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Abstract

This paper considers a cell population model with a general maturation rate. This model
is described by a nonlinear PDE. We use the theory of operator semigroups to study the
problem under simple hypotheses on the growth function and the nonlinear term. By
showing that a related operator generates a strongly continuous semigroup, we prove the
existence of a classical solution of the nonlinear problem and its positivity. It is also proved
that under simple hypotheses, the problem generates a semiflow. The invariance of the
semiflow is studied as well.

1. Introduction

The study of cell population growth models has greatly contributed to the development
of mathematical biology. See Metz and Diekmann [14] and Webb [18] for excellent
accounts of this subject. Recently, a maturity structured model of a blood cell pro-
duction system has been studied by Rey and Mackey [16]. The governing equation
is

d d
— u(x,t) + —(xu(x,t))
dt dx

= fiu(ax, t - r)(l - u(ax,t - r)), t > 0; ^ - ^

u(x,t) = <p(x,t), - r < t <0, x e [0, 1].

Here u(x, t) is the population density of cells with respect to maturity x at time /
and IJ,, a, r are parameters satisfying JX > 0, 0 < a < 1, r > 0. If we assume that
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the maturity transport term in the model is of the form (d/dx)[g(x)u(x, t)] under
the assumption that all cells have general maturation rate g(x), this gives rise to the
following model:

3u(x,t) du(x,t)
dt dx

u(x,t) = <f>(x,t), -x < t < 0 , x € [0, 1],
(1.2)

where u, denotes the derivative of u with respect to t, g(x) is nonnegative and satisfies
0)=Oand/0 'rf*/s(jc) = oo.
The maturity structured model of a cell population system given by

3II(JC,0 d(a(x)u(x,t)) =puix't)>
(1-3)

0<x<\,

where fi > 1 is a constant, was studied by Webb [19] for the special case a{x) = x.
For a general maturation velocity a{x), system (1.3) may be rewritten as

du(x,t)
+ a(x) = / (x, u(x, t)),+ a(x)

at ox
u(x,0) = \J/(x), 0 < x < 1,

where a(x) is nonnegative, a(0) = 0 and f0 dx/a(x) = oo.
The model studied by Gyllenberg and Heijmans [9] is described by

dnQc.t) d(g(x)n(x,t))
H = -ix(x)n(x, t) - b(x)n(x, t)

(1.4)

dt
2p{y-\x))b(y-\x)) (1.5)

where n(x, t) is the size distribution of cells in the first phase at time t and size x.
The functions g, [i and b are the rates at which cells of size x grow, die and transit
to the second phase respectively. Here r > 0 is the constant duration of the second
phase, y{x) is the size of a new born cell whose mother entered the second phase with
size x, and p(x) is the fraction of cells who survive the second phase given that they
entered it with size x. Under an appropriate substitution (see [9] and [20]) (1.5) can
be transformed into

du(x,t) du(x,t)
dx

(1.6)

where g (x) is nonnegative and the same as in (1.5) but should also satisfy fQ -^r = oo.
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The model studied by Greiner and Nagel [8], and Metz and Diekmann [14], is
described by

^ + ^o
ot dx (1.7)

u(a/2, t) = 0, u(x, 0) = uo(x).

The growth function g(x) was taken to be 0 < e < g(x) < <5 for all x > 0. It is more
realistic in this case that g(x) be taken to be g(x) > 0 for x > 0.

From the aforegoing review, we see that it is of interest to study Problem (1.4) in
the case where / : [0, 1] x R h+ R is continuous and a(x) satisfies the following
conditions:

(i) a € C[0, 1] and a(x) > 0 for 0 < x < 1;
(ii) a(0) = 0, measure [x \ a(x) = 0} = 0;

(iii) fl ds/a{s) < oo, if 0 < x < 1;
(iv) /0' ds/a(s) = oo.

A similar problem was studied in [4,5,10,11], under stronger conditions on a(x) and
f (x,v) (that is, a(x) > 0 (x > 0), a and/ are continuously differentiable), using the
classical method of characteristics.

