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Abstract This work is devoted to the study of uncertainty principles for finite combinations of Hermite
functions. We establish some spectral inequalities for control subsets that are thick with respect to
some unbounded densities growing almost linearly at infinity, and provide quantitative estimates, with
respect to the energy level of the Hermite functions seen as eigenfunctions of the harmonic oscillator,
for the constants appearing in these spectral estimates. These spectral inequalities allow us to derive
the null-controllability in any positive time for evolution equations enjoying specific regularizing effects.
More precisely, for a given index % < p < 1, we deduce sufficient geometric conditions on control subsets
to ensure the null-controllability of evolution equations enjoying regularizing effects in the symmetric
Gelfand—Shilov space Sﬁ (R™). These results apply in particular to derive the null-controllability in any
positive time for evolution equations associated to certain classes of hypoelliptic non-self-adjoint quadratic
operators, or to fractional harmonic oscillators.
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1. Introduction

The classical uncertainty principle was established by Heisenberg and is linked to
the impossibility of precisely determining the position and the momentum of quantum
particles. Uncertainty principles are mathematical results that give limitations on the
simultaneous concentration of a function and its Fourier transform. There are various
uncertainty principles with formulations of different natures; for instance, a nonzero
function and its Fourier transform cannot both have small supports. In particular, a
nonzero L?(R)-function whose Fourier transform is compactly supported extends as a
nonzero entire function with full support thanks to the isolated-zeros theorem. Another
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formulation of uncertainty principles can be illustrated by the following notions of weak
and strong annihilating pairs:

Definition 1.1 (annihilating pairs). Let S,% be two measurable subsets of R™.

- The pair (S,X) is said to be a weak annihilating pair if the only function f € L?(R™)
with supp f C S and supp f C X is zero.

- The pair (S,Y) is said to be a strong annihilating pair if there exists a positive constant
C =C(8,%) > 0 such that for all f e L?(R"),

[ 1@< ( / o F@Pdat / - \f(&)fdf) . (L)

It can be readily checked that a pair (S,X) is a strong annihilating one if and only
if there exists a positive constant D = D(S5,X) > 0 such that for all f € L?*(R™) with
suppf C X,

I fllL2@ny < DI fllL2@r\s)- (1.2)

As already mentioned, the pair (S5,%) is a weak annihilating one if S and ¥ are compact
sets. More generally, Benedicks has shown in [9] that (S,X) is a weak annihilating pair if S
and X are sets of finite Lebesgue measure |S|,|X| < +c0. Under this assumption, the result
of Amrein and Berthier [4] actually shows that the pair (5,X) is a strong annihilating
one. The estimate C/(S,%) < ke”!SI*! (which is sharp up to the numerical constant £ > 0)
has been established by Nazarov [32] in dimension n = 1. This result was extended in the
multidimensional case by Jaming [25], with the quantitative estimate

C(8,%) < ker(ISIEN"

holding if, in addition, one of the two subsets of finite Lebesgue measure S or ¥ is convex.

An exhaustive description of all strong annihilating pairs seems for now totally out of
reach. We refer the reader for instance to works [3, 10, 11, 13, 14, 38] for a large variety of
results and techniques available, as well as for examples of weak annihilating pairs that
are not strong annihilating ones. On the other hand, there is an exhaustive description of
all the support sets S forming a strong annihilating pair with any bounded spectral set
Y. This description is given by the Logvinenko-Sereda theorem [29]:

Theorem 1.2 (Logvinenko—Sereda). Let S,X C R™ be measurable subsets with ¥ bounded.
The following assertions are equivalent:

- The pair (S,X) is a strong annihilating pair.

- The subset R™\ S is thick — that is, there exist a nonempty cube K C R™ with sides
parallel to coordinate azes and a positive constant 0 <~y <1 such that

Ve eR"™ |(K+x)N(R"\S)| >~|K]| >0,

where |A| denotes the Lebesgue measure of the measurable set A.

https://doi.org/10.1017/51474748022000135 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748022000135

Spectral Inequalities for Hermite Functions and Null-Controllability 2535

Notice that if (S,X) is a strong annihilating pair for some bounded subset 3, then S
makes up a strong annihilating pair with every bounded subset 3, but the constants
C(S,2) >0 and D(S,X) > 0 do depend on 3. In order to be able to use this result in the
control theory of partial differential equations, it is then essential to understand how the
positive constant D(S,%) > 0 depends on the bounded set ¥. This question was addressed
by Kovrijkine [26, Theorem 3], who established the following quantitative estimates:

Theorem 1.3 (Kovrijkine). There exists a universal positive constant C,, > 0 depending
only on the dimension n > 1 such that if w is a y-thick set at scale L >0 — that is,

Ve eR", |wn(xz+][0,L]")| >~L", (1.3)

with 0 <y <1 — then, for all R >0 and f € L*(R™) with supp fc [—R,R]"™, the following
estimate holds:

O\ Cn(+LR)
ey < (22) 7 Wl (1.4
In all this work, the Fourier transform is used with the following normalization:
f©= [ fla)em™Sdg, R
R’ﬂ

Given a measurable subset, notice that it is thick in R™ if and only if it is 7-thick at scale
L for some positive constants 0 <y <1 and L > 0. Thus, the notion of «-thickness at a
positive scale allows quantification of the general thickness property.

Thanks to this explicit dependence of the constant with respect to the parameter R > 0
in estimate (1.4), Egidi and Veseli¢ [15] and Wang, Wang, Zhang, and Zhang [45] have
independently established that the heat equation

1.5
fli=o = fo € L*(R™), (1.5)

is null-controllable in any positive time 7" > 0 from a measurable control subset w C

R™ if and only if this subset w is thick in R™. Recent work by Beauchard, Egidi, and

the second author [6] has shown that this geometric necessary and sufficient condition

on control subsets to ensure null-controllability extends more generally for hypoelliptic

nonautonomous Ornstein—Uhlenbeck equations when the moving control subsets comply

with the flow associated to the transport part of the Ornstein—Uhlenbeck operators.
The notion of null-controllability is defined as follows:

{(at — A f(tz) =1, (z)ult,z), ze€R™Mt>0,

Definition 1.4 (null-controllability). Let P be a closed operator on L?(R™) which is the
infinitesimal generator of a strongly continuous semigroup (e~**) _ ~on L*(R™), T >0,
and let w be a measurable subset of R”. The evolution equation

{(at +P)f(t,z) = 1o (v)u(t,x), xe€R™E>0, (1.6)

fli=o = fo € L*(R™),
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is said to be null-controllable from the set w in time T > 0 if, for any initial datum
fo € L?(R™), there exists a control function u € L?((0,T) x R™) supported in (0,7 x w,
such that the mild (or semigroup) solution of equation (1.6) satisfies f(7,-) =0.

By the Hilbert uniqueness method (see [12, Theorem 2.44] or [28]), the null-
controllability of the evolution equation (1.6) is equivalent to the observability of the
adjoint system

{(8t+P )g(t,x) =0, x€R™Et>0, an

gli=o = go € L*(R"),

where P* denotes the L?(R")-adjoint of P. The notion of observability is defined as
follows:

Definition 1.5 (observability). Set T'> 0 and let w be a measurable subset of R™. The
evolution equation (1.7) is said to be observable from the set win time T > 0 if there
exists a positive constant Cr > 0 such that, for any initial datum go € L?(R"™), the mild
(or semigroup) solution of equation (1.7) satisfies

T

/|g(T,x)|2dx§CT/ /\g(t,x)\de dt. (1.8)

Rn 0

Following [15], the necessity of the thickness condition for control subsets to ensure the
null-controllability of the heat equation is a consequence of a quasimode construction;
whereas the sufficiency is derived from an abstract observability result based on an
adapted Lebeau—Robbiano method established by Beauchard and the second author with
some contributions of Miller in [8, Theorem 2.1]. This abstract observability result, whose
proof is inspired by [30, 31], was extended in [6, Theorem 3.2] to the nonautonomous case
with moving control supports and under weaker dissipation estimates allowing controlled
blowup for small times in the dissipation estimates. The following statement is a simplified
formulation of [6, Theorem 3.2] limited to the semigroup case with fixed control supports
and weaker dissipation estimates than in [8, Theorem 2.1]:

Theorem 1.6 (Beauchard, Egidi, and Pravda-Starov). Let Q be an open subset of
R™; w be a measurable subset of Q; (mg)k>1 be a family of orthogonal projections
on L*(Q); (e_tA)t>0 be a strongly continuous contraction semigroup on L2(); and
Cl,CQ,Cll,CIQ,a,b,to,m;> 0 be positive constants with a < b; and set mg > 0. If the spectral
imequality

Vge L*(QVk > 1, |lmgllzz) < che™ Imigllr2w) (1.9)
and the dissipation estimate with controlled blowup
e*Cth'lk‘b

Vg€ LA(Q)Vk > LY0 <t <to, [|(1—mx)(e )20 < T

lgllzz) (1.10)
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hold, then there exists a positive constant C > 1 such that the following observability
estimate holds:

C T
VT > 0.9 € L2(9), ||eTAg||2L2(Q)goexp(Tm)/O lem g2 dt. (L1D)

Notice that the assumptions in this statement do not require that the orthogonal
projections (7mx)r>1 be in any manner related to the spectral projections onto the
eigenspaces of the infinitesimal generator A, which is allowed to be non-self-adjoint.
According to the foregoing statement, there are two key ingredients to derive a result
of observability, or equivalently a result of null-controllability for the adjoint system,
using Theorem 1.6 — namely, a spectral inequality (1.9) and a dissipation estimate (1.10).
For the heat equation, the orthogonal projections used are the frequency cutoff operators
given by the orthogonal projections onto the closed vector subspaces

Ekz{feLQ(R"):suppr[—k,k]"}, k> (1.12)
With this choice, the dissipation estimate readily follows from the explicit formula
(P-g)(£8) =GO, t=0.ce R, (1.13)

whereas the spectral inequality is given by the sharpened formulation of the Logvinenko—
Sereda theorem established by Kovrijkine (Theorem 1.3). Notice that the power 1 for
the parameter R in estimate (1.4) and the power 2 for the term || in formula (1.13)
account for the fact that Theorem 1.6 can be applied with the parameters a = 1,0 = 2
that satisfy the required condition 0 < a < b. It is therefore essential that the power of the
parameter R in the exponent of estimate (1.4) be strictly less than 2. Let us underline
that Theorem 1.6 does not apply only with the use of frequency cutoff projections and a
dissipation estimate induced by some Gevrey-type regularizing effects. Other regularities
than the Gevrey one can be taken into account. In this work, we are interested in obtaining
results of null-controllability for evolution equations enjoying some regularizing effects in
Gelfand—Shilov spaces. More specifically, given an abstract evolution equation enjoying
some Gelfand—Shilov regularizing effects, we aim to find sufficient geometric conditions
on control subsets to ensure null-controllability in any positive time.

