
Compositio Math. 143 (2007) 1335–1358
doi:10.1112/S0010437X07002771

What do dg-categories form?

Dmitry Tamarkin

Abstract

We introduce a homotopy 2-category structure on the collection of dg-categories, dg-
functors, and their derived transformations. This construction provides for a conceptual
proof of Deligne’s conjecture on Hochschild cochains.

1. Introduction

It is well known that categories form a 2-category: 1-arrows are functors and 2-arrows are their
natural transformations.

In a similar way, dg-categories also form a 2-category: 1-arrows A → B are dg-functors; given
a pair of dg-functors F,G : A → B one can define a complex of their natural transformations
hom(F,G), which naturally generalizes the notion of a natural transformation in the usual setting.
Thus, we can use hom(F,G) as the space of 2-arrows. (As usual, a dg-category is by definition a
category enriched over the symmetric monoidal category of complexes over a fixed ground field k.)

However, this construction has a serious drawback: the spaces hom(F,G) are not homotopically
invariant in any way. For example, let W : B → C be a weak equivalence of dg-categories, then we
have a natural map

hom(F,G) → hom(WF,WG),
which, in general, is not a quasi-isomorphism of complexes.

Drinfeld [Dri04] proposes another construction, in which the role of dg-functors A→ B is played
by Aop × B bi-modules. By choosing an appropriate class of such bi-modules, one can achieve a
good homotopy behavior. Unfortunately, this class does not contain identity functors A → A, but
only their resolutions which satisfy the properties of identity up to homotopies.

The goal of this paper is to provide for a homotopy invariant structure on the category of a
dg-category which, on the one hand, would be as close to the 2-category structure as possible; on
the other hand, this structure should be free of the above-mentioned drawbacks.

In order to achieve a homotopy invariant behavior, one has to pass to a derived version of the
notion of a natural transformation between two functors. This can be done in a very well-known
way (see §§ 3.0.2 and 3.1).

As is common in such situations, these derived transformations of functors cannot be composed
as nicely as the usual transformations of functors, so they do not form a 2-category.

Our result is that, informally speaking, derived natural transformations form a certain homotopy
version of a 2-category. Let us now sketch the idea of the notion of a homotopy 2-category, precise
definitions are given in the main body of the paper.

A good starting point is to reformulate the definition of a dg-2-category as follows.
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A small 2-category is:

(i) a set of objects C, a set of 1-arrows hom(X,Y ) for every pair X,Y ∈ C; these data should
form a usual category;

(ii) a complex of 2-arrows hom(F,G) for all 1-arrows F,G ∈ hom(A,B).

These data should have the following structure:

(iii) given objects A0, A1, . . . , An and 1-arrows Fij : Ai → Ai+1, i = 0, 1, . . . , n− 1; j = 0, 1, . . . ,mi,
one should have a composition map

c :
⊗
ij

hom(Fij;Fi,j+1) → hom(F,G), (1)

where F,G : A0 → An,

F = Fn−1,0Fn−2,0 · · ·F10F00, and G = Gn−1,mn−1Gn−1,mn−2 · · ·G1m1G0m0 .

There should be a certain coherence axiom stating that these compositions are closed under
iterations. Instead of giving a precise formulation, let us consider an example as follows.

A0

F03

��

F02

��F01 ��

F00

��A1

F12

��F11 ��

F10

��A2
F20 �� A3

F34

��

F33

��F32 ��

F31

��

F30

��A4 (2)

Let us split this picture into four sub-pictures as follows.

A0

F03

��

F02

��
A1

F12

��F11 �� A2 A2
F20 �� A3

F34

��

F33

��
A4

A0

F02

��F01 ��

F00

��A1
F11 ��

F10

��A2 A2
F20 �� A3

F33

��F32 ��

F31

��

F30

��A4

(3)

These sub-pictures yield the following composition maps:

hom(F02, F03) ⊗ hom(F11, F12) → hom(F11F02;F12F03);
hom(F33, F34) → hom(F33F20;F34F20);

hom(F00, F01) ⊗ hom(F01, F02) ⊗ hom(F10, F11) → hom(F10F00;F11F02);
hom(F30, F31) ⊗ hom(F31, F32) ⊗ hom(F32, F33) → hom(F30F20;F33F20).
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These maps can be composed with the composition map determined by the following ‘quotient-
picture’:

F12

��

F34

��
A0

F03 ��

F02 ��

F00 		

F11 �� A2

F20



�������

F20

��

F20

���
��

��
��

F33 �� A4

F10

��

F30





(4)

hom(F11F02;F12F03) ⊗ hom(F10F00;F11F02) ⊗ hom(F30F20;F33F20) hom(F33F20;F34F20)
→ hom(F30F20F10F00;F34F20F12F03)

so as to get a map

hom(F00, F01) ⊗ hom(F00, F01) ⊗ hom(F01, F02) ⊗ hom(F02, F03) ⊗ hom(F10, F11)
⊗ hom(F11, F12) ⊗ hom(F30, F31) ⊗ hom(F31, F32) ⊗ hom(F32, F33) ⊗ hom(F33, F34)

→ hom(F30F20F10F00;F34F20F12F03).

The coherence axiom then requires that the map that we have just constructed should coincide with
the map (1) determined by the picture (2).

This definition can be homotopized in the following way (this is just a particular case of the
notion of an algebra over a 2-operad from [Bat07]).

A homotopy 2-category is a collection of data (i), (ii) (as in the above definition) with (iii)
modified as follows:

(iiih) for each collection of non-negative integers m0,m1,m2, . . . ,mn there should be given a con-
tractible complex O(m0,m1, . . . ,mn) and a map

c : O(m0,m1, . . . ,mn) ⊗
⊗
ij

hom(Fij;Fi,j+1) → hom(F,G),

where the notation is the same as in (iii).

In order to formulate the coherence axiom we need some operad-like structure on the collection
of complexes O(m0,m1, . . . ,mn). Let us briefly discuss this structure.

First, with every picture P as in (2), one naturally associates a complex O(P ). (Example: for
the picture from (2), O(P ) := O(3, 2, 0, 4), where the numbers represent the numbers of arrows
in each column of the picture); next, suppose that we have a subdivision of a picture P into a
number of sub-pictures P1, P2, . . . , Pk with the corresponding quotient-picture Q. (We do not define
the precise meaning of these words hoping that the spirit can be garnered from the above example
of a subdivision of the picture (2) into four sub-pictures (3) with the corresponding quotient-
picture (4).)

