
1 Introduction

Images are everywhere. Whether on a social media page, a doctor’s desk to aid diagnosis
or a scientist’s computer screen to help study a chemical, physical or biological process,
the modern world is awash with digital images.

All images are produced by acquiring measurements using a physical device. The list of
different acquisition devices is long and varied. It includes simple devices found in most
homes, such as digital cameras; specialist medical imaging equipment found in hospitals,
such as a Magnetic Resonance Imaging (MRI) or X-ray Computed Tomography (CT)
scanner; or scientific devices, such as electron microscopes, found in laboratories.

The concern of this book is the task of image reconstruction. This is the algorithmic
process of converting the raw data (the measurements) into the final image seen by the
end user. The overarching aim of image reconstruction is to achieve the four following,
and competing, objectives:

Objective #1 (accuracy): to produce the highest-quality images.

Accuracy is of course paramount. High-quality images are desirable in virtually all
applications. However, in direct competition with this is:

Objective #2 (sampling): to use as few measurements as possible.

Acquiring more measurements usually comes at a cost. It could mean an additional
outlay of time, power, monetary expense or risk, depending on the application at hand.
Reducing the number of measurements is often the primary goal of image reconstruction.
For example, in MRI, taking more measurements involves a longer scan time, which
can be unpleasant and challenging for the patient – especially in paediatric MRI. It also
makes the measurements acquired more susceptible to corruptions due, for instance, to
patient motion. In X-ray CT, the number of measurements loosely corresponds to the
amount of radiation to which the patient is exposed. Acquiring fewer measurements per
scan opens the door for more frequent scans, which in turn allows for more effective
treatment monitoring.

Objective #3 (stability): to ensure that errors in the measurements or in the numer-
ical computation do not significantly impact the quality of the recovered image.

All imaging systems introduce error in the measurements, due to noise, corruptions or
modelling assumptions. There are also round-off errors in the numerical computations
performed by image reconstruction algorithms. It is vital that reconstruction algorithms
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be robust to such perturbations, so that small errors do not have a deleterious effect on
the output image.

Objective #4 (efficiency): to recover the image in reasonable computing time with-
out significant computing power and memory.

In many applications, images need to be reconstructed rapidly. After all, a doctor does
not want to wait a long time for an image to be generated after a scan has concluded. In
other imaging systems, notably portable systems, computing resources may be severely
limited. Since modern images are often comprised of tens of millions of pixels, practical
image reconstruction algorithms must have the ability to scale to large problem sizes
without suffering a blow-up in computing time or memory requirements.

1.1 Imaging and Inverse Problems

Mathematically, the simplest way to model an image reconstruction problem is as the
following discrete, linear inverse problem:

Given the measurements y = Ax + e, recover x. (1.1)

Here y ∈ Cm is the vector of measurements produced by the sensing device, A ∈ Cm×N
is the measurement matrix representing the acquisition process, e ∈ Cm is a vector of
measurement noise and x ∈ CN is the (vectorized version of the) unknown image to
be recovered. The integer m is the number of measurements, and N is the number of
pixels in the image. Designing an image reconstruction procedure means constructing a
reconstruction map

R: Cm → CN, (1.2)

that takes input y and outputs an approximation R(y) to the true image x.
It is important to note that (1.1) is derived through mathematical modelling of the

sensing device, a process which usually involves a series of assumptions. While a
finite-dimensional, linear model such as (1.1) may be appealing in its simplicity, it may
result in mismatch between the model and the true physics, which in turn may lead
to additional errors in the reconstruction. One common error of this type arises from
discretization: the conversion of a continuous problem into a discrete one such as (1.1).
To avoid subsequent errors in the reconstruction, it may be beneficial to consider an
infinite-dimensional model:

Given the measurements y = A f + e, recover f . (1.3)

Here f : [0, 1]d → C is a function representing the image, A is a linear operator
representing the acquisition process, y ∈ Cm is the vector of measurements and e ∈ Cm
is measurement noise, as before. Of course, there may well be other modelling issues
beyond discretization. The sensing process could be nonlinear, for example, in which
case (1.3) will still result in model mismatch.
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1.2 What is Compressive Imaging?

For the sake of simplicity, consider the discrete problem (1.1). If m = N and A is
invertible, then reconstructing x is, in principle, straightforward. In the absence of noise,
we simply solve the linear system Ax = y. However, this situation is rare in practice.
Because of Objective #2, it is often the case that the number of measurements m is much
smaller than the problem size N . This renders the linear system highly underdetermined,
making exact recovery of x from y generally impossible.

