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HECKE ALGEBRAS AND CLASS-GROUP INVARIANTS

V. P.SNAITH

ABSTRACT. Let G be afinite group. To a set of subgroups of order two we asso-
ciate a mod 2 Hecke algebra and construct a homomorphism, v, from its units to the
class-group of Z[G]. We show that this homomorphism takes values in the subgroup,
D(Z[G]). Alternative constructions of Chinburg invariants arising from the Gal ois mod-
ule structure of higher-dimensional algebraic K-groups of rings of algebraic integers
often differ by elements in the image of . As an application we show that two such
constructions coincide.

1. Introduction. Let G beafinitegroup. Inthe study of Chinburg invariantsarising
from the Galois module structure of higher-dimensional algebraic K-groups of rings of
algebraic integers ([1], [2], [3], [9], [10], [11]) the following situation frequently arises.
Suppose given an element of Extﬁ[G] (Y, X) which is represented by a 2-extension of
finitely generated Z[G]-modules of the form

X—A—B—Y

in which A and B are cohomologically trivial (cf. [8] Chapter 7). In this case the Euler
characteristic
[A] —[B] € CL(Z[G])

gives a well-defined element of the class-group of Z[G], depending only on the quasi-
isomorphism class of the 2-extension. The following sort of commutative diagram,
whose rows are such 2-extensions, arose in [3] during the comparison of two such Euler
characteristics originating from the 2- and 3-dimensional K-groups of rings of integers
in number fields. E.

|

X1—>A1—>Bl—>Y1

| | | |

X — A — B — Y2

|

E_
In this diagram the right-hand and | eft-hand columns are short exact sequencesand

r
E. =DInd3 (Z.)
i=1
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whereHy, ..., H; are distinct subgroups of order two, each of whose generators acts by
41 on acopy of theintegers denoted by Z., .

The exact Mayer-Vietoris sequenceresulting from this diagram defines a 3-extension,
in Ext3;;(E-. E+), whose Euler characteristic is equal to

D [Ad] — [Ba] — [A2] +[B] € CL(Z[G]).

In this paper we study the equivalent process of producing Euler characteristicsin the
class-group from elements of

Ext})(E-. E+) = Ext};g(E-. Ex)

with the objective of proving that they often vanish. Thisisomorphism isinduced by a
“change of groups’ isomorphism together with the periodicity in the cohomology of H;
(cf. Section 3.1). Our main result (Theorem 4.4) showsthat, if NgH; is the normaliser of
H; in G, the Euler characteristicswhich arise lie in the subgroup generated by the images
of compositions of the form

G
ndNGHi

KiZINaH]) —= CLEZINGH]) —=* CL(Z[G]).

As explained in Section 4.6, this suffices to show that the difference of Euler charac-
teristics in equation (1) vanishes in the arithmetical setting (see Example 2.4) in which
G = G(E/Q) is the Galois group of a number field extension in which E is totally
complex. Heuristically, this is because (“in the limit") NgH; = H; in this case and
CL(Z[H]) = 0when |H| = 2. Therefore Theorem 4.4 affords an alternative proof of the
2-primary part of the comparison results of [3], as explained in detail in Section 4.6.

The paper is arranged in the following manner. In Section 1 we introduce the subalge-
bras, S5 1 (G), of the Hecke algebras Endr;c) (E+ ® R) and relate themto Exé[G] (E-.E4).
In Section 2 we construct the homomorphism

S 27 (G)
S

which arisesfromthe Euler characteristicsconstructed from Extﬁ[G] (E-,E+). InSection3
we give some examples and relate the Hecke subalgebras to matrix rings with entriesin
Z[NgH;] in order to identify the image of .

| am very grateful to Martin Taylor for useful conversationsduring the preparation of
this paper and to Al Weiss for helping me to repair the first version of Section 4.6.

