1. Proof of Lemma 1 Let μθ = ∑
j �=i Pn, j (θ) and σ 2

θ = ∑
j �=i Pn, j (θ)(1− Pn, j (θ)), which are

the mean and variance of (n− 1)Ȳn,−i conditioning on � = θ , respectively. By applying a bound
on the normal approximation for the distribution of a sum of independent Bernoulli variables
(Mikhailov, 1994)

∣∣∣∣
∣∣
P

[
(n − 1)Ȳn,−i = k | � = θ

] − 1

σθ

√
2π

e
− (k−μθ +1/2)2

2σ2
θ

∣∣∣∣
∣∣
≤ c

σ 2
θ

(12)

for some universal constant c.
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Define the intervals In,1/2 = (θk − n−1/2, θk + n−1/2) and Ĩn,1/2 = In,1/2 ∩ (α/2, (1 + β)/2).
For θ ∈ Ĩn,1/2 and θk ∈ (α, β),

|k − μθ |
n − 1

= |P̄n,−i (θk) − P̄n,−i (θ)| � Mαβ,2|θk − θ | < Mαβ,2n
−1/2, (13)

where in the second inequality, Mαβ,2 is a constant that is independent with (n, i) by Condition 3.
Moreover, by Condition 4, there exist positive constants Lαβ and Uαβ that are independent with
(n, i) such that

Lαβ < σ 2
θ /(n − 1) < Uαβ. (14)

Therefore, by (12), (13), and (14), for θ ∈ Ĩn,1/2,

P

(
Ȳn,−i = k

n − 1

∣∣∣ θ

)
>

1
√
2πσ 2

θ

e
− (k−μθ +1/2)2

2σ2
θ − c

σ 2
θ

>
1

√
2Uαβ(n − 1)π

e
−

(
Mαβ,2(n−1)n−1/2+ 1

2

)2

2Lαβ (n−1) − c

Lαβ(n − 1)

>
C̃αβ

2n1/2
,

where C̃αβ > 0 is a constant that is independent with (n, i). Therefore,

P

(
Ȳn,−i = k

n − 1

)
�

∫

θ∈ Ĩn,1/2

P

(
Ȳn,−i = k

n − 1

∣∣∣ θ

)
dθ >

∫

θ∈ Ĩn,1/2

C̃αβ

2n1/2
dθ. (15)

There exists Nαβ independent with i such that when n � Nαβ , Ĩn,1/2 = In,1/2 by θk ∈ (α, β).
Then by (15),

P

(
Ȳn,−i = k

n − 1

)
>

∫

θ∈In,1/2

C̃αβ

2n1/2
dθ = C̃αβn

−1.

B2. Proof of Lemma 2 To prove Lemma 2, we note that

1 − P(� ∈ Iδ | En,k) = P
(
0 < � < δ | En,k

) + P
(
1 − δ < � < 1 | En,k

)
.

Wenext derive an upper boundof P
(
0 < � < δ | En,k

)
, and a similar upper bound can be obtained

for P
(
1 − δ < � < 1 | En,k

)
following a similar analysis.

By P(0 < � < δ | En,k) = P(0 < � < δ, En,k)/P(En,k), and the lower bound of P(En,k) in
Lemma 1, it suffices to derive an upper bound of P(0 < � < δ, En,k) below. In particular,

P
(
0 < � < δ, En,k

) =
∫

P

(
Ȳn,−i = k

n − 1
| � = θ

)
I(0 < θ < δ)dθ. (16)
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By P̄n,−i (θk) = k/(n − 1),

Ȳn,−i = k

n − 1
⇔ Ȳn,−i − P̄n,−i (θ) = [P̄n,−i (θk) − κ̄−i ] − [P̄n,−i (θ) − κ̄−i ], (17)

where we define κ̄−i = ∑
j �=i κ j/(n − 1). By 0 < α/2 < α < θk < β and Conditions 3 and 4,

we have P̄n,−i (θk) � P̄n,−i (α) and P̄n,−i (α/2) � κ̄−i . Therefore,

P̄n,−i (θk) − κ̄−i � P̄n,−i (α) − P̄n,−i (α/2) = P̄ ′
n,−i (α̃)α/2 � m̃αα/2, (18)

where the second equation is obtained by the intermediate value theorem with α̃ ∈ (α/2, α), and
the last inequality is obtained by Condition 3 with m̃α being a constant independent with (n, i).
Let C̃α = m̃αα/2. By Condition 4, there exists δα > 0 such that for θ < δ � δα ,

P̄n,−i (θ) − κ̄−i < P̄n,−i (δ) − κ̄−i < C̃α/2. (19)

Combining (17), (18), and (19),

P

(
Ȳn,−i = k

n − 1
| � = θ

)

= P
(
Ȳn,−i − P̄n,−i (θ) = [P̄n,−i (θk) − κ̄−i ] − [P̄n,−i (θ) − κ̄−i ] | � = θ

)

� P
(
Ȳn,−i − P̄n,−i (θ) � C̃α/2 | � = θ

)

� 2 exp[−(n − 1)C̃2
α/2],

where the last inequality follows by Lemma 3. By the above inequality and (16),

P
(
0 < � < δ | En,k

)
� 2δ exp[−(n − 1)C̃2

α/2]
P(En,k)

� 2nδ exp[−(n − 1)C̃2
α/2]

C̃αβ

,

where the second inequality is obtained by Lemma 1. A similar upper bound can be obtained for
P(1 − δ < � < 1 | En,k ) too. Lemma 2 is proved.