We should then have a composition map

O(P ) ⊗O(P1) ⊗O(P2) ⊗ · · · ⊗ O(Pk) → O(Q). (5)

Having these maps, one can formulate the coherence axiom in this new setting in a natural way.
The maps (5) along with certain natural associativity properties constitute a so-called structure

of a 2-operad [Bat07]; we will reproduce a precise definition.
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Our main result is that dg-categories form a homotopy 2-category in which objects are dg-
categories, 1-arrows are functors, and the complexes of 2-arrows are defined using the derived
version of the complex of natural transformations.

We conclude the paper with an observation that this result immediately implies that for every
category C, the complex Rhom(IdC , IdC) (the homotopy center of C) is an algebra over the above-
mentioned 2-operad O. A result from [Bat07] implies that an algebra structure over any contractible
2-operad (such as O) implies a structure of an algebra over some resolution of the chain operad
of little disks, thus yielding another proof of Deligne’s conjecture on Hochschild cochains [KS00,
Vor00, MS02, BF04].

The plan of the paper is as follows. We begin by defining a cosimplicial complex of natural
transformations hom•(F,G) for every pair of dg-functors F,G : A → B. By taking the realiza-
tion, one obtains a complex Rhom(F,G) := |hom•(F,G)| which we use as a replacement for the
naive complex hom(F,G). Then, we introduce some combinatorics in order to describe the pictures
such as (2). Next, we provide definitions of a 2-operad (which is equivalent to that in [Bat07])
and a homotopy 2-category. After that, we proceed to construct a homotopy 2-category of dg-
categories. It turns out to be more convenient to start by constructing a certain structure on
the cosimplicial complexes hom•(F,G), without passing to the realization. This structure will be
given in terms of a collection of certain multisimplicial sets so that one can study them using
some topology. Finally, using the realization functors, we convert this structure into a homotopy
2-category structure in which the complexes of 2-arrows are Rhom(F,G). We conclude by showing
that this result coupled with Batanin’s theorem on contractible 2-operads readily implies Deligne’s
conjecture.

2. Conventions and notation

Any finite non-empty totally ordered set will be called an ordinal.
Given a non-negative integer n, we denote by [n] the ordinal {0 < 1 < · · · < n}.
Given an ordinal I we denote its minimum by mI and its maximum by MI .

Denote by
−→
I the set of all pairs −→ı , where i, j ∈ I and j is the immediate successor of i. We

have an induced total order on
−→
I , but

−→
I may be empty. We have natural projections s, t :

−→
I → I,

s(−→ı ) = i, and t(−→ı ) = j.
Given a, b ∈ I, a � b, we define the interval [a, b] ⊂ I in the usual way.
A monotone (that is, non-decreasing) map of ordinals f : I → J will be called dominant if

f(mI) = mJ and f(MI) = MJ .
Ordinals and their monotone dominant maps form a category. In [Joy97], this category is called

the category of 1-disks and its opposite is identified with the category ∆ of ordinals and their
monotone maps.

3. Functors between dg-categories and their natural transformations

3.0.1 Let A be a dg-category. Let X : I → A be a family of objects in A indexed by an ordinal I.
Set

A(X) :=
⊗
−→ı ∈−→I

A(s(−→ı ); t(−→ı )).

If I is a one-element ordinal, we set A(X) = k.
Given a dominant monotone map k : J → I, we have a natural map

k∗ : A(X) → A(X ◦ k).
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3.0.2 Definition of the cosimplicial complex of natural transformations. Let A, B be small
dg-categories and F,G : A→ B functors.

Let I be a finite non-empty totally ordered set. Set

homI(F ;G) :=
∏

X:I→A

homk(A(X); homB(F (X(mI));G(X(MI )))).

Let I ′ be obtained from I by adding two elements m′,M ′ such thatm′ < I < M ′. LetX ′ : I ′ → A
and let X be the restriction of X ′ onto I. Then we have

A(X ′) ∼= A(X(MI);X ′(M ′)) ⊗A(X) ⊗A(X ′(m′);X(mI)). (6)

We have a natural map

homI(F,G) → homI′(F,G)

such that the chain Φ ∈ homI(F,G) is mapped into a chain Φ′ according to the rule

Φ′(ω ⊗ U ⊗ α) = G(ω) ◦ Φ(U) ◦ F (α),

where ω ∈ A(X(M),X ′(M ′)), U ∈ A(X), α ∈ A(X ′(m′),X(m)), and we use the identification (6).

3.0.3 Cosimplicial structure. Let ∆ be the category of ordinals and their monotone (that is,
non-decreasing) maps. We are going to endow the collection of spaces homI(F,G) with a structure
of the functor

∆ → complexes.

Let σ : I → J be a monotone map. Define a map

σ∗ : homI(F,G) → homJ(F,G)

as follows.
Let σ′ : I ′ → J be the extension of σ which sends m′ and M ′ to the minimum and the maximum

of J , respectively.
Set σ∗Φ(U) := Φ′((σ′)∗U), where U ∈ A(X) for some X : J → A. In this way we get the desired

cosimplicial structure.

3.1 Total complex of a cosimplicial complex

It is well known that given a cosimplicial complex, one can produce its total complex by applying
alternated sums of co-face maps.

We use a slightly different definition of this total complex. Let I be an ordinal and let ∆I

be the simplex whose vertices are labeled by I. Let C∗(∆I) be its reduced chain complex. Let
S∗(I) := C−∗(∆I). It is clear that S∗(•) is a cosimplicial complex (here • stands for the ‘cosimplicial’
argument). We denote this cosimplicial complex simply by S.

Given an arbitrary cosimplicial complex K we can form a complex hom∆(S,K) which will also be
denoted by |K|. In this formula, hom∆ means ‘enriched hom-functor in the category of cosimplicial
complexes’.

Thus, we can construct a complex |hom•(F,G)| which will be denoted by Rhom(F,G).

3.1.1 We also have a ‘naive’ notion of the complex of natural transformations of two functors.
Indeed, given a pair of functors F,G : A→ B, define the complex

hom(F,G)
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as the equalizer of the diagram

hom(F,G) �� hom[0](F,G)
d1 ��

d0

�� hom[1](F,G)

where d0, d1 are the co-face maps.
We can define a constant cosimplicial complex

hom•(F,G),

where
homI(F,G) := hom(F,G).

We then have a cosimplicial map

hom•(F,G) → hom•(F,G).

4. Some combinatorics

We want to find an algebraic structure naturally possessed by complexes Rhom(F,G). This struc-
ture will be given in terms of a family of multilinear maps between these complexes and some
relations between them. In order to formulate this structure we need some combinatorics.