The classical way to approximately recover x is to apply a left inverse of A to y:
for example, its pseudoinverse A†. This is a simple, linear recovery procedure (the map
R: y �→ A†y is a linear map) that is often computationally efficient and robust. It also
has a simple interpretation: the computed image x̂ = A†y has the smallest �2-norm
amongst all those that fit measurements. Unfortunately, this process generally leads
to low-quality reconstructions. Figure 1.1(c) illustrates this phenomenon for a synthetic
MRI experiment involving the classical Shepp–Logan phantom. The recovered image is a
poor reconstruction of the original image. As we observe, it exhibits substantial artefacts.

What to do? The way forward is to realize that images are not just arbitrary arrays
of pixels: they have characteristic features such as edges and textures. Mathematically,
this means that natural images can be modelled as objects in low-dimensional, nonlinear
spaces embedded in the high-dimensional vector space CN . This on its own is by no
means a new concept. It lies at the heart of modern lossy image compression standards
such as JPEG-2000 and MPEG. Yet it was not until the mid-2000s that researchers began
to develop mathematical tools for exploiting such structure in the context of solving
image reconstruction problems such as (1.1). This has led to a topic in its own right,
termed compressed sensing (also known as compressive sensing, compressed sampling
or compressive sampling), with applications not only in imaging but also many other
problems in computational science and engineering.

This brings us to the topic of this book.

This book is about compressive imaging: the development, analysis and application
of sampling strategies and (nonlinear) reconstruction procedures that exploit the
low-dimensional structure of images to achieve substantially better image recovery
than with classical techniques.

The growth of compressive imaging has wrought a profound change on practical image
reconstruction over the past decade. In many applications, not least MRI, classical linear
recovery procedures have been replaced by a new generation of techniques.

It is not hard to see why. Figure 1.1(d) shows what happens when the procedure used
in Fig. 1.1(c) is replaced by a compressive imaging procedure based on compressed
sensing. Both procedures use exactly the same data, and in particular, the same number
of measurements. Yet the compressed sensing recovery is significantly better. It has none
of the artefacts that plagued the classical reconstruction and appears to reconstruct the
image perfectly – at least to the human eye.

The purpose of this book is to explain how compressive imaging makes this possible.
It aims to describe how Fig. 1.1(d) was computed, why it offers such a significant
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(a) Original (b) Sampling map

(c) Classical recovery (d) Compressed sensing recovery

Figure 1.1 Reconstruction of the Shepp–Logan phantom image from discrete Fourier
measurements. (a) Original image of size 256 × 256 = 65, 536. (b) Sampling map in frequency
space with m = 5481. Each white dot represents a frequency sampled. (c) Classical
reconstruction using the zero-padded inverse DFT (this is equivalent to A†). (d) Compressed
sensing reconstruction using TV minimization.

improvement over Fig. 1.1(c) and how performance, in the sense of Objectives #1–#4,
can be even further improved.

Key Point #1. Image reconstruction has been revolutionized in the last decade by
the emergence of compressive imaging in tandem with compressed sensing.

Remark 1.1 Figure 1.1 has an important historical context. It replicates an experiment
performed by Candès, Romberg & Tao in their seminal 2006 paper that introduced
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compressed sensing in tandem with the work of Donoho. The impact that this dramatic
proof-of-concept experiment had on the imaging community is hard to overstate.

1.3 Terminology

In the remainder of this chapter, we discuss some of the main themes arising in this
book. But, first, a word on terminology. Compressive imaging and compressed sensing
are not synonymous. The latter is a mathematical theory for exploiting low-dimensional
structures in abstract problems of the form (1.1), i.e. where x need not be an image and
A need not arise from an imaging device. Unsurprisingly, the former deals exclusively
with imaging. However, compressive imaging arguably owes its existence to the latter,
imaging being both a primary motivation for much of compressed sensing research (see
Remark 1.1) and one of the areas where it has been most successfully applied.

Yet compressive imaging is also not limited to compressed sensing techniques. Nowa-
days, it is beginning to see the increasing use of tools from machine learning, such as
neural networks and deep learning. Part V of this book considers these approaches.
Although closely related, they are not compressed sensing approaches per se.

Compressive imaging can also be seen as a subset of the larger, and rather older, field
of computational imaging. Here the general goal is to enhance image quality through
the design of better reconstruction algorithms and the availability of more powerful
computing resources, rather than through hardware improvements in the sensor itself –
the latter being ever increasingly harder to achieve due to physical limits.

1.4 Imaging Modalities

In order to exhibit some of the main aspects of the book, we now describe some of the
different sampling processes that arise in typical imaging problems.