It is well known that issues concerning the smoothness of various coefficients and
terms appearing in differential equations greatly affect the existence, uniqueness and
regularity of solutions and this is especially so in the theory of partial differential
equations (see [17]). We will use the theory of operator semigroups to study problem
(1.4) under simple hypotheses on a(x) (conditions (i)—(iv)) and/ (x, u) given above.

The only assumption made about the nonlinear term is that / {x, v) and fv(x, v)
are continuous. In fact, when a and/ are continuously differentiable and a(x) > 0
for x > 0, as mentioned earlier, the existence of the problem can be studied by the
classical theory of characteristics (see [10]). In our case, however, the classical theory
of characteristics cannot be applied. Thus the approach taken in this paper is totally
different from that in [10] and we not only obtain strong results on the existence and
positivity of a classical solution, but also establish a basis for analysing time-delay
cell populations with general maturation velocity, such as models (1.2) and (1.6). In
this paper, we will show that the related operator generates a strongly continuous
semigroup. By studying the properties of the semigroup, we prove the existence of a
classical solution of the nonlinear problem and the positivity of the solution. It is also
proved that the problem generates a semiflow. We will prove that the phase space,
that is, all nonnegatively continuous functions on [0, 1], of the semiflow splits into
two disjoint invariant sets.

The paper is organized as follows: in Section 2, we prove that the operator
a(x)(d/dx) generates a strongly continuous semigroup of operators on C[0, 1] and
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show that the semigroup is positive and contractive. Although an analytic semigroup
has many nice properties, it will be shown that our semigroup cannot be extended
to being an analytic semigroup. Next, in Section 3, we consider the existence of a
classical solution of problem (1.4) and the positivity of the solution. We will show
that the mild solution of the problem generates a semiflow. We finally present one of
the properties of the semiflow—invariance (Section 4).

2. Related semigroup of operators

Let Y = C[0, 1] be the Banach space with norm \\(}>\\ = maxo<x<i \(p(x)\ for
4> e Y. Let a{x) be a given continuous function on [0, 1]. Similar to [12], we define
an operator H on Y. Define the domain of H to be:

D(H) = {0 6 Y \ 0'(x) exists and is continuous at x when a(x) ^ 0; (2.1)
lim^_^0 a(x)<p'(x) exists when a(x0) = 0 and x0 ^ 0;
lim^o^OO exists}

and for </> <= D(H)

d<j>(x)
a(x) ^ , ifa(jr)^O,

l ima ( j c )^^ , ifa(;co) = Oand;to^O, (2.2)
* - » * < > dx

where

a(x)—-—
00c) = ' dx

dy

REMARK 2.1. The operator H has also been studied in many other places (see
[1,2,6,21]). It is also related to the problem of characterizing all flows on [0, 1] (see,
for example, [1]).

Using an idea developed in [12] and [21], we can prove the following theorem.

THEOREM 2.1. If a(x) satisfies conditions (i)-(iii) in Section 1, then the operator
— H defined by (2.1) and (2.2) generates a strongly continuous contraction semigroup
if and only iff0 dx/a(x) — oo.

PROOF. Let «(*) satisfy conditions (i)—(iv) in Section 1. We will show that —H
is an infinitesimal generator of a strongly continuous contraction semigroup. First,
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we note that D(-H) is a dense subset of Y since C'[0, 1] C D(-H). We note also
that — H is a closed operator. In fact, if </>„ —• <f> and —H<pn -* \j/ in Y as n -*• oo,
then l i m ^ ^ t t ) = -ir(x)/a(x) a.e. on [0, 1] and \<t>'n(x)\ < (HAMI + DM*)
a.e. on [0, 1] for sufficiently large n. Therefore <p(x) = 0(1) — fx \j/(s)/a(s)ds for
0 < x < 1, and we see that 0 6 D(-H) and - / / 0 = ^-

We need to show that the image R(XI + H) of operator XI + H is dense in Y for
A. > 0. For a given ^ e T , let

r
Jo

for 0 < x < 1. It is clear that the limit exists. Define

(2.3)