4.1 Combinatorial data
4.1.1 2-ordinals, 2-trees. By definition, a 2-ordinal U is a collection of the following data:1

(i) an ordinal CU ;

(ii) for each −→c ∈ −→C U , an ordinal FU ,−→c .

2-ordinals are meant to represent pictures of the following type.

c0

f01
3

��

f01
2

��f01
1 ��

f01
0

��c1

f12
2

��f12
1 ��

f12
0

��c2
f23
0 �� c3

f34
4

��

f34
3

��f34
2 ��

f34
1

��

f34
0

��c4 (7)

This picture corresponds to the following 2-ordinal:

(i) C = {c0 < c1 < c2 < c3 < c4};
(ii) F−−→c0c1 = {f01

0 < f01
1 < f01

2 < f01
3 };

(iii) F−−→c1c2 = {f12
0 < f12

1 < f12
2 };

(iv) F−−→c2c3 = {f23
0 };

(v) F−−→c3c4 = {f34
0 < f34

1 < · · · < f34
4 }

A picture of this type can be drawn for any 2-ordinal in the obvious way.
We denote

−→F U :=
⊔

−→c ∈−→C

−→F U ,−→c .

1An equivalent notion is introduced in [Str00], where it is called ‘a globular 2-cardinal’.
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Elements of this set can be visualized as 2-cells in the picture corresponding to U . We then have an
obvious monotone map of finite totally ordered sets:

π :
−→F U → −→C U .

According to [Bat07], let us call any map of finite totally ordered sets a two-stage tree or, in
abbreviated form, a 2-tree.

We denote 2-trees by one letter, say t. We refer to the elements of t as

πt :
−→F t →

−→C t.

We have shown how, given a 2-ordinal U , one constructs a 2-tree πU :
−→F U → −→C U . Denote this

2-tree by tU , so that

πtU := πU ,
−→F tU :=

−→F U ,
−→C tU :=

−→C U .

It is clear that a 2-ordinal is defined up to a canonical isomorphism by its 2-tree.2

4.1.2 Given a 2-ordinal U we can construct a strict 2-category [U ], the universal category among
the 2-categories V possessing the following properties:

(i) ObV = C;

(ii) there are fixed maps F−−→c1c2 → ObhomV (c1, c2) for all −−→c1c2 ∈ −→C ; for an f ∈ F−−→c1c2 we denote by
the same symbol the corresponding object in homV (c1, c2);

(iii) for each
−−→
f1f2 ∈ −→F −−→c1c2 we have a fixed element in homhomV (c1,c2)(f1, f2).

This 2-category has a clear meaning in terms of the picture (7).
Objects are c0, c1, . . . ; the space of maps ci → cj is non-empty if and only if ci � cj , in which

case an arrow ci → cj is just a directed path from ci to cj ; let us define a partial order on the space
of such paths by declaring that one path is less than or equal to another if and only if the former
lies below the latter. We then have a category structure on hom(ci, cj) produced by the just-defined
poset of paths (each arrow goes from a smaller object to a greater one).

Here is a more formal description. Given c, c′ ∈ C, we have:

(i) hom(c, c′) = ∅ if c > c′;
(ii) hom(c, c) = {Idc};
(iii) if c < c′, then

Obhom(c, c′) :=
∏

−→c ∈−−→[c,c′]

F−→c .

Given f1, f2 ∈ hom(c, c′),
fk = {fk−→c }−→c ∈−−−→[c1c2]

, k = 1, 2,

we have a unique arrow f1 → f2 if and only if

f1−→c � f2−→c

for all −→c ∈
−−−→
[c1c2]. Thus, the set hom(c1, c2) is partially ordered and has the least and the greatest

elements.

2This identification of 2-ordinals and 2-trees is introduced in [Bat98], where it is called the (−)∗-construction.
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4.1.3 We will often need a special 2-ordinal called a globe and denoted by globe. We define
globe by

Cglobe = {c0 < c1},
F−−→c0c1 = {f0 < f1}

• ��
�� •

Any 2-ordinal isomorphic to globe will also be called a globe.

4.1.4 Balls in a 2-ordinal. Given a 2-ordinal U define a ball in U as any 2-ordinal U ′ of the
form:

(i) CU ′ is an interval in CU ;

(ii) for each −→c ∈ −→C U ′ , FU ′,−→c is an interval in FU ,−→c .

We then see that

[U ′] ⊂ [U ]

is a full subcategory.

The set of all balls in U is partially ordered; each minimal ball is a globe; the set of all of these
minimal balls is naturally identified with

−→F U .

4.1.5 We write [U ]1 for the underlying usual category of U .

4.1.6 Maps of 2-ordinals. Let U ,V be 2-ordinals. A map3 P : U → V is a 2-functor [P ] : [V] →
[U ] satisfying:

(i) the induced map [P ] : CV → CU is dominant (that is, monotone and preserves the minima and
the maxima);

(ii) for all c1 < c2, c1, c2 ∈ CV the induced map

hom[V ](c1, c2) → hom[U ](P (c1), P (c2))

preserves the least and the greatest elements.

With this definition of a map, 2-ordinals form a category. Any globe is a terminal object in this
category.

4.1.7 Inverse images of balls. Let P : U → V be a map of 2-ordinals and V ′ ⊂ V a ball in V.
Define P−1V ′ =: U ′ as a unique ball in U satisfying. There exists a map of 2-ordinals P ′ : U ′ → V ′

fitting into a commutative diagram:

[U ] [V]
[P ]

��

[U ′]

��

[V ′]
[P ′]

��

��

with the vertical arrows being the natural inclusions.

3See [Ber02] for the definition of an equivalent concept of a covering map of n-trees.
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Consider the following pictorial example. Let U be the same ordinal as in (7):

c0

f01
3

��

f01
2

��f01
1 ��

f01
0

��c1

f12
2

��f12
1 ��

f12
0

��c2
f23
0 �� c3

f34
4

��

f34
3

��f34
2 ��

f34
1

��

f34
0

��c4

and let V be defined by the following picture.

d0

g01
2

��g01
1 ��

g01
0

��d1

g12
1

��

g12
0

��d2

Consider a map P : U → V such that the corresponding map [P ] : [V] → [U ] is as follows:

[P ]d0 = c0, [P ]d1 = c2, [P ]d2 = c4,

[P ]g01
0 = f12

0 f01
0 , [P ]g01

1 = f12
1 f01

0 , [P ]g01
2 = f12

2 f01
3 ,

[P ]g12
0 = f34

0 f23
0 ,

[P ]g12
1 = f34

4 f23
0 .

Let us label globes in V by I, II, III as shown in the following picture.

d0

��
II ��

I

��d1

��

��III d2

The preimages of these globes are then as follows.