1.4.1 Integral Transforms

Measurements of an image are often acquired by sampling with an integral transform. The
Fourier transform is an important example of this process. If f is a function representing
a continuous image, then its Fourier transform is defined by

F f (ω) =
∫
Rd

f (x)e−iω ·x dx, ω ∈ Rd .

In Fourier imaging the (noiseless) measurements y ∈ Cm correspond to samples

{F f (2πω) : ω ∈ Ω}

of F f at a set of m frequencies Ω = {ω1, . . . , ωm} ⊂ Rd . MRI is an important example
of Fourier imaging.
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The Radon transform is another key integral transform found in imaging. It models the
acquisition process in tomographic modalities such as X-ray CT. Here the measurements
correspond to line integrals through the object being scanned.

It is important to note that the integral transform in a given problem is generally
fixed. The acquisition process in MRI is modelled by the Fourier transform; in CT it is
modelled by the Radon transform. Neither can be easily changed. However, there may
be substantial freedom to choose the samples themselves, i.e. the set of frequencies Ω
in Fourier imaging. Hence a key challenge in imaging with integral transforms is to
understand how the choice of Ω affects the recovery of f , and then to use this insight to
design sets Ω that lead to the highest-quality reconstructions.

Key Point #2. Many imaging modalities involve sampling via an integral transform.
An important challenge is determining values at which the integral transform should
be sampled so as to produce the best reconstructions.

Since this is also an inherently infinite-dimensional problem, a second challenge is to
devise suitable discretizations to render the problem amenable to computations.

1.4.2 Binary Sampling

Binary sampling occurs when an image is measured by taking inner products with a
function or vector that takes values in {+1,−1}. In the discrete setting (1.1), a single,
noiseless measurement of the image x = (x j )Nj=1 ∈ C

N takes the form

〈x, a〉 =
N∑
j=1

x ja j, a = (a j )
N
j=1 ∈ {−1,+1}N . (1.4)

After repeating this process m times, one obtains a collection of measurements

〈x, a1〉, . . . , 〈x, am〉,

and a binary measurement matrix A ∈ {+1,−1}m×N in which the ith row is the ith binary
measurement vector ai ∈ {−1, 1}N .

Binary sampling arises in many optical imaging applications. Examples include lens-
less imaging and the so-called single-pixel camera, as well as fluorescence microscopy
and numerous others. Usually in these applications a mask is placed in front of the object
to be imaged. This selectively illuminates and obscures different pixels, thus effecting
a binary measurement of the image. Because of this setup, there is often significant
freedom to design the measurement vectors a1, . . . , am to maximize the quality of the
reconstructed images.

Key Point #3. Many optical imaging modalities involve binary sampling. This often
affords significantly more flexibility than imaging with integral transforms in terms
of the choice of measurements. In the discrete setting, choosing which measurements
to acquire is equivalent to choosing the whole binary measurement matrix A.
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1.4.3 Sampling with Orthonormal Vectors

Many discrete imaging problems can be cast as sampling an image x ∈ CN by taking
inner products with respect to an orthonormal basis {ui }Ni=1 ⊂ C

N . If Ω = {i1, . . . , im} ⊆
{1, . . . , N } is a set of size |Ω| = m, then the noiseless measurements in this case take the
form

y = (yj )
m
j=1, yj = 〈x, ui j 〉. (1.5)

Let U = (u1 | · · · |uN ) ∈ CN×N be the matrix whose ith column is the ith vector ui . This
matrix is unitary, U∗U = I, since {ui }Ni=1 is an orthonormal basis. The measurement ma-
trix A corresponding to (1.5) is known as a subsampled unitary matrix. It is constructed
by selecting the rows of U∗ corresponding to the indices in Ω.

Sampling with orthonormal vectors arises in standard discrete formulations of Fourier
imaging problems, in which caseU∗ = F is the Fourier matrix. This type of discretization
is highly convenient. Matrix–vector multiplications with F are equivalent to Discrete
Fourier Transforms (DFTs), which can be implemented efficiently with Fast Fourier
Transforms (FFTs). Sampling with orthonormal vectors is also useful in binary imaging.
In this case, U∗ = H might be chosen as the Hadamard matrix – the binary analogue
of the Fourier matrix F – which can be implemented efficiently via the Discrete Walsh–
Hadamard Transform (DHT) and its associated fast transform.

As with integral transforms, a key issue when sampling with orthonormal vectors is
how to choose the sampling vectors, or equivalently, the index set Ω. A secondary issue
is how well this discrete setup models the true acquisition process, and what effect any
possible model mismatch may have on the resulting reconstruction.

1.5 Conventional Compressed Sensing

Since it lies at the heart of compressive imaging, in this section we briefly depart from the
world of imaging to introduce some of the main facets of standard compressed sensing
theory. A more thorough treatment is given in Chapter 5.