The definition and basic properties related to Gelfand—Shilov regularity are recalled
in §A.3. Gelfand-Shilov regularity is characterized by specific exponential decays of
both the functions and their Fourier transforms. In the symmetric case, Gelfand-
Shilov regularity can be read on the exponential decay of the Hermite coefficients when
expanding the functions in the L?*(R™)-Hermite basis (®,)aenn. We refer the reader to
§A.2 for the definition and some notations related to Hermite functions. Thanks to this
second characterization of Gelfand—Shilov regularity, a natural choice for the orthogonal
projections (my)k>1 in order to apply Theorem 1.6 to prove the null-controllability of
evolution equations enjoying some symmetric Gelfand-Shilov regularizing effects is given
by the Hermite orthogonal projections onto the closed vector subspaces in L?(R™),

&L= Spanc{éa}aew7|a|§k, keN, (1.14)

https://doi.org/10.1017/51474748022000135 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748022000135

2538 J. Martin and K. Pravda-Starov

where N denotes the set of nonnegative integers and |a| = a3 + -+ + o, when o =
(a1,...,a,) € N™ — that is, the orthogonal projections

k
wk:ZPj, Prg = Z (9:®a) p2(gn) Pas k>0, (1.15)
j=0 a€eN™,
! |§\=k

where P;, denotes the orthogonal projection onto the kth energy level associated with the
harmonic oscillator

+oo

H=—Ds+|z]> =) (2k+n)Py. (1.16)

k=0
Given an abstract evolution equation enjoying some symmetric Gelfand—Shilov regular-
izing effects, the dissipation estimate (1.10) is then expected to hold for the Hermite
orthogonal projections (m),>1 with some specific positive parameter b > 0 related to the
index of Gelfand—Shilov regularity. Let us notice that this dissipation estimate does not
depend on the geometry of the control subset and that this geometry only plays a (key)
role in the spectral inequality (1.9). Addressing the problem of finding sufficient geometric
conditions on control subsets to derive an observability result for this abstract evolution
equation is therefore reduced to obtaining quantitative spectral estimates of the type

Vk > 1,3Ck(w) > 0Vf € L*R"), |[mpfllr2(n) < Crlw)llmefll 2 (o) (L.17)

and figuring out the largest class of control subsets for which the spectral inequality
(1.9) holds with some positive parameter 0 < a < b. This problem of the conditions on
the control subset w C R™ under which the spectral inequality (1.17) holds and how
the geometric properties of the control subset w relate to the possible growth of the
positive constant Cy(w) > 0 with respect to the energy level when k — +o00 was studied
by Beauchard, Jaming and the second author in [7]. By a simple argument of equivalence
of norms in finite dimension, the first result in [7] shows that for any measurable subset
w C R™ of positive Lebesgue measure |w| > 0 and all N € N, there does exist a positive
constant Cn(w) > 0 depending on w and N such that the following spectral inequality
holds:

Vieén, |Iflee@y <CON(WISfllL2(w)- (1.18)

The main result in [7, Theorem 2.1] then provides the following quantitative upper bounds
on the positive constant Cn(w) > 0 for the following three different geometries:

(i) If w is a nonempty open subset of R™, then there exists a positive constant C' =
C(w) > 1 such that

VNeNVfeln, |flezmn) < CB%NIH(NHHCN||f||L2(w)- (1.19)
(ii) If the measurable subset w C R™ satisfies the condition
.. . |lwnB(0,R)] . . lwnB(0,r)|
1 f—ror—rr—t=1 f ———— 0 1.20
e A\ e )70 0
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where B(0,R) denotes the open Euclidean ball in R™ centered in 0 with radius
R > 0, then there exists a positive constant C'= C'(w) > 1 such that

YN eNVfeEn, |Ifllrzmn) <CeN|fllL2w)- (1.21)

(iii) If the measurable subset w C R™ is ~-thick at scale L > 0 — that is, if formula
(1.3) holds — then there exist a positive constant C' = C(L,v,n) > 0 depending on
the dimension n > 1 and the parameters 0 <~y <1, L >0 and a universal positive
constant k = k(n) > 0 depending only on the dimension, such that

K kLVN
VNEN,VngN, HfHLr"(]R”) SC(’)/> ||fHL2(w) (1.22)

These results show that the spectral inequality (1.9) is satisfied with parameter a =
when the control subset w C R”™ is -thick at scale L > 0; whereas it holds with paramete
a =1 when the geometric condition (1.20) holds.

The main result in the present work (Theorem 2.1) bridges the gap between the two
spectral estimates (1.21) and (1.22) by figuring out sharp geometric conditions on the
control subsets ensuring that the spectral inequality (1.9) holds for any given parameter
% < a < 1. Given an abstract evolution equation enjoying some regularizing effects in
the symmetric Gelfand—Shilov space Sl’j(R")7 with % < u < 1, some sharp sufficient
geometric conditions on control subsets to ensure null-controllability are then deduced
in Theorem 2.5, and some applications to derive the null-controllability of evolution
equations associated to certain classes of hypoelliptic non-self-adjoint quadratic operators,
or to fractional harmonic oscillators, are given in Corollaries 2.4 and 2.6.

I

2. Statements of the main results

2.1. Uncertainty principles for finite combinations of Hermite functions.

The main result in this work is the following uncertainty principles for finite combinations
of Hermite functions:

Theorem 2.1. Let p:R™ — (0,+00) be a %—Lipschitz positive function with R™ being
equipped with the Euclidean norm, such that there exist some positive constants 0 < e <
1,m > 0,R > m such that

Ve eR", 0<m<p(z)<Rz)

1
with (x) = (14 ||z[|*)* and ||-|| the Euclidean norm on R™. Let w be a measurable subset
of R™ which is y-thick with respect to the density p — that is,

<y <LV eR™ |wnNB(z,p(x))| >~ B(z,p(x))| (2.1)

where B(y,r) denotes the Euclidean ball centered at y € R™ with radius v > 0, and ||
denotes the Lebesgue measure. Then there exist some positive constants k,(m,R,vy,e) >
0,Cy(e,R) >0 and a positive universal constant &, >0 depending only on the dimension

https://doi.org/10.1017/51474748022000135 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748022000135

2540 J. Martin and K. Pravda-Starov

such that

_ \ Cn(e,RA)N'"%
) £l 22 (w)s

Kn
VN > ].,Vf S ng ||fHL2(]R") < "in(maRv’y»E) <7

with En being the finite-dimensional vector space spanned by the Hermite functions
(@a)hx\SN-

Taking the parameter ¢ = 1, Theorem 2.1 allows us to recover the quantitative spectral
estimate of Logvinenko—Sereda type (1.22), established in [7, Theorem 2.1], as condition
(2.1) is then equivalent to the thickness property (1.3). Contrary to the thick case
(e =1), notice that when 0 < ¢ < 1, condition (2.1) allows control subsets to have holes
with diameters tending to infinity. Theorem 2.1 applies, for instance, with the family of
unbounded densities

pe(z) =R (x)' ™%, zeR",

when 0 <e<1land 0< R, < ﬁ, as pe is then a %-Lipschitz positive function (see
Section A.4). However, the case ¢ = 0, corresponding to a possible linear dependence of
the radius, is not covered by Theorem 2.1.

The following result shows that the regularity assumptions on the density p can be
slightly weakened by allowing it to fail to be a Lipschitz function, while strengthening on
the 7-thickness condition with respect to p by imposing some constraints on the lower

bound for the parameter 0 <y < 1:

Corollary 2.2. Let p: R™ — (0, 4+00) be a continuous positive function verifying

JH<e<1,30<R. < Nz eR", 0<p(x)<R(z) ", (2.2)

1
2(1—¢)
with (by convention) no upper-bound condition on R. > 0 in the case when e =1. If w is
a measurable subset of R™ that is y-thick with respect to the density p — that is,

Vo €RY, o B(a,p(@))| = 1| Ba,p(@))], (2.3)

with 1 — % <~ <1, where B(y,r) denotes the Fuclidean ball centered at y € R™ with
radius > 0 — then there exist some positive constants kn(Re,7,€) > 0,Cy(e,Re) >0 and

a positive universal constant K, > 0 depending only on the dimension such that

-\ Cn(e,R.)N'"%
) T

Fin,
UN S LYF€En,  fllmrn < An(Boric) (v

The lower-bound condition 1 — 6% < 7y <1 can be unexpected. We actually do not know
if this assumption is really relevant, or if Corollary 2.2 holds true as well without this
technical condition. Let us only mention that this lower-bound condition is somehow
related to the smallness condition on the positive parameter 0 < e < ¢ep, with 0 <egp <« 1
sufficiently small, in the result of Kovrijkine [27, Theorem 1.1], where it is established
that a pair (9,%) is a strong annihilating one when S and ¥ are measurable subsets
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satisfying the following e-thinness condition:

Ve e R, [SNB(zpi((lx]))] <elB(z,pr(llz]])], (2.4)

D), (2.5)

when p1,p2 : Ry — (0,4 00) are continous nonincreasing functions satisfying

Ve eR", XN B(z,pa([x]))] < el Bz, pa

3C1,Co >0 VteER,, — 2 >t

with 0 < e <¢gp. Corollary 2.2 is a direct consequence of Theorem 2.1 using the density
pe(z) = Ro(z)' ¢, with # € R” and 0 < R, < ﬁ, together with Lemma A.6.

2.2. Null-controllability of hypoelliptic non-self-adjoint quadratic equations

This section is devoted to the study of null-controllability for evolution equations
associated to certain classes of non-self-adjoint quadratic operators enjoying some global
subelliptic properties. The main result in this section is Corollary 2.4. This result is a
consequence of the new uncertainty principles established in Theorem 2.1 and the abstract
observability result given by Theorem 1.6. It extends to any control subset that is thick
with respect to an unbounded Lipschitzian density with almost-linear growth at infinity,
the result of null-controllability proved by Beauchard, Jaming and the second author in
[7, Theorem 2.2].

2.2.1. Miscellaneous facts about quadratic differential operators. Quadratic
operators are pseudodifferential operators defined in the Weyl quantization

D) = e [ e () rduae (2:6)

by symbols ¢(z,£), with (z,£) € R™ x R”,n > 1, which are complex-valued quadratic forms
q:Ry xR —»C
(@,€) = q(x,).

These operators are actually differential operators with simple and fully explicit
expression, since the Weyl quantization of the quadratic symbol z%¢°, with (a,3) €
N?" |a+ 3| = 2, is given by the differential operator

—ang;erxa7 D, =i 0,

Notice that these operators are non-self-adjoint as soon as their Weyl symbols have
a nonzero imaginary part. The maximal closed realization of the quadratic operator
q“(x,D,) on L?(R™) — that is, the operator equipped with the domain

D(¢")={f e L*R"):¢"(z,D,)f € L*(R")}, (2.7)
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where ¢¥(x,D,.)f is defined in the distribution sense — is known to coincide with the
graph closure of its restriction to the Schwartz space [24, pp. 425-426],

q“(x,Dy) : S (R") — Z(R").

Classically, to any quadratic form ¢ : R7 xRf — C defined on the phase space is associated
a matrix F' € My, (C) called its Hamilton map, or its fundamental matrix, which is the
unique matrix satisfying the identity

V(z,6) e R* V(y,m) €R*,  q((x,€),(y,m)) = o((x,€),F (y,m)), (2.8)

where ¢(+,-) is the polarized form associated with the quadratic form ¢ and where o stands
for the standard symplectic form

n

o((2,),(y:m) = (&) — (@) = D (§y; —23m;), (2.9)

Jj=1

with x = (xla cee 7:Cn)ay = (yla s ayn)7€ = (gla s 7571)777 = (nla s 77771) € C". We observe from
the definition that

pot(VeVea  Vig
2\ —V2q —V,Veq)’

where the matrices V2q = (ai’j)1§i7jgn,vgq = (0ij)1<ij<n VeValt = (Cij)i<; jons
VaVeq=(di ;) <; j<, are defined by the entries

Qi,j = 831"%' 9 bi’j = agi;fj 9 Cij = 8521',903'(1’ diJ = aii,qu'
The notion of singular space was introduced in [18] by Hitrik and the second author by
pointing out the existence of a particular vector subspace in the phase space S C R?",
which is intrinsically associated with a given quadratic symbol ¢. This vector subspace is
defined as the following finite intersection of kernels:

2n—1
S=[ [ Ker [ReF(ImF)’] | NR*", (2.10)
j=0

where ReF' and ImF stand respectively for the real and imaginary parts of the Hamilton
map F' associated with the quadratic symbol ¢:

1 = 1 -
ReF:i(F—s—F), ImF:Z(F—F).

As pointed out in [18, 21, 22, 34, 35, 36, 44], the notion of singular space plays a basic
role in the understanding of the spectral and hypoelliptic properties of the (possibly)
nonelliptic quadratic operator ¢%“(x, D, ), as well as the spectral and pseudospectral prop-
erties of certain classes of degenerate doubly characteristic pseudodifferential operators
[19, 20, 42, 43]. In particular, [18, Theorem 1.2.2] provides a complete description for
the spectrum of any nonelliptic quadratic operator ¢*(z,D,) whose Weyl symbol ¢ has
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a nonnegative real part Req > 0 and satisfies a condition of partial ellipticity along its
singular space S,

(z,6) € S, q(z,£) =0= (2,£) =0. (2.11)

Under these assumptions, the spectrum of the quadratic operator g% (x, D) is shown to be
composed of a countable number of eigenvalues with finite algebraic multiplicities, and the
structure of this spectrum is similar to the one known for elliptic quadratic operators [39].
This condition of partial ellipticity is generally weaker than the condition of ellipticity,
S C R?", and allows one to deal with more degenerate situations. An important class
of quadratic operators satisfying condition (2.11) are those with zero singular spaces
S ={0}. In this case, the condition of partial ellipticity trivially holds. More specifically,
these quadratic operators have been shown in [35, Theorem 1.2.1] to be hypoelliptic and
to enjoy global subelliptic estimates of the type

ac > 0,vf € L (R"), (2.12)

[¢@D2=9g| <O (la" @ Da) fllzany + 1)

L2 (")

where ((z,D,))? =1+ ||z||? 4| D.||?, with a sharp loss of derivatives 0 < § < 1 with respect
to the elliptic case (case § = 0), which can be explicitly derived from the structure of the
singular space.

