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HECKE ALGEBRAS AND CLASS-GROUP INVARIANTS

V. P. SNAITH

ABSTRACT. Let G be a finite group. To a set of subgroups of order two we asso-
ciate a mod 2 Hecke algebra and construct a homomorphism, †, from its units to the
class-group of Z[G]. We show that this homomorphism takes values in the subgroup,
D(Z[G]). Alternative constructions of Chinburg invariants arising from the Galois mod-
ule structure of higher-dimensional algebraic K-groups of rings of algebraic integers
often differ by elements in the image of †. As an application we show that two such
constructions coincide.

1. Introduction. Let G be a finite group. In the study of Chinburg invariants arising
from the Galois module structure of higher-dimensional algebraic K-groups of rings of
algebraic integers ([1], [2], [3], [9], [10], [11]) the following situation frequently arises.
Suppose given an element of Ext2Z[G](YÒX) which is represented by a 2-extension of
finitely generated Z[G]-modules of the form

X �! A �! B �! Y

in which A and B are cohomologically trivial (cf. [8] Chapter 7). In this case the Euler
characteristic

[A]� [B] 2 C L(Z[G])

gives a well-defined element of the class-group of Z[G], depending only on the quasi-
isomorphism class of the 2-extension. The following sort of commutative diagram,
whose rows are such 2-extensions, arose in [3] during the comparison of two such Euler
characteristics originating from the 2- and 3-dimensional K-groups of rings of integers
in number fields.

E+??y
X1 �! A1 �! B1 �! Y1??y ??y ??y ??y
X2 �! A2 �! B2 �! Y2??y

E�
In this diagram the right-hand and left-hand columns are short exact sequences and

Eš =
rM

i=1
IndG

Hi
(Zš)
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1266 V. P. SNAITH

where H1Ò    ÒHr are distinct subgroups of order two, each of whose generators acts by
š1 on a copy of the integers denoted by Zš.

The exact Mayer-Vietoris sequence resulting from this diagram defines a 3-extension,
in Ext3Z[G](E�ÒE+), whose Euler characteristic is equal to

(1) [A1]� [B1]� [A2] + [B2] 2 C L(Z[G])

In this paper we study the equivalent process of producing Euler characteristics in the
class-group from elements of

Ext1Z[G](E�ÒE+) ≤ Ext3Z[G](E�ÒE+)

with the objective of proving that they often vanish. This isomorphism is induced by a
“change of groups” isomorphism together with the periodicity in the cohomology of Hi

(cf. Section 3.1). Our main result (Theorem 4.4) shows that, if NGHi is the normaliser of
Hi in G, the Euler characteristics which arise lie in the subgroup generated by the images
of compositions of the form

K1(Z[NGHi])
é
�! C L(Z[NGHi])

IndG
NGHi
�! C L(Z[G])

As explained in Section 4.6, this suffices to show that the difference of Euler charac-
teristics in equation (1) vanishes in the arithmetical setting (see Example 2.4) in which
G = G(EÛQ) is the Galois group of a number field extension in which E is totally
complex. Heuristically, this is because (“in the limit”) NGHi = Hi in this case and
C L(Z[H]) = 0 when jHj = 2. Therefore Theorem 4.4 affords an alternative proof of the
2-primary part of the comparison results of [3], as explained in detail in Section 4.6.

The paper is arranged in the following manner. In Section 1 we introduce the subalge-
bras, SšRÒT (G), of the Hecke algebras EndR[G](Eš
R) and relate them to Ext1Z[G](E�ÒE+).
In Section 2 we construct the homomorphism

†:
SZÛ2ÒT (G)Ł

S+
ZÒT (G)Ł

�! C L(Z[G])

which arises from the Euler characteristics constructed from Ext1
Z[G](E�ÒE+). In Section 3

we give some examples and relate the Hecke subalgebras to matrix rings with entries in
Z[NgHi] in order to identify the image of †.

I am very grateful to Martin Taylor for useful conversations during the preparation of
this paper and to Al Weiss for helping me to repair the first version of Section 4.6.

2. The Hecke algebras.

2.1. Let R be a commutative ring with identity and let G be a finite group. Suppose
that

T = fúi 2 G ; 1 � i � rg
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is a set of distinct elements of order two and set Hi = húii, the subgroup of order two
generated by úi. Let Rš be a copy of R on which úi acts by š1, respectively. Then there
are isomorphisms, for 1 � i, j � r,

HomG

�
IndG

Hi
(Rš)Ò IndG

Hj
(Rš)

�
≤ HomR[Hi]

�
RšÒ IndG

Hj
(Rš)

�

≤ HomR[Hi]

�
RšÒ

M
z2HinGÛHj

IndHi

Hi\zHjz�1 (Rš)
�

where IndG
H(Rš) is the induced R[G]-module, R[G]

N
H Rš. The second isomorphism is

induced by the Double Coset isomorphism

ResG
Hi

IndG
Hj(Rš) ≤

M
z2HinGÛHj

IndHi

Hi\zHjz�1 (Rš)

under which a
N

Hi\zHjz�1 b on the right corresponds to az
N

Hj b on the left.
Inside the Hecke algebra

EndR[G]