1.5.1 Sparsity and Compressibility

As noted, compressed sensing aims to solve the reconstruction problem (1.1) in an
abstract sense, where x ∈ CN is a vector and A ∈ Cm×N is a matrix, neither of which
may be strictly related to an imaging problem.

Standard compressed sensing is based on the sparsity model. Specifically, we assume
that there is a fixed orthonormal basis {φi }Ni=1 ⊂ C

N such that

x =
N∑
i=1

diφi, (1.6)
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Figure 1.2 Left: Discrete signal x ∈ R64. Right: The 6-sparse vector of coefficients
d = Φ∗x ∈ R64, where Φ is a DCT.

where the vector of coefficients d = (di)Ni=1 has only s nonzero entries for some number
s 
 N . This number is known as the sparsity of d, and d is said to be s-sparse. The
vector x is said to have an s-sparse representation in the basis {φi }Ni=1.

Observe that the set of s-sparse vectors does not constitute a subspace of CN . Adding
two s-sparse vectors produces a vector that may be at most 2s-sparse. In fact, this set
is a union of s-dimensional subspaces of CN . Sparsity is therefore a type of nonlinear,
low-dimensional structure.

Let Φ = (φ1 | · · · |φN ) ∈ CN×N be the unitary matrix corresponding to the basis
{φi }Ni=1. Then (1.6) is equivalent to the expression x = Φd. Since Φ is unitary we
also have d = Φ∗x. We commonly refer to {φi }Ni=1 as the sparsity basis and Φ as the
sparsifying transform. The latter highlights the fact that applying Φ∗ to x yields the
sparse vector d.

Note that Φ could be the identity matrix, in which case the vector x is itself s-sparse.
This is relatively uncommon in imaging applications. Typical examples in imaging
include the Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT).
Figure 1.2 illustrates a vector that is 6-sparse with respect to the DCT sparsifying
transform.

Unfortunately, real-world objects such as images are never exactly sparse. However,
they are typically compressible, or approximately sparse. This means that their coeffi-
cients d = Φ∗x can be accurately approximated by an s-sparse vector for some s 
 N .
Figure 1.3 demonstrates this property when the DWT is applied to a natural image. In
this case, 95% of its coefficients can be discarded, and the resulting sparse image is
indistinguishable from the original – at least to the human eye.

Key Point #4. Conventional compressed sensing concerns the recovery of vectors
that are approximately sparse in a fixed orthogonal sparsifying transform.

Remark 1.2 Sparsity and compressibility predate compressed sensing. Notably, they
lie at the heart of modern lossy image compression algorithms such as JPEG-2000 and
MPEG. In lossy compression, the coefficients d = Φ∗x of an image x are first computed
by applyingΦ∗, then all but the largest s (in absolute value) are set to zero. This yields an
s-sparse vector d̃ that can be stored more efficiently. The number s can be viewed as the
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(a) Original (b) Wavelet coefficients (c) Compressed

Figure 1.3 (a) Original image x. (b) Its wavelet coefficients d = Φ∗x. Light values correspond to
large coefficients and dark values to small coefficients. (c) Compressed image x̃ = Φd̃, where
95% of the wavelet coefficients have been set to zero.

compression factor: if s is small, storing the s coefficients and their locations requires
significantly less memory than storing the full array of N coefficients. When the image
is needed, one simply appliesΦ to d̃ to obtain an approximation x̃ = Φd̃ to x. Figure 1.3
shows an example of this process.

1.5.2 Recovery

Suppose x is compressible in a fixed sparsifying transform Φ. We now aim to use this
information to recover accurately (Objective #1) and stably (Objective #3) from its noisy
measurements

y = Ax + e. (1.7)

Clearly, we lose all hope of high-quality recovery if the noise e is too large. Hence we
now assume that e is bounded, and that its energy

‖e‖�2 ≤ η, (1.8)

for some known and small η ≥ 0. Note that other noise models are also possible – for
instance, assuming that e follows some specific distribution – but (1.8) is typically most
common in compressed sensing.

Consider (1.7). The question is how to exploit the compressibility of x in order to
effect a good reconstruction. While numerous approaches have been proposed, arguably
the most popular involves solving a convex optimization problem that minimizes the �1-
norm of the coefficients Φ∗x. A common example is Quadratically Constrained Basis
Pursuit (QCBP). This takes the form

min
z∈CN

‖Φ∗z‖�1 subject to ‖Az − y‖�2 ≤ η. (1.9)

In other words, it finds a vector x̂ for which the coefficients Φ∗ x̂ have the smallest �1-
norm amongst all vectors that fit the measurements up to the noise bound η. The choice
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of the �1-norm here is crucial. For reasons that are discussed in more detail in Chapter 5,
the �1-norm promotes sparsity of x in the sparsifying transform Φ. It also renders the
QCBP problem convex, thus making it amenable to efficient algorithms.

