
Robotica (2023), 41, pp. 668–689
doi:10.1017/S0263574722001515

RESEARCH ARTICLE

Cooperative collision avoidance in multirobot systems
using fuzzy rules and velocity obstacles
Wenbing Tang1 , Yuan Zhou2,∗ , Tianwei Zhang2, Yang Liu2, Jing Liu1 and Zuohua Ding3

1Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062, China, 2School of
Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore, and 3School of
Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
∗Corresponding author. E-mail: y.zhou@ntu.edu.sg

Received: 13 June 2022; Revised: 22 September 2022; Accepted: 26 September 2022;
First published online: 28 October 2022

Keywords: collision avoidance, fuzzy rules, multirobot systems, velocity obstacles

Abstract
Collision avoidance is critical in multirobot systems. Most of the current methods for collision avoidance either
require high computation costs (e.g., velocity obstacles and mathematical optimization) or cannot always provide
safety guarantees (e.g., learning-based methods). Moreover, they cannot deal with uncertain sensing data and lin-
guistic requirements (e.g., the speed of a robot should not be large when it is near to other robots). Hence, to
guarantee real-time collision avoidance and deal with linguistic requirements, a distributed and hybrid motion plan-
ning method, named Fuzzy-VO, is proposed for multirobot systems. It contains two basic components: fuzzy rules,
which can deal with linguistic requirements and compute motion efficiently, and velocity obstacles (VOs), which
can generate collision-free motion effectively. The Fuzzy-VO applies an intruder selection method to mitigate the
exponential increase of the number of fuzzy rules. In detail, at any time instant, a robot checks the robots that it may
collide with and retrieves the most dangerous robot in each sector based on the predicted collision time; then, the
robot generates its velocity in real-time via fuzzy inference and VO-based fine-tuning. At each time instant, a robot
only needs to retrieve its neighbors’ current positions and velocities, so the method is fully distributed. Extensive
simulations with a different number of robots are carried out to compare the performance of Fuzzy-VO with the
conventional fuzzy rule method and the VO-based method from different aspects. The results show that: Compared
with the conventional fuzzy rule method, the average success rate of the proposed method can be increased by
306.5%; compared with the VO-based method, the average one-step decision time is reduced by 740.9%.

1. Introduction
A multirobot system is a system containing multiple robots, such as unmanned aerial vehicles (UAVs)
and unmanned ground vehicles (UGVs), that are moving around in a given environment to accomplish
tasks cooperatively. Compared with their single-robot counterparts, multirobot systems can increase
functionalities, improve efficiency, enhance adaptability, and provide robustness [1–3]. Multirobot sys-
tems have been applied to deal with labor-consuming or dangerous missions, such as assembly, disaster
rescue, environmental protection, traffic monitoring, military reconnaissance, cargo delivery, and many
other fields [4–6].

Coordinated motion is one of the most important requirements in a multirobot system. However,
due to the complexity of the environment and the simultaneous motion of robots, collisions are com-
mon in coordinated motion. Many methods have been proposed to avoid collisions during robot motion.
They can be mainly classified into two categories: model-driven methods and data-driven methods.
Model-driven methods, such as formal methods [7, 8], discrete event system methods [9–11], potential
field methods [12], velocity obstacles (VOs) [13, 14], model predictive control [15], and mathemati-
cal optimization methods [16], rely on the models of robots and/or environments. Specifically, formal

C© The Author(s), 2022. Published by Cambridge University Press.

https://doi.org/10.1017/S0263574722001515 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001515
https://orcid.org/0000-0003-0125-1939
https://orcid.org/0000-0002-1583-7570
https://doi.org/10.1017/S0263574722001515

Robotica 669

Table I. Summary of different collision avoidance methods.

Methods Description Advantages Disadvantages
Model-driven

methods
Formal methods Describe motion

requirements
using LTL and/or
CTL

Safety guarantee Limited to
structurized
environments

Potential field
methods

Build attractive and
repulsive
potential
functions

Unknown
environment

Local minima,
high
complexity

Velocity
obstacles

Construct a velocity
obstacle in the
velocity space

Moving obstacles,
safety
guarantee

High computation
cost,
oscillatory
motion

Model predictive
control

Build a predictive
model of the
control system

Flexibility High computation
cost

Mathematical
optimization
methods

Construct a proper
optimization
problem and
solve it

Modeling multiple
constraints

High computation
cost

Data-driven
methods

Fuzzy rules Build a fuzzy rule
base and select a
proper inference
mechanism

Uncertainty,
real-time
inference

Oscillating paths,
poor
generalization
ability

Swarm
intelligence
algorithms

Define a proper
optimization
goal and strategy

Fast generation of
acceptable
solutions

Local optimum,
unexpected
solutions

Deep
reinforcement
learning

Learn to maximize
the expected
cumulative
reward

Unstructured data,
dynamic
environment

High training cost,
low sampling
efficiency

methods apply the technologies such as formal verification and model checking to control robots’ motion
[7, 8]. Discrete event system methods apply supervisory control theory to avoid collisions and deadlocks
for multirobot systems [9–11]. Potential field methods define proper attractive potential functions and
repulsive potential functions to lead a robot to its target while avoiding obstacles [12]. VO-based meth-
ods compute a collision-free velocity from the union velocity space of all obstacles at each time instant
[13]. Model predictive control applies an explicit model to describe the control system and obtains a
sequence of control inputs by solving an optimization problem based on the model [15]. Mathematical
optimization methods generate control actions by modeling the collision avoidance problem as an opti-
mization problem [16]. Data-driven methods are learning-based methods using sample data to learn
proper controllers, such as fuzzy rules [15], swarm intelligence algorithms [17], and deep reinforce-
ment learning (DRL) [18, 19]. Detailedly, fuzzy rules generate an action via fuzzy inference of the rules
extracted from the collected data [15]. Swarm intelligence algorithms iteratively search for actions in the
region defined by the previous optimal movements of the robot and its neighbors [17]. DRL formalizes
the collision avoidance problem as a Markov decision process, which is solved by learning a decision
policy mapping from the state space to the action space [18, 19]. Table I gives a brief summary of each

https://doi.org/10.1017/S0263574722001515 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001515

670 Wenbing Tang et al.

method and its advantages and disadvantages. Even though collision avoidance has been widely studied,
there are some challenging problems that are not adequately addressed. First, most of the model-driven
methods can guarantee safety but require high computation costs. Second, data-driven methods leverage
offline learning to improve online computation efficiency but cannot provide collision-free guarantees.

In this paper, a new real-time collision avoidance approach, named Fuzzy-VO, is proposed to guar-
antee safety and computation efficiency for multirobot systems with sensing uncertainty and linguistic
data. It combines fuzzy rules and VOs. On the one hand, considering uncertainties in sensing data,
linguistic requirements may exist for a robot’s motion, for example, moving slowly and turning right
slightly. Fuzzy rules are a well-established tool to (1) deal with not only crisp data but also uncertain
and linguistic data and (2) express the behavior of a system in an interpretable way. However, most of the
current fuzzy rule-based methods are for a single robot [20, 21]. The design of fuzzy rules for collision
avoidance in a multirobot system is still challenging since: (1) the form of a fuzzy rule is dependent on
the number of robots; (2) the number of fuzzy rules increases exponentially with the number of robots
[22]; and (3) a robot’s motion may oscillate because of the large number of rules (the claim will be
empirically validated in experiments). On the other hand, VO-based methods, such as optimal recipro-
cal collision avoidance (ORCA) [14], are well defined and generally applicable techniques for reactive
obstacle avoidance with the existence of dynamic obstacles [13]. However, computing an optimal veloc-
ity for a robot in a multirobot system is still challenging since: (1) the scale of the problem (e.g., the
number of constraints) increases with the number of robots, and so does the computation cost and (2)
the robot may have few velocity candidates if numerous obstacles are around.

To mitigate the above drawbacks, Fuzzy-VO first uses a unified intruder selection method to generate
fuzzy rules with an arbitrary number of robots. Specifically, given a robot, Fuzzy-VO divides its sensing
region into a fixed number of sectors. In each sector, the robot applies the VO technology to evaluate
and select the most dangerous robot to perform collision avoidance. Hence, the maximal number of
robots to be avoided by a robot is constant. In this way, Fuzzy-VO can determine the form and the
number of fuzzy rules. Then, sample data are collected via ORCA to learn a fuzzy rule base. Thus, the
robot can compute the candidate motion in realtime via fuzzy inference on the rule base. Second, to
guarantee that the final motion is collision-free, Fuzzy-VO applies the VO technology to check and fine-
tune, if necessary, the candidate motion. Since each robot only needs to retrieve the current states of its
neighbors, which can be obtained immediately, Fuzzy-VO is fully distributed. The same right-of-way,
such as the turn-right rule, is applied to guarantee mutual exclusion during distributed decision making.
A set of simulations are carried out with multiple UAVs. The results demonstrate the effectiveness of
Fuzzy-VO in addressing potential collisions. Extensive comparison results show that Fuzzy-VO can
reduce the number of rules and generate smoother paths compared with the conventional fuzzy rule
approach and improve computation efficiency compared with the ORCA method.