Since there exist £i, £2 £ [0, *] such that

VK^OA 5 0(0 ^ ^/r(?2)A. f ° r ' e [0>*L

we see that lirnt_>o+0(*) = V(0)A- Therefore 0 6 K and (A./ + H)(f> = \{f. It
follows that R(XI + H) = Y for X > 0. From (2.3) we also have

11011 < IIViA, forA>0. (2.4)

For a given A. > 0 if (XI + H)<p = 0 then (ekXds/a(s)<t>(x)y = 0 a.e. on [0, 1].
In fact, according to condition (iv), there is an at most countable subset F of [0, 1]
such that (exKdsla(s)<t>(x))' = 0 for all x € [0, 1] - F (see [6]) and 0 € F is the only
accumulation point of F.

We must have 0 = 0 , since limx_0+ ^^ A/"(l) = 0 and 0 is a continuous function.
So, (XI + H) is injective for A > 0 and we have that (XI + H)~x e L(Y, Y) with
||(XI + # ) - ' || < I/A. for A. > 0.

By the Hille-Yosida theorem (see [7,15]), — H generates a strongly continuous
contraction semigroup on Y. Conversely if — H generates a Co contraction semigroup
on Y, then there is a A. > 0 with A. e p(—H) such that for xjf = 1, there exists a unique
0 6 D(-H) satisfying

(XI + H)(p = ir = 1. (2.5)

If f0 dx/a(x) < oo, there are two different functions 0i and 02 that satisfy (2.5) and
are defined as follows:

= - ( l -
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and

_L e-HvaM,dt o < x < 1.
a(t)

This contradiction shows that we must have f0 dx/a(x) = oo and the theorem is
proved.

We will show that the strongly continuous contraction semigroup {7*(O}<>o gener-
ated by — H is positive. In fact, the positivity of the resolvent operator of — H implies
the positivity of the semigroup. In order to explore further properties of the operator
—H, we give the following proof of positivity.

Let Y+ = {<p e Y | <p{x) > 0 for x € [0, 1]} be a positive cone. Y can be ordered
by setting f > g whenever the funtion/ — g e Y+. In such a setting, we see that
(Y, Y+, || • ||) is a Banach lattice. Recall that {T(t)},>0 is positive if T(t) Y+ c Y+ for
t > 0. For the reader's convenience, we cite the following result.

LEMMA 2.1 (see [3]). Let (Y, Y+, || • ||) be an ordered Banach space for which the
norm is monotone and the operator norm on L(Y, Y) is positively attained. If —H
is a closed densely defined, N-dissipative operator, and R(I + aH) = Y for some
a > 0, then —H generates a positive Q semigroup of contraction.

We now prove the following result.

THEOREM 2.2. Let a(x) satisfy (i)-(iv) in Section 1, then the operator -H defined
by (2.1) and (2.2) generates a positive Co contraction semigroup.

PROOF. It follows from Theorem 2.1 that — H generates a Co contraction semigroup
and R{I + aH) = Y for a > 0.

It is easy to see that Y+ is generating, that is, Y = Y+ — Y+ and the norm is
monotone, that is, \\<p\\ < H^|| if 0 < 0 < V-

We will show that L (Y, Y) is positively attained. The norm on Y is a Riesz norm. In
fact, the || • || Y is absolutely monotone {-f < 0 < rjr always implies ||0|| < ||i^||) and
Y+ is approximately absolutely dominating (for each <p e Y there is a TJT > 0 such that
-f < </> < ^ and \\\jr\\ < or ||0|| for all a > 1). According to [3, Corollary 1.7.5], the
operator norm on L(Y, Y) is absolutely monotone. Since int Y+ ^ 0 (int Y+ denotes
the set of interior points of Y+), we see that the operator norm is positively attained
(by [3, Theorem 1.7.9]).

It now follows from the arguments above and Lemma 2.1 that —H generates a
positive semigroup if we can show that H is Af-dissipative, that is,

+aH)4>)>
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for all (small) a > 0, and 0 € D(H) (see [3, Theorem 2.1.1]), where N(ijr) = \\f+\\
for yjf € Y, \ff+ = (|V |̂ + i/)/2. From the proof of Theorem 2.1, if (/ + aH)4> = $,
then

Afv") = I ef' */««(.) / " ^ ^ -f,'ds/aa(s)

therefore

> + and

So, / / is A^-dissipative and we conclude the proof of the theorem.