However, (1.9) is by no means the only possible approach, even within the realm of
convex optimization-based approaches. Another common choice is the Least Absolute
Shrinkage and Selection Operator (LASSO). This is the unconstrained problem

min
z∈CN

λ‖Φ∗z‖�1 + ‖Az − y‖2
�2 . (1.10)

Here, the term ‖Az − y‖2
�2 promotes good fitting of the data and the term ‖Φ∗z‖�1

promotes sparsity. These two terms are balanced via a positive parameter λ > 0, the
optimal choice of which, unsurprisingly, depends on the sparsity s and the noise level η.
Note that (1.10) is the so-called unconstrained LASSO; we often write U-LASSO for
clarity. We discuss the constrained version, the C-LASSO, in Chapter 6.

1.5.3 Stable and Accurate Recovery

Having chosen a sparsifying transform and recovery procedure, we now return to Ob-
jectives #1 and #2, as well as #3. These can be posed as the following question. How
many measurements, and of what type, are sufficient for accurate and stable recovery of
x through, for instance, the QCBP problem (1.9)? This is, in essence, the main question
compressed sensing theory seeks to answer.

It does this by devising conditions on the measurement matrix A which are sufficient
for recovery. There are various different conditions, several others of which we review in
Chapter 5, but arguably the most well known is the Restricted Isometry Property (RIP).
A matrix A ∈ Cm×N satisfies the RIP of order s if there is a constant 0 < δ < 1 such that

(1 − δ)‖x‖2
�2 ≤ ‖Ax‖2

�2 ≤ (1 + δ)‖x‖2
�2,

for every s-sparse vector x. In other words, the energy of an s-sparse vector is approxi-
mately preserved via the measurement process x �→ Ax.

As we see in Chapter 5, the RIP is sufficient for stable and accurate recovery. An
important result in compressed sensing states the following. Suppose the product AΦ ∈
Cm×N has the RIP of order 2s for sufficiently small constant δ. Then for all measurements
of the form y = Ax + e with ‖e‖�2 ≤ η, every minimizer x̂ of (1.9) satisfies the error
bound

‖ x̂ − x‖�2 � CSs (x, η), CSs (x, η) =
σs (Φ∗x)�1

√
s

+ η. (1.11)

Here σs (·)�1 is the �1-norm best s-term approximation error, defined by

σs (d)�1 = min{‖z − d‖�1 : z is s-sparse}.

In other words, σs (Φ∗x)�1 measures how compressible x is in the sparsity basisΦ. Note
that σs (Φ∗x)�1 = 0 if x happens to be exactly s-sparse in Φ.

We refer to (1.11) as a compressed sensing error bound, and the statement ‘the RIP
implies (1.11)’ as a recovery guarantee. Crucially, it asserts accurate and stable recovery
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of x via QCBP. Accuracy is measured in terms of the best s-term approximation error
σs (Φ∗x)�1 and stability in terms of the noise bound η. In the idealized case where x is
exactly s-sparse in Φ and the measurements are noiseless (i.e. η = 0), the bound (1.11)
asserts that x is recovered exactly.

1.5.4 Measurement Matrices

The previous result leads naturally to the question of finding matrices that satisfy the
RIP. Identifying explicit classes of matrices that have this property is a focal point of
compressed sensing theory.

A Gaussian random matrix is a matrix whose entries are independent, normal random
variables with mean zero and variance one. Such matrices have a prominent place in
the compressed sensing canon, due to their particularly elegant theoretical properties.
A celebrated result is that if Φ is any unitary matrix and A = m−1/2 Ã, where Ã is a
Gaussian random matrix, then AΦ satisfies the RIP with high probability, provided

m � s · log(eN/s). (1.12)

The same result also holds if Ã is replaced by a Bernoulli random matrix – that is, a
matrix whose entries are independent random variables taking the values +1 and −1
with equal probability.

This result exemplifies the substantial potential of compressed sensing. It states that
there are choices of measurements for which, according to (1.12), all vectors that are
approximately s-sparse in a fixed, but arbitrary orthonormal sparsifying transform can be
recovered using a number of measurements that scales linearly in s, and logarithmically
in the ambient dimension N . Since s 
 N in practice (recall Fig. 1.3), this represents
a substantial saving over what one might classically think was needed, namely m = N ,
which of course is necessary for invertibility of A. In fact, (1.12) is optimal up to the
constant: it is impossible, regardless of the type of matrix A and the reconstruction
procedure used, to recover s-sparse vectors stably from asymptotically fewer than s ·
log(eN/s) measurements.