The main contributions of this paper are threefold:

1. Based on sensing region partition and intruder selection, a practical strategy is proposed to build
a fuzzy rule base with an arbitrary number of robots.

2. For each robot, a strategy is developed to generate collision-free velocities based on fuzzy
rule inference and VO-based fine-tuning. It leverages the computation efficiency of data-driven
methods and the safety guarantee of model-driven methods.

3. Based on the above two strategies, a fully distributed and real-time collision avoidance method,
Fuzzy-VO, is proposed for multirobot systems with an arbitrary number of robots.

The rest of this paper is organized as follows. Section 2 summarizes the related work. Section 3 states
the problem solved in this paper. Section 4 gives an overview of Fuzzy-VO. Sections 5 and 6 present the
procedures for intruder selection and collision-free velocity generation, respectively. Section 7 provides
the detailed algorithms, as well as the complexity analysis. Simulations are conducted in Section 8
to demonstrate the effectiveness and efficiency of Fuzzy-VO. Conclusion and future work are finally
provided in Section 9.

https://doi.org/10.1017/S0263574722001515 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001515

Robotica 671

2. Related work
This paper is related to the topic of collision avoidance, which is a key and popular topic in
robotics. Many methods have been proposed in this area. For example, Wang et al. [23] proposed
a three-dimensional navigation strategy for nonholonomic robots with moving obstacles, where the
robot’s motion direction maintains a constant angle with the obstacles’ boundary tangents to avoid colli-
sions. Lindqvist et al. [15] formalized the collision avoidance problem as an optimization problem in the
framework of model predictive control and resolved it using OpEn solver. In [24], a potential field-based
collision avoidance approach was proposed for nonholonomic UAVs, which took the velocity direction
of an obstacle into consideration during the design of potential field functions.

Among the existing approaches, fuzzy rules are a promising tool to deal with data uncertainties
and linguistic requirements for multirobot systems. Llorca et al. [25] proposed a fuzzy control-based
autonomous collision avoidance system. In this system, the lateral displacement and the actual speed of
the vehicle are used as fuzzy inputs, and the output of the fuzzy steering controller is the steering-wheel
position. Vadakkepat et al. [26] proposed a fuzzy behavior-based architecture for the control of mobile
robots in a multiagent environment. In ref. [20], a fuzzy obstacle avoidance controller is proposed for
an autonomous vehicle using both negative fuzzy rules and traditional positive rules. The proposed
architecture can be decomposed into four robot roles, 12 robot behaviors, and 14 robot actions, where
obstacle avoidance is fulfilled by independent behaviors. However, the major drawback of these works is
the generalization ability, that is, they are unsuitable for scenarios with a variable number of robots. Wen
et al. [21] divided the sensing regions of the ultrasonic sensors on a UAV into three groups: front, left,
and right, and then took each group’s minimum obstacle distance as the inputs of its fuzzy controller.
Chang et al. [27] proposed a two-layer fuzzy logic controller for multirobot coordination, which divides
the scanning area into seven sectors and selects the shortest distance to a detected obstacle in each sector
as input. But the selection may miss obstacles that are threatening and emergent in each sector.

VO-based methods are another kind of promising methods for collision avoidance. VO is first pro-
posed by Fiorini and Shiller [28]. It is a velocity-based approach to avoiding collisions with moving
obstacles. In VO, the velocity space of a robot is divided into collision and collision-free velocities,
and an appropriate collision-free velocity is computed at any time instant. However, VO suffers from
some weaknesses such as undesirable oscillatory motion and reciprocal dances [29, 30]. Some improved
variations, such as reciprocal VO [13] and ORCA [14], have been proposed. van den Berg et al. [14]
proposed the sufficient condition for multiple robots to avoid collisions and guarantee collision-free
motion. By solving a linear program, each robot selects its optimal velocity from the intersection of all
possible half-planes in the velocity space. Jenie et al. [31] proposed a cooperative autonomous colli-
sion avoidance algorithm named selective velocity obstacle (SVO), which is also an extension of the
original VO. Especially, when SVO needs to avoid a possible collision according to the detection, the
right-of-way rules for manned flight are taken into account in the decision-making process. Recently,
Han et al. [19] combined VO with DRL to deal with the reciprocal collision avoidance problem under
limited information scenarios. In ref. [32], VO is applied to deduce the collision conditions in connected
and automated vehicles. However, these VO-based methods require high computation costs in crowded
environments [33].

Compared with the aforementioned methods in the literature, the method proposed in this paper aims
to achieve real-time computation efficiency and safety guarantees simultaneously for multirobot systems.

3. Problem statement
The scope of this paper is the cooperative motion of a set of robots moving in a 2D space, for example, a
set of UGVs moving on the ground or multiple UAVs moving at the same height. Assume that there are
N holonomic robots moving in the same environment. For nonholonomic robots, it is recommended to
read refs. [23, 24] for more details. Note that to perceive the environment, each robot is equipped with
different sensors, for example, cameras and LiDARs. However, due to measurement errors, uncertainties

https://doi.org/10.1017/S0263574722001515 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001515

672 Wenbing Tang et al.

Figure 1. Robot ri with two intruders ri1 and ri2 (i.e., the three circles) in the body frame Ci. The
semicircle area is the collision region of the robot ri.

may exist in the sensing data. The motion task for a robot ri is to move from its initial position p0
i ∈R

2

to the target position pf
i ∈R

2 within a given duration τ , where R
2 is the 2D Euclidian space. Each

robot ri has a reference speed vref
i , where vref

i ≤ vmax, and vmax is the upper bound of the robot speed.
Moreover, it is assumed that each robot cannot move backward. Since multiple robots are moving in the
same environment, different robots need to avoid collisions with each other. In this work, each robot
is modeled as a sphere, and its position is identified by its center. Each robot regards other robots as
dynamic obstacles. For simplicity, other dynamic obstacles are not considered.

Before giving the problem statement, some symbols and definitions are defined. Given a robot ri, its
position and velocity at time t are denoted as pi(t) and vi(t), respectively. Clearly, ∀t > 0, ‖vi(t)‖ ≤ vmax.
Since the motion is assumed in a 2D space, p(t) ∈R

2 and v(t) ∈R
2. The state of a robot, denoted as s, is

a vector containing the robot’s position and velocity, that is, s = (p, v). The set of all possible states of
a robot ri is denoted as Si. The trajectory of a robot ri, denoted as Tri, is a time-parameterized function
mapping from R

+ to Si, that is, Tri(t) = si(t) = (pi(t), vi(t)) ∈ Si. By discretizing the time into discrete
time instants with the same time step, that is, 0 = t0, t1, . . . , tK = τ , the motion of ri can be formalized
as

pi(t) = pi(tk) + vi(tk)(t − tk), t ∈ [tk, tk+1)

pi(t0) = p0
i , pi(tK) = pf

i ,

vi(tk) = [vi(tk) cos θi(tk), vi(tk) sin θi(tk)]. (1)

where vi(tk) ∈R and θi(tk) ∈R are the speed and motion direction of robot ri at tk, respectively.
At any time instant, a robot needs to monitor a proper region, denoted as collision region, with respect

to its current position. The body frame of a robot ri is denoted as Ci. It is a Cartesian coordinate system
whose origin is the center of ri, the y-axis is the same as vi, and the x-axis is perpendicular to the
y-axis. As shown in Fig. 1, at the current instant, ri is at O, and its velocity is vi. Then the related
Ci is XOY , where the Y-axis is vi. Since each robot cannot move backward, the possible motion area is
{(x, y)|y ≥ 0}. Hence, the collision region of a robot ri at time t can be defined as CRi(t) = {(x, y) ∈ Ci|0 ≤
x ≤ L cos(θ), 0 ≤ y ≤ L sin(θ), 0 ≤ θ ≤ π}, provided that the sensing range is L. To guarantee safety, each
robot needs to avoid collisions with other robots in its collision region. At any time t, two robots ri and
rj are in a collision if ‖pi(t) − pj(t)‖2 < 2ρ, where pi(t) ∈ Si, pj(t) ∈ Sj, and ρ is the safe radius for each
robot. Hence, there is the following definition.