It is interesting to note that positive Co-semigroups automatically satisfy a stronger
positivity condition.

COROLLARY 2.1. Suppose a(x) satisfies conditions (i)—(iv) in Section 1, then the
positive Co semigroup [T(t)},>0 generated by the operator —H satisfies

K+) C int Y+ (2.6)

for all t > 0.

PROOF. This is an immediate consequence of [3, Proposition 2.2.9].

The following result is obvious.

COROLLARY 2.2. Ifa<0<b and

r = {0 e Y | a < 00c) < b, forallx 6 [0, 1]},

then T(t)F C TJort > 0.

We are interested in the possibility of extending the Co semigroup [T(t)},>0 to an
analytic semigroup. We first recall the following result.

LEMMA 2.2 (see [15]). Let {5(/)}i>o be a uniformly bounded Co semigroup. Let
A be the infinitesimal generator of [S(t)},>0 and assume 0 e p(A). The following
statements are equivalent:

(a) {S (t)},>0 can be extended to an analytic semigroup in a sector As={z \ | argz|<<5)
and \\S(z) || is uniformly bounded in every closed subsector AS't &' < <5> of As.
(b) There exists a constant C such that for every a > 0 and x ^ 0
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It is well known that a semigroup which can be extended to an analytic semigroup
has many nice properties, but we have the following result for the semigroup {T(t)},>0.

THEOREM 2.3. Suppose a(x) satisfies (i)-(iv) in Section 1. Let {r(O},>o be the CQ

semigroup generated by the operator -H, then [T(t)},>0 cannot be extended to an
analytic semigroup.

PROOF. Since multiplication of a Co semigroup by ewt does not affect the pos-
sibility or impossibility of extending it to an analytic semigroup, we will consider
the uniformly bounded semigroup T(t)e~" for some e > 0. Then — H — el is the
infinitesimal generator of T(t)e~". According to the proof of Theorem 2.1 we see
0e p(-H -el).

Take a > 0, r £ 0 and r / (CT + e)1. We also take fx, f2€ C'[0, 1] such that
Vr,2(0) + V2

2(0) / 0 and define

4>(x) =
e Jo a(t)
{a + €)^,(0) + rV2(0) izfiiO) + i(a + e)fi(0)

, x = 0.

(2.7)

(a + <02 + r

When 0 < x < 1, we have

Jo a(t) \J, a(s) )

f'WO e-r.ww sin ( f
x _L_ d

Jo a(t) \J, a(s)

in (f'-L-
\J, a(s)

dt

Jo a(t)

if C WVJo

Jo o(0

Since
fX ]

i s c o s I / -^— rfi l ^ r =

sin (f-L- ds] dt

f
7o

a n d
f 1

g - j , (<7+f)/a<-s) s sin

we easily see that the function (/> defined by (2.7) is continuous at x = 0, (j> € K and

((a + <? + IT)/
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We also get

So

lim |0(O)| = UhO) + il/H0)Y/2 £ 0.

If {T(t)},>0 can be extended to an analytic semigroup, there exists a constant C such
that for every r > (a + e)2, the following inequality is valid:

10(0)1 < 110II < C/T,

and limr_+oo0(O) = 0. This contradicts (2.9) and shows that [T(t)},>0 cannot be
extended to an analytic semigroup. This completes the proof.

3. Existence

We should notice that the problem (1.7) can be written as an abstract ODE in the
Banach space Y:

\du(t)/dt + Hu(t) = g(u(t)), t > 0;
(«(O)=0,

where u(t) = «(-, 0. 4> e Y, H is defined by (2.1)-(2.2) and

g(u(t))(.x)=f(x,u(x,t)). (3.2)

In this section, we return to the consideration of (3.1) with the aim of establishing
sufficient conditions for solutions to exist and remain in certain closed convex subsets
of Y. The first result establishes that mild solutions exist and are, in fact, classical
solutions.

