HECKE ALGEBRAS AND CLASS-GROUP INVARIANTS

V. P. SNAITH

ABSTRACT. Let G be a finite group. To a set of subgroups of order two we associate a mod 2 Hecke algebra and construct a homomorphism, ψ , from its units to the class-group of $\mathbf{Z}[G]$. We show that this homomorphism takes values in the subgroup, $D(\mathbf{Z}[G])$. Alternative constructions of Chinburg invariants arising from the Galois module structure of higher-dimensional algebraic K-groups of rings of algebraic integers often differ by elements in the image of ψ . As an application we show that two such constructions coincide.

1. **Introduction.** Let G be a finite group. In the study of Chinburg invariants arising from the Galois module structure of higher-dimensional algebraic K-groups of rings of algebraic integers ([1], [2], [3], [9], [10], [11]) the following situation frequently arises. Suppose given an element of $\operatorname{Ext}^2_{\mathbf{Z}[G]}(Y,X)$ which is represented by a 2-extension of finitely generated $\mathbf{Z}[G]$ -modules of the form

$$X \longrightarrow A \longrightarrow B \longrightarrow Y$$

in which A and B are cohomologically trivial (cf. [8] Chapter 7). In this case the Euler characteristic

$$[A] - [B] \in \mathcal{CL}(\mathbf{Z}[G])$$

gives a well-defined element of the class-group of $\mathbf{Z}[G]$, depending only on the quasi-isomorphism class of the 2-extension. The following sort of commutative diagram, whose rows are such 2-extensions, arose in [3] during the comparison of two such Euler characteristics originating from the 2- and 3-dimensional K-groups of rings of integers in number fields.

In this diagram the right-hand and left-hand columns are short exact sequences and

$$E_{\pm} = \bigoplus_{i=1}^{r} \operatorname{Ind}_{H_{i}}^{G}(\mathbf{Z}_{\pm})$$

Received by the editors August 2, 1996; revised August 8, 1997. Research partially supported by an NSERC grant.

AMS subject classification: 16S34, 19A99, 11R65.

© Canadian Mathematical Society 1997.

1265

where H_1, \ldots, H_r are distinct subgroups of order two, each of whose generators acts by ± 1 on a copy of the integers denoted by \mathbb{Z}_+ .

The exact Mayer-Vietoris sequence resulting from this diagram defines a 3-extension, in $\operatorname{Ext}_{\mathbf{Z}[G]}^3(E_-, E_+)$, whose Euler characteristic is equal to

(1)
$$[A_1] - [B_1] - [A_2] + [B_2] \in CL(\mathbf{Z}[G]).$$

In this paper we study the equivalent process of producing Euler characteristics in the class-group from elements of

$$\operatorname{Ext}^1_{\mathbf{Z}[G]}(E_-, E_+) \cong \operatorname{Ext}^3_{\mathbf{Z}[G]}(E_-, E_+)$$

with the objective of proving that they often vanish. This isomorphism is induced by a "change of groups" isomorphism together with the periodicity in the cohomology of H_i (cf. Section 3.1). Our main result (Theorem 4.4) shows that, if N_GH_i is the normaliser of H_i in G, the Euler characteristics which arise lie in the subgroup generated by the images of compositions of the form

$$K_1(\mathbf{Z}[N_GH_i]) \xrightarrow{\delta} \mathcal{C}L(\mathbf{Z}[N_GH_i]) \xrightarrow{\operatorname{Ind}_{N_GH_i}^G} \mathcal{C}L(\mathbf{Z}[G]).$$

As explained in Section 4.6, this suffices to show that the difference of Euler characteristics in equation (1) vanishes in the arithmetical setting (see Example 2.4) in which $G = G(E/\mathbb{Q})$ is the Galois group of a number field extension in which E is totally complex. Heuristically, this is because ("in the limit") $N_GH_i = H_i$ in this case and $CL(\mathbb{Z}[H]) = 0$ when |H| = 2. Therefore Theorem 4.4 affords an alternative proof of the 2-primary part of the comparison results of [3], as explained in detail in Section 4.6.

The paper is arranged in the following manner. In Section 1 we introduce the subalgebras, $S_{R,T}^{\pm}(G)$, of the Hecke algebras $\operatorname{End}_{R[G]}(E_{\pm}\otimes R)$ and relate them to $\operatorname{Ext}^1_{\mathbf{Z}[G]}(E_{-},E_{+})$. In Section 2 we construct the homomorphism

$$\psi \colon \frac{S_{\mathbf{Z}/2,T}(G)^*}{S^*_{\mathbf{Z},T}(G)^*} \longrightarrow \mathcal{C}L(\mathbf{Z}[G])$$

which arises from the Euler characteristics constructed from $\operatorname{Ext}^1_{\mathbf{Z}[G]}(E_-, E_+)$. In Section 3 we give some examples and relate the Hecke subalgebras to matrix rings with entries in $\mathbf{Z}[N_\rho H_i]$ in order to identify the image of ψ .

I am very grateful to Martin Taylor for useful conversations during the preparation of this paper and to Al Weiss for helping me to repair the first version of Section 4.6.

2. The Hecke algebras.

2.1. Let R be a commutative ring with identity and let G be a finite group. Suppose that

$$T = \{ \tau_i \in G \; ; \; 1 \le i \le r \}$$

is a set of distinct elements of order two and set $H_i = \langle \tau_i \rangle$, the subgroup of order two generated by τ_i . Let R_{\pm} be a copy of R on which τ_i acts by ± 1 , respectively. Then there are isomorphisms, for $1 \le i, j \le r$,

$$\begin{split} \operatorname{Hom}_{G} \left(\operatorname{Ind}_{H_{i}}^{G}(R_{\pm}), \operatorname{Ind}_{H_{j}}^{G}(R_{\pm}) \right) & \cong \operatorname{Hom}_{R[H_{i}]} \left(R_{\pm}, \operatorname{Ind}_{H_{j}}^{G}(R_{\pm}) \right) \\ & \cong \operatorname{Hom}_{R[H_{i}]} \left(R_{\pm}, \bigoplus_{z \in H_{i} \setminus G/H_{j}} \operatorname{Ind}_{H_{i} \cap z H_{j} z^{-1}}^{H_{i}}(R_{\pm}) \right) \end{split}$$

where $\operatorname{Ind}_H^G(R_{\pm})$ is the induced R[G]-module, $R[G] \otimes_H R_{\pm}$. The second isomorphism is induced by the Double Coset isomorphism

$$\mathit{Res}^G_{H_i}\operatorname{Ind}^G_{H_j}(R_\pm) \cong \bigoplus_{z \in H_i \setminus G/H_j} \operatorname{Ind}^{H_i}_{H_i \cap zH_jz^{-1}}(R_\pm)$$

under which $a \otimes_{H_i \cap zH_j z^{-1}} b$ on the right corresponds to $az \otimes_{H_j} b$ on the left. Inside the Hecke algebra

$$\begin{split} \operatorname{End}_{R[G]} \left(\bigoplus_{i=1}^r \operatorname{Ind}_{H_i}^G(R_\pm) \right) & \cong \operatorname{Hom}_{R[G]} \left(\bigoplus_{i=1}^r \operatorname{Ind}_{H_i}^G(R_\pm), \bigoplus_{j=1}^r \operatorname{Ind}_{H_j}^G(R_\pm) \right) \\ & \cong \bigoplus_{i=1}^r \bigoplus_{j=1}^r \bigoplus_{z \in H_i \setminus G/H_j} \operatorname{Hom}_{R[H_i]} \left(R_\pm, \operatorname{Ind}_{H_i \cap z H_j z^{-1}}^{H_i}(R_\pm) \right) \end{split}$$

let $S_{R,T}^{\pm}(G)$ correspond to the subset of summands for which $H_i = zH_jz^{-1}$. Hence, additively, if we write $J \sim K$ to indicate conjugacy,

$$S_{R,T}^{\pm}(G) \cong \bigoplus_{H_i \sim H_i} \bigoplus_{z \in H_i \setminus G/H_i, H_i = zH_i z^{-1}} \operatorname{Hom}_R(R_{\pm}, R_{\pm}).$$