Definition 1(Intruder). A robot rj is called an intruder of ri at time t if pj(t) ∈ CRi(t) and ∃t′ ∈ (t, τ) such
that ‖pi(t

′) − pj(t
′)‖2 < 2ρ, where pi(t

′) = pi(t) + vi(t)(t′ − t) and pj(t
′) = pj(t) + vj(t)(t′ − t).

For example, as shown in Fig. 1, the three robots, ri, ri1, and ri2, are moving to pf
i , pf

i1, and pf
i2,

respectively. At the current time, ri detects that ri1 and ri2 will collide with it if all of them keep their
current velocities, so ri1 and ri2 are intruders of ri.

https://doi.org/10.1017/S0263574722001515 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001515

Robotica 673

Figure 2. Framework of Fuzzy-VO.

Based on the above descriptions, to generate a collision-free trajectory for a robot, the robot needs
to determine its velocity at the discrete time instants. Hence, the problem studied in this paper can be
described as follows:

Problem 1. Given a set of robots, each of which may contain uncertain sensing data during its motion,
decide the motion of each robot, that is, its velocity vectors, such that the robot can always detect and
avoid potential collisions with its intruders.

4. Overview of the proposed method
To deal with uncertainties in sensing data and guarantee real-time efficiency, a VO-aided fuzzy inference
method is proposed to generate collision-free motion for each robot. This section gives the framework
of the proposed Fuzzy-VO, while the details are given in the following sections.

Figure 2 shows the high-level workflow of Fuzzy-VO. The main idea is to restrict the number of fuzzy
rules by selecting a proper and fixed number of intruders for collision avoidance rather than considering
all intruders. In this way, Fuzzy-VO can be adopted to a different number of robots and guarantee flexi-
bility and scalability. It mainly contains three processes, that is, intruder selection, fuzzy rule generation
and inference, and velocity generation.

Intruder selection. For each robot, the first step is to partition its collision region into a set of disjoint
sectors. A sector may contain several intruders, and different sectors may contain a different number of
intruders. Hence, to generate a universal method for a different number of robots, a proper number of
intruders should be selected in each sector. In this paper, only the most dangerous intruder is selected
for each sector based on the technology of VOs.

Fuzzy rule generation and inference. Fuzzy rule-based collision avoidance technology is used to
generate a candidate motion command. First, to build the fuzzy base, the conventional motion planning
algorithms are applied to generate corresponding sampling data. Then, fuzzy rules can be extracted
from the collected data. When the rule base is constructed, at any instant, the robot can perform fuzzy
inference based on the current selected intruders and generate a candidate velocity.

Velocity generation. Since the fuzzy rules are generated based on sampling data rather than exact
system models, the reasoning results cannot always guarantee collision avoidance. Hence, validation
of the candidate velocity is required to generate the actual velocity. In this paper, it is assumed that
each robot moves to its right side to avoid collisions. Hence, the robot only needs to check whether the
generated velocity is in the VOs of the right intruders and fine-tunes the candidate velocity if needed.

5. Intruder determination and selection
This section describes the method to select a proper number of intruders for collision avoidance by the
robot. Specifically, the partition of the collision region is first introduced, followed by the VO-based
intruder selection method to retrieve the most dangerous intruder in each partition.

https://doi.org/10.1017/S0263574722001515 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001515

674 Wenbing Tang et al.

Figure 3. Partition the collision region into three sectors and screen the most dangerous intruder in
each sector.

5.1. Collision region partition
At any time instant, ri’s collision region CRi(t) is partitioned into l equal sectors, that is,
li = {(x, y)|0 ≤ x ≤ L cos(θ), 0 ≤ y ≤ L sin(θ), (i − 1)π/l ≤ θ ≤ iπ/l}, i = 1, 2, . . . , l. Consequently, an
appropriate value of l should be selected. Considering that many real-world mobile robots are equipped
with three groups of sensors in the front, such as [34, 35], in this paper, the collision region is equally
partitioned into three sectors: the left region (LR), the front region (FR), and the right region (RR).
The robots in LR are left intruders, those in FR are front intruders, and in RR are right intruders. For
example, Fig. 3 shows the three sectors of ri, where each sector has a central angle of π/3. ri1 and ri2 are
in LR, ri3 is in FR, and ri4 and ri5 are in RR. They are the intruders of ri at the current instant.

5.2. VO-based intruder selection
To avoid the explosion of the number of fuzzy rules with the number of intruders, in this subsection,
a VO-based method is proposed to select a proper intruder in each sector such that the generated rules
with a finite number, independent of the number of robots.

The main idea of VO is to select a velocity of a robot outside the VO, which is the set of velocity
that may cause collisions with other robots or obstacles. As shown in Fig. 4, suppose robot ri currently
is at pi. It detects an intruder ri1 in its collision region CRi, whose position and velocity are pi1 and vi1,
respectively. So ri should select a velocity vi to avoid collision with ri1. At the current time instant, ri’s
collision region with respect to ri1 can be described as Ci|i1 = {p(i) ∈R

2|‖p(i) − pi1‖2 < 2ρ}, that is, the
region within the dashed circle in Fig. 4. The relative velocity of ri with respect to ri1 can be described as
vi|i1 = vi − vi1. The relative motion can be defined as λ(pi, vi|i1) = {pi + tvi|i1|t > 0}, that is, the blue ray
in Fig. 4. Clearly, ri and ri1 will collide in the future if λ(pi, vi|i1) ∩ Ci|i1 �= ∅. Hence, the VO of ri related
to ri1 is defined as VOi|i1 = {vi|λ(pi, vi|i1) ∩ Ci|i1 �= ∅}, that is, the gray cone in Fig. 4.

Based on VO, a method is proposed to select the most dangerous intruder in each section according
to the collision risk, which is defined as the potential collision time. Furthermore, the collision time
criterion is defined to evaluate the collision risk.

Definition 2(Potential Collision Time). The potential collision time of ri with respect to rj, denoted
as �Tc

i (j), is the estimated shortest time duration from the current time instant to the occurrence of a
potential collision between ri and rj with their current velocities.

In detail, the computation of potential collision time is as follows. Consider the relative motion of
ri with respect to rj. As shown in Fig. 5, for the relative motion, rj is with zero velocity, and ri has a
relative velocity vi(t) − vj(t). Clearly, the minimum distance is reached at the time when the relative

https://doi.org/10.1017/S0263574722001515 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001515

Robotica 675

Figure 4. Illustration of VO. VOi|i1 is the velocity obstacle of ri. Each velocity in VOi|i1 will cause a
collision with ri1 in some time instant of the future.

Figure 5. The relative motion of ri with respect to rj.

motion reaches position A. The distance from pi to A is

d(pi, A) = (pj(t) − pi(t))
T(vi(t) − vj(t))

‖vi(t) − vj(t)‖2

(2)

Hence, the estimated time from pi to A is
d(pi, A)

‖vi(t) − vj(t)‖2

, that is,

�Ti(j) = (pj(t) − pi(t))
T(vi(t) − vj(t))

‖vi(t) − vj(t)‖2
2

. (3)

Based on the procedure of VO, if vi ∈ VOi|j, di(j) < 2ρ, and vice versa. In this case, a collision between
ri and rj happens when the relative motion arrives at position B, as shown in Fig. 5. Hence, �Tc

i (j) can
be computed as follows:

�Tc
i (j) = �Ti(j) − t(B, A)

= �Ti(j) −
√

4ρ2 − d2
i (j)

‖vi(t) − vj(t)‖2

. (4)

Clearly, the smaller �Tc
i (j) is, the more dangerous rj is, and the higher priority it has for collision

avoidance. According to the estimated collision time, the most dangerous intruder is selected in each
sector, that is, the intruder with the smallest �Tc

i (j) in each sector. For example, as shown in Fig. 3, the
selected intruder in LR is ri2 as it has smaller collision time than ri1.

https://doi.org/10.1017/S0263574722001515 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001515

676 Wenbing Tang et al.

6. Collision avoidance using fuzzy rules and velocity obstacles
In this section, following the collision region partition, the process to build a fuzzy rule base is first
presented, and then the procedure for velocity generation is provided.

6.1. Introduction of fuzzy rules
This subsection first gives a brief introduction of fuzzy rules, and the details can be found in ref. [36].
Let U be the domain of discourse and u ∈ U. A fuzzy set φ in U is characterized by a real-value function
μφ : U → [0, 1], which assigns each element in U with a real number in the interval [0, 1].