II c0

f01
3

��

f01
2

��f01
1 ��

f01
0

��c1

f12
2

��f12
1 �� c2 III c2

f23
0 �� c3

f34
4

��

f34
3

��f34
2 ��

f34
1

��

f34
0

��c4

I c0

f01
0

��c1
f12
1 ��

f12
0

��c2
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4.1.8 Maps of the corresponding 2-trees. According to Batanin, we define a map of 2-trees
P : t1 → t2 as a commutative diagram

−→F t1

πt1

��

P−→F �� −→F t2

πt2

��−→C t1

P−→C �� −→C t2

with the arrow P−→C being monotone and the arrow P−→F being monotone on each fiber of πt1 (i.e. on

each subset πt1(c) ⊂
−→F t1 for each c ∈ −→C t1).

4.1.9 A map of ordinals U → V naturally induces a map of the sets of two-cells:
−→F U → −→F V ;

it is not hard to see that this map lifts to a map of the corresponding 2-trees. We now give a formal
definition of this map.

Given a map of 2-ordinals P : U → V, we define an induced map of the associated 2-trees

P t : tU → tV

as follows.

(i) Define the map

P t−→C :
−→C U → −→C V .

For −−→c1c2 ∈ −→C U we set P−→C (−−→c1c2) =
−−→
d1d2 if and only if

[c1c2] ⊂ [[P ](d1), [P ](d2)].

(ii) Given a globe
−→
f ∈ −→F U , define its image P t−→F (

−→
f ) =: −→g in

−→F V as a unique globe such that the

ball P−1−→g contains
−→
f .

4.1.10 We see that in this way we have constructed a category of 2-ordinals, a category of
2-trees, and a functor between them; as shown in [Ber02], this functor is an equivalence.

4.1.11 Diagrams. Given a 2-ordinal U and a category C, a U-diagram in C is a functor

D : [U ]1 → C.

Given a map of 2-ordinals P : U → V and a U -diagram D, it naturally restricts to produce
P−1−→f diagrams D|

P−1
−→
f
, where

−→
f ∈ −→F V , and a V diagram P∗D. These induced diagrams come

from the obvious functors

[P−1−→f ] ↪→ [U ],
[P ] : [V] → [U ].

5. The 2-operads and their algebras

We are going to adjust the notions of an operad and an algebra over an operad so that they work
in our setting. In the usual setting, given an operad, we define its action on a complex; in our
situation, instead of one complex, we have a family of complexes: a complex Rhom(F,G) for each
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globe formed by the pair of dg-categories A,B and a pair of dg-functors F,G : A→ B. We abstract
this situation by introducing a notion of a C-complex. Next, following [Bat07], we define the notion
of a 2-operad, and, lastly, the notion of a structure of an O-algebra on a C-complex, where O is a
2-operad.

Using these notions, we will be able to formulate the definition of a homotopy 2-category as an
algebra structure over a contractible 2-operad.

5.1 C-complexes and their tensor products

We fix a small category in sets C. Let C0 be the set of objects in C and C1 be the set of its arrows.
Let s, t : C1 → C0 be the source and target maps.

We define a globe in C as any globe-diagram in C (that is, a pair of objects in C and a pair of
arrows between these objects).

Let C2 be the set of all globes in C. We have obvious maps

s′, t′ : C2 → C1;

given a globe g

A0

f1

��

f0

��A1

where A0, A1 ∈ C, f0, f1 : A0 → A1, we set s′(g) = f0, t′(g) = f1. It is clear that

ss′ = ts′, st′ = tt′, (8)

and C2 is the terminal object in the category of all sets Z endowed with maps s′, t′ : Z → C1

satisfying (8).

5.1.1 We define a C-complex as a family of complexes parameterized by C2.

5.1.2 Tensor product of C-complexes. Given a 2-ordinal U and a
−→F U -family of C-complexes

K = {K−→
f
}−→

f ∈−→F C
, we define a new C-complex

U⊗
K :=

U⊗
−→
f ∈−→F U

K−→
f

as follows.

Pick a globe g ∈ C2 and define

( U⊗
K

)
g

:=
⊕

D|p∗D=g

⊗
−→
f ∈−→F U

K(D|−→
f

),

where p : U → globe is the terminal map, D is any U -diagram in C with p∗D = g, and
−→F U is

identified with the set of globes in U so that D|−→
f

is a globe in C.
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5.1.3 Given a map of 2-ordinals U → V, we have a canonical isomorphism

V⊗
−→
f ∈−→F V

P−1−→f⊗
−→g ∈−→F

P−1−→f

K−→g →
U⊗

−→
f ∈−→F U

K−→
f
;

we call this isomorphism a constraint.
Given a chain of maps of 2-ordinals U → V → W, we get the associativity property of this

constraint.
This can be reformulated so that the category of C-complexes becomes a category with two

monoidal structures such that one of them distributes over the other but we will not need it in this
paper.

5.1.4 Fix a set Chrom to be called the set of colors. Let us also fix family of C-complexes
K := {Kχ}χ∈Chrom.

Let U be a 2-ordinal. Define a Chrom-coloring χ of U as a prescription of a color cχ−→
f
∈ Chrom

for each
−→
f ∈ −→F U and an additional color cχ ∈ Chrom.

A 2-ordinal endowed with a coloring will be called a colored 2-ordinal. Given a colored 2-ordinal
U ′ := (U , χ), we have a complex

fullK(U ′) := hom
([ U⊗

−→
f ∈−→F U

Kcχ−→
f

]
;Kcχ

)
.

These complexes form an algebraic structure called a colored 2-operad. We now define this
notion.

5.2 Colored 2-operads
We need a notion of a map of colored 2-ordinals. Let U ′ = (U , χU ); V ′ = (V, χV) be colored
ordinals. We say that we have a map P ′ : U ′ → V ′ if:

(i) we are given a map P : U → V of 2-ordinals;

(ii) cχU = cχV .

Given a globe
−→
f ∈ −→F V , we then have a natural coloring χ

−→
f on P−1−→f : we set cχ

−→
f

= cχV−→
f

, (cχ−→
f )−→g :=

(cχU )−→g .

5.2.1 Definition of a colored 2-operad. A Chrom-colored operad O is a collection of the
following data:

(i) a functor O from the isomorphism groupoid of the category of colored 2-ordinals to the category
of complexes;

(ii) given a map P : U ′ → V ′ of colored ordinals, set

O(P ) :=
⊗

−→
f ∈−→F V

O(P−1−→f )

we then should have a map

◦P : O(P ) ⊗O(V ′) → O(U ′).