In this work, we study the class of quadratic operators whose Weyl symbols have
nonnegative real parts Req > 0, and zero singular spaces S = {0}. These quadratic
operators are also known [18, Theorem 1.2.1] to generate strongly continuous contraction
semigroups (e—th) on L?(R™), which are smoothing in the Schwartz space for any
positive time:

t>0

Vi >0Yf e L2(R"), e ' fe.s(R").

In [22, Theorem 1.2], these regularizing properties were sharpened and these contraction
semigroups were shown to be actually smoothing for any positive time in the Gelfand—
Shilov space S}/5(R"): 3C' > 0,3tg > 0,Yf € L2(R"),Ya, B € N",V0 <t < Lo,

where s is a fixed integer verifying s > n/2 and where 0 < ky < 2n —1 is the smallest
integer satisfying

C1+lal+(8]
(@) 2(B)Y2 ] fll 2 gy, (2.13)

%), 2
T 0y | € f Loo(Rn)_t%%(|a‘+|ﬁ|+2n+s)

ko
() Ker [ReF(ImF)’] | NR*" = {0}. (2.14)
j=0

Thanks to this Gelfand—Shilov smoothing effect (2.13), Beauchard and the second author
established in [8, Proposition 4.1] that for any quadratic form g : Riz — C with a
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nonnegative real part Req > 0 and a zero singular space S = {0}, the following dissipation
estimate holds:

3Co > 1,3ty > 0,¥t > 0,Vk > 0,Vf € L*(R"), (2.15)
H(l—ﬂ'k) (e_tqwf)‘ SCoe_é(t)ka”Lz(Rn),

L2(R™)

with

_inf(t,tg)ot!
Co

where 0 < kg < 2n — 1 is the smallest integer satisfying equation (2.14) and where
(mk)k>0 are the Hermite orthogonal projections defined in equation (1.15). Combining
these dissipation estimates with the quantitative spectral estimate of Logvinenko—Sereda
type (1.22) established in [7, Theorem 2.1], Beauchard, Jaming and the second author
derived from the abstract observability result [8, Theorem 2.1] the following result of
null-controllability [7, Theorem 2.2]:

§(t) >0, t>0, (2.16)

Theorem 2.3 (Beauchard, Jaming, and Pravda-Starov). Let ¢ : R} x Rf — C be a
complez-valued quadratic form with a nonnegative real part Req > 0 and a zero singular
space S = {0}. If w is a measurable thick subset of R™ — that is, if condition (1.3) holds
for some L >0 and 0 <y <1 — then the evolution equation

fli=o = fo € L*(R™),

with ¢“(x,D;) being the quadratic differential operator defined by the Weyl quantization
of the symbol q, is null-controllable from the set w in any positive time T > 0.

{@f(t;x) +q¥(x,D,) f(t,x) = 1, (z)u(t,x), z=€R™t>0,

Thanks to the new uncertainty principles established in Theorem 2.1 and the abstract
observability result given by Theorem 1.6, Theorem 2.3 can be generalized to any control
subset that is thick with respect to an unbounded Lipschitzian density with almost-linear
growth at infinity.

If p: R™ — (0, + 00) is a i-Lipschitz positive function with R™ being equipped with
the Euclidean norm such that there exist some positive constants 0 <e <1,m>0,R>m
such that

VzeR", 0<m<px) < Rx) ™,

and if w C R™ is a measurable subset that is ~-thick with respect to the density p for
some 0 < <1 — that is, if condition (2.1) holds — we can apply Theorem 1.6 together
with Theorem 2.1 for the following choices of parameters: @ =R"™; A =¢*(z,D,); 0 <a=
1—-5<b=1;ty>0 as in formula (2.15); my = 2ko + 1, where kg is defined in equation
(2.14); me = 0; any constant ¢; > 0 satisfying

< eclk17%

— )

s Cn(e,R)k' ™3
Vk>1, kp(m,R,7v,e) (")
~
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where the positive constants k, (m,R,v,e) > 0,Cy(¢,R), &y > 0 are given by Theorem 2.1;
g =cy=1; and ¢z = C% > 0, where Cy > 1 is defined in formula (2.15). We therefore
obtain the following observability estimate in any positive time:

3C > 1,vT > 0,Vg € L*(R™),

2 C r w
< Cexp (2>/ He*tq g‘
L2(R™) T(Efl)(2k0+1) 0

After we note on one hand that the L?(R™)-adjoint of the quadratic operator (¢*,D(q*))
is the quadratic operator (g*,D (")), whose Weyl symbol is the complex conjugate of ¢,
and that on the other hand the symbol 7 is also a complex-valued quadratic form with
a nonnegative real part and a zero singular space, the Hilbert uniqueness method allows
us to obtain the following result of null-controllability:

2

dt.

—Tq®
H@ g L2 (w)

Corollary 2.4. Let g : R} X Ry — C be a complex-valued quadratic form with a
nonnegative real part Req >0 and a zero singular space S ={0}. Let p: R™ — (0, + 00)
be a %-Lipschitz positive function, with R™ being equipped with the Euclidean norm, such
that there exist some positive constants 0 <e < 1,m > 0,R >m such that

VzeR", 0<m<p(x)<Rx) *
and w is a measurable subset of R™. If w is y-thick with respect to the density p — that is,
D<y<1VeeR”, |wNB(x,p(z))| >~v|B(z,p(x))],

where B(y,r) denotes the Euclidean ball centered at y € R™ with radius v >0 — then the
evolution equation

O f (t,x) + g% (x, D) f(t,z) = 1y, (x)u(t,z), =€R™ >0,
fli=o = fo € L*(R™),

with q¥(x,D,) being the quadratic differential operator defined by the Weyl quantization
of the symbol q — is null-controllable from the control subset w in any positive time T > 0.

2.3. Null-controllability of evolution equations enjoying Gelfand—Shilov
smoothing effects
Given an abstract evolution equation enjoying some Gelfand—Shilov regularizing effects,
we aim now to figure out sufficient geometric conditions on control subsets to ensure
null-controllability in any positive time.
Let us consider the evolution equation

{3tf(t,x> +Af(t,2) = Lo(z)ult,x), z€RME>0, (2.17)

fli=o = fo € L*(R™)
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associated to A a closed operator on L?(R") that is the infinitesimal generator of a
strongly continuous contraction semigroup (e_tA) >0 O L?(R™) enjoying some Gelfand—
Shilov smoothing effects for any positive time — that is, verifying

Wt >0Yu € LAR™), e ue S50 (R™), (2.18)

with % < s < 1. We assume more specifically that the contraction semigroup (e_tA) >0

enjoys the following quantitative regularizing estimates: There exist some constants %7<
s<1,C5 >1,0<tg <1,myq,mge € R with m; > 0,ms > 0 such that

Y0 < t < tg,Ya,3 € N",Vg € L*(R"™), (2.19)

14+|al+|8]
2208 (~4g) || < —=2

1

< e (@)% (BY* llgl 2 e,
where here (and only here) the norm ||-|| denotes either the L>°(R™)-norm or the L?(R")-
norm. Lemma A.8 shows that if the estimates (2.19) hold with the L (R™)-norm, then
they also hold with the L?(R")-norm with the same constants 2+ < s <1,0 <t <1, but
with different values for the constants Cs > 1,m; > 0,m9 > 0. The following result provides
sufficient geometric conditions on control subsets related to the index of symmetric
Gelfand-Shilov regularity 55 to ensure the null-controllability of the adjoint system:

Theorem 2.5. Let A be a closed operator on L*(R™) which is the infinitesimal generator
of a strongly continuous contraction semigroup (e_tA)t>O on L*(R™) that satisfies the

quantitative smoothing estimates (2.19) for some + <s<1. Let p: R" — (0, +00) be a
%-Lipschitz positive function with R™ being equipped with the Euclidean norm, such that
there exist some constants 0 < 6 < 2s—1,m > 0,R > m such that

Ve eR", 0<m<p(z)< R(m)‘s.
If w is a measurable subset of R™ which is y-thick with respect to the density p — that is,
0 <y<LVzeR",  [wnB(z,p(@))| = 7|B(2p(2))],
where B(y,r) denotes the Euclidean ball centered at y € R™ with radius v >0 — then the

evolution equation associated to the L?(R™)-adjoint operator A*,

(2.20)

O f(t,x)+ A* f(t,x) = 1 (x)u(t,z), = €R™E>0,
fli=o = fo € L*(R"),

s null-controllable from the control subset w in any positive time T > 0.

As recalled in the previous section, strongly continuous contraction semigroups
generated by accretive non-self-adjoint quadratic operators with zero singular spaces
enjoy smoothing effects in the Gelfand—Shilov space Sl /2( ™). More specifically, Alphonse

and Bernier established in [2, Theorem 1.6] that such contraction semigroups (e*tqw) >0
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on L%(R") satisfy the following quantitative regularizing estimates: There exist some
constants C' > 1,0 < ty <1 such that

Y0 <t <to,Vk > 1,VX1,..., X} € R?"Vg € L*(R"), (2.21)

Cw Cl +k
HLX1"'LXk (6 ta g)’ = 2k0+1 H”X ” k' zHgHL2(R")7

L2 (]Rn

with 0 < kg < 2n—1 the smallest integer satisfying equation (2.14), where || Xo|| is the
Euclidean norm of Xy € R?” and where L x; is the first-order differential operator

Lx, = (xj,2)+(£,02), X;=(2;&) R,

with (-,-) the Euclidean dot product. The estimates (2.21) imply in particular that for all
0<t S tOvavﬂ S Nn,g S L2(Rn)7

[0 (")

Indeed, we observe that

c ((Qn)%c)\alﬂﬁ\

< DEEHE ny. 2.22
L2(Rn) — t#(la\ﬂﬁl) (Ot) (ﬁ) ||gHL2(R ) ( )

xaaf: HLSJ] <HL§2>7 a:(ala7an)aﬂ:(ﬂlv7ﬂn)€Nn7

j=1 k=1

where (eq,...,en,€1,...,6,) denotes the canonical basis of R? x R?, and that the basic
estimate (3.44) implies that

va,B €N, (Ja|+[B])! < 2P (ja))(|B])! < (2n)*FPlalp),

since

ol +18D _ (ol +181 "' (el + 181\ _ o
[ ( o )— Z( ) )2 +, (2.23)

The strongly continuous contraction semigroup generated by the L?(R™)-adjoint operator
(q¥)* = ()" satisfies the very same quantitative regularizing estimates (2.21), since the
quadratic symbol g also has a nonnegative real part with a zero singular space. Thanks
to these smoothing estimates, the result of Corollary 2.4 can therefore be recovered in
applying Theorem 2.5.