A single fuzzy IF-THEN rule (or simply fuzzy rule) is defined on linguistic variables with the form:

IF x is A (premise) THEN y is B (consequence)

where x and y are two fuzzy/linguistic variables. A and B are two fuzzy sets. A more general type of
fuzzy rules in practice can be described as:

IF x1 is A1 ∧ · · · ∧ xp is Ap THEN y1 is B1 ∧ · · · ∧ yq is Bq,

where p ≥ 1 and q ≥ 1 are integers.

6.2. Fuzzy rule generation
On one hand, according to the selection of intruders, the input of a fuzzy rule is the collision time �Tc

of the selected intruders. On the other hand, since the kinematic model of each robot considered in
this paper is unicycle kinematics, the output variables of fuzzy rules are set as the speed ratio α and
the orientation change �θ . The new speed is v′

c = αvc, which adjusts the current speed vc according
to a proper ratio α. Note that, to guarantee mutual exclusion during distributed decision making and
avoid collisions, each robot is expected to turn right with a proper direction, so �θ ∈ [0, π/2], and
the new orientation is θi − �θ , where θi is the current orientation of ri. Then, the selected velocity is
v′

i = (v′
c cos(θi − �θ), v′

c sin(θi − �θ)). Note that the outputs of fuzzy rules are determined by the robot
kinematics described in (1), rather than robot dynamics, such as inertia.

In the sequel, the generation of fuzzy rules is described, that is, fuzzification, data sampling, and rule
determination.

6.2.1. Fuzzification
The main task of fuzzification is to translate crisp variables into the corresponding linguistic ones.
Hence, for each crisp variable x, the set of fuzzy terms and their corresponding membership functions
should be determined. Users can select any membership function as long as it can map the crisp data into
desired degree of memberships. In this paper, the triangular membership function is applied for each
fuzzy set as (1) it has been proven to have good quality results and computational efficiency in many
practical applications (including robot motion control) [37, 38] and (2) it shows good performance in
our simulation experiments.

First, consider the fuzzification process of the input variable �Tc. Usually, a robot needs a time
duration, say response time, to perform collision avoidance, including collision prediction and decision
execution. Based on the configurations of a robot and its history motion records, the minimal and max-
imal response time of the robots can be determined, denoted as t1 and t2, respectively. If �Tc is less
than t1, then the situation is very emergent, and the robot needs to perform some special actions, for
example, stop immediately, to avoid collisions. Otherwise, if �Tc is small, meaning that the remaining
time to take collision avoidance actions is short, then this situation is dangerous, and the robot needs to
do its best to avoid collisions; while if �Tc is large, meaning that the robot has enough time to avoid
collisions, then the current motion is safe. Hence, three fuzzy sets, that is, E (emergent), D (dangerous),

https://doi.org/10.1017/S0263574722001515 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001515

Robotica 677

(a) Collision time. (b) Speed ratio. (c) Orientation change.

Figure 6. Membership functions for all variables. (a) Membership function of �Tc; (b) membership
function of α; (c) membership function of �θ .

(a) An intruder is in LR. (b) An intruder is in FR. (c) An intruder is in RR.

Figure 7. Scenarios that there is only one thread in a sector.

and S (safe), are defined to describe �Tc. Their membership functions are shown in Fig. 6(a). Moreover,
the formal definitions of all membership functions are given in the appendix.

Second, consider the fuzzification of the output variables. (1) The speed variable is partitioned into
four fuzzy sets: MA (maintain), DS (decelerate slightly), DL (decelerate largely), and SU (stop urgently).
Since the level of speed deceleration is related to the current speed, the ratio of the new speed (v′

c) to the
current speed (vc), denoted as α, is the inputs of the three membership functions. Note that 0 ≤ α ≤ 1. The
graphical representation of these membership functions is given in Fig. 6(b), where α0 is the threshold
of a maintaining action and can be determined by an expert or based on users’ requirements. (2) For the
change of orientation, five fuzzy sets are applied to describe its values: VS (very small), SM (small), M
(medium), L (large), and VL (very large). Their membership functions are shown in Fig. 6(c). Note that
one can define more fuzzy sets for speed and orientation change if needed.

6.2.2. Building of fuzzy rules
As described before, to avoid an exponential increase in the number of fuzzy rules, a robot selects at
most one intruder in each sector to perform collision avoidance. Hence, the premise of a rule contains at
most three fuzzy propositions, each of which has four possible forms, including the empty situation. So
there are 43 − 1 = 63 possible premises. The consequence of a rule contains at most two independent
fuzzy propositions, and they have four and five possible forms, respectively. Hence, the number of can-
didate rules is 63∗(4 + 5) = 567. However, proper rules should be selected from the candidates. For each
premise, the next step is to determine the consequences related to the two output linguistic variables,
respectively. The rule selection is based on supporting degrees described in ref. [39]. For each premise,
the supporting degrees of all candidate rules are computed, and only the rule with the maximal one is
selected. Note that rules whose supporting degrees are zero are also filtered.

Based on the partition of the collision region and intruder selection, there are three kinds of scenarios
during the generation of fuzzy rules. The first one is that there is only one sector existing a selected
intruder, as shown in Fig. 7. For each one shown in Fig. 7, the sampling data are generated from multiple
simulation runs by setting different status of the intruder. For each run, the ORCA algorithm is performed

https://doi.org/10.1017/S0263574722001515 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001515

678 Wenbing Tang et al.

(a) In LR and FR. (b) In FR and RR. (c) In LR and RR. (d) In LR, FR, and RR.

Figure 8. Scenarios with multiple intruders.

to generate the cooperative motion data between ri and the intruder. For example, suppose at time instant
t, the robot ri, with the state (pi(t), vi(t)), detects an intruder ri1, whose state is (pi1(t), vi1(t)), in LR, and
the ORCA method generates a new velocity vi,ORCA(t) for ri. Let θvi (t) and θvi,ORCA (t) denote the orientation
angle of vi(t) and vi,ORCA(t) in the inertial frame XOY . When θvi,ORCA (t) ≤ θvi (t) and ‖vi,ORCA(t)‖2 ≤ ‖vi(t)‖2,
a sample (L�Tc , �Ti(i1), αi(t), �θi(t)) is collected, where �Ti(i1) is computed based on (4), while αi(t)
and �θi(t) are computed based on the following equations.

αi(t) = ‖vi,ORCA(t)‖2

‖vi(t)‖2

, (5)

�θi(t) = θvi (t) − θvi,ORCA (t) (6)

In this way, a total of 1664 valid records are generated from the first kind of scenarios. With
all the records, six rules are generated, whose details are given in the appendix and the website
https://fuzzyvo.github.io/. Note that the original rules are in the form with single-input–single-output,
such as “IF L�Tc is D, THEN vc is DS”. However, the rules with the same premise can be combined, for
example, for the rules “IF L�Tc is D, THEN vc is DS” and “IF L�Tc is D, THEN vc is L”, they can be
combined as one “IF L�Tc is D, THEN vc is DS and �θ is L”.

The second kind of scenarios is that there exist two sectors such that either of them contains an
intruder, as shown in Fig. 8(a)–(c). Similarly, 29,347 samples are collected in this kind of scenarios, and
12 fuzzy rules are generated, which are given in the appendix. The third one is that each sector contains
a selected intruder, as shown in Fig. 8(d). To generate proper rules for this kind of scenarios, a total of
5299 records are collected to train rules.

When the collision time related to the intruder in a sector is emergent, the robot should stop urgently.
Hence, three emergent rules are also introduced, which are also given in the appendix. Finally, a rule
base containing 29 fuzzy rules is built. All generated fuzzy rules are listed in the appendix.

6.3. Velocity generation via fuzzy inference
When the rule base is built, the velocities can be generated directly via fuzzy inference. In this paper, the
Mamdani (min) inference mechanism is applied, whose output is a fuzzy set [40]. The mechanism can be
described as follows. Given an input x0 = (x0

1, . . . , x0
p) and the activated fuzzy rule “rule1 : IF x1 is A1 ∧

· · · ∧ xp is Ap THEN y is B,” the inferential fuzzy set for the consequence is computed based on (7).

inf (x0, rule1) = A1(x0
1) ∧ . . . ∧ Ap(x

0
p)

B(y, x0, rule1) = inf (rule1) ∧ B(y) (7)

where A1(x0
1) ∧ . . . ∧ Ap(x0

p) = min{A1(x0
1), . . . , Ap(x0

p)}. For the activation of multiple rules, the final
inferential fuzzy set is determined based on (8).