¥ — CLz[a)

2. TheHeckealgebras.

2.1. Let Rbeacommutative ring with identity and let G be a finite group. Suppose
that
T={neG;1<i<r}
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is a set of distinct elements of order two and set H; = (r), the subgroup of order two
generated by 7. Let Ry beacopy of Ron which 7; actsby +1, respectively. Then there
areisomorphisms, for 1 <i,j <r,

Homg(Ind§; (R), Indg (R-)) = Homggyy (R, Indg (R-))

HomR[Hi1<Ri~ %, |nd:§mmjﬂ(R¢))

ZEHi\G/Hj

2

2

where IndS(R..) is the induced R[G]-module, RIG] ®4 R-.. The second isomorphism is
induced by the Double Coset isomorphism

Resi INdf(R) =~ @ Indj,, \(R.)
ZEHi\G/Hj

under which a ®,~z+-1 b on theright correspondsto az®y; b on the left.
Inside the Hecke algebra

12

r r r
Endrg (@ Indg (Ri)) Homeggy (@ Ind§; (R.). €D Ind (Ri))
i=1 i=1 j=l

12

Gr96r9 @ Homgy (R, de:mZerl(Ri))

i=1 j=1 zeH;\G/H;

let S;7(G) correspond to the subset of summands for which H; = zHjz *. Hence,
additively, if we write J ~ K to indicate conjugacy,

K1)~ D D HomR(R... R.).
Hi~H;j zeHi\G/H; Hi=zH;z**
Henceforth we shall identify Homg(R:, R;.) with R by the isomorphism which sends f
to f(1). Write n = {n(i.},2) € R} € S37(G) for the element whose (i. j. 2)-component
isequal to u(i,j,2) € R Therefore we may consider u(i, j, —) asafunction fromGtoR
with the property that, in the case of ;1 (G),

u(i-j.m2) = £p(i.j.2) = p(ij. z7).
respectively. Hence p is characterised, as a homomorphism, by the fact that it sends

g®u v e Ind (R.) (9 € G.ve R to

D w@uliay e DndR.)
g

Hi~Hj zeH\G/Hj Hi=Hjzt H

PROPOSITION 2.2. The subgroup, Sk (G), is a subring of Endre) (@}, Indf; (R.)).
In fact, the product of 1 = {y(i.}. 2} and A = {\(s,t.w)} isgivenby (g € G.vER)

a-p(e®v)= % > oW i AG K wv.
Hi Hi~H;j,zeHi\G/H; Hj~H,weH;\G/Hy Hi
Hi:ZHiZ*:l Hj:WHkW71
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Therefore
A-p=r={r(@by}
where
viky)= ¥ Y ud. MG kw)
HiNHj,ZEHi\G/Hj HjNHk.WEHj\G/Hk
Hi=zHjz ! Hj=wH,w*

the sum being taken only over pairs of double cosets, HizH; and HywHy such that
Hink = HjzwHy.

PROOF.  The homomorphism corresponding to ; sends g ®y, v to

D  @ulj2v

Hi"’Hj ZEHi\G/Hj.HFZHjT1 Hj

whichissentby ) to

W) (i} DG k. WV,
HiNHj,ZEHi\G/Hj HjNHk.WGHj\G/Hk Hy
Hizﬂ'h'fl HJ=WHkW>1

asrequired. ]

EXAMPLE 2.3. Let G = Qg = {x.y | ¥ = y2x* = Lxyx ! = y~1} denote the
quaternion group of order eight. Then Hy = (x?) is the unique subgroup of order two,
whichiscentral. Let V = Qg /(x?) = Z /2 x Z /2 consisting of the images of 1. x. . xy.
Then S <X2>(Q8) = R[V], theisomorphism being to send p t0 >"zcv u(1. 1, 2)z, where we
haveidentified (x?) \ Qg/(X?) = Qg/(x?) with V.

Similarly, %O@)(Qg) =~ Hyz, theintegral quaternions.

EXAMPLE 2.4. LetL /K beaGaloisextensionof number fieldsandlet E/Q bealarge
Galois extension of number fieldssuchthat L C E and E istotally complex. Let c denote
complex conjugationin Q. Let Q, denotethe absolute Galoisgroup, Q. = G(Q%* /L),
where Q% is a separable closure of Q, therationals. Let v,,: L — E — Q% be afixed
embedding which restricts to a real embedding, w.,: K — E{© — (Q%)(©). Assigning
to g € Qg the embedding (v.,)g: L BER Q=r LR Q** defines a bijection between
embeddings of L and Q \ Qq. | must apologise for my notation, which the reader
may find rather awkward; it is chosen to make the double cosets emerge the same way
round here as they appear later in the homological algebra of Section 3.1. The set of
embeddings, {(V-)d. (V-)gc}, corresponds to an Archimedean place of L, since the
completions of of (V.,)g and (vV-,)gc coincide. Hence assigning the double coset Q| g{c)
to this Archimedean place defines a bijection between Q, \ Qq/(c) and X (L), the set
of Archimedean placesof L.