Henceforth we shall identify $\operatorname{Hom}_R(R_\pm,R_\pm)$ with R by the isomorphism which sends f to f(1). Write $\underline{\mu}=\{\mu(i,j,z)\in R\}\in S_{R,T}^\pm(G)$ for the element whose (i,j,z)-component is equal to $\mu(i,j,z)\in R$. Therefore we may consider $\mu(i,j,-)$ as a function from G to R with the property that, in the case of $S_{R,T}^\pm(G)$,

$$\mu(i,j,\tau_i z) = \pm \mu(i,j,z) = \mu(i,j,z\tau_i),$$

respectively. Hence $\underline{\mu}$ is characterised, as a homomorphism, by the fact that it sends $g \otimes_{H_i} v \in \operatorname{Ind}_{H_i}^G(R_{\pm})$ $(g \in G, v \in R)$ to

$$\bigoplus_{H_i \sim H_j} \bigoplus_{z \in H_i \setminus G/H_j, H_i = zH_j z^{-1}} gz \bigotimes_{H_j} \mu(i, j, z) v \in \bigoplus_{j=1}^r \operatorname{Ind}_{H_j}^G(R_{\pm}).$$

PROPOSITION 2.2. The subgroup, $S_{R,T}^{\pm}(G)$, is a subring of $\operatorname{End}_{R[G]}\left(\bigoplus_{i=1}^r \operatorname{Ind}_{H_i}^G(R_{\pm})\right)$. In fact, the product of $\underline{\mu} = \{\mu(i,j,z)\}$ and $\underline{\lambda} = \{\lambda(s,t,w)\}$ is given by $(g \in G, v \in R)$

$$(\underline{\lambda} \cdot \underline{\mu}) \Big(g \bigotimes_{H_i} v \Big) = \sum_{\substack{H_i \sim H_j, z \in H_i \setminus G/H_j \\ H_i = zH_j z^{-1}}} \sum_{\substack{H_j \sim H_k, w \in H_j \setminus G/H_k \\ H_j = wH_k w^{-1}}} gzw \bigotimes_{H_k} \mu(i, j, z) \lambda(j, k, w) v.$$

Therefore

$$\underline{\lambda} \cdot \mu = \underline{\nu} = \{ \nu(a, b, y) \}$$

where

$$\nu(i,k,y) = \sum_{\substack{H_i \sim H_j, z \in H_i \setminus G/H_j \\ H_i = zH_jz^{-1}}} \sum_{\substack{H_j \sim H_k, w \in H_j \setminus G/H_k \\ H_j = wH_kw^{-1}}} \mu(i,j,z)\lambda(j,k,w)$$

the sum being taken only over pairs of double cosets, $H_i z H_j$ and $H_j w H_k$ such that $H_i y H_k = H_i z w H_k$.

PROOF. The homomorphism corresponding to μ sends $g \otimes_{H_i} v$ to

$$\bigoplus_{H_i \sim H_j} \bigoplus_{z \in H_i \backslash G/H_j, H_i = zH_j z^{-1}} gz \bigotimes_{H_j} \mu(i,j,z) v$$

which is sent by $\underline{\lambda}$ to

$$\sum_{\substack{H_i \sim H_j, z \in H_i \setminus G/H_j \\ H_i = zH_i z^{-1}}} \sum_{\substack{H_i \sim H_k, w \in H_j \setminus G/H_k \\ H_i = wH_i w^{-1}}} gzw \bigotimes_{H_k} \mu(i, j, z) \lambda(j, k, w) v,$$

as required.

EXAMPLE 2.3. Let $G=Q_8=\{x,y\mid x^2=y^2,x^4=1,xyx^{-1}=y^{-1}\}$ denote the quaternion group of order eight. Then $H_1=\langle x^2\rangle$ is the unique subgroup of order two, which is central. Let $V=Q_8/\langle x^2\rangle\cong \mathbf{Z}/2\times \mathbf{Z}/2$ consisting of the images of 1,x,y,xy. Then $S^+_{R,\langle x^2\rangle}(Q_8)\cong R[V]$, the isomorphism being to send $\underline{\mu}$ to $\sum_{z\in V}\mu(1,1,z)z$, where we have identified $\langle x^2\rangle\setminus Q_8/\langle x^2\rangle=Q_8/\langle x^2\rangle$ with V.

Similarly, $S_{R,\langle r^2\rangle}^-(Q_8) \cong \mathbf{H}_{\mathbf{Z}}$, the integral quaternions.

EXAMPLE 2.4. Let L/K be a Galois extension of number fields and let E/\mathbf{Q} be a large Galois extension of number fields such that $L \subset E$ and E is totally complex. Let c denote complex conjugation in \mathbf{Q}^{sep} . Let Ω_L denote the absolute Galois group, $\Omega_L = G(\mathbf{Q}^{\text{sep}}/L)$, where \mathbf{Q}^{sep} is a separable closure of \mathbf{Q} , the rationals. Let $v_\infty \colon L \to E \to \mathbf{Q}^{\text{sep}}$ be a fixed embedding which restricts to a real embedding, $w_\infty \colon K \to E^{\langle c \rangle} \to (\mathbf{Q}^{\text{sep}})^{\langle c \rangle}$. Assigning to $g \in \Omega_{\mathbf{Q}}$ the embedding $(v_\infty)g \colon L \xrightarrow{v_\infty} \mathbf{Q}^{\text{sep}} \xrightarrow{g} \mathbf{Q}^{\text{sep}}$ defines a bijection between embeddings of L and $\Omega_L \setminus \Omega_{\mathbf{Q}}$. I must apologise for my notation, which the reader may find rather awkward; it is chosen to make the double cosets emerge the same way round here as they appear later in the homological algebra of Section 3.1. The set of embeddings, $\{(v_\infty)g,(v_\infty)gc\}$, corresponds to an Archimedean place of L, since the completions of of $(v_\infty)g$ and $(v_\infty)gc$ coincide. Hence assigning the double coset $\Omega_L g\langle c \rangle$ to this Archimedean place defines a bijection between $\Omega_L \setminus \Omega_{\mathbf{Q}}/\langle c \rangle$ and $\Sigma_\infty(L)$, the set of Archimedean places of L.

If $(v_{\infty})g$ is a complex place then gcg^{-1} does not belong to Ω_L and $\Omega_L \cap \langle gcg^{-1} \rangle = \{1\}$. If $(v_{\infty})g$ is real then $\Omega_L \cap \langle gcg^{-1} \rangle = \langle gcg^{-1} \rangle$ is of order two. In the first case, if $(w_{\infty})g$ is a real place of K then $gcg^{-1} \in \Omega_K$ and its image in $G(L/K) \cong \Omega_K/\Omega_L$ is the decomposition group, $H_g = G(L_{(v_{\infty})g}/K_{(w_{\infty})g})$.