Axioms. The first axiom asks for covariance of the map ◦P under isomorphisms of 2-ordinals.
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In order to formulate the next axiom, note that given a chain of maps of colored 2-ordinals

U P−→ V Q−→ W,

we have a natural map
◦(Q,P ) : O(P ) ⊗O(Q) → O(QP);

indeed, for each
−→
f ∈ −→FW we have induced maps

P−→
f

: (QP)−1−→f → Q−1−→f ,

and we can define our map as follows

O(P ) ⊗O(Q) =
⊗

−→
f ∈−→FW

[O(P−→
f
) ⊗O(Q−1−→f )] →

⊗
−→
f ∈−→FW

O((QP)−1−→f ) = O(QP).

The property then reads that the maps ◦(Q,P ) should be associative in the obvious way.

5.2.2 It is immediate that the complexes fullK(U ′) form a colored 2-operad fullK.

5.2.3 Given a Chrom-colored 2-operad O, we define an O-algebra as an Chrom-family K of
C-complexes along with a map of colored 2-operads

O → fullK.

5.2.4 Define a (non-colored) 2-operad as a colored operad with the set of colors that have only
one element.4

5.3 Main theorem
DG-categories and their functors form a category. Fix a small sub-category C in this category. Given
a globe g in C, we have defined a complex Rhom(g). These complexes form a C-complex, to be
denoted Rhom. Likewise we have the functor of usual homomorphisms hom(g), these also form a
C-complex hom. We have a natural map of C-complexes

hom → Rhom.

We know that the pair (C,hom) is naturally a 2-category. This can be formulated in our language
as follows. Define a trivial 2-operad triv as follows: set triv(U) = k for each 2-ordinal U and demand
that all structure maps preserve 1 ∈ k. Then the 2-categorical structure on (C,hom) amounts to
the fact that we have a triv-algebra structure on hom.

5.3.1 Formulation of a theorem. Define a notion of a contractible 2-operad as a collection of
the following data:

(i) a 2-operad O;
(ii) a quasi-isomorphism of 2-operads O → triv.

Theorem 5.1. There exists a contractible 2-operad O and O-algebra structures on hom and Rhom
such that:

(i) the map hom → Rhom is a map of O-algebras;

(ii) the O-algebra structure on hom is the pull-back of the triv-structure via the structure map
O → triv.

4This definition is narrower than Batanin’s: in his papers, such objects are called ‘1-terminal 2-operads’; however, all
2-operads in our paper are 1-terminal.
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The rest of the paper is devoted to proving this theorem.

6. Constructing a colored 2-operad which acts on hom•

Let N be the set of isomorphism classes of ordinals, N = {[0], [1], [2], . . . }. We then have an N-family
of C-complexes I �→ homI , I ∈ N.

We start with the construction of a colored 2-operad seq in the category of sets acting
naturally5 on hom•. (Note that in the definition of a colored operad in § 5.2.1, the category of
complexes can be replaced with any symmetric monoidal category.)

By default, all colorings are N-colorings.

6.1 Construction of seq

Let (U , χ) be a colored 2-ordinal. Let π :
−→F U → −→C U be the induced 2-tree.

Let us use the following notation for the ordinals which determine the coloring:

I−→
f

:= cχ−→
f
;

J := cχ.

Define a set seq(U) each of the elements of which is a collection of the following data:

(a) a total order on I := IU :=
∐

−→
f ∈−→F I−→

f
;

(b) a monotone map W : I → J .

The conditions are:

(i) the total order on I agrees with the orders on each I−→
f
;

(ii) if i1, i2 ∈ I−→
f

and i1 < i < i2, i ∈ I−→
f 1

, then π(
−→
f 1) < π(

−→
f );

(iii) if π(
−→
f 1) = π(

−→
f 2) = −→c and

−→
f 1 <

−→
f 2 in the sense of the order on

−→F −→c , then I−→
f 1

< I−→
f 2

with
respect to the order on I.

6.1.1 Compositions. Let P : U ′ → V ′ be a map of N-colored ordinals. Define the structure map

◦p :
∏

−→
f ∈−→F V

seq(P−1−→f ) × seq(V) → seq(U).

Let us pick elements λ−→
f
∈ seq(P−1−→f ), λ ∈ seq(V ) and define their composition. We have

IU =
∐

−→
f ∈−→F V

I
P−1

−→
f
.

The elements λφ define total order on I
P−1

−→
f

and monotone maps

I
P−1

−→
f
→ I−→

f
.

5We have a functor of taking the span, from the category of sets to the category of vector spaces. Treating vector spaces
as complexes sitting in degree 0, we obtain a symmetric monoidal functor from the category of sets to the category
of complexes. The latter functor induces a functor from the category of colored 2-operads in sets to the category of
2-operads in the category of complexes. Let k[seq] be the colored operad in the category of complexes obtained by
applying this functor to seq. Whenever we have a C-complex K and a k[seq]-algebra structure on K, we will say that
seq acts on K.
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The element λ defines a total order on

IV :=
∐
−→
f

I−→
f
.

We have a natural map

M : IU =
∐
−→
f

I
P−1

−→
f
→

∐
−→
f

I−→
f

= IV .

Lemma 6.1. There is a unique total order on IU such that:

(i) the map M is monotone;

(ii) this order agrees with those on each I
P−1

−→
f
;

Proof. If such an order exists, it must be defined as follows:

(i) if x, y ∈ IU and M(x) < M(y), then x < y;

(ii) if M(x) = M(y) ∈ Iφ, then x, y ∈ I
P−1

−→
f
.

It is clear that in this way we indeed get a total order on IU . The map M is automatically
monotone. We only need to check the matching of this order with that on each I

P−1
−→
f
. This follows

immediately from the monotonicity of the corresponding maps

I
P−1

−→
f
→ I−→

f
.

Next we define a map W ′ : IU → J as a composition

IU → IV
W−→ J.

Lemma 6.2. The constructed order on IU and the constructed map W ′ give rise to an element in
seq(U).

Proof. The proof is straightforward.

We define the composition of the elements λ−→
f

and λ to be the constructed element in seq(U).
One can check that this composition satisfies the associativity property.

Remark. There is an equivalent description of the 2-operad seq in terms of planar trees. A detailed
account will appear in a forthcoming paper by the author, V. Dolgushev and B. Tsygan.

6.2 Action of seq on Rhom
We need a few auxiliary constructions.

6.2.1 Given a dg-category A, an ordinal J , and a map X : J → A we call any element in A(X)
(see the very beginning of the paper) a chain in A or, more specificly, an X-chain in A. Fix a
chain h ∈ A(X).