If (voo)g isacomplex placethen gcg— doesnot belongto Q and Q; N(geg™?) = {1}.
If (Voo)g isreal then Q. M (geg™2) = (geg™2) is of order two. In the first case, if (W.,)g
is a real place of K then gcg™! € Qx and its image in G(L/K) =~ Qk/Qq is the
decomposition group, Hg = G(L(v.)g/ K(w..)g)-
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Taking G = G(L/K) and T = {H; = (gicg7?) ; 1 < i < r}, the set of non-
trivial decomposition groups at infinity, one copy for each Archimedean prime, gives
the example which was the original motivation for the study of the class-group invariant
whichisintroduced in Section 3.2.

3. Some homological algebra.

31 LetR GandHj; (1 <i <r)beasin Section 2.1 and let R denote the R[H;]-
module upon which 7 acts as multiplication by +1. Let Eg . denote the R[G] module
given by @/, Ind (R.).

Taking R = Z or Z5, the integers or the 2-adic integers, we have a chain of isomor-
phisms of the form

.
Exte) (Er - Er+) = @ Extiyg (Ind5 (R-). Er.+)

& EBEXtR[H](FL Er+) @EXtR[H (R+. Er+)

~ QbHZ(Hi ; Er+) = | @HZ(H. ; Indg; (R.))
i=1]j

i=1 =

ror
~PP G H(Hi:Indj,,,.R))
i=1 j=1 zeH\G/H, Y
~ P &) H2(Hi 5 R.)
Hi~H; ZEHi\G/Hj.Hi:Zijl
=@ B  2/228;0)0Z)2
Hi~H; ZEHi\G/Hj,HFZHjT:l

~ S /21(C)

where we have abbreviated theisomorphic rings, S; 2T (G), bothto S; /> 7 (G).
Let us also abbreviate E; - to E... Then we have the following diagram of isomor-
phisms. N
SrQez/2 — §:0)©Z/2

y .|

EXt%[G] (E_ . E+) i EXt%z[G] (EZZ__, EZZ_+)

Unraveling the chain of isomorphismsit is not hard to see that the isomorphism

12

Extz(q (E-. E+) zZ/2

Hi~Hj zeHi\G/H;j,Hi=zHjz 1
r
~ PH(H; ; E.)
i=1
sends a 1-extension of Z[G]-modules

E,— X—E_
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to the element whosei-th coordinateisthe image of the generator of HX(H; ; Z_) ~ Z /2
under the composition

HY(H; ; Z_) — HY(H; ; E-) 2 H2(H; ; E.).

Here the first map is induced by the H;-map, Z_ — Indﬁi (Z-), given by sending 1 to
1 ®u, 1 and the second map is the coboundary associated to the long exact cohomology
sequence

S HY(Hi B — HY(H; o X) — H(H: : EL) 25 H™Y(H : Ey) — - -

If 6 = @rir, Breri\a/H =72 0(i. ), 2) lies in Extyig(E-. Ey) then A € S 1(G)
gives an endomorphism of H2(H; ; E.) which we shall now evaluate. The Z[H]-

resolution
1+7

1-7
-+ — Z[H] — Z[Hi] — Z[H] — Z — 0
shows that the cohomology group is computed from the complex

1+7 1-7

r r r
@ Inds (2) — PIndg (2) — PInd3 (2)
j:l ! j:]_ ! j:]_ !
and that ¢ is represented by
D 242

Hi~H; ZGHi\G/Hj.HFZijl H;
where §(i.j, 2) € Z now denotes any lifting of (i}, 2) € Z /2. This element is mapped
by A to

2w @ 6(i,j. DA (. ko w)
HiNHj.ZEHi\G/Hj HjNHk.WEHj\G/Hk Hg
Hi =Zij1 Hj =WH|<W>1

so that
A.(0) = A -6 (modulo2)

where the product is that of S/, 7 (G).