� rM
i=1

IndG
Hi

(Rš)
�
≤ HomR[G]

� rM
i=1

IndG
Hi

(Rš)Ò
rM

j=1
IndG

Hj
(Rš)

�

≤
rM

i=1

rM
j=1

M
z2HinGÛHj

HomR[Hi]

�
RšÒ IndHi

Hi\zHjz�1 (Rš)
�

let SšRÒT (G) correspond to the subset of summands for which Hi = zHjz�1. Hence,
additively, if we write J ¾ K to indicate conjugacy,

SšRÒT (G) ≤
M

Hi¾Hj

M
z2HinGÛHj ÒHi=zHjz�1

HomR(RšÒRš)

Henceforth we shall identify HomR(RšÒRš) with R by the isomorphism which sends f
to f (1). Write ñ = fñ(iÒ jÒ z) 2 Rg 2 SšRÒT (G) for the element whose (iÒ jÒ z)-component
is equal to ñ(iÒ jÒ z) 2 R. Therefore we may consider ñ(iÒ jÒ �) as a function from G to R
with the property that, in the case of SšRÒT (G),

ñ(iÒ jÒ úi z) = šñ(iÒ jÒ z) = ñ(iÒ jÒ zúj )Ò

respectively. Hence ñ is characterised, as a homomorphism, by the fact that it sends
g
N

Hi v 2 IndG
Hi

(Rš) (g 2 GÒ v 2 R) to

M
Hi¾Hj

M
z2HinGÛHj ÒHi=zHjz�1

gz
O
Hj

ñ(iÒ jÒ z)v 2
rM

j=1
IndG

Hj
(Rš)

PROPOSITION 2.2. The subgroup, SšRÒT (G), is a subring of EndR[G]

�Lr
i=1 IndG

Hi
(Rš)

�
.

In fact, the product of ñ = fñ(iÒ jÒ z)g and ï = fï(sÒ tÒw)g is given by (g 2 GÒ v 2 R)

(ï Ð ñ)
�

g
O
Hi

v
�

=
X

Hi¾Hj Òz2HinGÛHj

Hi=zHjz�1

X
Hj¾Hk Òw2HjnGÛHk

Hj=wHkw�1

gzw
O
Hk

ñ(iÒ jÒ z)ï(jÒ kÒw)v
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1268 V. P. SNAITH

Therefore
ï Ð ñ = ó = fó(aÒ bÒ y)g

where
ó(iÒ kÒ y) =

X
Hi¾Hj Òz2HinGÛHj

Hi=zHjz�1

X
Hj¾Hk Òw2HjnGÛHk

Hj=wHkw�1

ñ(iÒ jÒ z)ï(jÒ kÒw)

the sum being taken only over pairs of double cosets, HizHj and HjwHk such that
HiyHk = HizwHk.

PROOF. The homomorphism corresponding to ñ sends g
N

Hi v to

M
Hi¾Hj

M
z2HinGÛHj ÒHi=zHjz�1

gz
O
Hj

ñ(iÒ jÒ z)v

which is sent by ï to

X
Hi¾Hj Òz2HinGÛHj

Hi=zHjz�1

X
Hj¾Hk Òw2HjnGÛHk

Hj=wHkw�1

gzw
O
Hk

ñ(iÒ jÒ z)ï(jÒ kÒw)vÒ

as required.

EXAMPLE 2.3. Let G = Q8 = fxÒ y j x2 = y2Ò x4 = 1Ò xyx�1 = y�1g denote the
quaternion group of order eight. Then H1 = hx2i is the unique subgroup of order two,
which is central. Let V = Q8Ûhx2i ≤ ZÛ2ð ZÛ2 consisting of the images of 1Ò xÒ yÒ xy.
Then S+

RÒhx2i
(Q8) ≤ R[V], the isomorphism being to send ñ to

P
z2V ñ(1Ò 1Ò z)z, where we

have identified hx2i nQ8Ûhx2i = Q8Ûhx2i with V.
Similarly, S�RÒhx2i

(Q8) ≤ HZ, the integral quaternions.

EXAMPLE 2.4. Let LÛK be a Galois extension of number fields and let EÛQ be a large
Galois extension of number fields such that L ² E and E is totally complex. Let c denote
complex conjugation in Qsep. Let ΩL denote the absolute Galois group, ΩL = G(QsepÛL),
where Qsep is a separable closure of Q, the rationals. Let v1: L ! E ! Qsep be a fixed
embedding which restricts to a real embedding, w1: K ! Ehci ! (Qsep)hci. Assigning
to g 2 ΩQ the embedding (v1)g: L

v1
�! Qsep g

�! Qsep defines a bijection between
embeddings of L and ΩL n ΩQ. I must apologise for my notation, which the reader
may find rather awkward; it is chosen to make the double cosets emerge the same way
round here as they appear later in the homological algebra of Section 3.1. The set of
embeddings, f(v1)gÒ (v1)gcg, corresponds to an Archimedean place of L, since the
completions of of (v1)g and (v1)gc coincide. Hence assigning the double coset ΩLghci
to this Archimedean place defines a bijection between ΩL n ΩQÛhci and Σ1(L), the set
of Archimedean places of L.