Taking G = G(L/K) and $T = \{H_i = \langle g_i c g_i^{-1} \rangle : 1 \le i \le r\}$, the set of non-trivial decomposition groups at infinity, one copy for each Archimedean prime, gives the example which was the original motivation for the study of the class-group invariant which is introduced in Section 3.2.

3. Some homological algebra.

3.1. Let R, G and H_i $(1 \le i \le r)$ be as in Section 2.1 and let R_{\pm} denote the $R[H_i]$ module upon which τ_i acts as multiplication by ± 1 . Let $E_{R,\pm}$ denote the R[G] module given by $\bigoplus_{i=1}^r \operatorname{Ind}_{H_i}^G(R_{\pm})$.

Taking $R = \mathbf{Z}$ or \mathbf{Z}_2 , the integers or the 2-adic integers, we have a chain of isomorphisms of the form

$$\operatorname{Ext}_{R[G]}^{1}(E_{R,-}, E_{R,+}) \cong \bigoplus_{i=1}^{r} \operatorname{Ext}_{R[G]}^{1}(\operatorname{Ind}_{H_{i}}^{G}(R_{-}), E_{R,+})$$

$$\cong \bigoplus_{i=1}^{r} \operatorname{Ext}_{R[H_{i}]}^{1}(R_{-}, E_{R,+}) \cong \bigoplus_{i=1}^{r} \operatorname{Ext}_{R[H_{i}]}^{2}(R_{+}, E_{R,+})$$

$$\cong \bigoplus_{i=1}^{r} H^{2}(H_{i}; E_{R,+}) \cong \bigoplus_{i=1}^{r} \bigoplus_{j=1}^{r} H^{2}(H_{i}; \operatorname{Ind}_{H_{j}}^{G}(R_{+}))$$

$$\cong \bigoplus_{i=1}^{r} \bigoplus_{j=1}^{r} \bigoplus_{z \in H_{i} \backslash G/H_{j}, H_{i} = zH_{j}z^{-1}} H^{2}(H_{i}; R_{+})$$

$$\cong \bigoplus_{H_{i} \sim H_{j}} \bigoplus_{z \in H_{i} \backslash G/H_{j}, H_{i} = zH_{j}z^{-1}} \mathbf{Z}/2 \cong S_{\mathbf{Z},T}^{+}(G) \otimes \mathbf{Z}/2$$

$$\cong S_{\mathbf{Z}/2,T}(G)$$

where we have abbreviated the isomorphic rings, $S_{\mathbf{Z}/2,T}^{\pm}(G)$, both to $S_{\mathbf{Z}/2,T}(G)$.

Let us also abbreviate $E_{\mathbf{Z},\pm}$ to E_{\pm} . Then we have the following diagram of isomorphisms.

$$\begin{array}{ccc} S^+_{\mathbf{Z},T}(G) \otimes \mathbf{Z}/2 & \xrightarrow{\cong} & S^+_{\mathbf{Z}_2,T}(G) \otimes \mathbf{Z}/2 \\ & \cong \downarrow & & \cong \downarrow \\ \operatorname{Ext}^1_{\mathbf{Z}[G]}(E_-,E_+) & \xrightarrow{\cong} & \operatorname{Ext}^1_{\mathbf{Z}_2[G]}(E_{\mathbf{Z}_2,-},E_{\mathbf{Z}_2,+}) \end{array}$$

Unraveling the chain of isomorphisms it is not hard to see that the isomorphism

$$\operatorname{Ext}^{1}_{\mathbf{Z}[G]}(E_{-}, E_{+}) \cong \bigoplus_{H_{i} \sim H_{j}} \bigoplus_{z \in H_{i} \backslash G/H_{j}, H_{i} = zH_{j}z^{-1}} \mathbf{Z}/2$$
$$\cong \bigoplus_{i=1}^{r} H^{2}(H_{i}; E_{+})$$

sends a 1-extension of $\mathbf{Z}[G]$ -modules

$$E_{\perp} \longrightarrow X \longrightarrow E_{-}$$

to the element whose *i*-th coordinate is the image of the generator of $H^1(H_i; \mathbf{Z}_-) \cong \mathbf{Z}/2$ under the composition

$$H^1(H_i; \mathbf{Z}_-) \longrightarrow H^1(H_i; E_-) \stackrel{\Delta}{\longrightarrow} H^2(H_i; E_+).$$

Here the first map is induced by the H_i -map, $\mathbf{Z}_- \to \operatorname{Ind}_{H_i}^G(\mathbf{Z}_-)$, given by sending 1 to $1 \otimes_{H_i} 1$ and the second map is the coboundary associated to the long exact cohomology sequence

$$\cdots \longrightarrow H^n(H_i; E_+) \longrightarrow H^n(H_i; X) \longrightarrow H^n(H_i; E_-) \stackrel{\Delta}{\longrightarrow} H^{n+1}(H_i; E_+) \longrightarrow \cdots$$

If $\underline{\delta}=\bigoplus_{H_i\sim H_j}\bigoplus_{z\in H_i\setminus G/H_j, H_i=zH_jz^{-1}}\delta(i,j,z)$ lies in $\operatorname{Ext}^1_{\mathbf{Z}[G]}(E_-,E_+)$ then $\underline{\lambda}\in S^+_{\mathbf{Z},T}(G)$ gives an endomorphism of $H^2(H_i;E_+)$ which we shall now evaluate. The $\mathbf{Z}[H_i]$ -resolution

$$\cdots \longrightarrow \mathbf{Z}[H_i] \xrightarrow{1+\tau_i} \mathbf{Z}[H_i] \xrightarrow{1-\tau_i} \mathbf{Z}[H_i] \longrightarrow \mathbf{Z} \longrightarrow 0$$

shows that the cohomology group is computed from the complex

$$\bigoplus_{j=1}^{r} \operatorname{Ind}_{H_{j}}^{G}(\mathbf{Z}) \xrightarrow{1+\tau_{i}} \bigoplus_{j=1}^{r} \operatorname{Ind}_{H_{j}}^{G}(\mathbf{Z}) \xrightarrow{1-\tau_{i}} \bigoplus_{j=1}^{r} \operatorname{Ind}_{H_{j}}^{G}(\mathbf{Z})$$

and that $\underline{\delta}$ is represented by

$$\bigoplus_{H_i \sim H_i} \bigoplus_{z \in H_i \setminus G/H_i, H_i = zH_i z^{-1}} z \bigotimes_{H_i} \delta(i, j, z)$$

where $\delta(i,j,z) \in \mathbf{Z}$ now denotes any lifting of $\delta(i,j,z) \in \mathbf{Z}/2$. This element is mapped by $\underline{\lambda}$ to

$$\sum_{\substack{H_i \sim H_j, z \in H_i \backslash G/H_j \\ H_i = zH_i z^{-1}}} \sum_{\substack{H_j \sim H_k, w \in H_j \backslash G/H_k \\ H_i = wH_k w^{-1}}} zw \bigotimes_{H_k} \delta(i, j, z) \lambda(j, k, w)$$

so that

$$\underline{\lambda}_*(\underline{\delta}) \equiv \underline{\lambda} \cdot \underline{\delta} \text{ (modulo 2)}$$

where the product is that of $S_{\mathbb{Z}/2,T}(G)$.