3.2, ldentify ©n~m Dzeny\c/H,. Hi=zHz 1 Z /2 With Sz /5 1 (G), asin Section 1, and de-
note by S /7 (G)* the multiplicative group of units. We may define a map to the class
group of theintegral group-ring of G

VS 21 (G) — CL(Z[G])

by thefollowing procedure. Leté, € S, 1 (G) denotethe element for which4(i. j, 2) = 0
exceptfor 1l <i=j<randz=1¢e Gwhend(,i,1) = 1. Given another element,
b€ S)21(G), wemay lift uto u’ € S 1 (G) = Endzg)(E+) and then we may form

1. (69) € Exty(E-, Ex).
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This 1-extension only depends upon u € ;57 (G)". Also, since p € S /,7(G)", the
homomorphism ' E+ — E. will be injective, sinceit is an isomorphism when reduced
modulo 2. The 1-extension, p/ (&), is constructed by a push-out diagram of the form

EE — E — E_

T TR
E. — Y — E

where E = @, Indﬁ‘i (Z[Hi]) ~ ®i-; Z[G]. The upper l-extension is constructed by
applying Indﬁi (—) to the canonical 1-extension of Z[H;]-modules

0—Z{1+7) —Z[H]—Z_—0
and summingoveri =1,....r. Therefore

Y(p) = (B« # E)/{(1/(9-X) | x € Ex}

isafinitely generated Z[G]-module.
N Since p € & /,7(G)* the map H; is an isomorphism on the Z /2-vector space,
H*(J ; E:) (Tate cohomology), for all J C G. Hence Y(u) is a finitely generated,
torsion-free, cohomologically trivial Z[G]-module and is therefore projective, defining
aclass

[Y()] — rank(Y()) [Z[G]]| € CL(Z[G]) = Ko(Z[G])

in the class-group of the integral group-ring (cf. [4]11).
Set
U(p) = [Y()] — rank(Y(w) [2[G]] € CLZ[G]).
PROPOSITION 3.3. The map, v, of Section 3.2 is a homomor phism
VS /27 (G — CL(Z[G])
which factors through the quotient by S; 1 (G)* to give

. Sz/21 ()
SO

ProOOF. The canonical 1-extension

Y — CLz[a.

E,.—E—E_
representsthe class

b € Extyiq(E-.E) =~ D D z/2
Hi~Hj zeH\G/H;.Hi=zHjz !

Also §, isthe identity element of thering S, 1 (G).
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The Hj-cohomology coboundary associated to the 1-extension
E+ — Y(u) — E-
may, by naturality, be computed by composing
W H*(Hi ; E) — H*(Hi ; E4)

fori=1,..., r with the coboundary associated to the canonical 1-extension. Therefore,

by the discussion of Section 3.1, the Y(y)-extension correspondsto

1 @) = 1 8g=p €S 21(G) CSy71(G).

Now supposethat we have i, A € & 57 (G)". We may lift these elementsto WA e
S, 1 (G), respectively. In CL(Z[G]), since E is free,

[¥(u)] — rank(Y())[Z[G] ] = [Coker(7)] = [Coker()]

since Coker(fi) >~ Coker(y') is a finite group which is also a cohomologically trivial
Z[G]-module. Therefore the short exact sequence

0 — Coker(\) — Coker(ﬁ’ A)— Coker(ﬁ’) —0
showsthat, in CL(Z[G]),

U(p - A) = [Coker(y' - A)]
= [Coker(u)] +[Coker(A)]

= P(p) + Q).
as required.
Finaly, if p € S, 7 (G)* isintheimage of S; 1 (G)* then p’ may be chosento be a
Z[G]-module isomorphism in which case Y(u) = E and ¢(u) = 0. ]

4. Another description of 1. Let us begin with some examples.

ExAMPLE4.1. Considerthe Example2.3,whereG = Qgand T consistsof the centre,
(x?). In this case

S /27 (Qs)*
S 1 (Qu)*

In fact, the homomorphism ) is an isomorphism, as may be seen in terms of Frohlich’s
Hom-description of the class-group together with Remark 4.7.