Key Point #5. Gaussian or Bernoulli random matrices are theoretically optimal for
stable recovery of s-sparse vectors, regardless of orthonormal sparsity basis.

However, while theoretically elegant, these matrices are generally impractical for imag-
ing problems. They are dense and unstructured, thus computationally infeasible at large
scale (recall Objective #4). Perhaps surprisingly, they also offer relatively poor perfor-
mance in practical imaging problems, despite being theoretically optimal for the recovery
of sparse vectors. We will explain this seeming contradiction in §1.6.

Remark 1.3 Randomness is a crucial component in constructing matrices that satisfy
the RIP. All constructions we see in this book involve some form of randomness, although
typically less than in the case of the Gaussian random matrix, wherein each entry is an
independent random variable. Despite significant research, practical constructions of
deterministic matrices satisfying the RIP have remained elusive.
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1.5.5 Algorithms for Compressed Sensing

We are now nearly ready to return to the problem of image reconstruction. However,
before we do so, the reader will have noticed that there is one ingredient lacking. The
QCBP or LASSO problem (1.9) or (1.10) defines a reconstruction map R: Cm → CN ,
y �→ x̂, where x̂ is a minimizer of the corresponding problem.1 This is not an algorithm.
To actually compute R(y) for a given y, we need methods that solve these optimization
problems up to some tolerance in finitely many arithmetic operations. Moreover, the
resulting algorithms should be efficient and scalable to large problems (Objective #4).
This is the topic of Chapter 7.

Interestingly, but also surprisingly, problems such as (1.9) are generally uncomputable.
For certain classes of inputs (A, y), no algorithm can compute a minimizer of (1.9) to
arbitrary accuracy in finitely many arithmetic operations. This is in stark contrast to
many classical image reconstruction techniques.

Is compressed sensing therefore doomed to failure? Is it merely an elegant theoretical
idea that fails to translate to the murky world of real computations? Fortunately, the
answer is no. But the reason is rather subtle. While minimizers are not computable to
arbitrary accuracy, they are computable to the accuracy needed – namely, the error term
CSs (x, η) in (1.11). Moreover, this accuracy can be achieved with efficient first-order
optimization algorithms capable of handling large-scale imaging problems. Chapter 8
considers this issue.

Key Point #6. Compressed sensing succeeds in practice because minimizers of
problems such as QCBP, while generally uncomputable to arbitrary accuracy, are
computable up to the accuracy needed. Moreover, this can be done efficiently.

1.6 Imaging with Compressed Sensing

We are now ready to make an initial foray into the application of compressed sensing to
imaging. We do this through a series of examples.

1.6.1 Binary Imaging

Consider a discrete binary imaging problem. As described in §1.4.2, this can be mod-
elled by the equation y = Ax, where A ∈ {+1,−1}m×N is a binary matrix that can often
be chosen arbitrarily (Key Point #3). Computational concerns aside, conventional com-
pressed sensing suggests that we should take A as a Bernoulli random matrix. After all,
this is optimal for the recovery of s-sparse vectors (Key Point #5). Figure 1.4(a) shows
the recovery of an image from these measurements. So-called DB4 wavelets are used as
the sparsifying transform (these are introduced formally in Chapter 9; see Remark 9.17
therein). The reconstruction is based on the QCBP problem (1.9).

1 Such a minimizer may not be unique. Hence R is generally a multivalued map. Fortunately, this
technicality does not cause an issue, since the error bound (1.11) is guaranteed to hold for all minimizers.
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(a) Bernoulli (b) Walsh, uniform random (c) Walsh, variable density

Figure 1.4 Reconstructions from 20% measurements for a 256 × 256 image (i.e.
m = 0.2 × 2562 = 13, 107). (a) Random Bernoulli measurements. (b) Walsh measurements with
uniform random sampling. (c) Walsh measurements with variable-density sampling. Figure 1.5
shows the sampling patterns used in (b) and (c).

Uniform random Variable density

Figure 1.5 The Walsh
sampling strategies used in
Fig. 1.4(b,c). Each white dot
represents a (Walsh)
frequency sampled. The
zero frequency is located in
the bottom left corner.

On the other hand, suppose we consider the approach discussed in §1.4.3 and form
A by selecting m rows of the N × N Hadamard matrix H . Because it has an associated
fast transform, this is a better candidate for large-scale problems. This begs the ques-
tion: which rows should we choose? Given our previous statement about randomness
(Remark 1.3), a natural first choice is to select m rows uniformly at random – a strategy
known as uniform random sampling. Figure 1.4(b) shows the reconstruction that results
from these measurements. Unfortunately, the recovery quality is terrible!