B(y, x0) = B(y, x0, rulei1) ∨ . . . ∨ B(y, x0, ruleij)

= max{B(y, x0, rulei1), . . . , B(y, x0, ruleij)} (8)

https://doi.org/10.1017/S0263574722001515 Published online by Cambridge University Press

https://fuzzyvo.github.io/
https://doi.org/10.1017/S0263574722001515

Robotica 679

(a) (b)

Figure 9. Illustration of velocity refinement. vg
i is obtained from fuzzy inference, vf

i is refined velocity.
(a) pi is out of VOi|i1. (b) pi is in VOi|i1.

Since B(y, x0) is a fuzzy set, defuzzification is required to generate a crisp value of the velocity for
the robot. One of the common defuzzification methods is the center of gravity, which determines a crisp
value based on the center of gravity of the generated fuzzy set [41]. The computation of the center of
gravity is given in (9).

y∗ =
∫

yB(y, x0)dy
∫

B(y, x0)dy
(9)

Based on the above procedure, given the current states of a robot and its intruders, the collision
times related to different intruders are first computed and the most dangerous intruder in each sector
is selected. Then, a new velocity is generated via the following fuzzy inference process: (1) decide all
possible premises, that is, all combinations of the fuzzy sets of the selected intruders’ collision time; (2)
for each premise, activate the corresponding rule and return a fuzzy set based on (7); (3) compute the
final fuzzy set based on (8); and (4) compute the speed ratio α∗ and the orientation change �θ ∗ based
on (9). Hence, the new velocity can be described as

vg
i = [α∗vc cos(θ − �θ ∗), α∗vc sin(θ − �θ ∗)]T (10)

Using the above three steps, a candidate velocity can be generated for each robot for collision
avoidance.

6.4. Velocity fine-tuning
Since fuzzy inference is a learning-based method depending on the quality of the sampling data, the
generated velocity may still result in a collision. Hence, fine-tuning is required to get a collision-free
velocity.

In case the generated velocity for ri is still in the VO region of some selected intruders, the velocity
should be adjusted such that it is out of the VO region. Indeed, any VO-based method can be applied,
such as ORCA, to compute the current velocity. However, considering the computation cost, a heuristic
fine-tuning method is proposed. As shown in Fig. 9, vg

i is the velocity obtained by fuzzy inference, BL
and BR are the boundaries of the VO region. There are two situations based on the robot’s current
position. The first one is shown in Fig. 9(a), where the current position pi is out of the VO VOi|i1. In
this case, the solution is to decrease the generated speed ‖vg

i ‖2 to the boundary of VO (i.e., point a in
Fig. 9(a)) without changing the orientation of the velocity. The second one is shown in Fig. 9(b), where
the current position pi is in the VO VOi|i1. In this case, the main idea is to increase the speed and/or
change the orientation of vg

i . However, since the built fuzzy rules prefer to decrease the speed to avoid
collisions, the generated speed may be too small to guarantee collision avoidance by only changing

https://doi.org/10.1017/S0263574722001515 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001515

680 Wenbing Tang et al.

Algorithm 1: Update of collision-free velocity for ri at time instant t.

the orientation. Hence, for this situation, the speed will be increased to the boundary (i.e., point a in
Fig. 9(b)).

7. Distributed algorithm for cooperative collision avoidance
This section summarizes the distributed collision avoidance algorithm based on fuzzy rules, as well as
the analysis of the computation complexity.

Algorithm 1 describes the velocity computation at each time instant for a robot. In this algorithm,
Lines 3−11 classify the intruders into different sectors. Since there are Nr robots in the system, in the
worst case, a robot needs to check all other robots. So the computation complexity is O(Nr). Lines 12−22
select an intruder in each sector. Hence, the computation complexity is O(Nr) in the worst case. Line
23 execute fuzzy inference. Based on the described inference procedure, a robot activates multiple rules
with different combinations of fuzzy sets of the selected intruders each time. In a general case, suppose
each robot partitions its collision region into q sectors, and each intruder is assigned with f fuzzy sets.
Hence, each time a robot activates at most f q rules, and the computation complexity is O(f q). Once

https://doi.org/10.1017/S0263574722001515 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001515

Robotica 681

Algorithm 2: Distributed collision avoidance for a cooperative multi-robot system.

completing fuzzy inference, the robot computes the new velocity and updates its current velocity, the
computation complexity is O(1). Hence, the total complexity of Algorithm 1 is O(Nr + f q).

Algorithm 2 gives the distributed collision avoidance algorithm for a cooperative multirobot system.
Sector partition and fuzzy rule generation are done offline before a robot starts to perform collision
avoidance and move forward. The number of fuzzy rules depends on only the number of generated fuzzy
sets and the number of divided sectors for each robot. With q divided sectors and f generated fuzzy sets,
the maximal number of fuzzy rules is (f + 1)q − 1. Each robot in a system is controlled with the same
rule base. Lines 6−10 describe the motion control for each robot. Each robot executes this part in a
distributed way by communicating with its neighbors to retrieve their current states. After initialization,
at each time instant tk, a robot updates its velocity based on Algorithm 1 (Line 8), then moves with
the new velocity in the next time duration [tk, tk+1) (Line 9). When time elapses, the robot updates the
current time instant and check whether it arrives at its target position. If there are no intruders in its
sensing range, the robot will update its speed to vref

i and move directly to the target position (Line 12).
Note that since the rule generation depends on only the number of partitioned sectors of a robot’s

collision region, Fuzzy-VO is suitable for systems with different numbers of robots, and even for a system
changing the number of robots in real-time, such as deleting existing robots or adding new robots during
the evolution of the system. However, Fuzzy-VO suffers from the challenge of Sim-to-Real transfer. The
fundamental procedure in the proposed method is to generate a fuzzy rule base, which highly depends
on the sampling data. Usually, the training data are collected from simulation since it is cost- and time-
consuming to collect data from real-world execution. Due to the Sim-to-Real gap, a practical strategy is
to fine-tune the rule base for real-world applications.

8. Simulation results
In this section, to demonstrate the efficiency of Fuzzy-VO, a set of simulations with different numbers
of UAVs are conducted, equipped with generic odometry sensors, on RotorS, which is a micro air vehi-
cle gazebo simulator with different multirotor models such as the AscTec Hummingbird, the AscTec
Pelican, or the AscTec Firefly [42]. Figure 10 shows a snapshot of a simulation with 6 AscTec Firefly
UAVs. In simulations, all robots are flying to their target positions from initial positions at the same

https://doi.org/10.1017/S0263574722001515 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001515

682 Wenbing Tang et al.

Figure 10. The simulation environment in Gazebo.

height. Each robot communicates with others through topic subscription and publication in ROS. In
this way, the robot can subscribe to the states of others and publish its own state asynchronously in
real-time. Even though assume that there are no other dynamic obstacles in the environment, each robot
regards others as dynamic obstacles. Hence, the simulation results in all experiments can also extend to
environments with various dynamic obstacles.

All simulation experiments are carried out on a Dell Precision Tower 5810 desktop running Ubuntu
16.04.6 LTS and ROS Kinetic, and equipped with Intel(R) Xeon(R) CPU E5-1650 v4 @ 3.60 GHz and
32.0 GB RAM. In experiments, the safe radius of each robot is ρ = 0.55 unit; t1 and t2 in Fig. 6(a) are
equal to 1.2 and 8 s, respectively; the α0 in Fig. 6(b) is 0.8; the initial speed of each robot is 2 unit/s; the
sensing range L = 8 units; and the time step � = 0.01 s, which satisfies the default publishing rate of
topics in RotorS.

8.1. Multiple robots moving in the same environment
To evaluate the effectiveness of Fuzzy-VO, the first simulation experiment is conducted with 4 AscTec
Firefly UAVs, denoted as r1 − r4. Their initial positions are (0, 20), (0, 0), (20, 0), and (20, 20),
respectively. They need to move to (20, 0), (20, 20), (0, 20), and (0, 0), respectively.