3.2. Identify $\bigoplus_{H_i \sim H_j} \bigoplus_{z \in H_i \setminus G/H_j, H_i = zH_j z^{-1}} \mathbf{Z}/2$ with $S_{\mathbf{Z}/2,T}(G)$, as in Section 1, and denote by $S_{\mathbf{Z}/2,T}(G)^*$ the multiplicative group of units. We may define a map to the class group of the integral group-ring of G

$$\psi: S_{\mathbf{Z}/2,T}(G)^* \longrightarrow CL(\mathbf{Z}[G])$$

by the following procedure. Let $\underline{\delta}_0 \in S_{\mathbf{Z}/2,T}(G)$ denote the element for which $\delta(i,j,z)=0$ except for $1 \leq i = j \leq r$ and $z=1 \in G$ when $\delta(i,i,1)=1$. Given another element, $\underline{\mu} \in S_{\mathbf{Z}/2,T}(G)^*$, we may lift $\underline{\mu}$ to $\underline{\mu}' \in S_{\mathbf{Z},T}^*(G) \cong \operatorname{End}_{\mathbf{Z}[G]}(E_+)$ and then we may form

$$\underline{\mu}'_*(\underline{\delta}_0) \in \operatorname{Ext}^1_{\mathbf{Z}[G]}(E_-, E_+).$$

This 1-extension only depends upon $\underline{\mu} \in S_{\mathbf{Z}/2,T}(G)^*$. Also, since $\underline{\mu} \in S_{\mathbf{Z}/2,T}(G)^*$, the homomorphism $\underline{\mu}' : E_+ \to E_+$ will be injective, since it is an isomorphism when reduced modulo 2. The 1-extension, $\mu'_{\downarrow}(\underline{\delta}_0)$, is constructed by a push-out diagram of the form

$$\begin{array}{ccccc} E_{+} & \longrightarrow & E & \longrightarrow & E_{-} \\ \underline{\mu'} & & & \underline{\tilde{\mu}} & & & 1 \\ E_{+} & \longrightarrow & \underline{Y}(\mu) & \longrightarrow & E_{-} \end{array}$$

where $E = \bigoplus_{i=1}^r \operatorname{Ind}_{H_i}^G(\mathbf{Z}[H_i]) \cong \bigoplus_{i=1}^r \mathbf{Z}[G]$. The upper 1-extension is constructed by applying $\operatorname{Ind}_{H_i}^G(-)$ to the canonical 1-extension of $\mathbf{Z}[H_i]$ -modules

$$0 \longrightarrow \mathbf{Z}_{+} \langle 1 + \tau_{i} \rangle \longrightarrow \mathbf{Z}[H_{i}] \longrightarrow \mathbf{Z}_{-} \longrightarrow 0$$

and summing over i = 1, ..., r. Therefore

$$Y(\underline{\mu}) \cong (E_+ \oplus E) / \{ (\underline{\mu}'(x), x) \mid x \in E_+ \}$$

is a finitely generated $\mathbf{Z}[G]$ -module.

Since $\underline{\mu} \in S_{\mathbf{Z}/2,T}(G)^*$ the map $\underline{\mu}'_*$ is an isomorphism on the $\mathbf{Z}/2$ -vector space, $\tilde{H}^*(J; E_+)$ (Tate cohomology), for all $J \subseteq G$. Hence $Y(\underline{\mu})$ is a finitely generated, torsion-free, cohomologically trivial $\mathbf{Z}[G]$ -module and is therefore projective, defining a class

$$[Y(\underline{\mu})] - \operatorname{rank}(Y(\underline{\mu}))[\mathbf{Z}[G]] \in CL(\mathbf{Z}[G]) = \tilde{K}_0(\mathbf{Z}[G])$$

in the class-group of the integral group-ring (cf. [4]II).

Set

$$\psi(\underline{\mu}) = [Y(\underline{\mu})] - \operatorname{rank}(Y(\underline{\mu})) [\mathbf{Z}[G]] \in \mathcal{C}L(\mathbf{Z}[G]).$$

PROPOSITION 3.3. The map, ψ , of Section 3.2 is a homomorphism

$$\psi: S_{\mathbf{Z}/2,T}(G)^* \longrightarrow CL(\mathbf{Z}[G])$$

which factors through the quotient by $S_{\mathbf{Z},T}(G)^*$ to give

$$\psi : \frac{S_{\mathbf{Z}/2,T}(G)^*}{S_{\mathbf{Z}/T}^+(G)^*} \longrightarrow \mathcal{C}L(\mathbf{Z}[G]).$$

PROOF. The canonical 1-extension

$$E_+ \longrightarrow E \longrightarrow E_-$$

represents the class

$$\underline{\delta}_0 \in \operatorname{Ext}^1_{\mathbf{Z}[G]}(E_-, E_+) \cong \bigoplus_{H_i \sim H_j} \bigoplus_{z \in H_i \setminus G/H_j, H_i = zH_j z^{-1}} \mathbf{Z}/2.$$

Also $\underline{\delta}_0$ is the identity element of the ring $S_{\mathbf{Z}/2,T}(G)$.

The H_i -cohomology coboundary associated to the 1-extension

$$E_+ \longrightarrow Y(\mu) \longrightarrow E_-$$

may, by naturality, be computed by composing

$$\mu'_{\underline{\cdot}}: \hat{H}^*(H_i; E_+) \longrightarrow \hat{H}^*(H_i; E_+)$$

for i = 1, ..., r with the coboundary associated to the canonical 1-extension. Therefore, by the discussion of Section 3.1, the $Y(\mu)$ -extension corresponds to

$$\underline{\mu}'_*(\underline{\delta}_0) = \underline{\mu} \cdot \underline{\delta}_0 = \underline{\mu} \in S_{\mathbf{Z}/2,T}(G)^* \subset S_{\mathbf{Z}/2,T}(G).$$

Now suppose that we have $\underline{\mu}, \underline{\lambda} \in S_{\mathbf{Z}/2,T}(G)^*$. We may lift these elements to $\underline{\mu}', \underline{\lambda}' \in S_{\mathbf{Z},T}^+(G)$, respectively. In $CL(\mathbf{Z}[G])$, since E is free,

$$[Y(\underline{\mu})] - \operatorname{rank}(Y(\underline{\mu}))[\mathbf{Z}[G]] = [\operatorname{Coker}(\underline{\tilde{\mu}})] = [\operatorname{Coker}(\underline{\mu}')]$$

since $\operatorname{Coker}(\underline{\mu}) \cong \operatorname{Coker}(\underline{\mu}')$ is a finite group which is also a cohomologically trivial $\mathbf{Z}[G]$ -module. Therefore the short exact sequence

$$0 \longrightarrow \mathsf{Coker}(\underline{\lambda}') \longrightarrow \mathsf{Coker}(\underline{\mu}' \cdot \underline{\lambda}') \longrightarrow \mathsf{Coker}(\underline{\mu}') \longrightarrow 0$$

shows that, in $CL(\mathbf{Z}[G])$,

$$\psi(\underline{\mu} \cdot \underline{\lambda}) = [\operatorname{Coker}(\underline{\mu}' \cdot \underline{\lambda}')]$$

$$= [\operatorname{Coker}(\underline{\mu}')] + [\operatorname{Coker}(\underline{\lambda}')]$$

$$= \psi(\mu) + \psi(\underline{\lambda}),$$

as required.