A similar discussion appliesto any G with anormal subgroup, (t) <t G, of order two.
In this case

~ (Z/4)" =~ CL(Z[Qs]).

S:7(G) = RG/(7)]
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and the homomorphism

Z/2AG/NI" oL
e i Z[G
V61 e
may be identified, as we shall prove in Theorem 4.4, with the Mayer-Vietoris ho-
momorphisms of the type studied in ([4] Il p. 273). Hence the image of ¢ lies in
D(Z[G]) € CL(z[aD.
When G = Qx, the generalised quaternion group of order 2", then

DEZ[Qx])=Z/2

and v is surjective (cf. [4] Il p. 273).
The remainder of this section will be devoted to showing that Example 4.1 istypical.

4.2.  OQur first observation isthat T is the disjoint union of G-conjugacy classes, T,
and that, in these circumstances, there is an isomorphism of the form

Si7(G) 11 S1.(0).

In addition, the homomorphism, v, of Proposition 3.3 isevidently equal to the sum of the
y's for each of the factors. Therefore we shall henceforth restrict ourselves to the case
whenT ={giHg?; 1 <i <r}wherer =[G : NgH] isthe index of the normaliser of
HinGandg.....q arecoset representativesfor G/NgH. Write  for the generator of
H.

Next we observethat zgHg, 'z * = giHg; " if and only if g zg; € NgH. Onthe other
hand, giHg *zgiHg* = giHg 'wgiHg; * if and only if g~'z 'wg; € H. Therefore there
is an obviousisomorphism of abelian groups of the form

$71G) = @ gRINeH]/(r— (£1))g™.

1<ij<r
This map sends an element whose only component is equal to u(i. j, 2) € Rto the matrix

with u(i,j. 2g71zgH € RINgH /H] asits only entry, in the (i. j)-th entry. If we endow
the right hand side with the multiplication given on generators by

(gwH)g ) - (gi(zH)g )= (ai(zwH)gi *)

and zero in al other cases one sees easily that this becomes an isomorphism of
rings. Furthermore it is clear that the right-hand side is isomorphic to the ring,
Mr(R[NgH]/(T — (il)))op, of r x r matrices with entries in the quotient,
RINGH]/ (7’ — (il)), of the group-ring of NgH with coefficients in R and the oppo-
site multiplication.

Therefore we have proved the following result.
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ProPOSITION 4.3. In the notation of Section 2.1 and Section 4.2,thereis an isomor-
phism of rings

S1(G) = M, (R[NGH]/(T - (ﬂ)))Op
where A% denotes the opposite ring of the ring A.
Next consider the pullback diagram
Z[H — Z.

| l

Z. — Z)2

which induces up to yield the pullback square
Z[NgH] —  Z[NgH]/(r — 1)

Z[NgH]/(T+1) — Z/Z[NGH]/(T—].)

from which we may obtain a K-theory Mayer-Vietoris sequence by the method described
in ([5] Section 3)

-+ — Ky(Z[NeH] /(r + 1)) ® K1(Z[NcH] /(- — 1)) —

K1(Z/2[NGH]/(r — 1)) —— Ko(Z[NGH]) — -

If Mg isamaximal Z-order, containing Z[G], in Q[G] let D(Z[G]) denote the kernel
of the canonical map of class-groups, C L (Z[G]) — C L(Mg). Thedefinition of D(Z[G])
isindependent of choice of maximal order. When we tensor the second Cartesian square
with the rationals the bottom right corner vanishes. Therefore the maximal order of
Q[NgH] is isomorphic to a direct sum of the maximal orders in Z[NgH]/(r £ 1).
Therefore we have an inclusion

im(K(Z/2INeH] /(7 — 1)) — Ko(ZINeH])) € DZ[NGH]).
Thisis because 6(x) must vanish under the map
Ko(Z[NgH]) — Ko(Z[NGH] /(7 + 1)) @ Ko(Z[NeH]/ (r — 1))

but the corresponding map on the K-theory of maximal ordersis an isomorphism. Note
also that the canonical homomorphism

Ind§_: Ko(Z[NeH]) — Ko(Z[G])

satisfies
Ind§;_(DZ[NeH]) € DZ[G)).
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By Proposition 4.3, a unit