Figure 11 shows some snapshots of the motion of the four UAVs at different time instants. As shown
in Fig. 11(a), from the start time to the time instant k = 342 (i.e., t = 3.42s), each UAV detects that there
are no intruders within its sensing range, so they move directly to their targets. When the time instant is
k = 428, r3 arrives at (14.135, 5.923) with a speed of v3 = 2 units/s and an orientation θ1 = 135.121◦. At
this time, it detects that there are two intruders in its sensing range, namely, r2 and r4, whose positions
are (6.218, 6.331) and (13.808, 13.748), respectively. With intruder selection, r3 finds that r2 is in its
RR, while r4 is in its LR. Thus, r3 activates rules 15 − 18 to generate the motion command. The motion
command generated by Fuzzy-VO for r3 at this time is: α = 0.285, �θ = 43.423◦. Hence, as shown
in Fig. 11(b) and (c), r3 changes its motion to right from k = 428 to k = 449. Similarly, during the
motion from k = 449 to k = 474, r2, r1, and r4 detect intruders in their sensing ranges sequentially, so
they turn a little bit to right to avoid collisions, as shown in Fig. 11(d). At k = 474 (t = 4.74s), r4 is

https://doi.org/10.1017/S0263574722001515 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001515

Robotica 683

Figure 11. Detailed simulation process of collision avoidance for four UAVs.

at (12.787, 12.756) and detects r1, r2, and r3, whose positions are (7.141, 12.635), (7.201, 7.049), and
(13.546, 6.924), respectively, are in its sensing range, so there are three intruders need to address for r4.
Clearly, r1 is in RR, r2 is in FR, and r3 is in LR. Since there is one intruder in each sector, rules 19 − 26
are activated. The generated command is: α = 0.267, �θ = 82.5◦. Hence, r4 should turn greatly to right
and slow down its speed, as shown by the paths in Fig. 11(e). At t = 5.87s, r2 detects r3 is in its FR, so
rules 3 and 4 are activated to generate command (�θ = 23.279◦) for r2, which brings r2 to turn right.
After t = 5.87 s, r4 does not detect any intruder in its sensing range, so r4 only needs to move towards
the target position. Such motion of them can be found in Fig. 11(f). When k = 667, that is, t = 6.67 s,
the orientation of the four UAVs are −41.618◦, 48.85◦, 140.068◦, and −129.561◦, respectively. For r3

and r4, the initial orientation is 135◦ and −135◦, respectively. Based on the motion shown in Fig. 11(f)
and (g), from t = 6.67 s to t = 7.50 s, each robot turns a little bit to right first to avoid collisions with
other robots. When there are no intrudes in its sensing range, each robot turns to left to move directly to
its target.

As time elapses, the system reaches Fig. 11(g) at t = 7.50 s. From now on, even through there are
others UAVs within their sensing ranges, the four UAVs detect that there are no collisions in the future,
and all potential collisions are resolved. Hence, each UAV moves directly to its target again. As shown in
Fig. 11(h), all robots reach their targets at t = 14.74 s. From their traversed trajectories, an observation
is that in order to pass the intersection without any collision, each robot moves to its right side to avoid
collisions. From their traversed trajectories, it is can be seen that in order to pass the intersection without
any collision, each robot moves to its right side to avoid collisions. As in the ground traffic system, such
motion of these robots is similar to the motion within a roundabout [16].

Furthermore, more simulations are also conducted with 3, 4, 6, and 8 UAVs, respectively. All videos
of simulations can be found at https://fuzzyvo.github.io/. It can be seen that Fuzzy-VO can serve as an
effective and universal collision avoidance method, for multirobot systems with different numbers of
robots, by leveraging the advantages of fuzzy rules and VOs.

8.2. Comparison of Fuzzy-VO with other fuzzy rule-based methods
Since our method improves fuzzy rule-based methods, which can deal with uncertainties and linguis-
tic variables, we compare Fuzzy-VO with the pure fuzzy rule method on the number of rules and the

https://doi.org/10.1017/S0263574722001515 Published online by Cambridge University Press

https://fuzzyvo.github.io/
https://doi.org/10.1017/S0263574722001515

684 Wenbing Tang et al.

(a) (b)

Figure 12. The number of rules and the generated paths of Fuzzy-VO and pure fuzzy rule method. The
dotted lines indicate the paths of the dynamic obstacles.

smoothness of the generated paths. In addition, more experiments are also conducted to compare the
performance of the proposed intruder selection method with other selection methods.

8.2.1. Comparison with pure fuzzy rule method
Let us first consider the number of rules. For the pure fuzzy control method, at any time instant, a
robot evaluates the risks related to all other robots and then determines its motion. Hence, the rules are
generated directly based on the number of robots in a system. Indeed, in this method, the number of
rules increases exponentially with the number of robots in the system. Suppose the risk related to each
robot is described by two fuzzy sets: dangerous and safe, and the orientation is described by three fuzzy
sets: left, front, and right. If there are M robots in a system, the possible rules are 6M−1. For example,
as shown in Fig. 12(a), when there are three, four, and five robots, respectively, the required numbers
of rules is 36, 261, and 1296, respectively. However, in Fuzzy-VO, by intruder selection, the number of
rules is fixed and does not change when the number of robots is larger than 3. As shown in Fig. 12(a),
when there are two robots in the system, there is one obstacle to be processed, so only six rules required
for both Fuzzy-VO and pure fuzzy rule control. There are 18 rules when the system contains three robots.
When M ≥ 4, the number of rules in Fuzzy-VO is always 26 (without considering the emergent situation
described before), which is independent of the number of robots. The result indicates that Fuzzy-VO
decreases the number of fuzzy rules significantly by selecting a proper and fixed number of intruders.

Let us further compare the paths generated by the two methods. Consider the situation that there
are three dynamic obstacles (r1 − r3) and a Test Robot. The Test Robot is placed to (20, 0) with an
initial speed is 2 units/s, and its target position is (20, 40). The three obstacles’ initial positions are
(15, 40), (18, 40), and (25, 40), respectively; their missions are that r1 − r3 need to move directly to
(25, 0), (21, 0), and (15, 0), respectively, with a fixed speed 2 units/s. Figure 12(b) shows the paths that the
robots traversed. The solid lines represent the paths of the Test Robot. From the paths, an observation is
that the path generated by Fuzzy-VO is smoother. Indeed, in pure fuzzy rule method, due to the excessive
considering of the larger number of fuzzy rules, some unnecessary rules are activated to generate motion
sometimes, which make the generated path oscillating. The result validates that the path of a robot may

https://doi.org/10.1017/S0263574722001515 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001515

Robotica 685

be oscillating when there are a large number of rules. Since it generates a proper number of rules,
Fuzzy-VO can produce smoother paths.

8.2.2. Performance comparison of different selection methods
The common metrics to assess collision risks in a dynamic environment include: distance to collision
(DTC), time to collision (TTC), and time to react (TTR) [43]. As mentioned before, this paper focuses
on TTC, that is, potential collision time in Fuzzy-VO, to select the most dangerous intruder in each
sector. In some scenarios, a robot can only determine the nearest obstacle considered in each region
using its onboard sensor information directly, such as that of ultrasonic sensors and laser sensors. Thus,
the collision risk in evaluated based on DTC, such as [21]. For a deeper exploration of Fuzzy-VO, the
performance comparison between the two methods is studied. The systems are initialized with 3, 4, 5,
6, 8, and 10 robots, respectively, using Monte Carlo simulation. For each system, 10,000 experiments
are performed. In each experiment, the initial and target positions for each robot are randomly assigned.
Then, Fuzzy-VO and the DTC-based method (the configurations of fuzzy sets, membership functions,
and fuzzy rules are the same as [21]) are run independently. The comparison metrics are as follows.

1. Success rate. It is defined as the ratio of the number of experiments in which each robot arrives
at its target position successfully while maintaining a safe distance with other robots at any time
instant.

2. Minimum separation. It is defined as the minimum distance between any two robots during their
motion in each collision-free experiments.

3. Trajectory length. It is defined as the path length of a robot. Due to different initial and target
positions, the trajectory length is normalized by the distance between each pair of initial and
target positions. Hence, trajectory length can be computed as follows.

Ltr(i) =
∑

k ‖pi(k + 1) − pi(k)‖2

‖po
i − pf

i ‖2

(11)

4. Motion time. It is defined as the discrete steps performed from the initial position to the target
position of a robot.

For each system, the mean of each metric and the comparison results are shown in Fig. 13. As shown
in Fig. 13(a), with the increase of robots, DTC-based selection cannot be applied anymore since most
of the experiments are in collisions, while Fuzzy-VO is still with a low collision rate. In addition, from
the average statistics aspect, compared to the DTC-based selection, the average success rate of Fuzzy-
VOs can be increased by 306.5%. Note that the reasons for the happening of collisions in Fuzzy-VO
are that: (1) since the initial and target positions are generated randomly, they may be in collisions
when they are spawned; (2) currently, there are only two fuzzy sets associated to the collision time
in Fuzzy-VO, so a robot in some situations may not be able to respond to collisions timely; it can be
addressed by refining the collision time with more fuzzy sets; however, the more fuzzy sets, the more
fuzzy rules; further study on how to balance the number of fuzzy sets and motion performance is one
of future directions. Figure 13(b) shows that Fuzzy-VO can deal with collisions more precisely since it
generates lower minimum separation in the context of collision avoidance. Figure 13(c) and (d) show
that Fuzzy-VO can generate lower trajectory length and shorter motion time to complete the motion
tasks.