Uniform random sampling is clearly a poor sampling strategy for Walsh measurements.
Is there a better choice? It turns out that there is. The Walsh–Hadamard transform is a
binary analogue of the Fourier transform. Therefore, much like with the Fourier matrix,
the rows of the Hadamard matrix correspond to certain (Walsh) frequencies. Images
tend to have more energy at low frequencies. Hence it makes sense to sample the low
frequencies more densely and the high frequencies less densely. This is known as a
variable-density sampling strategy. In Fig. 1.4(c) we do exactly that, with the strategy
used being shown in Fig. 1.5. The improvement over uniform random sampling is
dramatic. While the reconstruction shown in Fig. 1.4(b) is heavily polluted by artefacts,
the reconstruction in Fig. 1.4(c) accurately recovers all the key image features.
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Figure 1.6 Left: A 768 × 768 image x which is s-sparse in the DB4 wavelet basis with
s = 58, 982. Right: The image x̃ = ΦPΦ∗x formed after a random permutation P of its wavelet
coefficients d = Φ∗x. Note that x̃ is exactly s-sparse in the DB4 wavelet basis but it is a highly
nonphysical image.

1.6.2 Images and Structured Sparsity

But this is not all. The variable-density Walsh sampling scheme used in Fig. 1.4(c) also
gives a significantly better reconstruction than the Bernoulli measurement matrix that
was used in Fig. 1.4(a).

What has happened? Sampling with a Bernoulli random matrix is optimal for sparse
recovery, yet it has been handsomely beaten in this example. This is no accident, and
the reason can be traced to the underlying assumption: sparsity. Sparsity in a wavelet
basis is just one model for natural images. And like all models, it is imperfect. While
most natural images have approximately sparse wavelet coefficients, the converse is not
true. As can be seen quite dramatically in Fig. 1.6, many (in fact, most) sparse vectors
of wavelet coefficients do not correspond to natural images.

In fact, wavelet coefficients of natural images possess additional local sparsity struc-
ture. This can already be seen in Fig. 1.3(b), where the majority of the large coefficients
tend to cluster in the upper-left corner of the matrix, with progressively fewer large
coefficients as one transitions to the bottom right. As we explain later, this corresponds
to moving from the coarsest to the finest wavelet scales.

Key Point #7. Natural images are approximately sparse in wavelet bases. However,
they also possess additional local sparsity structure across their wavelet scales.

So how does this relate to Fig. 1.4? Mathematically, this means that natural images
are a subset of the set of vectors with s-sparse wavelet coefficients. While a Bernoulli
random matrix is optimal for recovering s-sparse vectors, it ceases to be optimal over
this subclass. It is essentially too conservative: its ability to recover every sparse vector
means it is incapable of recovering those with additional structure more efficiently.
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(a) Hadamard (b) Fourier

Figure 1.7 The absolute values of the matrix (a) HΦ, where H is the Hadamard matrix, and (b)
FΦ, where F is the Fourier matrix. In both cases, Φ corresponds to the DB4 wavelet basis. The
approximate block diagonality means that wavelets at a fixed scale (a single block of columns) are
approximately concentrated in a band of Walsh or Fourier frequencies (a single block of rows).

Conversely, Walsh sampling is capable of exploiting this local structure. Wavelets
at different scales are essentially compactly supported in dyadic regions of (Walsh)
frequency space. Hence the sampling strategy can be designed to efficiently target the
underlying sparsity structure of the wavelet coefficients.

This can be understood a little better by examining the entries of the matrix HΦ. Here
H is the Hadamard matrix and Φ is the DWT matrix, and therefore the (i, j)th entry of
HΦ corresponds to the ith Walsh frequency of the jth wavelet. Figure 1.7(a) plots HΦ.
As is clear, this matrix has a distinct block structure. The column blocks correspond to
the wavelet scales, going from coarsest (left) to finest (right). The row blocks correspond
to the dyadic regions of frequency space, going from lowest (top) to highest (bottom).

Evidencing the (essential) compact support of wavelets in frequency space, the diag-
onal blocks of this matrix contain the largest values, with the entries in the off-diagonal
blocks being much smaller in magnitude. Understanding this behaviour in a precise
mathematical way leads to Walsh sampling strategies such as that used in Fig. 1.4(c) that
are capable of exploiting local sparsity structure. How, exactly, this is done is the focal
point of Chapters 15 and 16.