As noted at the end of the proof of Theorem 2.5 (§4), the conclusions of Theorem 2.5
hold true as well when the quantitative regularizing estimates (2.19) holding for some
% < s <1 are replaced by the following assumption:

Imy,mg > 0,3C1,Co > 0,30 < to < 1,V0 < t < to,¥g € L*(R"), (2.24)
2t (91| 4n)® — 2 C
Z e 1 (2lal+n) <6 tAg,(I)a>L2(Rn) < t2n§2 HgHL2(]R”)7
aeNn
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with (®4)aenn the L2(R™)-Hermite basis. As an application of this remark, we consider
the fractional harmonic operator

Yue D(H), H'u=(-A,+|z)?) u= Z (2laf4+n)*(u, o) L2 (R) Pars (2.25)
aeN?

with % < s <1, equipped with the domain

D(Hs) = {U S L2(Rn) : Z (2‘C¥| +n)25 |<u7q)o¢>L2(]R”)

? < +oo}. (2.26)
aeNn

The fractional harmonic oscillator H?® is a self-adjoint operator generating a strongly

continuous contraction semigroup (e‘tﬂs) >0 O1 L?(R™) explicitly given by

Vi 0NVue LARY), e Mu= " e Clm 0,0, 120 @0 (2.27)
aeN"™

(see, e.g. [41, Propositions 2.6.2 and 2.6.5]). As assumption (2.24) trivially holds for the
fractional harmonic oscillator, Theorem 2.5 allows us to derive the following result of
null-controllability:

Corollary 2.6. Set % <s<landletp:R"*— (0,4 00) be a %—Lipschitz positive function
with R™ being equipped with the Fuclidean norm, such that there exist some constants
0<d<2s—1,m>0,R>m such that

Ve eR", 0<m<p(z) < R(z)°.
If w is a measurable subset of R™ which is y-thick with respect to the density p — that is,
0 <y<LVzeR", |wNB(z,p(x))| 27B(z,p(z))],

where B(y,r) denotes the Euclidean ball centered at y € R™ with radius v >0 — then the
evolution equation associated to the fractional harmonic oscillator H® = (—Ax + ||xH2)S,

O f(tx) + Ho f(ta) = Lo(@)u(tz), @€ Rt >0,
fli=o = fo € L*(R™),

is null-controllable from the control subset w in any positive time T > 0.

2.4. Outline of the work

Section 3 is devoted to the proof of Theorem 2.1. It is the core of the present work.
Theorem 2.5 is then proved in §4, and Appendix A gathers miscellaneous facts about
the gamma function, Hermite functions, slowly varying metrics, and Gelfand—Shilov
regularity. Some proofs of technical results as Bernstein-type estimates are also given
in the appendix.

3. Proof of Theorem 2.1

This section is devoted to the proof of Theorem 2.1. Let p: R™ — (0, +o0) be a
%—Lipsehitz positive function with R™ equipped with the Euclidean norm, such that there
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exist some positive constants 0 < e < 1,m > 0, R > m satisfying

Ve eR", 0<m<p(z)<Rz)°. (3.1)

Let w be a measurable subset of R™ which is ~-thick with respect to the density
p — that is,

D<y<1VeeR”, |wNB(z,px))| >y Bla,p(x))| = vp(x)"*|B(0,1)], (3.2)

where B(z,r) denotes the Euclidean ball centered at x € R™ with radius r > 0 and where
|A| denotes the Lebesgue measure of A. Since p is a %—Lipschitz positive function, Lemma
A4 shows that the family of norms (||-||;)zcrn given by

Ve e R" Yy eR", |y|.= Dyl (3.3)

p(z)’

where ||-|| denotes the Euclidean norm in R™, defines a slowly varying metric on R".

3.1. Step 1: Bad and good balls

Using Theorem A.5, we can find a sequence (zx)r>0 in R™ such that

No+1
INy €NV (i1, . ying 1) € NN with iy #4; if 1 <k #1< No+1, ﬂ B, =0
k=1
(3.4)
and
+oo
R" = | By, (3.5)
k=0
where

B ={y eR": [ly —wplloy <1} ={y €R":[ly —zsl| < p(wx)} = B(ax,p(ar)).  (3.6)

Let us notice from Theorem A.5 that the nonnegative integer Ny depends only on the
dimension n and the constant C' > 1 appearing in the slowness condition (A.36), which
can be taken equal to C' =2 here, as pis a %—Lipschitz function. The integer Ny = Ny(n)
is therefore independent on the function p and depends only on the dimension n > 1. It

follows from equations (3.4) and (3.5) that
“+oo
Vo €R", 1<) 1, (z) <Ny, (3.7)
k=0

where 1p, denotes the characteristic function of By. We deduce from formula (3.7) that
for all g € L?(R"),

+oo
19117 2 ny =/]R lg(x)|Pda < Z/B l9(@)da < Nollgl|32gn)- (3.8)
" k=0" Bk
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Let N € N be a nonnegative integer and set f € Ex \ {0}, with €y being the finite-
dimensional vector space spanned by the Hermite functions (®4)|4|<n defined in equation
(1.14). Let 0 < ¢ <1 be a positive constant to be chosen later. We divide the family of
balls (By)r>0 into families of good and bad balls. A ball By, with k € N, is said to be
good if it satisfies

v (5,3) e N" x N”,

Jo

where the positive constants M 5 () > 0 also depend on the fixed positive parameter
0 < e <1 and the dimension n > 1, and are defined by

Bl=n,

()17 85+Bf(x)(2dz <4"(2(2"No+ 1) My 5y (0) | |f () de,
By,
(3.9)

Mﬁ,B,N((S)
~ _ —_e\n+|8 ~ _Y(n (1_€)n+‘/§‘ 1-£
= Rop K Bl ot 8 1) =2 gy g
(3.10)

with the constants f(m; > 1 and K. > 1 defined in Proposition A.3. On the other hand,
a ball By, with k € N, which is not good is said to be bad — that is, when

3 (5,5) € N" xN",

Jo

If By is a bad ball, it follows from formula (3.11) that there exists (ﬂ()ﬁo) e N™ x

Bl <n.

~ 2
<x>(1—6)(\ﬁl+n)af+ﬂf(x)’ do > 4 (2(2" No+ 1)) P10, 5 ( / () 2da
(3.11)

N7,

30’ < n such that

2
(z >(1 6)(|ﬁ0|+”)aﬁo+ﬁof( )‘ dx

1
Bk|f( )| dx < 4n( (2”N0+1))|60|+1M5 ( ) /

1 (1=&)(IBI+n) 2
< ¥ / 85+B f (2 )( dz.
- n n 1 ~
samn, ATRENo+1))EHIM, 5
Ben™, |B|<
(3.12)
By summing over all the bad balls and using from equation (3.4) that
Vo € Rn’ ]lUbad balls B Z ILB’C < NOILUbad balls B (3'13)

bad balls
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we deduce from formula (3.12) and the Fubini-Tonelli theorem that

z)|?dx < %d

bad balls Bk bad balls

() (1B g5+5 11 ‘2 Iz

NO /

<

- %\;ﬂ 4 (2(27 No + 1))+ Mg 5 (9)?
peN",|B|<n

bad balls Bk

IERIEED 8f+3f(w)‘2dx.

< Z n n ]V\'%H—l 2 /
L RN+ D)PFIM, ;5 (67 Ja
BeN™,|B|<n

(3.14)

Using the fact that the number of solutions to the equation (1 +---+ 8, = k, with
k>0, n>1, and unknown 8= (84,...,8,) € N*, is given by (k+” 1), we obtain from
the Bernstein-type estimates in Proposition A.3 and formulas (3.10) and (3.14) that

N,
2 0 2
dr < n
/badbansBk|f(x)| o BGZN" 4n(2(2nN0_|_1))|5\+1 ||f||L2(R)
BeN™,|B|<n
No 1 ,
- Z n [Bl+1 Z n 11122 @my
BeENn (2(2"No +1)) GenmTB|<n
(’i’o (k:—|—n—1) No ) z": 1 <j+n—1> e
= k+1(9n k+1 an ; L2(R™)
P k 2k+1(2n Ny + 1) j:04 J
n—2 = — 27—l 2 L2
<2 Z 2”N0+1 | fllze@ey < 4 1F 122 @), (3.15)
k=1 j=0
since
k+n—1
(IHZ_l) < (kﬂl_l) — gktn—1, (3.16)
=0 I

Recalling from equation (3.5) that

1< lubad balls Bk + ILU By

good balls

we notice that

191y < [ BU@WM+/ (@) Pda. (3.17)

good balls Pk bad balls Bk
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It follows from formulas (3.15) and (3.17) that

91 <5 | F(@)Pdr. (315)

good balls By

3.2. Step 2: Properties on good balls
As the ball B(0,1) is an Euclidean ball, the Sobolev embedding

Wm™2(B(0,1)) — L>*(B(0,1))

(see, e.g., [1, Theorem 4.12]) implies that there exists a positive constant C,, > 0 depending
only on the dimension n > 1 such that

Yu € Wn’Q(B(O,l)), ||U||Loc(B(0_’1)) S CnHuHWn,z(B(OJ)). (319)

By translation invariance and the homogeneity of the Lebesgue measure, it follows from
formulas (3.1), (3.6), and (3.19) that for all u € W™2(By),

HUJHQLN(Bk = ||z u(zk +$P(1’k))||2mo(3(o ) = Collz — u(xy +IP($k))||%4/nv2(B(o,1))

_C2 Z/ xk 2|a\ n‘aa ( )| dx

=2 Z/ m2lel— n< xk))2la|_n|8§u(x)|2dx

a€eN™,
\oz|<n

and

||u||Lx (By) <C max mm Z / ( ) |05 u(x )\2da:
B,

aeN™,
|a\<n
= C?max (1,m ") Y /B |8%u(z)|* da. (3.20)
a€eN™,
|a\<n

We deduce from formula (3.20) that for all u € W™?2(By,),

lull e (B4 < Crmax (Lm™)" plar) £ llullwn 2 (s,)- (3.21)

Let By, be a good ball. Using the fact that the mapping pis a %—Lipschitz positive function,
we notice that

Va € B, = B(zk,p(zr)), 0<plak) < 2p(z). (3.22)
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We deduce from formulas (3.21) and (3.22) that for all 8 € N™ and k € N such that By, is
a good ball,

(i) FEOZF || e

N

<o) st [ 3 o

~ ‘ L2(By)
BeEN™,|B|<n

Nl

\B|+naﬂ+ﬁf‘

:Cnmax(l,m_l)n Z Hp(mk

2(B
BeN”,|B|<n o

NI

< Cpmax (Lm=)" 20 | S o) Penagi | (3.23)

BeEN™,|B|<n

L2(Bx)

Using formula (3.1) and the definition of good balls (3.9), it follows from formula (3.23)
that for all 5 € N™ and k € N such that By is a good ball,

p(xk)WH‘% 6£fHLoo(Bk)

N

< Cpmax (1m™)" (2R) #l+n j{: H y(1- ENUﬂ+n)aﬁ+ﬁf‘

L2(By)

NI

_1\n non [B8]+1
< Cpmax (1L,m™")" (2R)1PH727/2(27 Ny +1) D My | lIfllze(s-

fenr,
5]

(3.24)
Using the fact that the gamma function is increasing on [2, + 00) (see Section A.1), we

obtain from equation (3.10) that for all g € N 3 e N", ‘B’ <n,0<d<1,

I - n(l— 3 3 —e n 1-5
(0) < K.k DBl 5181418] (4 1) S D8] 14 B)e T2
(3.25)

Mg 5 n

Recalling that K. > 1 and 0 < ¢ <1, it follows from formulas (3.24) and (3.25) that for
all 6 € N™ and k € N such that By is a good ball,

~ 18] ~1—§
< Culdem,R) (6Cu(e.R)) T(Bl+n+3)e 7 [ fllram,),  (3.26)
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with
Cn(8,6,m,R) = K. 5Cymax (1,m )" (4R)" K=" (n+1)179)% \/2(2n Ny +1) > 0
(3.27)
and
Co(e,R) = 2R\/2(2" Ny + K2 5 (n+1)"2" > 0. (3.28)

Let By be a good ball. Recalling that f is a finite combination of Hermite functions, we
deduce from the continuity of the function f and the compactness of By, that there exists
Yk € B such that

”fHL‘X’(Bk) = |f(1/k)|~ (3~29)

Using spherical coordinates centered at y;, € By, and the fact that the Euclidean diameter
of the ball By, = B(zg,p(x)) is 2p(xy), we observe that

—+00
lwN Bg| = / </ Lwns, (Y —i—ra)da) "Ly
0 Sn-1

2p(zr)
:/ (/ Lwns, (Y —i—ro)do) " tdr
0 gn—1
1
= (2p(mk))7l/ </ Lons, (Yk +2p(a:k)ra)da> ", (3.30)
0 \Jsn-1

where 1,np, denotes the characteristic function of the measurable set wN By. Using the
Fubini-Tonelli theorem, we deduce from equation (3.30) that

lwN By | < (ZP(JJk))"/Ol (/Sn1 Lwns, (Yk +2p(xk)ro)da> dr
= (2p(xr))" /ni1 (/01 Lons, (Yk +2P($k)7‘0')d7’> do

s
— 2p(zi))" /S - ( /0 1., (r)dr) do = (2p(ax))" /S e, (33)
where
I, ={re€0,1] : yp +2p(zx)roc € wN By }. (3.32)

The estimate (3.31) implies that there exists o¢(k) € S"~! such that
|mek| < (2p($k))n|Sn71| |Iao(k)|' (333)

Recalling that By = B(xg,p(xr)) and using the property (3.2), it follows from formula
(3.33) that

0<

vB(0,1)] _ |wnB(zkp(xk))|
< < |y | < 1. 3.34
20 (ST = (2p(xy))" [S* 1| —} (k)‘ ( )
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3.3. Step 3: Recovery of the L?(R")-norm

Let By, be a good ball. We first notice that ||f|[z2(p,) # 0, since f is a nonzero entire
function. We consider the entire function

1 f (e +2p(an)z00(k))

Vz€C, ¢(z)=|Bxl , (3.35)
£l L2 (B4
where y;, and o((k) are defined in formulas (3.29) and (3.33). We observe from equation
(3.29) that
£l 2254 /1281

Instrumental in the proof of Theorem 2.1 is the following lemma, proved by Kovrijkine
[26, Lemma 1]:

Lemma 3.1. Let I C R be an interval of length 1 such that 0 € I, and let E C I be a
subset of positive measure |E| > 0. There exists a positive constant C > 1 such that for
all analytic functions ® on the open ball B¢ (0,5) centered in zero with radius 5 such that
[2(0)[ =1,

In M

supl®(2)] < (C) " supl®(o)],

zel |E‘ z€E

with M = sup,,<4|®(z)| > 1.