Finally, if $\underline{\mu} \in S_{\mathbf{Z}/2,T}(G)^*$ is in the image of $S_{\mathbf{Z},T}^+(G)^*$ then $\underline{\mu}'$ may be chosen to be a $\mathbf{Z}[G]$ -module isomorphism in which case $Y(\mu) \cong E$ and $\psi(\mu) = 0$.

4. Another description of ψ . Let us begin with some examples.

EXAMPLE 4.1. Consider the Example 2.3, where $G = Q_8$ and T consists of the centre, $\langle x^2 \rangle$. In this case

$$\frac{S_{\mathbf{Z}/2,T}(Q_8)^*}{S_{\mathbf{Z},T}^+(Q_8)^*} \cong (\mathbf{Z}/4)^* \cong \mathcal{C}L(\mathbf{Z}[Q_8]).$$

In fact, the homomorphism ψ is an isomorphism, as may be seen in terms of Fróhlich's Hom-description of the class-group together with Remark 4.7.

A similar discussion applies to any G with a normal subgroup, $\langle \tau \rangle \triangleleft G$, of order two. In this case

$$S_{R,T}^+(G) \cong R[G/\langle \tau \rangle]$$

and the homomorphism

$$\psi: \frac{\mathbf{Z}/2[G/\langle \tau \rangle]^*}{\mathbf{Z}[G/\langle \tau \rangle]^*} \longrightarrow \mathcal{C}L(\mathbf{Z}[G])$$

may be identified, as we shall prove in Theorem 4.4, with the Mayer-Vietoris homomorphisms of the type studied in ([4] II p. 273). Hence the image of ψ lies in $D(\mathbf{Z}[G]) \subseteq \mathcal{C}L(\mathbf{Z}[G])$.

When $G = Q_{2^n}$, the generalised quaternion group of order 2^n , then

$$D(\mathbf{Z}[Q_{2^n}]) \cong \mathbf{Z}/2$$

and ψ is surjective (cf. [4] II p. 273).

The remainder of this section will be devoted to showing that Example 4.1 is typical.

4.2. Our first observation is that T is the disjoint union of G-conjugacy classes, T_s , and that, in these circumstances, there is an isomorphism of the form

$$S_{R,T}^{\pm}(G) \cong \prod_{s} S_{R,T_{s}}^{\pm}(G).$$

In addition, the homomorphism, ψ , of Proposition 3.3 is evidently equal to the sum of the ψ 's for each of the factors. Therefore we shall henceforth restrict ourselves to the case when $T = \{g_i H g_i^{-1} : 1 \le i \le r\}$ where $r = [G : N_G H]$ is the index of the normaliser of H in G and g_1, \ldots, g_r are coset representatives for $G/N_G H$. Write τ for the generator of H.

Next we observe that $zg_jHg_j^{-1}z^{-1}=g_iHg_i^{-1}$ if and only if $g_i^{-1}zg_j\in N_GH$. On the other hand, $g_iHg_i^{-1}zg_jHg_j^{-1}=g_iHg_i^{-1}wg_jHg_j^{-1}$ if and only if $g_j^{-1}z^{-1}wg_j\in H$. Therefore there is an obvious isomorphism of abelian groups of the form

$$S_{R,T}^{\pm}(G) \cong \bigoplus_{1 \leq i,j \leq r} g_i R[N_G H] / (\tau - (\pm 1)) g_j^{-1}.$$

This map sends an element whose only component is equal to $\mu(i,j,z) \in R$ to the matrix with $\mu(i,j,z)g_i^{-1}zg_jH \in R[N_GH/H]$ as its only entry, in the (i,j)-th entry. If we endow the right hand side with the multiplication given on generators by

$$\left(g_j(wH)g_k^{-1}\right)\cdot\left(g_i(zH)g_j^{-1}\right)=\left(g_i(zwH)g_k^{-1}\right)$$

and zero in all other cases one sees easily that this becomes an isomorphism of rings. Furthermore it is clear that the right-hand side is isomorphic to the ring, $M_r \Big(R[N_G H] / \big(\tau - (\pm 1) \big) \Big)^{\mathrm{op}}$, of $r \times r$ matrices with entries in the quotient, $R[N_G H] / \big(\tau - (\pm 1) \big)$, of the group-ring of $N_G H$ with coefficients in R and the *opposite* multiplication.

Therefore we have proved the following result.

PROPOSITION 4.3. In the notation of Section 2.1 and Section 4.2, there is an isomorphism of rings

$$S_{R,T}^{\pm}(G) \cong M_r \Big(R[N_G H] / \big(\tau - (\pm 1) \big) \Big)^{\text{op}}$$

where Λ^{op} denotes the opposite ring of the ring Λ .

Next consider the pullback diagram

$$egin{array}{cccc} \mathbf{Z}[H] & \longrightarrow & \mathbf{Z}_+ \ & & & \downarrow \ \mathbf{Z}_- & \longrightarrow & \mathbf{Z}/2 \end{array}$$

which induces up to yield the pullback square

$$\mathbf{Z}[N_GH] \longrightarrow \mathbf{Z}[N_GH]/(\tau-1)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbf{Z}[N_GH]/(\tau+1) \longrightarrow \mathbf{Z}/2[N_GH]/(\tau-1)$$

from which we may obtain a *K*-theory Mayer-Vietoris sequence by the method described in ([5] Section 3)

$$\cdots \longrightarrow K_1(\mathbf{Z}[N_GH]/(\tau+1)) \oplus K_1(\mathbf{Z}[N_GH]/(\tau-1)) \longrightarrow K_1(\mathbf{Z}/2[N_GH]/(\tau-1)) \stackrel{\delta}{\longrightarrow} K_0(\mathbf{Z}[N_GH]) \longrightarrow \cdots$$

If M_G is a maximal **Z**-order, containing $\mathbf{Z}[G]$, in $\mathbf{Q}[G]$ let $D(\mathbf{Z}[G])$ denote the kernel of the canonical map of class-groups, $CL(\mathbf{Z}[G]) \to CL(M_G)$. The definition of $D(\mathbf{Z}[G])$ is independent of choice of maximal order. When we tensor the second Cartesian square with the rationals the bottom right corner vanishes. Therefore the maximal order of $\mathbf{Q}[N_GH]$ is isomorphic to a direct sum of the maximal orders in $\mathbf{Z}[N_GH]/(\tau \pm 1)$. Therefore we have an inclusion

$$\operatorname{im}\left(K_1(\mathbf{Z}/2[N_GH]/(\tau-1)) \xrightarrow{-\delta} K_0(\mathbf{Z}[N_GH])\right) \subseteq D(\mathbf{Z}[N_GH]).$$