If (v1)g is a complex place then gcg�1 does not belong to ΩL and ΩL\hgcg�1i = f1g.
If (v1)g is real then ΩL \ hgcg�1i = hgcg�1i is of order two. In the first case, if (w1)g
is a real place of K then gcg�1 2 ΩK and its image in G(LÛK) ≤ ΩKÛΩL is the
decomposition group, Hg = G(L(v1)gÛK(w1)g).
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Taking G = G(LÛK) and T = fHi = hgicg�1
i i ; 1 � i � rg, the set of non-

trivial decomposition groups at infinity, one copy for each Archimedean prime, gives
the example which was the original motivation for the study of the class-group invariant
which is introduced in Section 3.2.

3. Some homological algebra.

3.1. Let R, G and Hi (1 � i � r) be as in Section 2.1 and let Rš denote the R[Hi]-
module upon which úi acts as multiplication by š1. Let ERÒš denote the R[G] module
given by

Lr
i=1 IndG

Hi
(Rš).

Taking R = Z or Z2, the integers or the 2-adic integers, we have a chain of isomor-
phisms of the form

Ext1R[G](ERÒ�ÒERÒ+) ≤
rM

i=1
Ext1R[G](IndG

Hi
(R�)ÒERÒ+)

≤
rM

i=1
Ext1R[Hi](R�ÒERÒ+) ≤

rM
i=1

Ext2R[Hi](R+ÒERÒ+)

≤
rM

i=1
H2(Hi ; ERÒ+) ≤

rM
i=1

rM
j=1

H2
�
Hi ; IndG

Hj
(R+)

�

≤
rM

i=1

rM
j=1

M
z2HinGÛHj

H2
�
Hi ; IndHi

Hi\zHjz�1 (R+)
�

≤
M

Hi¾Hj

M
z2HinGÛHj ÒHi=zHjz�1

H2(Hi ; R+)

≤
M

Hi¾Hj

M
z2HinGÛHj ÒHi=zHjz�1

ZÛ2 ≤ S+
ZÒT (G) 
 ZÛ2

≤ SZÛ2ÒT (G)

where we have abbreviated the isomorphic rings, SšZÛ2ÒT (G), both to SZÛ2ÒT (G).
Let us also abbreviate EZÒš to Eš. Then we have the following diagram of isomor-

phisms.
S+

ZÒT (G) 
 ZÛ2
≤
�! S+

Z2ÒT (G)
 ZÛ2

≤

??y ≤

??y
Ext1Z[G](E�ÒE+)

≤
�! Ext1Z2[G](EZ2Ò�ÒEZ2Ò+)

Unraveling the chain of isomorphisms it is not hard to see that the isomorphism

Ext1Z[G](E�ÒE+) ≤
M

Hi¾Hj

M
z2HinGÛHj ÒHi=zHjz�1

ZÛ2

≤
rM

i=1
H2(Hi ; E+)

sends a 1-extension of Z[G]-modules

E+ �! X �! E�
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to the element whose i-th coordinate is the image of the generator of H1(Hi ; Z�) ≤ ZÛ2
under the composition

H1(Hi ; Z�) �! H1(Hi ; E�)
∆
�! H2(Hi ; E+)

Here the first map is induced by the Hi-map, Z� ! IndG
Hi

(Z�), given by sending 1 to
1
N

Hi 1 and the second map is the coboundary associated to the long exact cohomology
sequence

Ð Ð Ð �! Hn(Hi ; E+) �! Hn(Hi ; X) �! Hn(Hi ; E�)
∆
�! Hn+1(Hi ; E+) �! Ð Ð Ð

If é =
L

Hi¾Hj

L
z2HinGÛHj ÒHi=zHjz�1 é(iÒ jÒ z) lies in Ext1Z[G](E�ÒE+) then ï 2 S+

ZÒT (G)

gives an endomorphism of H2(Hi ; E+) which we shall now evaluate. The Z[Hi]-
resolution

Ð Ð Ð �! Z[Hi]
1+úi
�! Z[Hi]

1�úi
�! Z[Hi] �! Z �! 0

shows that the cohomology group is computed from the complex

rM
j=1

IndG
Hj

(Z)
1+úi
�!

rM
j=1

IndG
Hj

(Z)
1�úi
�!

rM
j=1

IndG
Hj

(Z)

and that é is represented by

M
Hi¾Hj

M
z2HinGÛHj ÒHi=zHjz�1

z
O
Hj

é(iÒ jÒ z)

where é(iÒ jÒ z) 2 Z now denotes any lifting of é(iÒ jÒ z) 2 ZÛ2. This element is mapped
by ï to X

Hi¾Hj Òz2HinGÛHj

Hi=zHjz�1

X
Hj¾Hk Òw2HjnGÛHk

Hj=wHkw�1

zw
O
Hk

é(iÒ jÒ z)ï(jÒ kÒw)

so that
ïŁ(é) � ï Ð é (modulo 2)

where the product is that of SZÛ2ÒT (G).