Applying Lemma 3.1 with I = [0,1], E = I 4 C [0,1] verifying |E| = |I5,| > 0
according to formula (3.34), and the analytic function ® = ¢ defined in equation (3.35)
satisfying |¢(0)] > 1, we obtain

1 8UPgeqo,y].f (Yr + 2p(wr) o0 (R))]

| Bk
1fllz2(B1)
In M
o2 SUp, +2p(zg)xoo(k
(¢ P T S
oo (i) | 1 fllz2(By)
with
supy, +2p(z)z00(k
<M= By} Dz <al f (Yk +2p(z1) 200 ( ))I' (3.37)

1 llz2(By)
It follows from formulas (3.34) and (3.36) that

B
2nCS™ ?
sup |f(yx +2p(zx)x00(k))| < rofs| sup | f(yr +2p(zr)z0o0(k))]
wel0,1] 7/B(0,1)] P

g Sn71|
L n( ——1
In2 v1B(0,1)]

) sup | f(yk +2p(xr)zo0(k))]. (3.38)

me[”o(k)

<M
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According to equation (3.32), we notice that

sup | f(yx +2p(x)z00 (k)] <[ £l wnBy)- (3.39)

€Ly (k)

On the other hand, we deduce from equation (3.29) that

Wz Byy = | (yw)] < Zl[tpl]lf(yk +2p(zr)zoo (k)| (3.40)

Tt follows from formulas (3.38), (3.39), and (3.40) that

n 5 1
1fllLoe (i) < M 1f 2o (wnBy)- (3.41)
Using the analyticity of the entire function f, we observe that

(92 ) ()

Tao(k)ﬁ@f’(ﬂfk))lmz‘m- (3.42)

V2eC,  flyr+2p(xx)zo0(k) = )
BENn

Using the facts that By, = B(xg,p(x1)) is a good ball and y;, € By, and the continuity of
the functions 92 f, we deduce from formulas (3.26) and (3.42) that for all |z| < 4,

| Biol2 | f (yr + 20(x) z00(K))|
= p(ar) | B(0,1)|2|f (yk + 2p(zx) 200 (k)|

< |B(O,1)|% Z p(xk)|5+gW8|ﬁ|

5€Nn
07|l
1 n x Lo (By,
SIBODIE 3 plag) 8 =08l
pENn
1-3 T ~ 18]
< [BON) B (Gem Ry | 3 LA nES) (36Cu=R) | 1120
BEN™ A!
(3.43)
We recall the estimate
Ve N, B! <nlflgl, (3.44)

which is obtained using the Newton formula [33, formula (0.3.3)]. Using anew the facts
that the number of solutions to the equation 1 +---+ 3, =k, with £ >0, n > 1, and
unknown = (f4,...,5,) € N*, is given by (k+z_1), and that

T'(B]+n+3)=(|8]+n+2), (18] +n+2)"+? < (n+2)lelflFn+2
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according to formulas (A.3) and (A.21), we notice from formula (3.16) that

n - 181 n ! ~ 18]
> w (85Cu(er) = 3" (WH@H) (83Cu(e:m)
BeNn penn
L |
BeEN™
<e"?(n+42)! Z (86neC~’n(£,R))lﬁ|
BEND
“+oo
_ e"+2(n+2)!z (k—HIZ_l) (8§neén(E,R))k
k=0

+00 N k
< (n+2)1207 Y (166ne0n(e,R)) - (3.49)
k=0

We can now make a choice for the positive parameter 0 < § <1, which is fixed from now
on and taken to be equal to

<1. (3.46)

0 <0 =0per=min (1,~> <
32neC,,(g,R)

Setting D,,(g,m,R) = Cy, (0n,c, r,&,m, R) > 0, it follows from formulas (3.37), (3.43), (3.45),
and (3.46) that

1< M < |[B(0,1)|* (n+2)! Dy (6,m, R)e"+ 22" e nN' 2 (3.47)
We notice from formula (3.34) that

el i >1 (3.48)
vB(01)] '

since the positive constant given by Lemma 3.1 satisfies C' > 1. With this choice, we
deduce from formulas (3.41) and (3.47) that

In Dn(5,w1,R)e"+22"|B(0,1)|%(n+2)!) 552
+7L,E,RN17%
2”0’8"_1’ Tn2 Tn 2
£l o) < | — B
=0 = Sp0)

11l o (wnBy)-

(3.49)
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Recalling from the property (3.2) that

|lwN By| > ~|Bg| >0 (3.50)
as By = B(zg,p(zr)), and setting
2
o= {rcwnBe: |f@) < [ 1w dy}, 3.51)
{ =S B Lo, (

we observe that
2|(wﬂBk) \(:)k|

If(w)lde/ |f (z)|dz > —/ |f (@) |d. (3.52)
/wﬂBk (wﬂBk)\aJk |mek| wNBy
Using the fact that the integral

/ | (@)ldz >0
wNBy

is positive,! since f is a nonzero entire function and |wN By| > 0, we obtain
. 1
[N B\ @kl < 5l By,
which implies that
N o1 1 1 .
@1l = o Bul ~ 1N BO\@H 2 5l Byl = 531Bil = 570" [BO.1)] >0, (3.53)

thanks to formula (3.50). Using again spherical coordinates as in formulas (3.30) and
(3.31), we observe that

1
x| = |or N By| = (QP(xk))n/ </ Ls,nBy (i +2p(a:k)ra)da> " Ldr (3.54)
0 S§n—1

< o))" [ |Tu]ao.
S"_l
where
I, ={r €[0,1] : yp +2p(xx)ro € &y N By} . (3.55)

As in formula (3.33), the estimate (3.54) implies that there exists Go(k) € S*~! such
that

|@x| < (2p(ar))" [S" 7]

T (3.56)
We deduce from formulas (3.53) and (3.56) that

WBODI (3.57)

L2115,k = gt jgro1) =V

Applying anew Lemma 3.1 with I =[0,1], E = i&o(k) C [0,1] verifying |E| = ‘ ~5’0(k)‘ >0,
and the analytic function ® = ¢ defined in equation (3.35) with oo(k) replaced by &o(k)

I This property can also be seen as a consequence of the Remez inequality (see, e.g., [7, §4.4]).
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satisfying |¢(0)| > 1, we obtain

1 SUPgze(0,1] | f (yr + 2p(x1 )50 ()|

| B| 2
Hf”Lz(Bk)
Er -
C Lsup,er N f (e +2p(xk)260(K))
|By|? (k) (3.58)
= T~ k I .
o Moo

where M > 1 denotes the constant defined in formula (3.37). It follows from formulas
(3.57) and (3.58) that

2n+1C |Sn71| %
sup [F(un+ 2p(e)edo (k)| < (e ) s e 20 ao (k)
z€[0,1] 7| (071)| wef50(k)
- <2n+lc‘sn71‘>
w2 M\ THTEODT ~
<M o sup | (uk +2p(a)x50(k))|.
zeIf’o(’«)
(3.59)
According to equation (3.55), we notice that
sup [ f (yr +2p(x1) 200 (F)| < | fllL> @rnBr)- (3.60)
€150
It follows from formulas (3.29), (3.59), and (3.60) that
1fllzoe (i) = £ (yn)] < SI[BPI] |f (e +2p(wr) 20 (K))|
xe|0,
ontlo|gn—1
ﬁl“(ﬁ)
<M 11l @rnBy)- (3.61)
On the other hand, it follows from equation (3.51) that
2
Ilfll 2o @enBr) < | |f(z)|dx. (3.62)

mek| wNBy

We deduce from formulas (3.61) and (3.62) and the Cauchy—Schwarz inequality that

1
I fllz2(e) < 1BelZ || fllzoe(By)

2n+lc|Sn71

2| By |2 %ln<7w , )
< | B2 M B0 D] / \f(2)|da
wNBy,

- |wﬂBk|

1 . 2n+lc Sn—l
< 2Byl mett| TmenT

= lwn B3 >|f||L2(mBk)' (3.63)
k
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By the property (3.50), it follows from formulas (3.47), (3.48), and (3.63) that

antiofen—1| )

L1n<7
m2 1B, D]
1172y < =M 1172 wnm

2 |~

) iln(%)
< % (|B(0,1)\% (n—|—2)!Dn(5,m,R)e"+22”65f’:jRN17E) " e Hf”QL?(wﬂBk)'
(3.64)
Setting

1
In |B(o,1)\5(n+2)!Dn(g,m,R)e"+22">

wn(mRe) = 2 (ZC >0, (3.65)
T V3yz \ 11B(0,1)] ’

we deduce from formula (3.64) that there exists a positive universal constant &, > 1 such
that for any good ball By,

2 se—2 1-5
In2 671,5,RN 2

3 Fn
191550 < Sralin R0 (22) ormy (360
Using anew from equation (3.4) that

]lUgood balls Bk S Z ]lBk S NO]lUgood balls Bk? (367>
good balls

it follows from formulas (3.18) and (3.66) that

4 4
13 <5 [ F@Pdr<s > Il

good balls By, good balls

2 se—2 1-£
1:12§n,5,RN 2

Fn
< o (m, Roy.c)? <7> S 1B s

good balls

2 52 Nl—%
,%n In2%n,e,R 2

< Noton (m, Roy.2)° () / (@) Pdz
Y wﬁ(U

good balls Bk)

t

12505 g NS
) T (3.68)

S N()K'n(m7R7’Y7€)2 (f;
This ends the proof of Theorem 2.1.

4. Proof of Theorem 2.5

This section is devoted to the proof of Theorem 2.5. Let A be a closed operator on
L?(R™) which is the infinitesimal generator of a strongly continuous contraction semigroup
(e_tA) >0 01 L?(R") satisfying the assumptions of Theorem 2.5. According to Lemma

A8, we can assume that there exist some constants % <s<1,Cs>1,0<tg<1,mi,ms €R
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with m1 > 0, mg > 0 such that

Y0 < t < tg,Ya,3 € N",Vg € L*(R"™),
C;+|a|+\6l

[|z~02 (eftAg)Hp(Rn) < W(a!)i(ﬂ!)i

gllz2@®ny- (4.1)

Let p:R™ — (0, +o0) be a %-Lipschitz positive function with R™ being equipped with
the Euclidean norm, such that there exist some constants 0 < § <2s—1,m >0,R>m
such that

VeeR", 0<m<p(x)< R(m)a.