This is because $\delta(x)$ must vanish under the map

$$K_0(\mathbf{Z}[N_GH]) \longrightarrow K_0(\mathbf{Z}[N_GH]/(\tau+1)) \oplus K_0(\mathbf{Z}[N_GH]/(\tau-1))$$

but the corresponding map on the K-theory of maximal orders is an isomorphism. Note also that the canonical homomorphism

$$\operatorname{Ind}_{N_GH}^G: K_0(\mathbf{Z}[N_GH]) \longrightarrow K_0(\mathbf{Z}[G])$$

satisfies

$$\operatorname{Ind}_{N_GH}^G(D(\mathbf{Z}[N_GH]) \subseteq D(\mathbf{Z}[G]).$$

By Proposition 4.3, a unit

$$\mu \in S_{\mathbf{Z}/2,T}(G)^* = \operatorname{GL}_1 S_{\mathbf{Z}/2,T}(G)$$

defines a class

$$[\underline{\mu}] \in K_1(S_{\mathbf{Z}/2,T}(G)) \cong K_1(M_r(\mathbf{Z}/2[N_GH]/(\tau-1))^{\mathrm{op}}) \cong K_1(\mathbf{Z}/2[N_GH]/(\tau-1)),$$

since $K_1(\Lambda)$ is defined to be the abelianisation of the infinite general linear group of Λ . The second isomorphism is induced by Morita equivalence (see [7]). Since we are in a very low dimension, in the proof of Theorem 4.4, we shall need to know very little about Morita equivalence. If $z \in K_1(\mathbf{Z}/2[N_GH]/(\tau-1))$ corresponds to $[\underline{\mu}] \in K_1(M_r(\mathbf{Z}/2[N_GH]/(\tau-1))^{op})$, we shall need only the fact that the coboundary, $\delta(z) \in K_0(\mathbf{Z}[N_GH])$, is represented by the Mayer-Vietoris patching construction, using a matrix representation of μ , as described in ([5] Section 3).

The remainder of this section will be devoted to proving the following result.

THEOREM 4.4. If $\underline{\mu} \in S_{\mathbf{Z}/2,T}(G)^*$ then, when $T = \{g_i H g_i^{-1} ; 1 \leq i \leq r\}$ and $r = [G : N_G H]$ as in Section 4.2,

$$\psi(\underline{\mu}) = \operatorname{Ind}_{N_G H}^G \left(\delta([\underline{\mu}]) - r \big[\mathbf{Z}[N_G H] \big] \right) \in \mathcal{C}L(\mathbf{Z}[G]) \subseteq K_0(\mathbf{Z}[G]).$$

PROOF. Firstly, we must find an alternative description of the $\mathbb{Z}[G]$ -module, $Y(\underline{\mu})$, of Section 3.2 which is more obviously related to the boundary homomorphism, δ .

Consider the following commutative diagram of $\mathbb{Z}[G]$ -modules in which the right-hand square is a pull-back which defines $X(\mu)$.

$$E_{+} \cong 2E_{+} \longrightarrow X(\underline{\mu}) \longrightarrow E_{-}$$

$$\downarrow \downarrow \qquad \qquad \downarrow \downarrow$$

$$E_{+} \stackrel{2}{\longrightarrow} E_{+} \longrightarrow E_{+} \otimes \mathbf{Z}/2 \stackrel{\underline{\mu}}{\longleftarrow} E_{-} \otimes \mathbf{Z}/2$$

In the pullback square defining $X(\underline{\mu})$ we have identified $E_{\pm} \otimes \mathbf{Z}/2$ by the isomorphism induced by the unique identification of $\mathbf{Z}_{\pm} \otimes \mathbf{Z}/2$ so that $\underline{\mu}$ may be interpreted as an isomorphism of $\mathbf{Z}[G]$ -modules in the bottom right-hand corner. Therefore $X(\underline{\mu})$ consists of pairs, $(e_+, e_-) \in E_+ \times E_-$, mapping to the same element in $E_+ \otimes \mathbf{Z}/2$. Hence $\ker(X(\underline{\mu}) \to E_-)$ consists of all pairs, $(e_+, 0)$, in which e_+ is divisible by 2. Therefore both rows of the diagram are short exact sequences. In fact, the upper row is equivalent to the 1-extension which defines $Y(\underline{\mu})$ and therefore there is an isomorphism of $\mathbf{Z}[G]$ -modules of the form

$$Y(\underline{\mu}) \cong X(\underline{\mu}).$$

To see this it suffices to calculate all the compositions of Section 3.1

$$H^1(H_i; \mathbf{Z}_-) \longrightarrow H^1(H_i; E_-) \xrightarrow{\delta} H^2(H_i; E_+)$$

where δ is the coboundary associated to the upper row of the diagram. We must show that this family of homomorphisms is induced by composition with $\underline{\mu}$, in the sense of Section 3.1. However there are canonical isomorphisms of the form

$$H^{1}(H_{i}; E_{-}) \cong H^{1}(H_{i}; E_{-} \otimes \mathbf{Z}/2) \cong H^{2}(H_{i}; E_{+} \otimes \mathbf{Z}/2) \cong H^{2}(H_{i}; E_{+})$$

in terms of which the family of coboundary compositions for the exact sequence

$$0 \longrightarrow E_{+} \stackrel{2}{\longrightarrow} E_{+} \longrightarrow E_{+} \otimes \mathbf{Z}/2 \longrightarrow 0$$

is induced by composition with the identity map. Therefore the family of coboundary compositions for the exact sequence of the lower row is induced by composition with $\underline{\mu}$ and consequently the same is true for the upper row.

Next we consider the (left) $\mathbf{Z}[G]$ -modules, $E_{\pm} = \bigoplus_{i=1}^r \operatorname{Ind}_{g_iHg_i^{-1}}^G(\mathbf{Z}_{\pm})$. These modules are isomorphic, respectively, to $\bigoplus_{i=1}^r \operatorname{Ind}_H^G(\mathbf{Z}_{\pm})$ by means of the homomorphism which sends $g \otimes_{g_iHg_i^{-1}} v \in \operatorname{Ind}_{g_iHg_i^{-1}}^G(\mathbf{Z}_{\pm})$ to $gg_i \otimes_H v \in \operatorname{Ind}_H^G(\mathbf{Z}_{\pm})$ in the i-th summand.

The isomorphism of $M_r\Big(\mathbf{Z}[N_GH]/\big(\tau-(\pm 1)\big)\Big)^{\mathrm{op}}$ with $S^\pm_{\mathbf{Z},T}(G)$ sends the elementary matrix, $e^{\lambda z}_{ij}$ ($\lambda \in \mathbf{Z}, z \in N_GH$) to $\underline{\mu} = \{\mu(s,t,w)\}$ whose only non-zero coordinate is given by $\mu(i,j,g_izg^{-1}_j) = \lambda$. This elementary matrix acts by sending $g \otimes_{g_iHg^{-1}_i} v$ to $gg_izg^{-1}_j \otimes_{g_jHg^{-1}_j} v$. Translated under these isomorphisms, $e^{\lambda z}_{ij}$ acts on $gg_i \otimes_H v$ in the i-th coordinate by sending it to $gg_iz \otimes_H v$ in the j-th coordinate.

Hence there are (left) $\mathbf{Z}[G]$ -module isomorphisms of the form

$$E_{\pm} \cong \operatorname{Ind}_{N_GH}^G(E'_{\pm})$$

where the (left) $\mathbf{Z}[N_GH]$ -modules, E'_{\pm} are equal to $\bigoplus_{i=1}^r \operatorname{Ind}_H^{N_GH}(\mathbf{Z}_{\pm})$, respectively. The elements of these modules are considered as r-tuple row vectors with entries in $\operatorname{Ind}_H^{N_GH}(\mathbf{Z}_{\pm})$ upon which an element of $S^{\pm}_{\mathbf{Z},T}(G)$, considered as an $r \times r$ matrix via Proposition 4.3, acts via right matrix multiplication. The action of $\mathbf{Z}[N_GH]$ is by means of left multiplication on each coordinate.