Suppose that we are given an X : J → A as above. Suppose that, in addition, we are given an
ordinal R and an R-family of functors Fr : A→ B.

Next, for each −→r = −−→r1r2 ∈ −→
R , choose ordinals I−→r and elements

h−→r ∈ homI−→r (Fr1 ;Fr2). (9)
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Finally let us fix a monotone map

W : I =
∐

−→r ∈−→R
I−→r → J,

where the order on I is defined by those on
−→
R and on each of I−→r .

Given all of these data, we construct a chain c in B.

6.2.2 Let us now make a formal definition.
First of all we need to construct an ordinal K and a map Y : K → B so that c ∈ B(Y ).

Constructing K. For r ∈ R, let mr be the supremum in J of the set∐
−−→r1r2|r2�r

W (I−−→r1r2
).

Let Mr be the infimum in J of the set ∐
−−→r1r2|r�r1

W (I−−→r1r2
)

We define
K := K(J,W ) :=

∐
r∈R

[mr,Mr].

We then have natural maps

π : K → R,

κ : K → J.

Constructing a map Y := Y (X,W ) : K → B. Set

Y (jr) = Fr(κ(jr)),

where jr ∈ [mr;Mr] ⊂ K.

Constructing the resulting chain c ∈ B(Y ). We will define a map

µW : A(X) ⊗
⊗

−−→r1r2∈−→R
homI−−→r1r2 (Fr1 ;Fr2) → B(Y ).

so that
c = µW (h; {h−→r }−→r ∈−→R ).

For an interval [a, b] ⊂ J , let Xab := X|[a,b].
Let R = {0 < 1 < 2 < · · · < N}. We then have

A(X) = A(Xm0M0) ⊗A(XM0m1) ⊗A(Xm1M1) ⊗ · · · .

Let Wr,r+1 := W |I−−−→
r,r+1

. We then have a dominant map

Wr,r+1 : I−−−→
r,r+1

→ [Mr;mr+1].

Set

X ′
r,r+1 : I−−−→

r,r+1

Wr,r+1−−−−→ [Mr;mr+1]
X−→ A.

Hence, we have an induced map

W ∗
r,r+1 : A(XMr ;mr+1) → A(X ′

r,r+1);
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via substitution, we get a map

A(XMrmr+1) ⊗ homI−−−→
r,r+1(Fr;Fr+1) → B(Fr(X(Mr));Fr+1(X(mr+1))).

The functor Fr induces a map

A(XmrMr) → B(Y |[mr ;Mr]).

Combining these maps we get the desired map µW . Let us consider an example in which

J = {0j < 1j < · · · < 10j},
R = {a < b < c},

I−→
ab

= {0a < 1a < 2a < 3a}, I−→
bc

= {0b < 1b < 2b},

and the map W is given by the following table

0a �→ 1j , 1a, 2a �→ 3j , 3a �→ 4j ,

0b �→ 5j , 1b �→ 7j , 2b �→ 8j .

Then our map is constructed according to the following picture.

•0 �� •1 �� •2 �� •3 �� •4 �� •5 �� •6

��
0j ��

Fa

1j �� ∗ ��

h−→
ab

2j �� 3j ��

∗
∗ ��

4j ��

Fb

5j �� ∗ ��

h−→
bc

6j �� 7j ��∗ ��
8j ��

Fc

9j ��

Fc

10j

We explain the picture as follows:

(i) in each cell marked by ∗ we compose the arrows on the bottom of the cell;

(ii) in each cell marked by h−→
ab

, h−→
bc

we apply the corresponding element from (9);

(iii) in each cell marked by Fa, Fb or Fc we apply the corresponding functor.

The resulting chain c corresponds to the top line of the arrows in the picture.
Let us write an explicit formula for c. Fix a map X : J → A and a chain f01 ⊗ f12 ⊗ · · · ⊗ f910 ∈

A(X) so that fk;k+1 : X(k) → X(k + 1). The ordinal K then corresponds to the fat points on the
bottom line of the diagram, so K = {0 < · · · < 6}. The map Y : K → B sends {0, . . . , 6} to,
respectively,

Fa(X(0)), Fa(X(1)), Fb(X(4)), Fb(X(5)), Fc(X(8)), Fc(X(9)), Fc(X(10)).

The resulting chain in B(Y ) is given by the following collection of arrows:

Fa(f01), h−→
ab

(f23f12; IdX(3); f34), Fb(f45), h−→
bc

(f67f56; f78), Fc(f89), Fc(f9,10).

6.2.3 Definition of a seq-algebra structure. Let us now construct the structure maps

A : seq(U) → fullhom•(U).

Equivalently, for each U -diagram in C, one has to construct a map

k[seq(U)] ⊗
⊗
−→
f ∈−→F

homI−→
f (D|−→

f
) → homJ(p∗D),

where D|−→
f

is the C-globe obtained by the restriction of D onto
−→
f and p∗D is a C-globe obtained

by pre-composing D with the terminal map p : U → globe.
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Let µ be the minimal element in
−→C . Consider the ordinals I−→

f
,
−→
f ∈ −→F µ. It follows that they

form intervals in I and
−→
f 1 <

−→
f 2 implies I−→

f 1
< I−→

f 2
in I.

We have a restriction
W :

∐
−→
f ∈−→F µ

I−→
f
→ J,

satisfying all of the conditions of the previous section. Hence, we have a map µW as explained above.
Let us show that after the application of µW , the remaining ingredients form a similar structure to
that with which we started.

The map µW only involves the complexes homI−→
f with

−→
f ∈ −→F µ. The remaining complexes are

labeled by the elements of the set

I ′ := I\
∐

−→
f ∈−→F µ

I−→
f
.

The map W naturally descends to a map

W ′ : I ′ → K(J,W ).

Let C′ := C\mC ; we then get a diagram U ′ with CU ′ = C′ and FU ′,−→c = FU ,−→c . It then follows that
(I ′,W ′) ∈ seq(U ′). Thus, we have constructed a map

νU : k[seq(U)] ⊗
⊗
−→
f ∈−→F

homI−→
f (D|−→

f
) → k[seq(U ′)] ⊗

⊗
−→
f

′∈−→F U′

hom
I−→

f
′ (FP∗D|−→

f
′ ).

One can now iterate this procedure, thus exhausting all of the arguments; in the end we will
obtain a chain of morphisms in CMC , and, finally, we can take the composition of all morphisms in
this chain, which will produce the result.

We omit the proof that this is indeed a seq-algebra structure: this is pretty clear.