Additionally, the variances of minimum separation, trajectory length, and steps are shown as in
Table II. It can be found that in all experiments, Fuzzy-VO can generate a smaller variance than fuzzy
rules with DTC. Hence, it can be concluded that the proposed intruder selection method can assess the
collision risk accurately and guarantee a higher success rate.

https://doi.org/10.1017/S0263574722001515 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001515

686 Wenbing Tang et al.

(a) (b)

(c) (d)

Figure 13. Comparison of motion performance between Fuzzy-VO and DTC-based method.

8.3. Comparison of Fuzzy-VO with ORCA
At last, the comparison between Fuzzy-VO and ORCA [14] is carried out. It aims to investigate the
real-time decision efficiency of Fuzzy-VO. The experiments on six systems are conducted with differ-
ent robots, that is, 3, 4, 5, 6, 8, and 10 robots, respectively. For each system, running Fuzzy-VO and
ORCA 10,000 times, respectively. Figure 14(a) shows different methods’ average success rates under
the control of the two methods. It can be observed that even though the success rate decreases as the
number of robots vary from 3 to 10, Fuzzy-VO can remain a high success rate. Note that in Fuzzy-
VO, it is a trade-off between the number of selected intruders and the collision avoidance performance.
If the number of selected intruders is too large, the computation cost will increase, and the smooth-
ness of generated trajectory will decrease. If the selected intruders are too few, the generated velocities
may cause collisions. Hence, sometimes, users need to determine an appropriate number of collision
regions.

To further compare the real-time performance, the average one-step decision time (average time con-
sumed for generating one candidate velocity) of the two methods is calculated. The results are shown in
Fig. 14(b). From the results, it can be found that Fuzzy-VO has a shorter average decision time at each

https://doi.org/10.1017/S0263574722001515 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001515

Robotica 687

Table II. Comparison of the variances of minimum separation, trajectory length, and steps.

robots Method Minimum separation Trajectory length # steps
3 Fuzzy-VO 126.7 1.472 × 103 5.146 × 101

Fuzzy rules with DTC 134.9 5.351 × 105 1.619 × 104

4 Fuzzy-VO 44.64 2.414 × 103 5.171 × 101

Fuzzy rules with DTC 53.99 4.692 × 106 2.382 × 104

5 Fuzzy-VO 6.967 2.293 × 103 2.181 × 101

Fuzzy rules with DTC 44.36 1.934 × 106 6.077 × 103

6 Fuzzy-VO 12.97 3.318 × 103 6.088 × 102

Fuzzy rules with DTC 25.05 5.936 × 106 1.316 × 104

8 Fuzzy-VO 4.377 4.546 × 103 2.565 × 101

Fuzzy rules with DTC 10.71 9.890 × 106 1.256 × 104

10 Fuzzy-VO 2.174 6.307 × 103 8.043 × 101

Fuzzy rules with DTC 7.843 1.216 × 106 9.748 × 103

(a) (b)

Figure 14. Comparison of avoidance performance between Fuzzy-VO and ORCA.

time step. With the increase of the number of robots, Fuzzy-VO can filter more nonurgent robots and has
a less average one-step decision time for each robot. But the decision time of ORCA method increases
with the number of robots in a system, as ORCA makes decision by resolving an optimization problem
considering all other robots. The average one-step decision time of Fuzzy-VO is reduced by 740.9%,
compared with the ORCA. This comparison results also further validate that Fuzzy-VO can improve the
real-time decision efficiency without losing much success rate.

9. Conclusion
In this paper, a distributed and hybrid method, Fuzzy-VO, for collision avoidance in multirobot systems
is proposed. The proposed method leverages the advantages of fuzzy rules and VOs simultaneously. It
can deal with uncertain data and linguistic variables and also guarantee both safety and computation
efficiency. It is suitable for multirobot systems with different numbers of robots. In the method, a fixed
form and number of fuzzy rules are generated via collision region partition and intruder selection. To
guarantee safety, Fuzzy-VO applies VO-based fine-tuning to further check and adjust the velocity gen-
erated by fuzzy inference. Experimental results with different scenarios show a 306.5% improvement in

https://doi.org/10.1017/S0263574722001515 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001515

688 Wenbing Tang et al.

success rate and a 740.9% reduction in decision time, demonstrating the effectiveness of the proposed
method.

Future work includes implementing Fuzzy-VO on real robot platforms to further investigate the
performance of the proposed method. Another interesting topic is to study the combinations of
other model-driven methods and data-driven methods and compare their performance and scopes of
application.

Supplementary material. To view supplementary material for this article, please visit https://doi.org/10.1017/
S0263574722001515.

Author Contributions. All authors conceived and designed the study. Wenbing Tang and Yuan Zhou implemented the research
and wrote the manuscript. Zuohua Ding and Jing Liu developed the fuzzy-logic controller. Tianwei Zhang and Yang Liu reviewed
and edited the manuscript.

Financial Support. This work was supported by the Natural Science Foundation of China under Grant Nos. 61751210, 61210004
and 61170015, Academic Research Fund Tier 2 by Ministry of Education in Singapore under Grant No. MOE-T2EP20120-0004.

Conflicts of Interest. The authors declare that there is no conflict of interests.

Ethical Approval. None.

References
[1] L. Jin, Y. Qi, X. Luo, S. Li and M. Shang, “Distributed competition of multi-robot coordination under variable and switching

topologies,” IEEE Trans. Autom. Sci. Eng. 19(4), 3575–3586 (2022). doi: 10.1109/TASE.2021.3126385.
[2] Z. Zhou, J. Liu and J. Yu, “A survey of underwater multi-robot systems,” IEEE-CAA J. Autom. Sin. 9(1), 1–18 (2022).
[3] N. Nfaileh, K. Alipour, B. Tarvirdizadeh and A. Hadi, “Formation control of multiple wheeled mobile robots based on

model predictive control,” Robotica 40(9), 1–36 (2022).
[4] L. Zhou and P. Tokekar, “Active target tracking with self-triggered communications in multi-robot teams,” IEEE Trans.

Autom. Sci. Eng. 16(3), 1085–1096 (2019).
[5] K. Brown, O. Peltzer, M. A. Sehr, M. Schwager and M. J. Kochenderfer, “Optimal Sequential Task Assignment and Path

Finding for Multi-Agent Robotic Assembly Planning,” In: IEEE International Conference on Robotics and Automation,
Pairs, France (2020) pp. 441–447.

[6] S. H. Jazi, M. Keshmiri, F. Sheikholeslam, M. G. Shahreza and M. Keshmiri, “Adaptive manipulation and slippage control
of an object in a multi-robot cooperative system,” Robotica 32(5), 783–802 (2014).

[7] P. Yu and D. V. Dimarogonas, “Distributed motion coordination for multirobot systems under LTL specifications,” IEEE
Trans. Robot. 38(2), 1047–1062 (2022).

[8] Y. Kantaros, M. Malencia, V. Kumar and G. J. Pappas, “Reactive Temporal Logic Planning for Multiple Robots in Unknown
Environments,” In: IEEE International Conference on Robotics and Automation, Pairs, France (2020) pp. 11479–11485.

[9] Y. Zhou, H. Hu, Y. Liu and Z. Ding, “Collision and deadlock avoidance in multirobot systems: A distributed approach,”
IEEE Trans. Syst. Man Cybern. Syst. 47(7), 1712–1726 (2017).

[10] Y. Zhou, H. Hu, Y. Liu, S.-W. Lin and Z. Ding, “A distributed approach to robust control of multi-robot systems,” Automatica
98(6), 1–13 (2018).

[11] Y. Zhou, H. Hu, Y. Liu, S.-W. Lin and Z. Ding, “A distributed method to avoid higher-order deadlocks in multi-robot
systems,” Automatica 112, 108706:1–108706:13 (2020).