Acting via right multiplication as described above, a unit

$$\mu \in S_{\mathbf{Z}/2,T}(G)^* \cong \mathrm{GL}_r(\mathbf{Z}/2[N_GH]/H)$$

defines a (left) $\mathbb{Z}/2[N_GH]/H$ -automorphism, $\underline{\mu}$: $E'_- \otimes \mathbb{Z}/2 \xrightarrow{\cong} E'_- \otimes \mathbb{Z}/2$ which defines a class

$$[\mu] \in K_1(\mathbf{Z}/2[N_GH]/H) = GL_{\infty}(\mathbf{Z}/2[N_GH]/H)_{ab}.$$

By definition of the coboundary, δ , in the *K*-theory Mayer-Vietoris sequence ([5] Section 3)

$$\delta([\underline{\mu}]) = [X'(\underline{\mu})] \in K_0(\mathbf{Z}[N_G H])$$

where $X'(\underline{\mu})$ is defined by a pull-back in the same manner as $X(\underline{\mu})$ but with G and E_{\pm} replaced by N_GH and E'_{\pm} . From the preceding discussion, $X(\underline{\mu}) = \operatorname{Ind}_{N_GH}^G \left(X'(\underline{\mu}) \right)$, so that in $CL(\mathbf{Z}[G]) \subset K_0(\mathbf{Z}[G])$

$$\begin{aligned} \psi(\underline{\mu}) &= Y(\underline{\mu}) - r\mathbf{Z}[G] \\ &= X(\underline{\mu}) - r\mathbf{Z}[G] \\ &= \operatorname{Ind}_{N_G H}^G \left(X'(\underline{\mu}) - r\mathbf{Z}[N_G H] \right) \\ &= \operatorname{Ind}_{N_G H}^G \left(\delta([\underline{\mu}]) - r\mathbf{Z}[N_G H] \right) \end{aligned}$$

as required.

The following result is immediate from the discussion concerning the subgroup, $D(\mathbf{Z}[G])$, together with the fact that the class-group of the group-ring of the group of order two is trivial.

COROLLARY 4.5. For any G and T the homomorphism of Proposition 3.3

$$\psi \colon \frac{S_{\mathbf{Z}/2,T}(G)^*}{S^+_{\mathbf{Z},T}(G)^*} \longrightarrow \mathcal{C}L(\mathbf{Z}[G])$$

takes values in the subgroup $D(\mathbf{Z}[G])$.

Furthermore, if the $N_GH = H$ for each $H \in T$ then ψ is trivial.

4.6. An application. In [1] a Chinburg invariant, $\Omega_n(L/K) \in CL(\mathbf{Z}[G(L/K)])$ is associated to any Galois extension of number fields, L/K with group G(L/K). When n=1 this invariant is constructed as the Euler characteristic of a 2-extension of finitely generated $\mathbf{Z}[G(L/K)]$ -modules derived from the Galois modules structure of the algebraic K-groups of rings of S-integers, $O_{L,S}$, in dimensions 2 and 3. In [2] we evaluated some quaternionic examples of another construction, given in ([9] Chapter 7) for the totally real case, of an invariant $\Omega_1(L/K, 3) \in CL(\mathbf{Z}[G(L/K)])$.

In [3] we extended $\Omega_1(L/K,3)$ to all L/K and showed that $\Omega_1(L/K) = \Omega_1(L/K,3)$. Corollary 4.5 and our constructions with Hecke algebras yield an alternative proof of this equality. In [3] it was shown that there exists a commutative diagram of 2-extensions of the type which appears in Section 1, in which (i) T consists of the set of nontrivial decomposition groups at infinity for L/K (ii) the Euler characteristic of the upper 2-extension defines $\Omega_1(L/K)$ and (iii) that of the lower one defines $\Omega_1(L/K,3)$.

From equation (1) of Section 1, we shall explain how to prove that $\Omega_1(E/\mathbf{Q}) = \Omega_1(E/\mathbf{Q},3)$ when E is totally complex—equality in the general case following at once, by naturality. The idea is that, in the limit, $N_{G(E/\mathbf{Q})}\langle c \rangle/\langle c \rangle$ is trivial and so Corollary 4.5 should yield the result. Unfortunately, for each E/\mathbf{Q} , the quotient, $N_{G(E/\mathbf{Q})}\langle c \rangle/\langle c \rangle$, may be non-trivial. Therefore we have to proceed slightly differently.

Suppose E/\mathbf{Q} and M/\mathbf{Q} are two totally complex Galois extensions with $E \subseteq M$ and Galois groups

$$G(M/E) \triangleleft G(M/\mathbf{Q}) \xrightarrow{\pi} G(E/\mathbf{Q}) \cong G(M/\mathbf{Q})/G(M/E).$$

Each of the 2-extensions of $\mathbf{Z}[G(M/\mathbf{Q})]$ -modules, defining $\Omega_1(M/\mathbf{Q})$ and $\Omega_1(M/\mathbf{Q},3)$, is natural with respect to passage to quotients. This sort of naturality means, for example, that if

$$X_1 \longrightarrow A_1 \longrightarrow B_1 \longrightarrow Y_1$$

is the 2-extension which defines $\Omega_1(M/\mathbb{Q})$ then the associated 2-extension of $\mathbb{Z}[G(E/\mathbb{Q})]$ -modules

$$X_1^{G(M/E)} \longrightarrow A_1^{G(M/E)} \longrightarrow B_1^{G(M/E)} \longrightarrow (Y_1)_{G(M/E)}$$

defines $\Omega_1(E/\mathbb{Q})$. In fact, the diagram of Section 1 involving these 2-extensions is natural in this sense, with respect to passage to quotient groups.

The diagram of Section 1 relating the 2-extensions for $\Omega_1(M/\mathbb{Q})$ and $\Omega_1(M/\mathbb{Q},3)$ defined an element

$$\omega_{M/\mathbf{Q}} \in \operatorname{Ext}^3_{\mathbf{Z}[G(M/\mathbf{Q})]}(E_-, E_+) \cong \operatorname{Ext}^1_{\mathbf{Z}[G(M/\mathbf{Q})]}(E_-, E_+) \cong S_{\mathbf{Z}/2, T_M}(G(M/\mathbf{Q}))$$

where T_M is the set of all conjugates of complex conjugation, c, in $G(M/\mathbb{Q})$. Naturality implies that these elements fit together to define

$$\omega = \lim_{M \to \infty} \omega_{M/\mathbf{Q}} \in \lim_{M \to \infty} S_{\mathbf{Z}/2, T_M} (G(M/\mathbf{Q})).$$

Returning to $\mathbf{Q} \subset E \subseteq M$, the canonical homomorphism

$$S_{\mathbf{Z}/2,T_M}(G(M/\mathbf{Q})) \longrightarrow S_{\mathbf{Z}/2,T_E}(G(E/\mathbf{Q}))$$

is induced by considering an element of $S_{\mathbf{Z}/2,T_M}(G(M/\mathbf{Q}))$ as lifting to a $\mathbf{Z}[G(M/\mathbf{Q})]$ -endomorphism of E_+ and sending it to the reduction modulo 2 of the induced $\mathbf{Z}[G(E/\mathbf{Q})]$ -module endomorphism of $E_+^{G(M/E)}$, considered as an element of $S_{\mathbf{Z}/2,T_E}(G(E/\mathbf{Q}))$.