Let w be a measurable subset of R™ which is ~-thick with respect to the density
p — that is,

D<y<1LVzeR”, |wNB(z,p(x))| >y B(x,p(x))]. (4.2)

Thanks to the Hilbert uniqueness method, the null-controllability of the system (2.20) is
equivalent to the observability of the adjoint system

(Or+A)g(t,x) =0, xe€R™t>0,
9li=o = go € L*(R")

from the control subset w in any positive time 7" > 0. We shall prove that Theorem 2.5
can be deduced from the abstract observability result given by Theorem 1.6. In order to
apply Theorem 1.6, it is therefore sufficient to check that the spectral inequality (1.9)
and the dissipation estimate (1.10) hold when using the Hermite orthogonal projections
(mk)k>0 defined in formula (1.15). It follows from Theorem 2.1 that there exist some
positive constant ., (m,R,y,1—4§) > 0, C‘n(l —6,R) >0, and a positive universal constant
fn > 0 such that for all k > 1,f € L2(R"),

- C’n,(l—6,R)leH
) Imeflie.  (43)

Kn
L2y < (i, Ry — 8) (7

This establishes the spectral inequality (1.9) with the parameter 0 < a = 1%5 < s. Let
us now prove that the dissipation estimate (1.10) holds true as well. To that end, we
begin by establishing that there exists a positive constant C’g(n) > 1 such that for all
keN,g € L3(R"),0 <t < to,

C”vs(n)1+k

k(. —tA 1
1 +7)" (7 29) | 2 gy < iy D= lgllze ), (4.4)

where H = Z;;l ‘H; denotes the harmonic oscillator with
Hj+1==07 +a+1= (0, +2;) (=0p; +25), 1<j<n. (4.5)

Set k € N*. We deduce from equation (4.5) and Lemma A.9 that there exists a finite

family of real numbers (Ciklj) independent on the parameter 1 < 5 < n such

l1,12€N,
0<l1+12<2k
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that
k 2k—1 11 ol
(H;+0) = > ool (4.6)
l1,l2€N,
0<l1+12<2k,
and
2k— ll Iy

Vil ENO<h+lp < 2%, |G| <3771 2k) (4.7)

Using the fact that [H; +1,H; + 1] =0 for all 0 < j,k <n, we deduce from the multinomial
formula that

(H+n)k

n
2v;—1 1
= X H (H;+1)" 2. H > oy
" " FERK]
w:(vl,-..wn)eN" Jj=1 Y=(¥1,-,1n)EN", T j=1 1;,l;€N,
lvI=k Ivl=k 0<l;+I;<2v;

SDOL- I Sl 1) vl P S DI 10§ Gt B
j=1

| |
sene, o penr, \j=1 o BEN", yEN" Iy=k,
lvl=k  a+p<2y lo+B|<2k  a+B<2y
(4.8)
It follows from equation (4.8) that
(H+n)= > ka0l (4.9)
a,BEN",
la+B|<2k

with

k! n v 1
cas= >, (1% |- (4.10)

veN" =k, | \GE1
a+p<2y

It follows from formulas (4.7) and (4.10) that for all a, 8 € N with |a+ 5| < 2k,

n
2vj =B

k! L
bl < > S I3 ew

YEN™, |y|=k, ' \J=1
a+B<2y
| — | — |
<y 5;32%”(%)7% S g2k (o) B (4.11)
yeNr, '
[vI=k
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We deduce from formulas (4.1), (4.9), and (4.11) that for all k > 1,g € L?(R"),0 <t < t,,

I+ (€ ) oy < D Letsl 12702 (€7 9) | oy

a,BeN™,
la+Bl<2k
1+|al+8]
hen k 2k—lal-18] C N AL
< Z 3 n"(2k)" 2 W(a.)%(ﬂ.)zs gllz2 @)
a,BEN",
la+B|<2k
1+|a|+]B]
JR 2h—lal-ls|  C Lol
< N BTN 2R = mﬂ o) E (8D lglle@n,  (412)
a,BEN",
la+B|<2k

using the convention 0° = 1. With this convention, we directly notice from Lemma A.2
that

B(1,1)

Yo,y >0, x¥<eT(y+1), and Voe,y >1, T(x)T(y) < 2’

I'(z4+y+1).

Using % < s <1 and the foregoing estimates, it follows from formula (4.12) that for all
k>1,g€ L*(R"),0 <t <to,

04 (49 < 30 g rnbe'r (EL)

2s
a,BeEN™,
la+B|<2k

C51+|(1|+‘B|e|a+,3| |O[| |5|
X el T s <2 +1) T <25 + 1) lgllz2

< Z 32knnk64kr<2k|§4|5|+1>
s

o, BEN,
la+3]<2k
olFlal+] af 5
< vt (3 +1) T (5 +1) b
B(l 12 [k C1+lal+8]
2k—n k; 4k !
- ; ’ F(s”)ﬂnlwummllgllm.
a,BeEN™,
\a+6|g2k

(4.13)

Thanks to the Stirling formula (A.7), we can find a positive constant C” > 1 such that

for all k> 1,
]41 2rs k k. k 27‘(‘3 k
< / s se sks <Oy s |
r<s> Clf = s e 7k <O/ s T (R

m\»—A

(4.14)
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since
Ly A
Vk > 1, ﬁgzﬁ:e.
§=0

Using from equation (A.2) that

k k k k k k_ [k
()= (Fea) (S03) (£ ) (E0) (),
s s s s s s \'s
it follows from formulas (4.13) and (4.14) that for all k > 1,g € L*(R"),0 < t < to,

1 +n)* (e 9) [ 2 oy

- B(]. 1)2 k Cl+|0“+|ﬁ|
2k—n, k 4k ’ S
BEN 3 n"e TI‘ §+5 W”Q”LQ(R")
a,BEN™,
la+B|<2k
B(1 1)2 1+\a|+\6\ N
2k—m, k 4k ’ /
< D, 3 nbe 4 +4 C tml(la\+|ﬁ|)+m2( D gl
a,BEN",
la+B|<2k
o B(1,1 / _x O} 1
< (2k+1)2ng2kmnph 4’67(4 ) < +4> Cl s R 7 lllz2gen).

(4.15)

The estimate (4.4) follows from formula (4.15) in the case when k > 1. It holds as well when
k =0, since (e_tA)t>0 is a contraction semigroup on L?(R"), és(n) >1,and 0 <o <1.
This ends the proof of the estimate (4.4).

With (®,)aene the L?(R™)-Hermite basis, we next notice that for all g € L?(R™),

t>0,
2t2m1s+1(9]q|+n)® —tA
S ek (o tag gy L (4.16)
aecNn
100 ok k(2mys+1) 2
okt @lol+n)* |, _,a
= Z Z | ‘< gaq)a>L2(Rn)
k!
a€eN™ k=0
190 5k k(2mys+1) 2
2 t S
<3 Y T | el 2 )
L2(R™)

a€eN™ k=0
where || denotes the floor function. Using the self-adjointness property of the harmonic

oscillator H = —A, +||z]|?, we deduce from formulas (4.4), (4.16), and (A.15) that for all
g€ L?(R"),t >0,
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> e (g L [
aeNn
10 5k k(2mys+1) 2
2%t —tA ks 41
< O S EE (e,
a€Nm k=0
10 ok ik(2mys+1) 2
_ 2"t ks |41 —tA
- Z k! Z <(,H+n)|~ 2J (6 g)’q)o‘>L2(]Rn)
k=0 a€Nn
100 ok k(2mys+1) 2
2"t k|41 ,—tA
= - H(H+n)L2J (e g)’LQ(R”). (4.17)

k=0
It follows from formulas (4.4) and (4.17) that for all g € L?(R"),0 < t < to,

2

aeNn

<e_tAg’(I)O‘>L2(]R")

+90 ok 1k(2mis+1) A 2] & |44 2
25t Cs(n ks
<> B (([5]+1)!) tolsgenr

o t4m1(|~%J+1)+2m2 9

(4.18)

Using the facts that L%J < % and that the gamma function is increasing on [2, + 00)

(see §A.1), we deduce from formulas (4.18) and (A.3) that for all g € L?(R"),0 < t < to,

2

3 Q22 (2lal+n)®

aeN”

<67tA97‘I’a>L2(]Rn)

+00 5k k(2mis+1) 2 4+ks %
2% Ce(n) ks 9
S Z k! t2m1k5+4m1+2m2 (<\‘ 2 J + 1) '> ||g||L2(R")

k=0
£ oktk (1) 4+ks 2
28t C’s(n) ks 9
<2 e L | 12) Mol
k=0
190 5k ik A 4+ks 2
2 t Cs(n) + ]{;3 s 9
<2y pamem L5 T2) lalze@n)- (4.19)
k=0

Using Lemma A.2(iii) and % > 1, since 2 < s <1, we can find a positive constant C7 > 1
such that

vz>1, T(z)? <C/T <2x) . (4.20)
S
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With the notation Cy = Cs(n), we deduce from formulas (4.19), (4.20), and (A.3) that
for all g € L2(R™),0 < t < o,

aeNm
1T okik  Ad+ks
AT AN O 4
<c/ s T (k+s> lgll?:

s k! t4m1 +2mo
k=0

1T 9kik  Ad+ks
27tk O

’ 2

<e_tAg7®Ot>L2

N )
e DENAN RN LYo S S S T
= Ys k! tdmi+2my Ilirz = Cs k! tdmi+2mo ‘191l L2
k=0 k=0
00 ~ 00 A
C4tks ~ k 4
<OrY 2t (k) gl < O (Y (2Cket) | sy T ol
k=0 k=0
(4.21)

since % <s<1and

8

+ .
k47" B+ ir

| il
7! r 7!

I
=)

It follows from formula (4.21) that for all g € L?(R"),0 <t < ty,

Z €2t2m15+1 (2|a|+n)s

aeN?

1" A4
> 90nCH
— t4m1 +2mo

<6_tA97(I)a>L2(Rn) 7!e7||g||2L?(R")’ (4'22)

with
o1
0 <ty =min <t0, <4C§e) ) <1.
For any 0 <t <t; and g € L?(R"), the series

2mqs+1 s _
f= Z et (2]l +n) <e tA97(I)a>L2(Rn)(I)a
aeN?

is therefore convergent in L?(R") and defines an L?(R")-function satisfying

V2CTTIC2e2

_2mystlqys
Hf||L2(R") < 2y T ||g||L2(]R"); ot N

f=cthg (423)

according to equation (2.27). It follows from formula (4.23) that for all 0 <t <t;,g9 €
L2(R"),k > 1,

[[(L=m) (e7g)]| . = H(l — 1) (e—tz’”““wf) ‘

- o~ t2E T (2he4n) (I—me)fllzz <e

_i2myst+lggs
]

L2
Flliee (4.24)

_y2mistlys

https://doi.org/10.1017/51474748022000135 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748022000135

Spectral Inequalities for Hermite Functions and Null-Controllability 2567

We deduce from formulas (4.23) and (4.24) the following dissipation estimate:
Y0 <t<t,Vge L*(R™),Vk > 1,

~ z
< \/ 20!7'0362 _g2mystlgs
Y5 5 e

H(]‘iﬂ-k) (eitAg)H[}(Rn) = 12ma+ma HgHLQ(R")' (425)

It establishes the dissipation estimate (1.10) with the parameter 0 < a = 1%‘5 <b=s.We
can therefore deduce from Theorem 1.6 that the following observability estimate holds in
any positive time:

3C > 1,¥T > 0,Yg € L*(R™),

2 C ro 2
9llz2@n < Cexp <T<1+s><zm1+1>>/0 le™g][ 2 ) -

25—1—-9

||67TA

This ends the proof of Theorem 2.5.

We close this section by noting that the conclusions of Theorem 2.5 hold true as well
when the quantitative regularizing estimates (2.19) holding for some % < s <1 arereplaced
by the following assumption:

1
35 < s < 1,3my,my >0,3C1,Cy > 0,30 < to < 1,Y0 < t < ty,Vg € L*(R"),

T el

aeNn

~ta 208 e
<€ g,(I)Oé>L2(Rn) < _t_272||g||L2(R")' (426)

By resuming the foregoing proof from formula (4.22), we indeed notice that for any
0<t<tyand g€ L?(R"), the series

fe Z etglll (2| +n)* <e_tAga(I)a>L2(R") o,
aeN™

is convergent in L?(R™) and defines an L?(R™)-function satisfying

CQ _t™1 448 _
I fllz2@ny < llgll 22 mn), e At f=eMyg, (4.27)

tmo

according to equation (2.27). It follows from formula (4.27) that for all 0 <t < tg,9 €
L2(R™),k > 1,

10 =m0 (79 | 2y = H(l —m) (e Hf)’ L2(R")
_%”717.[5
- He ' (177%)]0‘ L2(R™)

_ L s ™Ml s
<e T PN —m) flramey < e | flrame. (428)

We deduce from formulas (4.27) and (4.28) the following dissipation estimate:

Coy _tmigs
2 = K gl e (4.29)

tma

VO<t<toVge L*(R")Vk>1, |[(1—m) (e g)] . <
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Tt establishes the dissipation estimate (1.10) with the parameter 0 < a = 1%5 <b=s. We
can therefore deduce from Theorem 1.6 that the following observability estimate holds in
any positive time:

C T
3C > 1,VT > 0,Vg € L*(R"), ||67TAgHiQ(Rn) < Cexp (W> /O ||e*“‘g||2m(w) dt.