3.2. Identify
L

Hi¾Hj

L
z2HinGÛHj ÒHi=zHjz�1 ZÛ2 with SZÛ2ÒT (G), as in Section 1, and de-

note by SZÛ2ÒT (G)Ł the multiplicative group of units. We may define a map to the class
group of the integral group-ring of G

†: SZÛ2ÒT (G)Ł �! C L(Z[G])

by the following procedure. Let é0 2 SZÛ2ÒT (G) denote the element for which é(iÒ jÒ z) = 0
except for 1 � i = j � r and z = 1 2 G when é(iÒ iÒ 1) = 1. Given another element,
ñ 2 SZÛ2ÒT (G)Ł, we may lift ñ to ñ0 2 S+

ZÒT (G) ≤ EndZ[G](E+) and then we may form

ñ
0

Ł
(é0) 2 Ext1Z[G](E�ÒE+)
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This 1-extension only depends upon ñ 2 SZÛ2ÒT (G)Ł. Also, since ñ 2 SZÛ2ÒT (G)Ł, the
homomorphism ñ0: E+ ! E+ will be injective, since it is an isomorphism when reduced
modulo 2. The 1-extension, ñ0

Ł
(é0), is constructed by a push-out diagram of the form

E+ �! E �! E�

ñ0
??y ñ̃

??y 1
??y

E+ �! Y(ñ) �! E�

where E =
Lr

i=1 IndG
Hi

(Z[Hi]) ≤
Lr

i=1 Z[G]. The upper 1-extension is constructed by
applying IndG

Hi
(�) to the canonical 1-extension of Z[Hi]-modules

0 �! Z+h1 + úii �! Z[Hi] �! Z� �! 0

and summing over i = 1Ò    Ò r. Therefore

Y(ñ) ≤ (E+ ý E)Û
n�
ñ
0(x)Ò x

�
j x 2 E+

o

is a finitely generated Z[G]-module.
Since ñ 2 SZÛ2ÒT (G)Ł the map ñ0

Ł
is an isomorphism on the ZÛ2-vector space,

H̃Ł(J ; E+) (Tate cohomology), for all J � G. Hence Y(ñ) is a finitely generated,
torsion-free, cohomologically trivial Z[G]-module and is therefore projective, defining
a class

[Y(ñ)]� rank
�
Y(ñ)

�h
Z[G]

i
2 C L(Z[G]) = K̃0(Z[G])

in the class-group of the integral group-ring (cf. [4]II).
Set

†(ñ) = [Y(ñ)]� rank
�
Y(ñ)

�h
Z[G]

i
2 C L(Z[G])

PROPOSITION 3.3. The map, †, of Section 3.2 is a homomorphism

†: SZÛ2ÒT (G)Ł �! C L(Z[G])

which factors through the quotient by SZÒT (G)Ł to give

†:
SZÛ2ÒT (G)Ł

S+
ZÒT (G)Ł

�! C L(Z[G])

PROOF. The canonical 1-extension

E+ �! E �! E�

represents the class

é0 2 Ext1Z[G](E�ÒE+) ≤
M

Hi¾Hj

M
z2HinGÛHj ÒHi=zHjz�1

ZÛ2

Also é0 is the identity element of the ring SZÛ2ÒT (G).
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The Hi-cohomology coboundary associated to the 1-extension

E+ �! Y(ñ) �! E�

may, by naturality, be computed by composing

ñ
0

Ł
: ĤŁ(Hi ; E+) �! ĤŁ(Hi ; E+)

for i = 1Ò    Ò r with the coboundary associated to the canonical 1-extension. Therefore,
by the discussion of Section 3.1, the Y(ñ)-extension corresponds to

ñ0
Ł
(é0) = ñ Ð é0 = ñ 2 SZÛ2ÒT (G)Ł ² SZÛ2ÒT (G)

Now suppose that we have ñÒ ï 2 SZÛ2ÒT (G)Ł. We may lift these elements to ñ0Ò ï0 2
S+

ZÒT (G), respectively. In C L(Z[G]), since E is free,

[Y(ñ)]� rank
�
Y(ñ)

�h
Z[G]

i
= [Coker(ñ̃)] = [Coker(ñ0)]

since Coker(ñ̃) ≤ Coker(ñ0) is a finite group which is also a cohomologically trivial
Z[G]-module. Therefore the short exact sequence

0 �! Coker(ï0) �! Coker(ñ0 Ð ï0) �! Coker(ñ0) �! 0

shows that, in C L(Z[G]),

†(ñ Ð ï) = [Coker(ñ0 Ð ï0)]

= [Coker(ñ0)] + [Coker(ï0)]

= †(ñ) + †(ï)Ò

as required.
Finally, if ñ 2 SZÛ2ÒT (G)Ł is in the image of S+

ZÒT (G)Ł then ñ0 may be chosen to be a
Z[G]-module isomorphism in which case Y(ñ) ≤ E and †(ñ) = 0.

