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MARLOW SHOLANDER 

MANY sets of postulates have been given for distributive lattices and for 
Boolean algebra. For a description of some of the most interesting and for 
references to others the reader is referred to BirkhofFs ''Lattice Theory"[1]. 
In this paper we give sets of postulates which have some intrinsic interest 
because of their simplicity. In the first two sections binary operations are 
used to describe a distributive lattice by 2 identities in 3 variables and a Boolean 
algebra by 3 identities in 3 variables. In the third section a ternary operation 
is used to describe distributive lattices with 0 and J by 2 identities in 5 vari
ables. 

1. Distributive lattices. Let © be a set of elements a, b, c, . . . closed under 
the operations W and P and satisfying, for all a, b, c in ©, these postulates: 

PI . a = ar\(a\Jb), 

P2. a P (6 U c) = (c P a) U (b P a). 

We wish to prove © is a distributive lattice. In identities (1.1), (1.2), and 
(1.3) below, A denotes a C\ a. 

a = aC\{a\J a) = A\J A, by PI and P2. 

a = a C\ a. 

A = A(~\(A\JA) = Ar^a, by PI and (1.1). 

an a = aC\{A\J A) 
= {AC\a)\J (AH a) 
= A\J A = a, by (1.1), P2, and (1.1). 

a = A\J A = a\Ja, by (1.1) and (1.2). 

anb = bna. 
anb = (anb)KJ (anb) by (1.3), P2, and (1.3). 

= b n (a KJ a) = b n a, 

a = (bna)\J a. 
a = a H ( a U i ) 

= (6 H a) \ J a, by PI , P2, and (1.2). 

a = a U [(6 H a) Pi a]. 

a = a n a = a P [(& P a) U a] 
= û U [ ( ô n û ) n a], by (1.2), (1.5), P2, and (1.2). 
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(1.1) 

(1.2) 
Proof. 

Hence 

(1.3) 

(1.4) 
Proof. 

(1.5) 
Proof. 

(1-6) 
Proof. 
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(1.7) a\Jb = [b\J (ar\b)]Ua. 

Proof. a VJ b = (a KJ b) P (a U b) 
= [br\(aVJ b)] U [a P (a U b)] 
= [ & U ( a H 6)] U a, by (1.2), P2, P2, (1.2) and PL 

(1.8) b = 6 W (a P b). 

Proo/. b = (aC\b)\Jb 
= {b\J[(ar\b)r\b]} \J {aC\b) 
= 6 U (a H &), by (1.5), (1.7), and (1.6). 

(1.9) a\Jb = b\J a, by (1.7) and (1.8). 

Since the remainder of the exposition has a pattern common to several pre
vious expositions [1, pp. 135, 136.], we proceed giving somewhat less detail. 
We have proved the so-called idempotent, commutative, and absorption laws. 
The associative laws remain to be proved. 

We denote (a U b) VJ c by P and a \J (b KJ c) by Q. It is routine to show 
that a P P = a, b P P = b, and c P P = c. Hence, 

<2 = (a Pi P) U [(6 Pi P) U (c Pi P]) 

= (ûnp)U[(ôUc)np] = onp, 
By left-right symmetry, Q P P = P . Thus we have U associativity and it 
is now easy to deduce the dual of the distributive law. By duals of proofs 
previously given, we may prove P associativity. We then have 

(1.10) © is a distributive lattice. 

2. Distributive lattices with 0 and J. In this section we note some immedi
ate extensions of the postulate system PI , P2. Consider the postulates: 

P3. a \J 0 = a, for some 0. 

P3' . a P I = a, for some / . 

P3" . OKJ (a C\ I) = a, for some 0 and some / . 

P3*. To each b there corresponds some b! such that 

aC\{b\JV) = a\J (bCW). 

Using (1.10) it is easy to prove the following statements. An algebraic 
system which satisfies PI , P2 and 

(i) P3, is a distributive lattice with 0, 

(ii) P3' , is a distributive lattice with / , 

(iii) P3" , is a distributive lattice with 0 and / , 

(iv) P3*, is a Boolean algebra. 
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In case (i), we have a C\ 0 = (a U 0) C\ 0 = 0. Moreover 0 is unique 
for if an element Or shares the properties of 0, then 0 = 0' \J 0 = 0'. Case 
(ii) is the dual of case (i). 

In case (iii), we have 0 U a = 0 VJ [0 U (a Pi 7)] = 0 U (a H 7) = a and 
hence a = 0\J {a C\ I) = a C\ I. Thus PS" implies P3 and P3' . 

In case (iv), denote £ \J V by 7 and b C\ V by 0. From a C\ I = aKJ 0, 
0\J(ar\I) = 0KJ(a\J0) = a\J0 = a\J {a\J0) = a\J (aCM) = a. 
Hence P3* implies P3" . It is a routine matter to show that the complement, 
&', of b is unique. 

3. Postulates with a ternary operation. The ternary operation used here 
is the one introduced by Grau [3]. Kiss and Birkhoff [4] have described dis
tributive lattices with 0 and I in terms of the operation. Croisot [2], using 
this operation and 5 variables, defines a Boolean algebra by means of 2 iden
tities and a distributive lattice with 0 and I by means of 3 identities (see 
Problem 64 in [1]). In the latter case also, it happens that 2 identities are 
sufficient. We give the result without proof. 

Let © be an algebraic system with a ternary operation (a, 6, c) and with 
elements 0 and I such that, identically, 

Ql . (0, a, (7, 6,7)) =<*> 

Q2. (a, (6, c, d),e) = ((a, c, e), d, (6, a, e)). 

If we define a KJ b = (a, 7, &) and a C\b — (a, 0, &), then 5 is a distributive 
lattice with 0 and 7. Moreover, 

(a, 6, c) = ( ^ & ) U ( & n c ) U ( c n a). 

REFERENCES 

[1] Garrett Birkhoff, Lattice Theory, Amer. Math. Soc. Colloquium Publications, vol. XXV' 
1948. 

[2] R. Croisot, Axiomatique des lattices distributives, Can. J. Math., vol. 3, (1951), pp. 24-27. 
[3] A. A. Grau, Ternary operations and Boolean algebra, Ph.D. Thesis, University of Michigan, 

1944. 
[4] S. A. Kiss and Garrett Birkhoff, A ternary operation in distributive lattices, Bull. Amer. 

Math. Soc, vol. 53 (1947), 749-752. 

Washington University 

https://doi.org/10.4153/CJM-1951-003-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1951-003-5