B ES1(G) =CL1S,21(G)

definesaclass
(4] € Ka(Sz/27 (©) = Ko (Mi(Z/2IN6H] /¢ — 1)) 7 ) = Ka(Z/2IN6H] /(¢ — 1)

since K1(A\) is defined to be the abelianisation of the infinite general linear group of
. The second isomorphism is induced by Morita equivalence (see [7]). Since we are
in a very low dimension, in the proof of Theorem 4.4, we shall need to know very
little about Morita equivalence. If z € K1(Z /2[NgH]/(r — 1)) correspondsto [1] €

Ky (Mr (Z/2INGH] /(7 — 1))°") , we shall need only the fact that the coboundary, §(2) €
Ko(Z[NgH]), isrepresented by the Mayer-Vietoris patching construction, using a matrix
representation of y, as described in ([5] Section 3).

The remainder of this section will be devoted to proving the following result.

THEOREM 4.4. If i € S /»7(G)* then, when T = {giHg* ; 1 < i < r} and
r =[G : NgH] asin Section 4.2,

U(p) = IndS,,(5(1u]) — r[ZIN6H] ) € CL(ZIG]) C Ko(Z[G]).

ProOOF. Firstly, we must find an alternative description of the Z[G]-module, Y(u), of
Section 3.2 which is more obviously related to the boundary homomorphism, 6. B

Consider the following commutative diagram of Z[G]-modules in which the right-
hand square is a pull-back which defines X(y).

1 l l

E > E — E®Z/2 & E©Z)2

In the pullback square defining X(n) we have identified E; @ Z /2 by the isomorphism
induced by the unique identifi cationof Z. ® Z /2 so that  may be interpreted as an
isomorphism of Z[G]-modules in the bottom right-hand corner. Therefore X(1) con-
sists of pairs, (er,e_) € E; x E_, mapping to the same element in E; ® Z/2._Hence
ker(X(ﬁ) — E_) consistsof al pairs, (es, 0), inwhich e, isdivisibleby 2. Therefore both
rows of the diagram are short exact sequences. In fact, the upper row is equivalent to the
1-extension which defines Y(u) and therefore there is an isomorphism of Z[G]-modules
of theform B
Y(p) = X(p)-

To seethisit sufficesto calculate all the compositions of Section 3.1

HY(H; ; Z-) — Hi(Hi 1 E-) — H2(H; ; E2)
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where ¢ is the coboundary associated to the upper row of the diagram. We must show
that this family of homomorphisms is induced by composition with p, in the sense of
Section 3.1. However there are canonical isomorphisms of the form

HY(Hi ; E-) @ H'(Hi ; E- ®2/2) @ H¥(Hi ; E. ® Z/2) = H?(H; ; E.)
in terms of which the family of coboundary compositions for the exact sequence
0—E E —E®Z/2—0

is induced by composition with the identity map. Therefore the family of coboundary
compositions for the exact sequence of the lower row isinduced by composition with p
and consequently the same is true for the upper row. B

Next we consider the (left) Z[G]-modules, E,. = @{zllndgngl(Zi). These mod-
ules are isomorphic, respectively, to @/, Ind5(Z.) by means of the homomorphism

which sends g ®gg+ v € IndSy,, +(Z1) to ggi ®y v € Ind3(Z.1) in the i-th summand.

The isomorphism of M, (Z[NgH]/ (7 - (il)))op with S} 1 (G) sends the elementary
matrix, q}z (A € Z,z2€ NgH) to p = {u(s.t,w)} whose only non-zero coordinate
is given by u(i, ], g zgj—l) = ). This elementary matrix acts by sending 9®gHg1 Vv to
ggizgj*1 ®91H9f1 v. Translated under these isomorphisms, q*jz acts on ggi ®u Vv in thei-th
coordinate by sending it to ggiz®y Vv in the j-th coordinate.

Hence there are (left) Z[G]-module isomorphisms of the form

E. = Ind§,, (EL)

wherethe (left) Z[NgH]-modules, E/, areequal to @, Inde"(Z_.), respectively. Theel-
ements of these modulesare considered asr-tuplerow vectorswith entriesin IndﬂGH (Z+)
upon which an element of %T (G), consideredasanr x r matrix via Proposition 4.3, acts
viaright matrix multiplication. The action of Z[NgH] is by means of left multiplication
on each coordinate.