4. Another description of †. Let us begin with some examples.

EXAMPLE 4.1. Consider the Example 2.3, where G = Q8 and T consists of the centre,
hx2i. In this case

SZÛ2ÒT (Q8)Ł

S+
ZÒT (Q8)Ł

≤ (ZÛ4)Ł ≤ C L(Z[Q8])

In fact, the homomorphism † is an isomorphism, as may be seen in terms of Fróhlich’s
Hom-description of the class-group together with Remark 4.7.

A similar discussion applies to any G with a normal subgroup, húi Ú G, of order two.
In this case

S+
RÒT (G) ≤ R[GÛhúi]

https://doi.org/10.4153/CJM-1997-062-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1997-062-x


HECKE ALGEBRAS AND CLASS-GROUP INVARIANTS 1273

and the homomorphism

†:
ZÛ2[GÛhúi]Ł

Z[GÛhúi]Ł
�! C L(Z[G])

may be identified, as we shall prove in Theorem 4.4, with the Mayer-Vietoris ho-
momorphisms of the type studied in ([4] II p. 273). Hence the image of † lies in
D(Z[G]) � C L(Z[G]).

When G = Q2n , the generalised quaternion group of order 2n, then

D(Z[Q2n ]) ≤ ZÛ2

and † is surjective (cf. [4] II p. 273).
The remainder of this section will be devoted to showing that Example 4.1 is typical.

4.2. Our first observation is that T is the disjoint union of G-conjugacy classes, Ts,
and that, in these circumstances, there is an isomorphism of the form

SšRÒT (G) ≤
Y
s

SšRÒTs
(G)

In addition, the homomorphism,†, of Proposition 3.3 is evidently equal to the sum of the
†’s for each of the factors. Therefore we shall henceforth restrict ourselves to the case
when T = fgiHg�1

i ; 1 � i � rg where r = [G : NGH] is the index of the normaliser of
H in G and g1Ò    Ò gr are coset representatives for GÛNGH. Write ú for the generator of
H.

Next we observe that zgjHg�1
j z�1 = giHg�1

i if and only if g�1
i zgj 2 NGH. On the other

hand, giHg�1
i zgjHg�1

j = giHg�1
i wgjHg�1

j if and only if g�1
j z�1wgj 2 H. Therefore there

is an obvious isomorphism of abelian groups of the form

SšRÒT (G) ≤
M

1�iÒj�r
giR[NGH]Û

�
ú � (š1)

�
g�1

j 

This map sends an element whose only component is equal to ñ(iÒ jÒ z) 2 R to the matrix
with ñ(iÒ jÒ z)g�1

i zgjH 2 R[NGHÛH] as its only entry, in the (iÒ j)-th entry. If we endow
the right hand side with the multiplication given on generators by

�
gj(wH)g�1

k

�
Ð
�
gi(zH)g�1

j

�
=
�
gi(zwH)g�1

k

�

and zero in all other cases one sees easily that this becomes an isomorphism of
rings. Furthermore it is clear that the right-hand side is isomorphic to the ring,

Mr

�
R[NGH]Û

�
ú � (š1)

��op
, of r ð r matrices with entries in the quotient,

R[NGH]Û
�
ú � (š1)

�
, of the group-ring of NGH with coefficients in R and the oppo-

site multiplication.
Therefore we have proved the following result.
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PROPOSITION 4.3. In the notation of Section 2.1 and Section 4.2,there is an isomor-
phism of rings

SšRÒT (G) ≤ Mr

�
R[NGH]Û

�
ú � (š1)

��op

where Λop denotes the opposite ring of the ring Λ.

Next consider the pullback diagram

Z[H] �! Z+??y ??y
Z� �! ZÛ2

which induces up to yield the pullback square

Z[NGH] �! Z[NGH]Û(ú � 1)??y ??y
Z[NGH]Û(ú + 1) �! ZÛ2[NGH]Û(ú � 1)

from which we may obtain a K-theory Mayer-Vietoris sequence by the method described
in ([5] Section 3)

Ð Ð Ð �! K1

�
Z[NGH]Û(ú + 1)

�
ý K1

�
Z[NGH]Û(ú � 1)

�
�!

K1

�
ZÛ2[NGH]Û(ú � 1)

� é
�! K0(Z[NGH]) �! Ð Ð Ð 

If MG is a maximal Z-order, containing Z[G], in Q[G] let D(Z[G]) denote the kernel
of the canonical map of class-groups,C L(Z[G])! C L(MG). The definition of D(Z[G])
is independent of choice of maximal order. When we tensor the second Cartesian square
with the rationals the bottom right corner vanishes. Therefore the maximal order of
Q[NGH] is isomorphic to a direct sum of the maximal orders in Z[NGH]Û(ú š 1).
Therefore we have an inclusion

im
�

K1

�
ZÛ2[NGH]Û(ú � 1)

� é
�! K0(Z[NGH])

�
� D(Z[NGH])