2s—1—

Appendix A. Miscellaneous facts and instrumental lemmas

A.1. Miscellaneous facts about the gamma function

Let N be the set of nonnegative integers and Z_ be the set of nonpositive integers. The
gamma function defined as

+oo
Ve >0, I'(z)= / t*te7tdt > 0 (A.1)
0
admits a unique analytic extension on C\ Z_ satisfying the functional identity
VzeC\Z_, T(z+1)=2zT(2) (A.2)
and interpolating the factorial function
vneN, T'(n+1)=nl (A.3)

It also satisfies the Legendre duplication formula

z+7]
p

Vp e N\ {0},Vz € C\ {-N}, f[r( ):(zw)%lp%—zr(z)

(see, e.g., [5, Chapter 3]). The gamma function is strictly convex on (0, + co), since
differentiating under the integral sign provides that

+o00o
Vo >0, I"(z) :/ (Int)*t"te~tdt > 0. (A.4)
0
On the other hand, as I'(1) =T'(2) = 1 thanks to equation (A.3), Rolle’s theorem implies
that there exists z in |1,2[ such that I'(z¢) = 0. Since I is an increasing function on

(0, + c0), the gamma function is therefore increasing on [2, + 00). Related to the gamma
function is the beta function

1
Vr,y >0, B(z,y) z/ 1=t at, (A.5)
0

satisfying the identity

I'(z)l'(y) (A.6)

Vr,y >0, B(ny)= Tty

Instrumental in the core of this work are the following two lemmas:
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Lemma A.1. The gamma function satisfies the following estimates:

VpeN\{0},3C, > 0¥z >1, T(x)7 <C, (p%e%) r (;) .
Proof. Using the Legendre duplication formula, equation (A.2), and the fact that the
gamma function is increasing on [2, + 00), we deduce that for all p € N\ {0},z > 2p,

F(e) = (zw)%pw‘%zﬁr <m+j) < (2m) 't (F (;+1)>p

=0 NP

oot 2 (1)) s (1 ()

since aP < e®pl. It proves the estimate when x > 2p. We conclude by using the continuity
1

of the function z — (11“9)): on [1, 4+ c0). O
r

pEeE

LS31]
~—

Lemma A.2. The gamma function and the beta function satisfy the following estimates:

(i) Ve >0,Yy >0, z¥<T(y+1)e”.
(ii) Vr > 0Vz,y >r, TD(z)T(y) < Q—ITB(T,T)F(erer 1).
(i) Vr > 1,3C, > 0,Vx > 1, T(x)" <C.I'(rz).

Proof. It follows from equation (A.1) that for all a,y > 0,

+oo T 1 1 Ve
T(y) :/ ty=te tdt z/ tyle~tdt = xy/ ty=lemtdt > zy/ tvlemrdt =

0 0 0 0 Y
Assertion (i) directly follows from the previous estimate, together with the functional
identity (A.2). On the other hand, since the beta function is separately nonincreasing with
respect to the two variables, it follows from the functional identity (A.2) and equation
(A.6) that for all r > 0,2,y >,

I'(z)'(y) = B(z,y)l'(z+y) < B(r,y)l'(x+y) < B(r,r)l'(z+y)

= B;(:_’;) (z+y)P(z+y) < #F(m—i—y%—l).

—X

It proves that estimate (ii) holds. Using the Stirling formula

T(2) ~aos oo \/f (%) (A7)

(see, e.g., [5]), it follows that for all r > 1,

I X r 27‘&' TT71 1,0

I‘Eri) ~ s too (m) r2 = O,(1) when & — +o0. (A.8)
Since the function = — 58”;; is continuous on [1, + 00), there exists a positive constant
Cy > 0 such that estimate (iii) holds. O
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A.2. Hermite functions and Bernstein-type estimates

The standard Hermite functions (¢x)x>o are defined for z € R:

D 2 d 2 F 2 ak
- ) - e (2 ) o

where a4 is the creation operator
1 d
ay=—7|x——|.
M) dx

The Hermite functions satisfy the identity
VEERVE >0, i(8) = (—)*V2ren(©). (A.10)

The L?-adjoint of the creation operator is the annihilation operator

L1 d
(Z_:CL_;'_ZE .I‘i’@ .

The following identities hold:

2
[a_,ay]=a_ay —aya_ =1d, dd2 + 2% =2a,a_+1, (A.11)
VkeN, ardp=Vk+1lopi, VkeN, a_¢p=Vkor_1 (=0ifk=0), (A.12)
d2

The family (¢ )ren is an orthonormal basis of L?(R). We set for a = (@)1<j<n €N,

2) =[] a, (2). (A.14)

The family (®,)qenn is an orthonormal basis of L?(R™) composed of the eigenfunctions
of the n-dimensional harmonic oscillator

H=—Dp+|? =) (2k+n)Py, Id=> P, (A.15)

k>0 k>0

where PPy, is the orthogonal projection onto Spanc{®a }aenn, jaj=k, With |af = a1 +-- -4 a,.
Instrumental in the proof of Theorem 2.1 are the following Bernstein-type estimates:

Proposition A.3. With £y = Spanc{®a}aenn,|aj<n, finite combinations of Hermite
functions satisfy the following estimates:

V0 <e<1,3K.>1¥0<§<1,3K. 5> 1,¥r>0VYa,3 € N"YN € NYf € Ep,

a a al+18 N3
202l ey < aalGR 0 (15 2} %2
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and
r+18]
€

14017021y < Ko KE3 4 )0 (S

Proof. We notice that

1
ZLj ﬁ(aj,-i- —I-a],_), aﬂc] 7(% - aj,-'r)
with
1 1
aj,+:\ﬁ(xj—8m_j), aj,f:\*@(fffrarj)

2571

1_&
+3) ¢ |l age

(A.16)

(A.17)

By denoting (¢;),;, the canonical basis of R", we obtain from formulas (A.12) and

(A.16) that for all N EN and feén,

a>L2|2

2
2
lag,+ fl 2@ = (@5 | D (F1@a)12Pa
la|<N L2(R")
2
= Z Vvt f7 LQ(PaJreJ = Z (O[j—’—l)|<f’(P
la|<N L2(R™) la|<N
<(N+1) Z (f,®a) 2| = (N+ D[ flI72n
la|<N
and
2
||aj,—f||iz(]gn) = ||%5,— Z (f,®a)r2Po
la|<N L2(R")
2
= Y vaif e ®a ., = 3 o0llf Ra)rel
|| <N L2Rny  lolSN
<N Y [(f%a) 2l = NIIFI12 -
|| <N

It follows that for all N € N and f € Ey,

1
238 s gy < 75 (s F gy + oSl pagaey ) < VEN 2 Sl cery

and

1
HaacijLz(Rn) < NG (H%,Jerm(Rn) + ||aj,—f||L2(Rn)) <V2N +2| fll 22 mn)-

We notice from formulas (A.12) and (A.16) that
VYN eNVfeEnYa,B N, z°00 f € Enyja+ia)s
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with z® =z - 22" and 05 = 97 ---90». We deduce from formula (A.18) that for all
NeN, fe&n, and o, € N*, with a; > 1,

HxaangLZ(]R") = lz1( 2*7 0 f )lr2@ny < V2V N +al+ 8] Hxa_elangLz(Rn)'

EENtlal+18]-1

By iterating the previous estimates, we readily obtain from formulas (A.18) and (A.19)
that for all N €N, f € €y, and o, € N”,

o lat+1sl [ (N +|a| +|8|)!
2908 £ ey < 2252 AR (A20)

We recall the following basic estimates:
Vt>0VkeN, th<elkl,  and  Vt>0VA>0, t1<AdA (A.21)

(see, e.g., [33, formula (0.3.14)]). Let 0 < 6 <1 be a positive constant. When N < |a|+ 3],
with |a|+|8| > 1, we deduce from formulas (A.3) and (A.21) that for all p € N\ {0},

lal+18]

(N +lal+[8])
<2181 (o] +15]) = < (2v)" /(al TTB]!

lo]+18]
P

o ! o
o o410 (N+\§uvl|+|ﬂ|). < gl=ie

= (26v8) " (0 (al+ 151+ )% (5 )

(265/2) "7 (Dol + 181+ 1)} (Jal +1B)Y > e
1

= (26v/e) ™M ez (D(Ja] +18] + 1) ¥ (T(Ja] +16] +1)) .
(A.22)

IN

This estimate also holds when |a|+ || = 0. Using Lemmas A.1 and A.2(ii), we deduce
from formulas (A.22) that for all |a|+ 8] > N, 0 < d§ <1, and p € N\ {0},

N!
1 11 11 ) lel+18] 1 1
< CyCe\Teehph (Qﬁeegpm) r (Ia +|26| - )F (Ia +1|96| + )
11 1 101 11 e8]
< Pp (,) CyCpers™ v/ 2eer pr (2\/5@65])5(5)
2 \pp
1 1 1 1
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Set 0 < e < 1. We can choose the positive integer p = p. such that

1 1 1
< ) -+ —+1<2. (A.24)

1
_‘_7
P~ 2-—¢ 2 pe

DN | =

De = 2,

Since the gamma function is convex on (0, +00) and I'(1) =T'(2) = 1, we have I'(x) <T'(2)
for all 1 < <2. On the other hand, using the fact that the gamma function is increasing
on [2, + 00), we deduce that I'(2) <T'(y) <T'(z) for all 2 <y < z. It implies that

Vi<r<2<y<s T(2)<T(y) <T(). (A.25)
It follows from formula (A.23) that |o|+|f| > N,0<é<1,and 0 <e <1,

< ik s(D.g)le+ieip (1181 Ao
N1 > ,5( 6) 2_¢ + ’ ( 6)

~ 1 1 N N
K.s= Pep (,) C’gC’pEepeépf v 266ép§’5 >0 and D, = Zﬁeeépé’i > 0.
Pe Pe
(A.27)

On the other hand, when N > |a|+ 3| > 0, we deduce from formula (A.21) and Lemma
A.2(i) that for all 0 < <1,0<e <1,

QLW w SZ‘M;W (N+|a\—|—|ﬁ|)L§m|
< (26)lel 8l (5—1\/N)Ia\+lﬁl _ (25)l1418] (2N %) Lo +15]
< (26)leI*1A (W) = TINITE lafal
< -
< (20)lel+18Ip (W i 1) N (A28)

Using formula (A.25), we deduce from formula (A.28) that for all 0 < < 1,0 <e <1,

2% (N +|al+]8])! §(25)|a\+\5|r o + 8] +2 655*21\11—%7 (A.29)
Ny 2—¢
when N > |a|+|B]| > 0. Let us also notice from formula (A.25) that

. 1 e—2 71— £
2% W:1<(25)QI+BF<W+2)66 N (A.30)

https://doi.org/10.1017/51474748022000135 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748022000135

2574 J. Martin and K. Pravda-Starov

when |a|+ 5] =0, since I'(2) = 1. It follows from formulas (A.20), (A.26), (A.29), and
(A.30) that for all 0 < e <1, there exists a positive constant K. > 1 such that

V0 <6 <1,3K. ;> 1,Ya,8 € N" YN € NYf € &,

o o al+ i
[@* 0L f || 1o gy < Bes (6K Yl 18I (|2|_f| —|—2>e 2= || | L2 gy (A.31)

Using the Newton formula, we obtain that for all k£ € N,

160940 = | <1+zx> 085w e
k'o-
/” S Bjete)far= Y 702 gy (432

Nn+1 ' Nn+17
Ivl k \'v\:k

where we denote ¥ = (v1,...,%,) € N if vy = (v1,...,Vn11) € N**L Tt follows from formulas
(A.25), (A.31), and (A.32) that for all 0 < e <1,0<d<1,eN" ke NNeN, f ey,

