POSTULATES FOR DISTRIBUTIVE LATTICES

MARLOW SHOLANDER

Many sets of postulates have been given for distributive lattices and for Boolean algebra. For a description of some of the most interesting and for references to others the reader is referred to Birkhoff's "Lattice Theory"[1]. In this paper we give sets of postulates which have some intrinsic interest because of their simplicity. In the first two sections binary operations are used to describe a distributive lattice by 2 identities in 3 variables and a Boolean algebra by 3 identities in 3 variables. In the third section a ternary operation is used to describe distributive lattices with O and I by 2 identities in 5 variables.

1. Distributive lattices. Let $\subseteq \subseteq$ be a set of elements a, b, c, \ldots closed under the operations \cup and \cap and satisfying, for all a, b, c in \mathfrak{S}, these postulates: P1.

$$
a=a \cap(a \cup b),
$$

P2.

$$
a \cap(b \cup c)=(c \cap a) \cup(b \cap a)
$$

We wish to prove \mathfrak{S} is a distributive lattice. In identities (1.1), (1.2), and (1.3) below, A denotes $a \cap a$.

$$
\begin{equation*}
a=a \cap(a \cup a)=A \cup A, \quad \text { by P1 and P2 } \tag{1.1}
\end{equation*}
$$

$$
\begin{equation*}
a=a \cap a \tag{1.2}
\end{equation*}
$$

$$
A=A \cap(A \cup A)=A \cap a, \quad \text { by P1 and (1.1) }
$$

Hence

$$
a \cap a=a \cap(A \cup A)
$$

$$
=(A \cap a) \cup(A \cap a)
$$

$$
=A \cup A=a, \quad \text { by (1.1), P2, and (1.1). }
$$

$$
\begin{equation*}
a=A \cup A=a \cup a \tag{1.3}
\end{equation*}
$$

by (1.1) and (1.2).

$$
\begin{equation*}
a \cap b=b \cap a . \tag{1.4}
\end{equation*}
$$

$a \cap b=(a \cap b) \cup(a \cap b)$ by (1.3), P2, and (1.3).
Proof.

$$
=b \cap(a \cup a)=b \cap a
$$

$$
\begin{equation*}
a=(b \cap a) \cup a \tag{1.5}
\end{equation*}
$$

Proof.

$$
a=a \cap(a \cup b)
$$

$$
=(b \cap a) \cup a
$$ by P1, P2, and (1.2).

$$
\begin{equation*}
a=a \cup[(b \cap a) \cap a] . \tag{1.6}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
a & =a \cap a=a \cap[(b \cap a) \cup a] \\
& =a \cup[(b \cap a) \cap a], \quad \text { by (1.2), (1.5), P2, and (1.2). }
\end{aligned}
$$

[^0]\[

$$
\begin{equation*}
a \cup b=[b \cup(a \cap b)] \cup a \tag{1.7}
\end{equation*}
$$

\]

Proof.

$$
\begin{align*}
a \cup b & =(a \cup b) \cap(a \cup b) \\
& =[b \cap(a \cup b)] \cup[a \cap(a \cup b)] \\
& =[b \cup(a \cap b)] \cup a, \quad \text { by (1.2), P2, P2, (1.2) and P1. } \\
b & =b \cup(a \cap b) . \tag{1.8}
\end{align*}
$$

Proof.

$$
=b \cup(a \cap b), \quad \text { by }(1.5),(1.7), \text { and (1.6) }
$$

$$
\begin{aligned}
b & =(a \cap b) \cup b \\
& =\{b \cup[(a \cap b) \cap b]\} \cup(a \cap b)
\end{aligned}
$$

$$
\begin{equation*}
a \cup b=b \cup a, \quad \text { by (1.7) and (1.8). } \tag{1.9}
\end{equation*}
$$

Since the remainder of the exposition has a pattern common to several previous expositions [1, pp. 135, 136.], we proceed giving somewhat less detail. We have proved the so-called idempotent, commutative, and absorption laws. The associative laws remain to be proved.