This is because é(x) must vanish under the map

K0(Z[NGH]) �! K0

�
Z[NGH]Û(ú + 1)

�
ý K0

�
Z[NGH]Û(ú � 1)

�

but the corresponding map on the K-theory of maximal orders is an isomorphism. Note
also that the canonical homomorphism

IndG
NGH: K0(Z[NGH]) �! K0(Z[G])

satisfies
IndG

NGH(D(Z[NGH]) � D(Z[G])
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By Proposition 4.3, a unit

ñ 2 SZÛ2ÒT (G)Ł = GL1 SZÛ2ÒT (G)

defines a class

[ñ] 2 K1

�
SZÛ2ÒT (G)

�
≤ K1

�
Mr

�
ZÛ2[NGH]Û(ú � 1)

�op
�
≤ K1

�
ZÛ2[NGH]Û(ú � 1)

�
Ò

since K1(Λ) is defined to be the abelianisation of the infinite general linear group of
Λ. The second isomorphism is induced by Morita equivalence (see [7]). Since we are
in a very low dimension, in the proof of Theorem 4.4, we shall need to know very
little about Morita equivalence. If z 2 K1

�
ZÛ2[NGH]Û(ú � 1)

�
corresponds to [ñ] 2

K1

�
Mr

�
ZÛ2[NGH]Û(ú � 1)

�op
�

, we shall need only the fact that the coboundary, é(z) 2

K0(Z[NGH]), is represented by the Mayer-Vietoris patching construction, using a matrix
representation of ñ, as described in ([5] Section 3).

The remainder of this section will be devoted to proving the following result.

THEOREM 4.4. If ñ 2 SZÛ2ÒT (G)Ł then, when T = fgiHg�1
i ; 1 � i � rg and

r = [G : NGH] as in Section 4.2,

†(ñ) = IndG
NGH

�
é([ñ])� r

h
Z[NGH]

i�
2 C L(Z[G]) � K0(Z[G])

PROOF. Firstly, we must find an alternative description of the Z[G]-module, Y(ñ), of
Section 3.2 which is more obviously related to the boundary homomorphism, é.

Consider the following commutative diagram of Z[G]-modules in which the right-
hand square is a pull-back which defines X(ñ).

E+ ≤ 2E+ �! X(ñ) �! E�

1
??y ??y ??y

E+
2
�! E+ �! E+ 
 ZÛ2

ñ

 � E� 
 ZÛ2

In the pullback square defining X(ñ) we have identified Eš 
 ZÛ2 by the isomorphism
induced by the unique identification of Zš 
 ZÛ2 so that ñ may be interpreted as an
isomorphism of Z[G]-modules in the bottom right-hand corner. Therefore X(ñ) con-
sists of pairs, (e+Ò e�) 2 E+ ð E�, mapping to the same element in E+ 
 ZÛ2. Hence
ker
�
X(ñ)! E�

�
consists of all pairs, (e+Ò 0), in which e+ is divisible by 2. Therefore both

rows of the diagram are short exact sequences. In fact, the upper row is equivalent to the
1-extension which defines Y(ñ) and therefore there is an isomorphism of Z[G]-modules
of the form

Y(ñ) ≤ X(ñ)

To see this it suffices to calculate all the compositions of Section 3.1

H1(Hi ; Z�) �! H1(Hi ; E�)
é
�! H2(Hi ; E+)
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where é is the coboundary associated to the upper row of the diagram. We must show
that this family of homomorphisms is induced by composition with ñ, in the sense of
Section 3.1. However there are canonical isomorphisms of the form

H1(Hi ; E�) ≤ H1(Hi ; E� 
 ZÛ2) ≤ H2(Hi ; E+ 
 ZÛ2) ≤ H2(Hi ; E+)

in terms of which the family of coboundary compositions for the exact sequence

0 �! E+
2
�! E+ �! E+ 
 ZÛ2 �! 0

is induced by composition with the identity map. Therefore the family of coboundary
compositions for the exact sequence of the lower row is induced by composition with ñ
and consequently the same is true for the upper row.

Next we consider the (left) Z[G]-modules, Eš =
Lr

i=1 IndG
giHg�1

i
(Zš). These mod-

ules are isomorphic, respectively, to
Lr

i=1 IndG
H(Zš) by means of the homomorphism

which sends g
N

giHg�1
i

v 2 IndG
giHg�1

i
(Zš) to ggi

N
H v 2 IndG

H(Zš) in the i-th summand.

The isomorphism of Mr

�
Z[NGH]Û

�
ú � (š1)

��op
with SšZÒT (G) sends the elementary

matrix, eïz
ij (ï 2 Z, z 2 NGH) to ñ = fñ(sÒ tÒw)g whose only non-zero coordinate

is given by ñ(iÒ jÒ gizg�1
j ) = ï. This elementary matrix acts by sending g

N
giHg�1

i
v to

ggizg�1
j
N

gjHg�1
j

v. Translated under these isomorphisms, eïz
ij acts on ggi

N
H v in the i-th

coordinate by sending it to ggiz
N

H v in the j-th coordinate.
Hence there are (left) Z[G]-module isomorphisms of the form

Eš ≤ IndG
NGH(E0š)

where the (left) Z[NGH]-modules, E0
š

are equal to
Lr

i=1 IndNGH
H (Zš), respectively. The el-

ements of these modules are considered as r-tuple row vectors with entries in IndNGH
H (Zš)

upon which an element of SšZÒT (G), considered as an rðr matrix via Proposition 4.3, acts
via right matrix multiplication. The action of Z[NGH] is by means of left multiplication
on each coordinate.