6.2.4 Examples. Consider a pair of typical examples.

Example 1. The 2-ordinal U (see (10)) is as follows: CU := {0 < 1}, F−→
01

= {f0 < f1 < f2}. We have

FU := {−−→f0f1,
−−→
f1f2}:

0

f2

��f1 ��

f0

�� 1 (10)

Fix a U -diagram D so that we have dg-categories C0, C1 and functors F0, F1, F2 : C0 → C1. Let
I−−→
f0f1

:= {0f < · · · < nf}, I−−→f1f2
:= {0g < · · · < mg}, and J := {0j < · · · < (n+m)j}. Thus, we have

a coloring of U .

Fix the order on I := If 
 Ig by prescribing If < Ig. Set

W : If 
 Ig → J

as follows:
W (pi) := pj, W (qj) := (n+ q)j .

The order on I and the map W determine an element c ∈ seq(U). This element determines an
operation

mc : CIf0f1 (F0;F1) ⊗ CIf1f2 (F1;F2) → CJ(F0, F2).
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By definition, this operation is as follows.
Fix elements φ ∈ CIf0f1 (F0;F1), ψ ∈ CIf1f2 (F1;F2). Fix a chain x in C0(J) by fixing objects

Xs ∈ C0, 0 � s � n+m and morphisms hs : Xs → Xs+1. We set

mc(φ,ψ)(x) := ψ(hn, hn+1, . . . , hn+m−1) ◦ φ(h0, h1, . . . , hn−1).

Example 2. Now let U (see (11)) be a 2-ordinal such that CU = {0, 1, 2}, F−→
01

= {f0 < f1}, and

globe−→
12

:= {g0 < g1}. We then have FU = {−−→f0f1;−−→g0g1}. Denote f :=
−−→
f0f1; g := −−→g0g1:

0

f1

��

f0

�� 1

g1

��

g0

�� 2 (11)

Fix a coloring of U by setting If := {0f < · · · < nf}, Ig := {0g < · · · < mg}. Let J := {0j <
· · · < (n+m− 1)j}. Given a number R ∈ {1, . . . ,m}, let us define an element s := sR ∈ seq(U) by:

(i) fixing a total order on I
{0g < 1g < · · · < (R− 1)g < 0f · · · < nf < Rg < (R+ 1)g < · · · < mg};

(ii) fixing a map W : I → J as a unique monotone surjective map such that W ((R−1)g) = W (0f )
and W (nf ) = W (Rg); more specifically,

0g �→ 0j , 1g �→ 1j , . . . , (R− 1)g �→ (R− 1)j ,
0f �→ (R− 1)j , 1f �→ Rj , . . . , nf �→ (R− 1 + n)j,

Rg �→ (R− 1 + n)j , (R+ 1)g �→ (R+ n)j, . . . ,mg �→ (m− 1 + n)j .

Let us now fix a U -diagram, i.e. categories C0, C1, C2 and functors F0, F1 : C0 → C1 and
G0, G1 : C1 → C2. Let us construct the operation

msR
: homIf (F0, F1) ⊗ homIg(G0, G1) → homJ(G0F0, G1F1).

Let hF ∈ homIf (F0, F1) and hG ∈ homIg(G0, G1) and let X0, . . . ,Xn+m−1, uk : Xk → Xk+1

be a chain of objects and arrows in C0. Let X : J → C0 : kj �→ Xk. We then have a chain
u := u0 ⊗ · · · ⊗ un+m−2 ∈ C0(X). Let us construct the arrow

msR
(hF , hG)(u) : G0F0(X0) → G1F1(Xn+m−1)

in C2.
Applying hF , we get the following chain in C1:

F0(X0)
F0(u0)−−−−→ F0(X1)

F0(u1)−−−−→ · · · F0(uR−2)−−−−−−→ F0(XR−1)
hF (uR−1,uR,...,uR−2+n)−−−−−−−−−−−−−−−→ F1(XR−1+n)

F1(uR−1+n)−−−−−−−→ F1(XR+n)
F1(uR+n)−−−−−−→ · · · F1(uR+n+m−2)−−−−−−−−−→ F1(Xn+m−1).

We apply hG to this chain so as to get an arrow

hG(F0(u0);F0(u1); . . . ;F0(uR−2);hF (uR−1, uR, . . . , uR−2+n);F1(uR−1+n); . . . ;F1(uR+n+m−2))

which belongs to

homC2(G0F0(X0);G1F1(Xn+m−1)).

This arrow is msR
(hF , hG)(u).

6.2.5 In § 3.1.1 we have defined a map of cosimplicial complexes

hom•(F,G) → hom•(F,G)
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for every pair of functors F,G : A→ B. In this way, we get a map of C-complexes

hom• → hom• .

It is easy to check that hom• is a seq-subalgebra of hom•. Furthermore, given a 2-ordinal U
and a U -diagram D, for every e ∈ seq(U), the structure map⊗

−→
f ∈−→F U

homI−→
f (D−→

f
) 1�→e−−−→ seq(U) ⊗

⊗
−→
f ∈−→F U

homI−→
f (D−→

f
) −→ homJ(p∗D)

is the same.
This can be formulated as follows. Let T be the trivial N-colored 2-operad: for every N-colored

2-ordinal U , T (U) := {1}, and the structure maps are then uniquely defined. Let

seq → T (12)

be the obvious projection. We then have the following.

Proposition 6.3. We have:

(i) hom• ⊂ hom• is a seq-subalgebra;

(ii) the seq-action on hom• passes through the projection (12).

6.2.6 Cosimplicial structure. Let us recover the cosimplicial structure on hom• from the seq-
structure.

Let globe, I, J be the globe colored by the ordinals I and J . By definition,

seq(globe, I, J) = ∆(I, J)

is the space of all monotone maps.
The 2-operadic structure gives rise to associative maps

seq(globe, I, J) × seq(globe, J,K) → seq(globe, I,K)

thus giving rise to a category structure on N which is just given by composing the correspond-
ing monotone maps. That is, this category is nothing else but the simplicial
category ∆.

6.2.7 Given a colored 2-ordinal U ′ with the underlying 2-ordinal U and a coloring given by the
family of ordinals I−→

f
,
−→
f ∈ −→F U , J , write

seq(U)J{I−→
f
}−→

f ∈−→F
:= seq(U ′).

As a function in I−→
f
, J , seq(U) becomes a functor

(∆op)
−→F × ∆ → sets.