[12] H. G. Tanner and A. Boddu, “Multiagent navigation functions revisited,” IEEE Trans. Robot. 28(6), 1346–1359 (2012).
[13] J. Van den Berg, M. Lin and D. Manocha, “Reciprocal Velocity Obstacles for Real-Time Multi-Agent Navigation,” In: IEEE

International Conference on Robotics and Automation, Pasadena, California, USA (2008) pp. 1928–1935.
[14] J. van den Berg, S. J. Guy, M. Lin and D. Manocha, “Reciprocal n-body collision avoidance,” Robot. Res. 70, 3–19 (2011).
[15] B. Lindqvist, S. S. Mansouri, A.-A. Agha-Mohammadi and G. Nikolakopoulos, “Nonlinear MPC for collision avoidance

and control of UAVs with dynamic obstacles,” IEEE Robot. Autom. Lett. 5(4), 6001–6008 (2020).
[16] Y. Zhou, H. Hu, Y. Liu, S.-W. Lin and Z. Ding, “A real-time and fully distributed approach to motion planning for multirobot

systems,” IEEE Trans. Syst. Man Cybern. Syst. 49(12), 2636–2650 (2019).
[17] B. Tang, K. Xiang, M. Pang and Z. Zhanxia, “Multi-robot path planning using an improved self-adaptive particle swarm

optimization,” Int. J. Adv. Robot. Syst. 17(5), 1–19 (2020).
[18] N. Thumiger and M. Deghat, “A multi-agent deep reinforcement learning approach for practical decentralized UAV collision

avoidance,” IEEE Control Syst. Lett. 6, 22174–22179 (2022).
[19] R. Han, S. Chen, S. Wang, Z. Zhang, R. Gao, Q. Hao and J. Pan, “Reinforcement learned distributed multi-robot navigation

with reciprocal velocity obstacle shaped rewards,” IEEE Robot. Autom. Lett. 7(3), 5896–5903 (2022).

https://doi.org/10.1017/S0263574722001515 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001515
https://doi.org/10.1017/S0263574722001515
https://doi.org/10.1109/TASE.2021.3126385
https://doi.org/10.1017/S0263574722001515

Robotica 689

[20] J. H. Lilly, “Evolution of a negative-rule fuzzy obstacle avoidance controller for an autonomous vehicle,” IEEE Trans. Fuzzy
Syst. 15(4), 718–728 (2007).

[21] Z. M. Wen, S. D. Zhou and M. Wang, “Fuzzy control for the obstacle avoidance of a quadrotor UAV,” Appl. Mech. Mater.
775, 307–313 (2015).

[22] T. Edward, “Mobile Robot Autonomy via Hierarchical Fuzzy Behavior Control,” In: International Symposium on Robotics
and Manufacturing, Montpellier, France (1996) pp. 837–842.

[23] C. Wang, A. V. Savkin and M. Garratt, “A strategy for safe 3D navigation of non-holonomic robots among moving obstacles,”
Robotica 36(2), 275–297 (2018).

[24] C. Kownacki and L. Ambroziak, “A new multidimensional repulsive potential field to avoid obstacles by nonholonomic
UAVs in dynamic environments,” Sensors 21(22), 7495 (2021).

[25] D. F. Llorca, V. Milanés, I. P. Alonso, M. Gavilán, I. G. Daza, J. Pérez and M.Á. Sotelo, “Autonomous pedestrian collision
avoidance using a fuzzy steering controller,” IEEE Trans. Intell. Transp. Syst. 12(2), 390–401 (2011).

[26] P. Vadakkepat, O. C. Miin, X. Peng and T. H. Lee, “Fuzzy behavior-based control of mobile robots,” IEEE Trans. Fuzzy
Syst. 12(4), 559–565 (2004).

[27] Y.-C. Chang, Y. Shi, A. Dostovalova, Z. Cao, J. Kim, D. Gibbons and C.-T. Lin, “Interpretable fuzzy logic control for
multirobot coordination in a cluttered environment,” IEEE Trans. Fuzzy Syst. 29(12), 3676–3685 (2021).

[28] P. Fiorini and Z. Shiller, “Motion Planning in Dynamic Environments Using the Relative Velocity Paradigm,” In: IEEE
International Conference on Robotics and Automation, Atlanta, GA, USA (1993) pp. 560–565.

[29] M. Kim and J.-H. Oh, “Study on optimal velocity selection using velocity obstacle (OVVO) in dynamic and crowded
environment,” Auton. Robot. 40(8), 3676–3685 (2016).

[30] K. Cai, C. Wang, J. Cheng, C. W. De Silva and M. Q. H. Meng, “Mobile robot path planning in dynamic environments: A
survey,” arXiv preprint arXiv: 2006.14195, (2020).

[31] Y. I. Jenie, E.-J. Kampen, C. C. de Visser, J. Ellerbroek and J. M. Hoekstra, “Selective velocity obstacle method for
deconflicting maneuvers applied to unmanned aerial vehicles,” J. Guid. Control Dyn. 38(6), 1140–1146 (2015).

[32] S. Wang, Z. Li, B. Wang, J. Ma and J. Yu, “Velocity obstacle-based collision avoidance and motion planning framework for
connected and automated vehicles,” Transp. Res. Rec. 2676(5), 748–766 (2022).

[33] J. A. Douthwaite, S. Zhao and L. S. Mihaylova, “Velocity obstacle approaches for multi-agent collision avoidance,”
Unmanned Syst. 7(1), 55–64 (2019).

[34] M. Shen, Y. Wang, Y. Jiang, H. Ji, B. Wang and Z. Huang, “A new positioning method based on multiple ultrasonic sensors
for autonomous mobile robot,” Sensors 20(1), 237–252 (2019).

[35] G. Liu, M. Yao, L. Zhang and C. Zhang, “Fuzzy Controller for Obstacle Avoidance in Electric Wheelchair with Ultrasonic
Sensors,” In: International Symposium on Computer Science and Society, Kota Kinabalu, Malaysia (2011) pp. 71–74.

[36] Z. Ding, Y. Zhou and M. Zhou, “Modeling self-adaptive software systems by fuzzy rules and Petri nets,” IEEE Trans. Fuzzy
Syst. 26(2), 967–984 (2018).

[37] V. Kreinovich, O. Kosheleva and S. N. Shahbazova, “Why triangular and trapezoid membership functions: A simple
explanation,” Recent Dev. Fuzzy Logic Fuzzy Sets 391, 25–31 (2020).

[38] S. Ping and Z. Yu, “Tracking control for a cushion robot based on fuzzy path planning with safe angular velocity,” IEEE-CAA
J. Autom. Sin. 4(4), 610–619 (2017).

[39] Z. Ding, Y. Zhou, G. Pu and M. Zhou, “Online failure prediction for railway transportation systems based on fuzzy rules
and data analysis,” IEEE Trans. Reliab. 67(3), 1143–1158 (2018).

[40] M. Figueiredo, F. Gomide, A. Rocha and R. Yager, “Comparison of Yager’s level set method for fuzzy logic control with
Mamdani’s and Larsen’s methods,” IEEE Trans. Fuzzy Syst. 1(2), 156–159 (1993).

[41] T. Jiang and Y. Li, “Generalized defuzzification strategies and their parameter learning procedures,” IEEE Trans. Fuzzy Syst.
4(1), 64–71 (1996).

[42] F. Furrer, M. Burri, M. Achtelik and R. Siegwart, “Rotors—A modular gazebo MAV simulator framework,” Robot Oper.
Syst. 625, 595–625 (2016).

[43] C. Katrakazas, M. Quddus, W.-H. Chen and L. Deka, “Real-time motion planning methods for autonomous on-road driving:
State-of-the-art and future research directions,” Transp. Res. Part C Emerg. 60, 416–442 (2015).

Cite this article: W. Tang, Y. Zhou, T. Zhang, Y. Liu, J. Liu and Z. Ding (2023). “Cooperative collision avoidance in multirobot
systems using fuzzy rules and velocity obstacles”, Robotica 41, 668–689. https://doi.org/10.1017/S0263574722001515

https://doi.org/10.1017/S0263574722001515 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001515
https://doi.org/10.1017/S0263574722001515

	
	Introduction
	Related work
	Problem statement
	Overview of the proposed method
	Intruder determination and selection
	Collision region partition
	VO-based intruder selection
	Collision avoidance using fuzzy rules and velocity obstacles
	Introduction of fuzzy rules
	Fuzzy rule generation
	Fuzzification
	Building of fuzzy rules
	Velocity generation via fuzzy inference
	Velocity fine-tuning
	Distributed algorithm for cooperative collision avoidance
	Simulation results
	Multiple robots moving in the same environment
	Comparison of Fuzzy-VO with other fuzzy rule-based methods
	Comparison with pure fuzzy rule method
	Performance comparison of different selection methods
	Comparison of Fuzzy-VO with ORCA
	Conclusion