Acting via right multiplication as described above, a unit

ñ 2 SZÛ2ÒT (G)Ł ≤ GLr(ZÛ2[NGH]ÛH)

defines a (left) ZÛ2[NGH]ÛH-automorphism, ñ: E0�
ZÛ2
≤
�! E0�
ZÛ2 which defines

a class

[ñ] 2 K1(ZÛ2[NGH]ÛH) = GL1(ZÛ2[NGH]ÛH)ab

By definition of the coboundary, é, in the K-theory Mayer-Vietoris sequence ([5] Sec-
tion 3)

é([ñ]) = [X0(ñ)] 2 K0(Z[NGH])
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where X0(ñ) is defined by a pull-back in the same manner as X(ñ) but with G and Eš
replaced by NGH and E0

š
. From the preceding discussion, X(ñ) = IndG

NGH

�
X0(ñ)

�
, so that

in C L(Z[G]) ² K0(Z[G])

†(ñ) = Y(ñ)� rZ[G]

= X(ñ)� rZ[G]

= IndG
NGH

�
X0(ñ)� rZ[NGH]

�

= IndG
NGH

�
é([ñ])� rZ[NGH]

�

as required.

The following result is immediate from the discussion concerning the subgroup,
D(Z[G]), together with the fact that the class-group of the group-ring of the group of
order two is trivial.

COROLLARY 4.5. For any G and T the homomorphism of Proposition 3.3

†:
SZÛ2ÒT (G)Ł

S+
ZÒT (G)Ł

�! C L(Z[G])

takes values in the subgroup D(Z[G]).
Furthermore, if the NGH = H for each H 2 T then † is trivial.

4.6. An application. In [1] a Chinburg invariant, Ωn(LÛK) 2 C L
�
Z[G(LÛK)]

�
is as-

sociated to any Galois extension of number fields, LÛK with group G(LÛK). When n = 1
this invariant is constructed as the Euler characteristic of a 2-extension of finitely gen-
erated Z[G(LÛK)]-modules derived from the Galois modules structure of the algebraic
K-groups of rings of S-integers, OLÒS, in dimensions 2 and 3. In [2] we evaluated some
quaternionic examples of another construction, given in ([9] Chapter 7) for the totally
real case, of an invariant Ω1(LÛKÒ 3) 2 C L

�
Z[G(LÛK)]

�
.

In [3] we extended Ω1(LÛKÒ 3) to all LÛK and showed that Ω1(LÛK) = Ω1(LÛKÒ 3).
Corollary 4.5 and our constructions with Hecke algebras yield an alternative proof of
this equality. In [3] it was shown that there exists a commutative diagram of 2-extensions
of the type which appears in Section 1, in which (i) T consists of the set of non-
trivial decomposition groups at infinity for LÛK (ii) the Euler characteristic of the upper
2-extension defines Ω1(LÛK) and (iii) that of the lower one defines Ω1(LÛKÒ 3).

From equation (1) of Section 1, we shall explain how to prove that Ω1(EÛQ) =
Ω1(EÛQÒ 3) when E is totally complex—equality in the general case following at once,
by naturality. The idea is that, in the limit, NG(EÛQ)hciÛhci is trivial and so Corollary 4.5
should yield the result. Unfortunately, for each EÛQ, the quotient, NG(EÛQ)hciÛhci, may
be non-trivial. Therefore we have to proceed slightly differently.

Suppose EÛQ and MÛQ are two totally complex Galois extensions with E � M and
Galois groups

G(MÛE)Ú G(MÛQ)
ô
�! G(EÛQ) ≤ G(MÛQ)ÛG(MÛE)
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Each of the 2-extensions of Z[G(MÛQ)]-modules, defining Ω1(MÛQ) and Ω1(MÛQÒ 3),
is natural with respect to passage to quotients. This sort of naturality means, for example,
that if

X1 �! A1 �! B1 �! Y1

is the 2-extension which defines Ω1(MÛQ) then the associated 2-extension of
Z[G(EÛQ)]-modules

XG(MÛE)
1 �! AG(MÛE)

1 �! BG(MÛE)
1 �! (Y1)G(MÛE)

defines Ω1(EÛQ). In fact, the diagram of Section 1 involving these 2-extensions is natural
in this sense, with respect to passage to quotient groups.