We denote $(a \cup b) \cup c$ by P and $a \cup(b \cup c)$ by Q. It is routine to show that $a \cap P=a, b \cap P=b$, and $c \cap P=c$. Hence,

$$
\begin{aligned}
Q & =(a \cap P) \cup[(b \cap P) \cup(c \cap P]) \\
& =(a \cap P) \cup[(b \cup c) \cap P]=Q \cap P
\end{aligned}
$$

By left-right symmetry, $Q \cap P=P$. Thus we have \cup associativity and it is now easy to deduce the dual of the distributive law. By duals of proofs previously given, we may prove \cap associativity. We then have
\mathfrak{S} is a distributive lattice.
2. Distributive lattices with O and I. In this section we note some immediate extensions of the postulate system P1, P2. Consider the postulates:

P3.

$$
a \cup O=a, \quad \text { for some } O
$$

P^{\prime}. $\quad a \cap I=a, \quad$ for some I.
$\mathrm{P}^{\prime \prime} . \quad O \cup(a \cap I)=a, \quad$ for some O and some I.
P3*. To each b there corresponds some b^{\prime} such that

$$
a \cap\left(b \cup b^{\prime}\right)=a \cup\left(b \cap b^{\prime}\right)
$$

Using (1.10) it is easy to prove the following statements. An algebraic system which satisfies P1, P2 and

P3, is a distributive lattice with O,
(ii)
(iii)
(iv)
$\mathrm{P}^{\prime}{ }^{\prime}$, is a distributive lattice with I,
$\mathrm{P}^{\prime \prime}$, is a distributive lattice with O and I,
P3*, is a Boolean algebra.

In case (i), we have $a \cap O=(a \cup O) \cap O=O$. Moreover O is unique for if an element O^{\prime} shares the properties of O, then $O=O^{\prime} \cup O=O^{\prime}$. Case (ii) is the dual of case (i).

In case (iii), we have $O \cup a=O \cup[O \cup(a \cap I)]=O \cup(a \cap I)=a$ and hence $a=O \cup(a \cap I)=a \cap I$. Thus P3' implies P3 and P3'.

In case (iv), denote $b \cup b^{\prime}$ by I and $b \cap b^{\prime}$ by O. From $a \cap I=a \cup O$, $O \cup(a \cap I)=O \cup(a \cup O)=a \cup O=a \cup(a \cup O)=a \cup(a \cap I)=a$. Hence P3* implies P3". It is a routine matter to show that the complement, b^{\prime}, of b is unique.
3. Postulates with a ternary operation. The ternary operation used here is the one introduced by Grau [3]. Kiss and Birkhoff [4] have described distributive lattices with O and I in terms of the operation. Croisot [2], using this operation and 5 variables, defines a Boolean algebra by means of 2 identities and a distributive lattice with O and I by means of 3 identities (see Problem 64 in [1]). In the latter case also, it happens that 2 identities are sufficient. We give the result without proof.

Let \mathfrak{S} be an algebraic system with a ternary operation (a, b, c) and with elements O and I such that, identically,

Q1.

$$
(O, a,(I, b, I))=a
$$

Q2.

$$
(a,(b, c, d), e)=((a, c, e), d,(b, a, e))
$$

If we define $a \cup b=(a, I, b)$ and $a \cap b=(a, O, b)$, then S is a distributive lattice with O and I. Moreover,

$$
(a, b, c)=(a \cap b) \cup(b \cap c) \cup(c \cap a)
$$

References

[1] Garrett Birkhoff, Lattice Theory, Amer. Math. Soc. Colloquium Publications, vol. XXV, 1948.
[2] R. Croisot, Axiomatique des lattices distributives, Can. J. Math., vol. 3, (1951), pp. 24-27.
[3] A. A. Grau, Ternary operations and Boolean algebra, Ph.D. Thesis, University of Michigan, 1944.
[4] S. A. Kiss and Garrett Birkhoff, A ternary operation in distributive lattices, Bull. Amer. Math. Soc., vol. 53 (1947), 749-752.

Washington University

[^0]: Received June 20, 1950. This paper was written while the author was under contract to the Office of Naval Research.