Acting viaright multiplication as described above, a unit

1 € S5 (G 2 GLA(Z /2[NGH] /H)

definesa (left) Z / 2[NgH] /H-automorphism, p: E. ®Z /2 = E. ®Z /2whichdefines
aclass
[1] € Ki(Z/2[NgH] /H) = GLoo(Z / 2[NGH] /H)ap.
By definition of the coboundary, 4, in the K-theory Mayer-Vietoris sequence ([5] Sec-
tion 3)
8([p]) = [X'(w)] € Ko(Z[NeH])
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where X'(1) is defined by a pull-back in the same manner as X(u) but with G and E..
replaced by NgH and E'... From the preceding discussion, X(u) = Indg_(X'(1)), so that
inCL(Z[G]) C Ko(Z[G])

V() = Y(p) —rZ[G]

= X(u) — rZ[G]
Indg_ (X' (1) — rZ[NeH])
= Indin (60w — rZ[NeH])

asrequired. ]

The following result is immediate from the discussion concerning the subgroup,
D(Z[G]), together with the fact that the class-group of the group-ring of the group of
order two istrivial.

COROLLARY 4.5. ForanyGand T the homomorphismof Proposition 3.3

 S27(G)
- §1(Gr

takes valuesin the subgroup D(Z[G]).
Furthermore, if the NgH = H for eachH € T then v istrivial.

4.6. An application. In [1] a Chinburg invariant, Qn(L/K) € C L(Z[G(L/K)]) is as-
sociated to any Galois extension of number fields, L /K with group G(L /K). Whenn = 1
this invariant is constructed as the Euler characteristic of a 2-extension of finitely gen-
erated Z[G(L /K)]-modules derived from the Galois modules structure of the algebraic
K-groups of rings of S-integers, O, s, in dimensions 2 and 3. In [2] we evaluated some
guaternionic examples of another construction, given in ([9] Chapter 7) for the totally
real case, of an invariant Qa(L /K. 3) € CL(Z[G(L/K)]).

In [3] we extended Q1(L /K, 3) to all L /K and showed that Q1(L /K) = Q1(L /K. 3).
Corollary 4.5 and our constructions with Hecke algebras yield an alternative proof of
thisequality. In[3] it was shown that there exists acommutative diagram of 2-extensions
of the type which appears in Section 1, in which (i) T consists of the set of non-
trivial decomposition groupsat infinity for L /K (ii) the Euler characteristic of the upper
2-extension defines Q4 (L /K) and (iii) that of the lower one defines Q(L /K, 3).

From equation (1) of Section 1, we shall explain how to prove that Q;(E/Q) =
Q1(E/Q. 3) when E istotally complex—equality in the general casefollowing at once,
by naturality. Theideais that, in the limit, Ngg/q)(c) / (c) istrivial and so Corollary 4.5
should yield the result. Unfortunately, for each E/Q, the quotient, Ngg/q)(c) / (c), may
be non-trivial. Therefore we have to proceed slightly differently.

Suppose E/Q and M/ Q are two totally complex Galois extensionswith E C M and
Galois groups

G(M/E) <t G(M/Q) — G(E/Q) = G(M/Q)/G(M/E).

¥ — CL@z[a)
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Each of the 2-extensions of Z[G(M /Q)]-modules, defining Q:(M/Q) and Q:(M/Q, 3),
is natural with respect to passageto quotients. Thissort of naturality means, for example,
that if

X1—AL —B —Y;

is the 2-extension which defines Q1(M/Q) then the associated 2-extension of
Z[G(E/Q)]-modules

XOM/E) __, pASM/E) __ gBM/E) vy
definesQ1(E/ Q). Infact, thediagram of Section 1 involving these2-extensionsisnatural
in this sense, with respect to passage to quotient groups.