C. Proofs of Propositions

C1. Proof of Proposition 1 Let x = �−1(θ). We can equivalently write P ′
n,i (θ) = hn,i (x), where

hn,i (x) = an,iφ[an,i (x − bn,i )]
φ(x)

= an,i exp

[
−1

2
(a2n,i − 1)x2 + a2n,i bn,i

(
x − 1

2

)]
.

Note that θ ↓ 0 and θ ↑ 0 correspond to x → −∞ and x → +∞, respectively. Let
p+ = limθ→1 P ′

n,i (θ) = limx→+∞ hn,i (x) and p− = limθ→0 P ′
n,i (θ) = limx→−∞ hn,i (x).

As hn,i (x) = 0 when an,i = 0, it suffices to consider an,i �= 0 below. In particular,

(p−, p+) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(+∞,+∞) when 0 < a2n,i < 1

(0, 0) when a2n,i > 1

(0,+∞) when a2n,i = 1, bn,i > 0

(+∞, 0) when a2n,i = 1, bn,i < 0

(1, 1) when a2n,i = 1, bn,i = 0.
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This suggests that P ′
n,i (θ) cannot be uniformly bounded on (0, 1) when a2n,i �= 1 or bn,i �= 0.

On the other hand, when θ ∈ [α, β], x ∈ [�−1(α),�−1(β)] with the two end points bounded
away from −∞ and +∞. Therefore, when an,i ∈ [1/C,C] and |bn,i | ∈ [1/C ′,C ′], there exist
0 < mαβ < Mαβ < ∞ such that P ′

n,i (θ) = hn,i (x) ∈ (mαβ, Mαβ). Thus Condition 3 is satisfied.

We next prove that Condition 4 is also satisfied. When ε ∈ (0, 1/2), �−1(ε) < 0, and then we
set lε = �

[
Ca�

−1(ε) − Cb
]
. When θ ∈ [0, lε],

Pn,i (θ) � Pni (lε) = �
[
ani (�

−1(lε) − bni )
]

� �{ani [Ca�
−1(ε) − Cb + |bni |]}

� �{ani [Ca�
−1(ε) − Cb + Cb]} � �

[
1

Ca
Ca�

−1(ε)

]
= ε.

When ε ∈ (1/2, 1), �−1(ε) > 0, and we set lε = �
[
C−1
a �−1(ε) − Cb

]
. Then we can obtain

Pn,i (θ) � ε similarly to the above analysis. Following similar analysis, we can construct uε so
that 1 − Pn,i (θ) � ε for θ ∈ [uε, 1]. In brief, Condition 4 is satisfied.

C2. Proof of Proposition 2 Let x = �−1(θ). We can equivalently write P ′
n,i (θ) = hn,i (x), where

hn,i (x) = (dn,i − cn,i )an,i
g′ [an,i (x − bn,i )

]

φ(x)

= (dn,i − cn,i )an,i
ex

2/2/[ean,i (x−bn,i ) + e−an,i (x−bn,i )]
1 + 2/[ean,i (x−bn,i ) + e−an,i (x−bn,i )]

which is obtained by

g′(x) = 1/(ex + e−x )

1 + 2/(ex + e−x )
.

Note that θ ↓ 0 and θ ↑ 0 correspond to x → −∞ and x → +∞, respectively. When an,i = 0,
hn,i (x) = 0. When an,i �= 0, ean,i (x−bn,i ) + e−an,i (x−bn,i ) → +∞ and ex

2/2 as |x | → +∞.
Moreover, as the quadratic term diverges faster than the linear term, we know ex

2/2/[ean,i (x−bn,i )+
e−an,i (x−bn,i )] → ∞. Thus, hn,i (x) → +∞.
On the other hand, when θ ∈ [α, β], x ∈ [�−1(α),�−1(β)] with the two end points bounded
away from −∞ and +∞. Therefore, under the conditions in (ii) of Proposition 2, there exist
0 < mαβ < Mαβ < ∞ such that P ′

n,i (θ) = hn,i (x) ∈ (mαβ, Mαβ). Thus, Condition 3 is satisfied.

We next prove that Condition 4 is also satisfied. When ε is small such that g−1(ε/Cc,d) < 0, we
set lε = �

[
Cag−1(ε/Cc,d) − Cb

]
. Then for θ ∈ [0, lε],

Pn,i (θ) − cn,i � Pn,i (lε) − cn,i = (
dn,i − cn,i

)
g

(
an,i [Cag

−1(ε/Cc,d) − Cb − bn,i ]
)

�
(
dn,i − cn,i

)
g

(
an,i [Cag

−1(ε/Cc,d) − Cb + |bn,i |]
)

(i1)
�

(
dn,i − cn,i

)
g[g−1(ε/Cc,d)] � ε,

where the inequality (i1) above is obtained by an,iCa � 1 > 0 and |bn,i |−Cb � 0.When ε is large
such that g−1(ε/Cc,d) > 0, we set lε = �

[
C−1
a g−1(ε/Cc,d) − Cb

]
, and then Pn,i (θ)− cn,i � ε

can be obtained similarly. Following similar analysis,we can construct uε so thatdn,i−Pn,i (θ) � ε

for θ ∈ [uε, 1]. In brief, Condition 4 is satisfied.
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