More precisely, u : [0, r) -> Y is a mild solution of (3.1) if it is continuous and
satisfies the following equation on [0, r):

•fro-
Jo

u(t) = T(t)4> + T(t- s) g(u(s)) ds. (3.3)
./o

Let A be a nonempty closed convex subset of R and YA be the subset of Y consisting
of functions which take all their values in A:

YA = [4> e Y | <P(x) e A, x 6 [0, 1]}. (3.4)
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Sufficient conditions for YA to be positively invariant with respect to the semiflow
generated by (3.1) are given below. The first is the well-known condition:

lim+/Tldist(A,u + /i/(;c,i0) = 0, for all (x, v) € [0, I] x A, (3.5)

or

lim inf h~l dist(KA, cf> + h g(<p)) = 0, for all d> € YA, (3.6)
/i->0+

where (g(4>))(x) = f(x,4>(x)).
The second condition requires that the Co semigroup [T(t)},>0 generated by —H

leaves YA positively invariant:

T(t)YAcYA, t>0. (3.7)

The third condition requires smoothness of/:

f(x,v) and 3/ {x, v)/dv : [0, 1] x R —> R are continuous. (F)

Together these conditions imply the following existence of a solution of (3.1) and
positive invariance.

THEOREM 3.1. Let a(x) satisfy conditions (i)-(iv) in Section 1 and f (x, v) satisfy
condition (F). Suppose that (3.5) and (3.7) hold. Then for each <j> e YA, (3.1) has a
unique noncontinuable mild solution u(t) = u(t, (p) € YA defined on [0, o), where
a — a(<p) < oo. Furthermore, the flowing properties hold:

(a) if a < oo, then \\u(t)\\ ->• oo, as t -*• a ;
(b) if({> € D(—H), then u{t) is a classical solution of the initial value problem, that

is, u(t) is continuous on [0, a) and u(t) is continuously differentiable on (0, a) and
u(t) satisfies (3.1).

Before we prove the theorem, we need the following fact.

PROPOSITION 3.1. / / (3.5) holds, so does (3.6).

PROOF. If (3.5) holds, we will show that

lim h~l dist(KA, 0 + hg(<p)) = 0 f o r a l l 0 e y A , (3.8)

where (g(0))(*) = / ( * , # ( * ) ) .
If (3.8) doesn't hold, then there exists <j>0 € YA, e0 > 0 and hk > 0 (it = 1, 2 , . . . ) ,

such that 0 < hk < Ajt+i, l im*-^ hk = 0, and

A;1 dist(yA, 4>0 + hkg(4>0)) >€<>, * = 1, 2 , . . . .
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Therefore, there exist 4>k e YA and xk e [0, 1] for k = 1, 2 , . . . , such that

W >*/2 , * = 1 , 2 (3.9)

Define

F(h,x,v) = for h > 0, (x, v) 6 [0, 1] x (A n [-||0oll, WMli),

0, for A = 0.

Since (3.5) holds, F(h,x, v) is a continuous function in (h, x, v) and there exists
0 < S < 1/2 such that

F(h,x,v) < c / 3 , forO</z < 5 and (*, v) e [0, 1] x (A n [-||0O||, ll^olll)-

For sufficiently large k, there are

Kl\4>kixk) - [<t>0(xk) + hkf{xk, 0oOtt))]| < e/2.

This contradicts (3.9) and shows that (3.8) holds and the proof of the proposition is
completed.

PROOF OF THEOREM 3.1. The existence of a unique local mild solution of (3.1)
and the fact that the solution can be continued to a maximal interval of existence
[0, r), such that (a) holds, are a consequence of [15, Chapter 6, Theorem 1.4], since
the hypothesis (F) on / implies that g : Y —> Y is locally Lipschitz continuous.
Theorem 1.5, of the same reference, shows that the mild solution u(t, (j>) of (3.1) with
4> e D(—H) is a classical solution of the initial value problem (3.1) and thus (b)
holds. This result requires that g : Y —> Y is continuously differentiable, which can
be guaranteed by (F).

The fact that the mild solution belongs to YA is a consequence of [13, Chapter 8,
Theorem 2.1] and the proof of Theorem 3.1 is completed.