2 k! -~ - A+ 18 2 an"8
R D Sl o e () ) K

yeENF
=k
} 2 ey |
< 3’5(F(k2+|6|+2>> Bt etz [ S By
€ vEN"H,PY.
lvI=k
i k ? s
=2y (0 (G ) ) R 0 ) e
, iy
(A.33)
since
k!
Y S=m+Dh (A.34)
yenntt
Ivl=k

thanks to the Newton formula. Set r € [0, +00) \N. We can write r =0k + (1 —6)(k+1) >0,
with k € N and 0 €]0,1[. Using the Holder inequality, it follows from formula (A.33) that

, 0
[ {2) agf”m(mn) < H<$>k85fHL2(Rn [ k+laﬁf{|L2(R"

1-6
_ ~55(F(k+|ﬁ| 2>) ( (k+1+ﬁ| 2))
’ 2— 2—¢

£
2

« o = K518 (n 4+ 1) 2 | ]| p2 (g - (A.35)
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Using the facts that the gamma function is increasing on [2, + 00) and that k < r, we
deduce from formula (A.35) that

||<m>ra§f||L2(]R")
0 176 £
- 1 1_& i
<K.s (I‘ (T;‘ \fl +2>) (1" (w _|_2>> o K18 (1) % | £ 12 ey

r+|8]
— +3
2—¢ +

1_€
SK&gF( )eﬁzf KLBHT(SLB'(TL—F1)§||fHL2(Rn)7

since 0 < 57— <1, as 0 <& < 1. This ends the proof of Proposition A.3. O

A.3. Gelfand—Shilov regularity
We refer the reader to [16, 17, 33, 40] and the references therein for extensive expositions

of Gelfand—Shilov regularity theory. The Gelfand—Shilov spaces S#(R"), with p,v > 0,1+
v > 1, are defined as the spaces of smooth functions f € C°°(R™) satisfying the estimates

JA,C >0, [0°f(z)| < CAll(alyre= %o 3 e R a e N",
or equivalently,

JA,C >0, sup |2705 f(x)| < CAITIEI (B, a,B€N",
weRTI
with a! = (aq!)--(aw!) if @ = (ag,...,a,) € N*. These Gelfand—Shilov spaces S¥(R™)
may also be characterized as the spaces of Schwartz functions f € .7 (R™) satisfying the
estimates
30> 0,e>0, |f(a)|<Ce el zeRr, )f(g)‘ <CelEl" g e Rm,

In particular, we notice that Hermite functions belong to the symmetric Gelfand—Shilov
space 511 ;22 (R™). More generally, the symmetric Gelfand-Shilov spaces Si(R"), with p >
1/2, can be nicely characterized through decomposition into the Hermite basis (P4 )aen»
(see, e.g., [40, Proposition 1.2]),

fESHR™) & f € LA(R™), 3t > 0, || ((f,@a) 12 exp (tola|# ) ) < o0
a€eN™||;2 (N7)
1
& feL2(R"), 3ty >0, ||efor™ f < 400,
L2(R")
where H = —A, + ||z||? stands for the harmonic oscillator.

A.4. Slowly varying metrics

This section is devoted to recalling basic facts about slowly varying metrics. We refer the
reader to [23, §1.4] for the proofs of the following results. Let X be an open subset in
a finite-dimensional R-vector space V and |||, a norm in V depending on = € X. The
family of norms (||||)zex is said to define a slowly varying metric in X if there exists a
positive constant C' > 1 such that for all z € X and for all y € V satisfying ||y —z||» <1,
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then y € X and
1
voeV, Slvlle <lvlly < Cllvlle- (A.36)

Lemma A.4 ([23, Example 1.4.8]). Let X be an open subset in a finite-dimensional R-
vector space V and d(x) a Lipschitz continuous function, positive in X and zero in V\ X,

satisfying
Veye X, ld(x) —d(y)| <z -yl
where ||-|| is a fized norm in V. Then the family of norms (||||z)zex given by
2
Pl =210 e x e,
d(x)

defines a slowly varying metric in X.

Let us consider the case when X =V =R" and ||-|| is the Euclidean norm. If 0 <e <1

and 0 < R < ﬁ, then the gradient of the function p.(z) = R (z)'~° given by

Vz €R", Vp.(r)=R(l-¢) 1
(z)
satisfies ||V || oo mn) < % The mapping p is then a %—Lipschitz positive function, and
Lemma A.4 shows that the family of norms ||-||, = % defines a slowly varying metric
on R™.

Theorem A.5 ([23, Theorem 1.4.10]). Let X be an open subset in V, an R-vector space
of finite dimension n > 1, and let (||'||z)zex be a family of norms in V defining a slowly
varying metric. Then there exists a sequence (Tx)g>0 € XN such that the balls

By={zeV:|z—zkl, <1} CX

form a covering of X,
+oo
X =B,
k=0
such that the intersection of more than N = (403 + 1)”2 X 2 distinct balls By is always

empty, where C > 1 denotes the positive constant appearing in the slowness condition
(A.36).

A.5. Instrumental lemmas

This section is devoted to the proofs of instrumental lemmas.

Lemma A.6. Let p1,p2: R™ — (0,4 00) be two continuous positive functions satisfying
Ve eR", 0<pi(x) < pa(x).

If w is a measurable subset of R™ werifying

Ve eR",  |wNB(z,p1(x))] = 7Bz, p1(2))], (A.37)
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with 1 — 6% < v <1, where B(y,r) denotes the Fuclidean ball centered at y € R™ with
radius r > 0 and where |A| denotes the Lebesgue measure of A, then it satisfies

Ve eR"™ |wNB(z,p2(x))| > 7Bz, p2(z))], (A.38)
with ¥ =1—(1—~)6™ > 0.

Proof. Let w be a measurable subset of R™ satisfying formula (A.37) and = € R". We begin

by recovering B(z,p2(x)) by a finite number of balls B (36;€7 %) with p1 (zx) < 3p2(zk).

In order to do so, we first notice that B(z,p2(x)) is a compact set and that

Banc U (u). (A.39)
yEB(x,p2(x)),
p1(y)<3pa(x)

Indeed, if y € B(x,p2(x)) and p1(y) > 3p2(x), then the continuous function defined for all
£€ [0,1] by f(£) = pa(ty+ (1~ £)z) satisfies (0) = pa (x) < pa(x) and £(1) = p1(y) > 3pa().
It follows that there exists 0 < tg < 1 such that p;(2) = 3pa(x) with z =toy+ (1 —to)z €
B(x,p2(z)) and y € B (z, pléz)), as

1
lz=all =tolle —yll <p2(2),  lly—zll = A ~to)llz —yll < p2(2) = 3p1(2).

It follows that there exists a finite sequence (z;, )<<y of B(z,p2(x)) such that

N
B(z,p2(x)) C U B (a:,-k, A1 (;)%)) and  VO<E<N, pi(z;)<3p2(z). (A.40)
k=0

We can now use the following covering lemma [37, Lemma 7.3]:

Lemma A.7 (Vitali covering lemma). Let (y;)o<i<n be a finite sequence of R™ and
(r:)o<i<n C (0, +00)NTL. There exists a subset S C {0,...,N} such that

(i) the balls (B(y:,7:))ics are 2% 2 disjoint and

) U Blyor) € U Bl
1=0 €S

It follows from Lemma A.7 and formula (A.40) that there exists a subset S C {0,...,N}
such that the balls (B (:cik, pl(wik))) are 2 x 2 disjoint and satisfy
kes

3

B(I,pg(x)) - U B(ximpl (‘rik)) : (A41)
kes

We also notice that

L & (5250 ) € B2

3
kes
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since if y € B <xik,, pl(gik) ), then

(xik)

P1
ly =2l < lly =il + lzs, -2l < =57 +p2(2) < 2p2(2).

It follows from formulas (A.37) and (A.41) that

lwN B(x,p2(x))| = [B(, pa(x))| = [(R" \w) N B(x, p2(x))]

> |B(z,p2(x))| = Y [(R"\w)N B (i1 (x5,))]
keS

> |B(,p2(x))| = Y (1=7) B (@i, p1 (@i,)]

kesS
1 (i)

(e 5)

kesS
> |B(@,p2(2))| = (1 =7)3"B(x,2pa(x))].

and

|wN B(z,p2(2))] = |Bl,p2(2))| = Y (1-7)3"
kes

= [B(z,pa2(x))| = (1=7)3"

We deduce that

lwN B(x,p2(x))] = (1= (1=7)6")|B(x,p2(x))].

This ends the proof of Lemma A.G. O

Lemma A.8. Set % <s5<1,0<tg<1, and let A be a closed operator on L*(R™) which
18 the infinitesimal generator of a strongly continuous contraction semigroup (e*tA)DO

on L2(R™). If the estimates

3C > 1,3my > 0,3mg > 0,Y0 < t < to,Vo, f € N Vg € L*(R"),
C1+lel+18|

[e% — 1 1
%02 (™ 9Ny < G areran s () (89

9llz2@n) (A.42)
hold, then the estimates
3C > 1,3 > 0,3y > 0,Y0 < t < to,Ya, 3 € N*,¥g € L*(R"),

B Cl+lel+18] o N
Hmaaf (e tAg)HLz(Rn) < W(a!)“ CHES

gHLZ(R“) (A43)
hold.

Proof. We assume that the estimates (A.42) hold. It follows that there exist some positive
constants (Ca(n))zenn,|aj<2n Such that for all 0 <t <to,o,f €N",g € L*(R"),
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N B dx ’ n_ o -
=02 (= 9) |2 gy < </Rn (1+H’IQ)2"> (1 ll2l2)" 229 (e tAg)HL“(R”)

< Y Calm)[|22407 (e )| o (g
ot
lal<2n
02n+1+|a\+|ﬁ| - 1 1
<> Ca(n) o qararzm T, (@)™ (81
(}GN",
|a|<2n

9||L2(Rn)-

(A.44)
Using from formula (2.23) the fact that
Va,a € N |a| < 2n,
(a+a)l= H (aj+a;)! < H (aj+2n)! < H 2092 (a)1(2n)! < (4™ (2n))" 21l
j=1 j=1 i=1

we obtain that the estimates (A.43) hold with 7y =my >0 and e =2nmy +mg >0. O

Lemma A.9. For any k € N, there exists a finite family of real numbers

k . -
(C’ll’lz) ey, Satisfying
0<ly+12<k+1

(-0, +z)= >  Cf a0k zeR,

0 l1,l2€N,
0<l1+1l2<k+1

k

J

and
kl—ly—1lo

Vil eNO<Li+la<k+1, [Cf,|<3"k+1)" =,

while using for short the following abusive notation for possibly noncommutative differ-
ential operators,

k
114 Dz) = Ag(x, D) - Ag(, Ds).
j=0

Proof. We proceed by induction on k € N. For £k =0 or k =1, the result readily holds.
Let us assume that it holds true for k € N. We observe that

k+1
[T (10, +=z)= oo CF ol | (D)F 0 + )
j=0 l1,12€N,

0<l1 +12<k+1

Yoo (CDFICE el ot OF L T o + b CF a0l

1
l1,12€N,
0<l1+12<k+1
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= > UMk ety YD Oyt

1120,122>1, 11>1,12>0,
1<y 15 <k+2 1<)+ k12
2 k 11 9l
+ (l2 + l)Clhlz_Hx 18$2 . (A45)
l1,12€N,
0<l1+12<k

By setting, for all I1,lo € N with 0 <1; +13 < k42,
Ciln = (D) CE 1,111,100y (l2) + CF 11, 11,100y (1)
(124‘1)0{?,12“ Ljo,5) (11 +12), (A.46)

we deduce from equation (A.45) that

k+1
[[(—o,+2)=" > CFfilahob. (A.47)
j=0 l1,12€N,

0<l1+12<k+2

Using the induction property, we deduce that for all I1,lo € N with 0 <1y +1y < k+2,

i

<R+ 1) T s (e 1) TR g (e 1) T A (1 )

< 3k(k+2)7 +3k(k+2)7 Jr;),’“([ngg)M 3k+1(k+2)w
This ends the proof of Lemma A.9. 0
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