Let $G(M/E) = \{x_1, \dots, x_r\}$ and let $G(E/\mathbf{Q}) = \{y_1'c^{\epsilon}, \dots, y_s'c^{\epsilon'}; \epsilon = 0, 1\}$, where c denotes complex conjugation. Lifting each y_i' to $y_i \in G(M/\mathbf{Q})$ we may set

$$T_M = \{ \langle x_i y_j c y_j^{-1} x_i^{-1} \rangle \mid 1 \le i \le r, 1 \le j \le s \}.$$

Hence T_M is the set of all conjugates of $\langle c \rangle$ in $G(M/\mathbb{Q})$. By Proposition 4.3, we have an isomorphism of the form

$$S_{\mathbf{Z},T_M}^+(G(M/\mathbf{Q})) \cong M_{rs}(\mathbf{Z}[N_{G(M/\mathbf{Q})}\langle c \rangle / \langle c \rangle])^{\mathrm{op}}.$$

Set $H_{i,j} = \langle x_i y_j c y_j^{-1} x_i^{-1} \rangle$ so that associated pairs of suffices, (i,j), index the rows and columns of these matrices.

With this notation, the canonical homomorphism of Hecke algebras, induced by passing to G(M/E)-fixed points, corresponds to the ring homomorphism

$$M_{rs}(\mathbf{Z}[N_{G(M/\mathbf{Q})}\langle c \rangle / \langle c \rangle])^{\mathrm{op}} \longrightarrow M_{s}(\mathbf{Z}[N_{G(E/\mathbf{Q})}\langle c \rangle / \langle c \rangle])^{\mathrm{op}}$$

which sends the $((i,j),(i_1,j_1))$ -th entry to the (j,j_1) -th entry by the map induced by $\pi: G(M/\mathbb{Q}) \to G(E/\mathbb{Q})$.

However, the inverse limit

$$N = \lim_{\sim} N_{G(M/\mathbb{Q})} \langle c \rangle / \langle c \rangle$$

is trivial. For if not then the compositum of all the $M^{\langle c \rangle}$ would be a real closed field, F, and F/F^N would be a non-trivial Galois extension. However, real closed fields do not have any non-trivial Galois automorphisms (*cf.* [6] pp. 392–398), since the roots in F of a minimum polynomial over F^N are ordered and the automorphism must preserve the ordering.

Therefore, for any given E/\mathbf{Q} there exists M such that the image of the homomorphism

$$S_{\mathbf{Z}/2,T_M}(G(M/\mathbf{Q})) \longrightarrow S_{\mathbf{Z}/2,T_E}(G(E/\mathbf{Q})) \cong M_s(\mathbf{Z}/2[N_{G(E/\mathbf{Q})}\langle c \rangle/\langle c \rangle])^{\mathrm{op}}$$

lies in the subring of "constants", $M_s(\mathbf{Z}/2)^{\mathrm{op}}$. The images under ψ of Section 3.2 of such elements are trivial in the class-group of the group-ring. Therefore $\Omega_1(E/\mathbf{Q}) = \Omega_1(E/\mathbf{Q}, 3)$, as claimed.

However, a general Galois extension, L/K, may be embedded in one of the form E/\mathbf{Q} in which E is totally complex and E/L is Galois. Each of the invariants is natural in the sense that $\Omega_1(E/\mathbf{Q})$ and $\Omega_1(E/\mathbf{Q},3)$ map to $\Omega_1(L/K)$ and $\Omega_1(L/K,3)$, respectively, under the homomorphism

$$CL(\mathbf{Z}[G(E/\mathbf{Q})]) \longrightarrow CL(\mathbf{Z}[G(E/K)]) \longrightarrow CL(\mathbf{Z}[G(L/K)]),$$

which completes the proof.

REMARK 4.7. Representing ψ in the Hom-description The Hom-description represents the class-group of $\mathbf{Z}[G]$ as a quotient of the Galois equivariant, idèlic-valued functions of the (complex) representation ring, R(G), of G (see [8] Section 4.2). The function which represents $\psi(\underline{\mu})$ is trivial at all places except those above the prime 2. It suffices to give the Hom-description at p=2 in the case of Theorem 4.4, when all the H_i are conjugate to $H=\langle \tau \rangle$. In this case we may lift $\underline{\mu}$ to a 2-adic unit, $\underline{\mu}' \in S^+_{\mathbf{Z}_2,T}(G)^*$, which we may interpret as as an element of $\mathrm{GL}_r(\mathbf{Z}_2[N_GH/H])$. Therefore we have a 2-adic valued determinantal (see [8] Section 4.2) function given by, $\mathrm{Det}(\underline{\mu}')$ on $R(N_GH/H)$. Therefore there is a 2-adic valued function on $R(N_GH)$ which sends an irreducible, χ , to 1 if χ is non-trivial on τ , the generator of H, and sends it to $\mathrm{Det}(\underline{\mu}')(\chi)$ otherwise (in this case χ is inflated from N_GH/H). Composing this homomorphism with the restriction map from R(G) to $R(N_GH)$ gives the 2-adic part of the Hom-description of $\psi(\mu)$.

For example, when $G = Q_8$ in Section 4.1 and $\underline{\mu}$ corresponds to 1+x+y the associated 2-adic function is trivial on irreducible representations except the trivial one and there it takes the value 3. This is the Hom-description of the generator (see [8] Section 5.2).

REFERENCES

- 1. T. Chinburg, M. Kolster, G. Pappas and V. P. Snaith, *Galois structure of K-groups of rings of integers*. C.R. Acad. Sci. (1995).
- 2. _____, Quaternionic exercises in K-theory Galois module structure. Proc. Great Lakes K-theory Conf., Fields Institute Conf. Series, Amer. Math. Soc. (1997).
- 3. _____, Comparison of K-theory Galois module structure invariants. McMaster University, 9(1995–1996), preprint.
- 4. C. W. Curtis and I. Reiner, Methods of Representation Theory vols. I and II, Wiley, 1981, 1987.
- J. W. Milnor, Introduction to Algebraic K-theory. Ann. Math. Studies 72, Princeton University Press, 1971.
- 6. S. Lang, Algebra. 2nd ed., Addison-Wesley, 1984.
- 7. I. Reiner, Maximal Orders. L. M. Soc. Monographs 5, Academic Press, 1975.
- 8. V. P. Snaith, Explicit Brauer Induction (with applications to algebra and number theory). Cambridge Studies in Advanced Math. 40, Cambridge University Press, 1994.
- 9. _____, Galois Module Structure. Fields Institute Monographs, Amer. Math. Soc. 2(1994).
- **10.** _____, Local fundamental classes derived from higher-dimensional K-groups. Proc. Great Lakes K-theory Conf., Fields Institute Conf. Series, Amer. Math. Soc., (1997).
- 11. _____, Local fundamental classes derived from higher-dimensional K-groups II. Proc. Great Lakes K-theory Conf., Fields Institute Conf. Series, Amer. Math. Soc., (1997).