The nonnegative functions on Y are just YA where A = R+ and R+ is the set of all
nonnegative real numbers.

THEOREM 3.2, Suppose that a(x) satisfies conditions (i)-(iv) in Section 1. Let
A = R+ and suppose that f : [0, 1] x R -> R satisfies (F), / (x, 0) > Oforx € [0, 1]
and

f(x,v)<ki+k2v, forv>0, (3.10)

where ki andk2 are positive constants. Then (3.5) and (3.7) hold for YA = Y+, so that
the conclusion of Theorem 3.1 holds. Moreover, the maximum interval of existence of
the solution is [0, oo); the mild solution W,(4>) = u(t, <f>) is a semiftow on Y+.
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PROOF. Equation (3.7) follows by Theorem 2.2. For (x, v) e [0, 1] x R+,

v + hf(x,v)>0,

for all small h > 0. So dist(/?+, v + hf(x, v)) = 0 for all small h > 0. This
obviously implies that (3.5) holds. It follows that the conclusion of Theorem 3.1
holds.

Moreover, the maximum interval of existence of the solution is [0, oo). If the
maximum interval of existence of the solution is [0, f0] for some <p 6 Y+ and we have
0 < t0 < oo, then lim,^^ \\u(t, <p)\\ = oo. On the other hand

/ '
Jo

\\u(t,4>)\\ <\\<f>\\+ / (*,+*2||K(*,0)||)<fr, forO<t<t0,
J

and it follows from Gronwall's inequality that lim,_^ \\u(t, (p)\\ < oo. This contra-
diction shows t0 = oo.

In order to prove that ^O/O is a semiflow on YA, take </>0, <p e YA and fix t0 and 0O-
From (3.10) for a given 8 > 0, there exists M > 0 such that if \\<t> — 0O|| < 8, then

\\g(u(s,<j>))\\<M f o r * e [ 0 , < b + l ] .

Therefore

lim (u(t, <j>) - u(t0, <p))
t->to

(j>—"po

= lim ( W ) - T{to)]<j> + f T(t- s)g(u(s, 0))ds) = 0. (3.11)

Noting that g : Y —> y is locally Lipschitz continuous, we see that if ||0 — 0O|| < 8
and0 e yA, then

| |«0b, <P) - u(t0, 0o)ll = 11^ - <t>o\\ + f " \\g(u(s, <P)) - g(u(s, <po))\\ ds
Jo

< \\4> - <j>0\\ + L I ||«(s, 0) - u(s, ft,)|| ds, (3.12)
Jo

where L is a constant related to t0 and 5. This implies, by Gronwall's inequality, that

lim ||«(/b,0)-«(fo,to)ll=O. (3.13)

It follows from (3.11) and (3.13) that

<t> : R+ x yA -> YA (3.14)

is a continuous mapping. It is easy to show that <J>0 = id and that <J>, o <t>s — <PI+S for
t, s > 0. This completes the proof of Theorem 3.1.
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REMARK 3.1. It follows from Theorem 3.2 that the solution u(t, x) = u(t, cp)(x) is
nonnegative if <j>{x) > 0.

Let C+[0, 1] = {0 G Y | 4>{x) > 0, x e [0, 1]}. From Theorems 3.1 and 3.2, we
have the following result:

COROLLARY 3.1. Let a(x) andf (x, v) satisfy the assumptions of Theorem 3.2. For
each (f> e C+[0, 1], Problem (3.1) has a unique mild solution on [0, oo), u(t, (j>) > 0.
For each 4> e (C+[0, 1] fl D(—H)), the problem (3.1) has a unique nonnegative
classical solution u{t, <j>) on [0, oo).

4. Invariance

Define *,(<£) = u(t,<p) and we see * : [0, oo) x C+[0, 1] -+ C+[0, 1] is a
semiflow on C+[0, 1] by Theorem 3.1 and Corollary 3.1. Let

U+ = [<p e C + [0 ,1] | </>(0) > 0} (4.1)

and

O}. (4.2)

The following result shows that the semiflow {^,},>0 splits the phase space C+[0, 1]
into two disjoint invariant sets U+ and Uo.