The diagram of Section 1 relating the 2-extensions for Ω1(MÛQ) and Ω1(MÛQÒ 3)
defined an element

°MÛQ 2 Ext3Z[G(MÛQ)](E�ÒE+) ≤ Ext1Z[G(MÛQ)](E�ÒE+) ≤ SZÛ2ÒTM

�
G(MÛQ)

�

where TM is the set of all conjugates of complex conjugation, c, in G(MÛQ). Naturality
implies that these elements fit together to define

° = lim
 
°MÛQ 2 lim

 
SZÛ2ÒTM

�
G(MÛQ)

�


Returning to Q ² E � M, the canonical homomorphism

SZÛ2ÒTM

�
G(MÛQ)

�
�! SZÛ2ÒTE

�
G(EÛQ)

�

is induced by considering an element of SZÛ2ÒTM

�
G(MÛQ)

�
as lifting to a Z[G(MÛQ)]-

endomorphism of E+ and sending it to the reduction modulo 2 of the inducedZ[G(EÛQ)]-

module endomorphism of EG(MÛE)
+ , considered as an element of SZÛ2ÒTE

�
G(EÛQ)

�
.

Let G(MÛE) = fx1Ò    Ò xrg and let G(EÛQ) = fy01cèÒ    Ò y0sc
è ; è = 0Ò 1g, where c

denotes complex conjugation. Lifting each y0j to yj 2 G(MÛQ) we may set

TM = fhxiyjcy�1
j x�1

i i j 1 � i � rÒ 1 � j � sg

Hence TM is the set of all conjugates of hci in G(MÛQ). By Proposition 4.3, we have an
isomorphism of the form

S+
ZÒTM

�
G(MÛQ)

�
≤ Mrs(Z[NG(MÛQ)hciÛhci])

op


Set HiÒj = hxiyjcy�1
j x�1

i i so that associated pairs of suffices, (iÒ j), index the rows and
columns of these matrices.

With this notation, the canonical homomorphism of Hecke algebras, induced by
passing to G(MÛE)-fixed points, corresponds to the the ring homomorphism

Mrs(Z[NG(MÛQ)hciÛhci])
op
�! Ms(Z[NG(EÛQ)hciÛhci])

op
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which sends the
�
(iÒ j)Ò (i1 Ò j1)

�
-th entry to the (jÒ j1)-th entry by the map induced by

ô: G(MÛQ)! G(EÛQ).

However, the inverse limit

N = lim
 

NG(MÛQ)hciÛhci

is trivial. For if not then the compositum of all the Mhci would be a real closed field, F,
and FÛFN would be a non-trivial Galois extension. However, real closed fields do not
have any non-trivial Galois automorphisms (cf. [6] pp. 392–398), since the roots in F of
a minimum polynomial over FN are ordered and the automorphism must preserve the
ordering.

Therefore, for any given EÛQ there exists Msuch that the image of the homomorphism

SZÛ2ÒTM

�
G(MÛQ)

�
�! SZÛ2ÒTE

�
G(EÛQ)

�
≤ Ms(ZÛ2[NG(EÛQ)hciÛhci])

op

lies in the subring of “constants”, Ms(ZÛ2)op. The images under † of Section 3.2 of
such elements are trivial in the class-group of the group-ring. Therefore Ω1(EÛQ) =
Ω1(EÛQÒ 3), as claimed.

However, a general Galois extension, LÛK, may be embedded in one of the form EÛQ
in which E is totally complex and EÛL is Galois. Each of the invariants is natural in
the sense that Ω1(EÛQ) and Ω1(EÛQÒ 3) map to Ω1(LÛK) and Ω1(LÛKÒ 3), respectively,
under the homomorphism

C L
�
Z[G(EÛQ)]

�
�! C L

�
Z[G(EÛK)]

�
�! C L

�
Z[G(LÛK)]

�
Ò

which completes the proof.

REMARK 4.7. Representing † in the Hom-description The Hom-description repre-
sents the class-group of Z[G] as a quotient of the Galois equivariant, idèlic-valued
functions of the (complex) representation ring, R(G), of G (see [8] Section 4.2). The
function which represents †(ñ) is trivial at all places except those above the prime 2. It
suffices to give the Hom-description at p = 2 in the case of Theorem 4.4, when all the
Hi are conjugate to H = húi. In this case we may lift ñ to a 2-adic unit, ñ0 2 S+

Z2ÒT (G)Ł,
which we may interpret as as an element of GLr(Z2[NGHÛH]). Therefore we have a 2-
adic valued determinantal (see [8] Section 4.2) function given by, Det(ñ0) on R(NGHÛH).
Therefore there is a 2-adic valued function on R(NGH) which sends an irreducible, ü, to
1 if ü is non-trivial on ú, the generator of H, and sends it to Det(ñ0)(ü) otherwise (in this
case ü is inflated from NGHÛH). Composing this homomorphism with the restriction
map from R(G) to R(NGH) gives the 2-adic part of the Hom-description of †(ñ).

For example, when G = Q8 in Section 4.1 and ñ corresponds to 1+x +y the associated
2-adic function is trivial on irreducible representations except the trivial one and there it
takes the value 3. This is the Hom-description of the generator (see [8] Section 5.2).
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