The diagram of Section 1 relating the 2-extensions for Q;(M/Q) and Q1(M/Q. 3)
defined an element

wmjq € EX oy (- Ex) & EXtien oy (E- Er) 2 S 27, (GM/Q))

where Ty is the set of all conjugates of complex conjugation, ¢, in G(M/Q). Naturality
implies that these elements fit together to define

w =limwy q € 1imSz 57, (GM/Q)).
Returning to Q C E C M, the canonical homomorphism
S /21, (GM/Q)) — S 271.(G(E/Q))

is induced by considering an element of S; , 7,,(G(M/Q)) as lifting to aZ[G(M/Q)]-
endomorphismof E. and sendingit to thereduction modulo 2 of theinduced Z[G(E/ Q)]-
module endomorphism of ES™/E)| considered as an element of S, /27:(G(E/Q)).

Let G(M/E) = {x1..... %} and let G(E/Q) = {yic,..., yic ;e = 0,1}, wherec

denotes complex conjugation. Lifting each yJ’ toy; € G(M/Q) wemay set

Tw={(xyoyy ™ h) [ 1<i<r1<j<s}

Hence Ty isthe set of all conjugatesof (c) in G(M/Q). By Proposition 4.3, we have an
isomorphism of the form

SZTM (G(M/Q)) = Mrs(Z[NG(M/Q)<C>/<C>])Op-

Set Hij = (xiyjcy; 1% ) so that associated pairs of suffices, (i, j), index the rows and
columns of these matrices.

With this notation, the canonical homomorphism of Hecke algebras, induced by
passing to G(M / E)-fixed points, corresponds to the the ring homomorphism

Mrs(Z[Ne /) (€) /(©)D)® — Ms(Z[Nge/q)(C)/ ())®
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which sends the ((i.}). (i1.j1))-th entry to the (j. j1)-th entry by the map induced by
mGM/Q) — G(E/Q).

However, theinverse limit
N =1imNgg,q)(c)/(c)

istrivial. For if not then the compositum of all the M{© would be areal closed field, F,
and F/FN would be a non-trivial Galois extension. However, real closed fields do not
have any non-trivial Galois automorphisms (cf. [6] pp. 392-398), since the rootsin F of
aminimum polynomial over FN are ordered and the automorphism must preserve the
ordering.

Therefore, for any given E/ Q thereexists M such that theimage of the homomorphism

$/21,(GM/Q)) — S /57, (G(E/Q)) = Ms(Z /2[Ng(g/qy(C)/ ()]

lies in the subring of “constants’, Ms(Z /2)°®. The images under i of Section 3.2 of
such elements are trivial in the class-group of the group-ring. Therefore Q1(E/Q) =
Q1(E/Q. 3), asclaimed.

However, ageneral Galoisextension, L /K, may beembeddedin oneof theformE/Q
in which E is totally complex and E/L is Galois. Each of the invariants is natural in
the sensethat Q1(E/Q) and Q1(E/Q, 3) map to Q1(L /K) and Q1(L /K, 3), respectively,
under the homomorphism

CL(z[G(E/Q)]) — CL(Z[GE/K)]) — CL(Z[G(L/K)]).
which completes the proof. ]

REMARK 4.7. Representing ¢ in the Hom-description The Hom-description repre-
sents the class-group of Z[G] as a quotient of the Galois equivariant, idélic-valued
functions of the (complex) representation ring, R(G), of G (see [8] Section 4.2). The
function which represents y(n) istrivial at al places except those above the prime 2. It
suffices to give the Hom-description at p = 2 in the case of Theorem 4.4, when al the
Hj are conjugateto H = (7). In this case we may lift  to a2-adic unit, u’ € S, 1 (G)*,
which we may interpret as as an element of GL(Z2[NgH /H]). Therefore we have a 2-
adic valued determinantal (see[8] Section 4.2) function given by, Det(u") on R(NgH /H).
Therefore thereis a 2-adic valued function on R(NgH) which sendsan irreducible, x, to
1if y isnon-trivial on, the generator of H, and sendsit to Det(n")(x) otherwise (in this
case x is inflated from NgH /H). Composing this homomorphism with the restriction
map from R(G) to R(NgH) gives the 2-adic part of the Hom-description of ().

For example, when G = Qg in Section 4.1 and y correspondsto 1+x+y the associated
2-adic function istrivial onirreducible representations except the trivial one and there it
takes the value 3. Thisis the Hom-description of the generator (see [8] Section 5.2).
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