6.3 Passing to complexes
Define the realization

O(U) := |seq(U)| := hom∆(S; k[seq(U)] ⊗
(∆op)

−→F (S)�
−→F ),

where S is as in § 3.1. A similar construction can be found in [MS04].
It is immediate that these realizations form a dg-2-operad O, and that this operad acts on the

C-complex Rhom = hom∆(S,hom•).
Our goal now is to check that this operad satisfies the theorem.
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6.4 Contractibility of O
First of all, let us construct a quasi-isomorphism

O → triv.

It is easy to construct such a map: it is just the augmentation map. Let us show that this map is a
quasi-isomorphism.

We start by studying a multisimplicial set

seq(U)J•,...,• : ∆FU → sets, (13)

where J is a fixed ordinal. Let S(U , J) be the topological space obtained by applying the standard
topological realization functor to this multisimplicial set.

Proposition 6.4. For each ordinal J , the topological space S(U, J) is contractible.

Proof. One can describe this realization explicitly. Let us so do: a point of S(U , J) is given by
an equivalence class decompositions of a fixed segment I := IU of length |−→F | into a number of
subsegments labeled by the elements from

−→F U .
The labeling should satisfy:

(a) if
−→
f 1,

−→
f 2 ∈ −→F and a segment labeled by

−→
f 2 lies between those labeled by

−→
f 1, then π(

−→
f 1) >

π(
−→
f 2);

(b) if π(
−→
f 1) = π(

−→
f 2) = −→c and

−→
f 1 <

−→
f 2 in

−→F −→c , then all segments labeled by
−→
f 1 are on the

left-hand side of elements labeled by
−→
f 2;

(c) the total length of all segments labeled by the same element
−→
f is 1;

(d) a monotone map
−→
J → I.

Two such points are equivalent if one is obtained from the other by a number of operations of
the following two types:

(i) adding into or deleting from our decomposition a number of labeled segments of length 0;

(ii) joining two neighboring segments of our decomposition labeled by the same letter into one
segment labeled by the same letter, or the inverse operation.

This space receives an obvious CW-structure. The proof that this space is indeed a realization
is straightforward.

Let S(U) be the space whose points are described by conditions (a)–(c) (without condition (d)),
and the equivalence relation is the same. We then get an obvious isomorphism

S(U , J) = S(U) × ∆J .

Remarks. We make the following remarks.

(1) One can prove that this is an isomorphism of cosimplicial spaces.

(2) The topological realization

|Σ(U)| := |S(U , •)|
is then identified with the space S(U) × R, where R is the space of monotone maps of a unit
segment into the segment I. The spaces Σ(U) form a topological 2-operad. This operad acts
on topological realizations of the topological version of hom•(F,G).

Thus, it only remains to show that the space S(U) is contractible.
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For simplicity, let us identify C with the set 0 < · · · < n. Let Um be a ball in U which is the
preimage of [m,n] ⊂ C. We then have a natural projection

Pm : S(Um) → S(Um+1);

this projection sends a point in S(Um) into a point obtained from it by collapsing each segment
labeled by elements from π−1−−−−−−→m,m+ 1 to a point.

Conversely, given:

(i) a point x ∈ S(Um+1); and

(ii) a monotone map U : π−1(
−−−−−−→
m,m+ 1) → IUm+1 ;

one can construct a point in S(Um) by inserting unit segments labeled by i ∈ π−1(
−−−−−−→
m,m+ 1) in

place of the point U(i).
It is clear that in this way we obtain a bijection

S(Um) ∼= S(Um+1) × ∆π−1m.

This argument implies that the space S(U) is homeomorphic to a product of simplices and, hence,
is contractible.

Remark. This proof is similar to McClure and Smith’s proof of contractibility of cells of their operad
D2 (see [MS04]).

6.4.1 Let us now use Proposition 6.4 in order to show that the augmentation map O → triv is
a weak equivalence of dg-operads.

Consider the complex
Σ(U , J) := k[seq(U)J•,...,•] ⊗∆FU S�FU ,

which is the realization of the multisimplicial complex k[seq(U)J•,...,•].
Let pt : (∆op)FU → sets be the constant functor sending everything to the fixed one-element

set. We then have a natural augmentation map

k[seq(U)J•,...,•] → k[pt].

The total complex of k[pt] is isomorphic to k, and we have an induced map

aug : Σ(U , J) → k.

Proposition 6.4 readily implies the following.

Corollary 6.5. The map aug is a quasi-isomorphism of complexes.

It is clear that J �→ Σ(U , J) is a cosimplicial complex. Let k′ : ∆ → complexes be the cosim-
plicial complex sending every object to k and every arrow to the identity of k. It is straightforward
to check that the map aug gives rise to a map of cosimplicial complexes

aug′ : Σ(U , •) → k′

which is a term-wise quasi-isomorpism.
Taking the realization of the cosimplicial complexes on both sides, we get the augmentation map

O(U) → k,

which is automatically a quasi-isomorphism (because the realization functor preserves quasi-
isomorphisms). This implies the following.

Corollary 6.6. The augmentation map O → triv is a weak equivalence of dg 2-operads.
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6.4.2 Thus, we have proven the assertion of Theorem 5.1 that a contractible 2-operad acts on
Rhom. The remaining conditions (i) and (ii) follow immediately from Proposition 6.3. This com-
pletes the proof of the theorem.

7. Relation to Deligne’s conjecture

Given a dg-category A, we can consider a complex Rhom(IdA, IdA). This complex is called the
Hochschild complex of the category A. If the category A has only one object p, then its Hochschild
complex coincides with that of the associative algebra EndA(p).

Thus, we denote

HochA := Rhom(IdA, IdA).

As a corollary of the just proven theorem, we have a certain structure on HochA; before defining
it, let us give it a name ‘an O-algebra structure on HochA’.

The definition is as follows. Given a complex K (for example, K := HochA) we define a 2-operad
fullK by setting

fullK(U) := homk(K⊗FU ;K)

with the obvious insertion maps.

Remark. Of course, this construction is a particular case of the full 2-operad of a C-complex, where
C is the category with one object and one arrow so that there is only one globe in C, and a C-complex
is the same as a usual complex, so that our complex K gives rise to a C-complex and we can apply
the construction of the full operad of a C-complex. In this way, we get another construction of
fullK.

Given a 2-operad E , we define an E-algebra structure on K as a map of 2-operads

E → fullK.

Theorem 5.1 immediately implies the following.

Proposition 7.1. As in the statement of the theorem, HochA has a structure of algebra over the
2-operad O.

As O is a contractible 2-operad, a result from [Bat07] implies the following.

Corollary 7.2. A certain operad which is homotopy equivalent to the chain operad of little disks
acts on HochA.

This corollary is known as Deligne’s conjecture on Hochschild cochains.
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