THEOREM 4.1. Suppose that a(x) and f(x, v) satisfy the assumptions of Theo-
rem 3.2 and there exists v0 > 0 such that f (0, v) > 0 for 0 < v < v0. Then the
set U+ is positively invariant under { t y } , ^ . The same property exists for set Uo if

PROOF. We first prove that * , Uo C Uo for / > 0. Given <p0 € Uo, for every e > 0,
there exists </>/, > 0 such that

h>0.

Notice that (0O + h g(<t>o))(0) = 0 s i n c e / (0, 0) = 0. We can choose a ^ e U0, such
that

Hence \\fh -[<po + h g(<po)]\\ < he,h > 0. It follows that

lim h~x dist(t/0, </> + h g(<p)) = 0, for <p e Uo. (4.3)
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Next, we show that

T(t) Uo C Uo for t > 0. (4.4)

Let (j)Q 6 Uo be fixed. For every e > 0, it is easy to show that there exists 1 > S€ > 0
and <pf € C+[0, 1] such that

0 < <p((x) - 4>o(x) < e, for* € [0, 1],

4>'e (x) exists on [0,(5,], (4.5)

# (* )>0 , on[0,«U

For 0 < * < 8f, we have

= - ei'ds'aaU) f ^^- e~^dslaaU)dt - <p((x)
a Jo a{t)

< ig />/««M r <J>t(o-<j>Ax) c_f>ds/aa(s)dt

a Jo a(t)

that is, ((/ +a^) -> f ) (A: ) < ^(jc)forO < x < 5e.
It is well known that T(t)<p = limn^oo(/ + (t/n)Hy<p, for t > 0. Also when

0 < x < 5e, we see that (T(t)<j)e)(x) < <pe(x), t > 0, in particular,

by (4.5). It follows that (T(O0o)(O) < (T(t)<t>()(0) < e, for / > 0. There must be
(7XO0o)(0) = 0 for / > 0, so (4.4) holds.

Equations (4.3) and (4.4) imply that *,(t/0) C Uo by Theorem 3.1.
We will prove that

*,(!/+) C t/+. (4.6)

If 4> e Y and<p(x) > 0 for x e [0, 1], then there exists 0 < t0 such that vI/^(^)(^) > 0
for all x e [0,1]. Otherwise, there exist 0 < tn and *„ e [0, 1] such that ?„ -> 0,
*„ - • JCo a n d

*,,(*)(*„) =0 , « = 1 , 2 , . . . ,

thus it follows that ^o(<p)(xo) = <p(xo) = 0. It is a contradiction.
Pick </>+ e U+, then there exists \j/ e C+[0, 1] such that ^(0) = 0+(O), ^ (^) > 0

and \}r{x) > <t>+(x) for x e [0, 1], and by (2.6) and (4.4) we have

(7XO0+XO) = (7XfW)(0) > 0, for f > 0. (4.7)
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Let t0 = sup{j | 4>,(0+)(O) > 0, 0 < t < s). It is clear that r0 > 0. If /0 < oo then

I (T(t0-s)g(u(s)))(0)ds<0
Jo

therefore there must be s* such that 0 < s* < t0 and g(u(s))(0) = f (0, u(s, 0)) < 0.
We see that u(s*, 0) > v0. Since u(t0, 0) = *,O(0+)(O) = 0 and / ( 0 , v) > 0 for
0 < v < v0, there exists /* such that 0 < t* < t0 and

g(u(s))(0)=f(0,u(s,0))>0.

We have

/ (T(to-s)g(u(s)))(O)ds> I (T(to-s)g(u(s)))(O)ds,
Jo Jo

since fo''(T(t0 - s) g(u(s)))(0) ds > 0. We get

u(t0, 0) > T(tQ)<p+(O) + I (T(t0 - s) g(u(s)))(0) ds
Jo

(4.8)

It follows from M(/0, 0) = 0, (4.7) and (4.8) that

[vM0+)](O) = 0.

On the other hand, 4/,.(0+)(O) > 0 since /* < t0. This contradiction shows that (4.6)
is correct and completes the proof of Theorem 4.1.
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