Key Point #8. The local sparsity structure of natural images can be efficiently cap-
tured by variable-density Walsh sampling schemes. For a suitably chosen scheme,
this significantly outperforms random Bernoulli sampling.

1.6.3 Fourier Imaging

Now consider Fourier imaging. For simplicity, we assume the discrete model based on
§1.4.3, where the measurements of the image x ∈ CN correspond to rows of the Fourier
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(a) Fourier, radial (b) Fourier, tuned (c) Gaussian

Figure 1.8 Reconstructions from 20% measurements for a 256 × 256 image. (a) Fourier
measurements with radial sampling. (b) Fourier measurements with tuned variable-density
sampling. (c) Gaussian random measurements.

Radial Tuned

Figure 1.9 The Fourier
sampling strategies used in
Fig. 1.8(a,b). Each white
dot represents a frequency
sampled. The zero
frequency is located in the
centre.

matrix F. A similar story occurs in this case. Wavelets are essentially concentrated in
Fourier frequency space, a fact which can again be visualized by plotting the matrix
FΦ. This is shown in Fig. 1.7(b). There is a similar dyadic structure to the Walsh case,
which once more suggests the use of a variable-density sampling scheme taking more
measurements at low frequencies and fewer at high frequencies.

A key question, which we now examine a little further, is which variable-density
strategy gives the best reconstruction. In Fig. 1.8(a,b), we compare radial sampling – a
standard sampling strategy in modalities such as MRI – with a variable-density scheme
that has been tuned to give good performance. The schemes themselves are shown in
Fig. 1.9. While both strategies qualitatively do the right thing – namely, they take more
measurements at low frequencies and fewer at high frequencies – it is clear that the latter
offers a significant improvement. A key topic in this book is explaining why this scheme
performs better, and indeed, how it was designed in the first place. This is the aim of
Chapters 15 and 16.

Figure 1.8 also compares Fourier sampling with a Gaussian random measurement ma-
trix. This approach is not feasible in most Fourier imaging modalities – as discussed, the
integral transform governing the sampling is usually fixed. Even if it were, though, doing
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so would still not be desirable. Like with Bernoulli measurements, Gaussian measure-
ments do not target the local sparsity structure, and correspondingly yield significantly
inferior reconstructions.

Key Point #9. The benefit of compressed sensing in Fourier imaging lies not only
with the fact that images are approximately sparse, but that they possess additional
sparsity structure that can be exploited by carefully designed Fourier sampling
strategies.

Fourier imaging modalities such as MRI have been some of the key beneficiaries of
compressed sensing. This success is often attributed to sparsity. But this is not the
full story. Had it been the case, we would have expected similar reconstructions in
Fig. 1.8(b,c). In fact, the reason for this success is the following serendipity: the integral
transform that arises in such modalities just happens to be the right one for efficiently
exploiting the local sparsity structure inherent to natural images.

1.6.4 Beyond Wavelets: Total Variation and X-lets

Up to this point we have focused on wavelet sparsifying transforms. Another widely
used strategy in compressive imaging involves taking Φ = ∇ to be the discrete gradient
operator. This leads to the Total Variation (TV) minimization problem

min
z∈CN

‖z‖TV subject to ‖Az − y‖�2 ≤ η,

where ‖·‖TV = ‖∇·‖�1 is the TV semi-norm. Images have approximately sparse gra-
dients, with large gradients corresponding to edges, and minimizing the �1-norm of
the gradient promotes this structure. Yet gradient sparsity is also highly structured,
since edges form piecewise smooth curves. Unsurprisingly, variable-density Walsh or
Fourier sampling are also well suited to efficiently exploiting this local sparsity structure.
Chapter 17 considers TV minimization in depth.

Other alternatives to wavelets are the various ‘X-let’ families – curvelets, shearlets
and suchlike. These are generalizations of wavelets that aim to more efficiently capture
geometric properties of images to produce higher-quality reconstructions. Images also
possess similar local sparsity in such transforms, which once more is exploitable by the
use of variable-density Walsh or Fourier sampling.

Figure 1.10 compares several of these transforms for Walsh sampling on a high-
resolution image. Notice they all recover the image well. Yet the shearlet reconstruction
exhibits fewer artefacts than both the wavelet and TV reconstructions.

1.7 Neural Networks and Deep Learning for Compressive Imaging

As noted in Key Point #1, compressed sensing ushered in a revolution in image recon-
struction that led to the development of compressive imaging. Parts II–IV of this book
are devoted to this topic, and in particular, the key issues raised in the previous sections.
Yet, arguably, a second revolution is now taking place. Looking to push performance
even further, compressive imaging strategies based on neural networks and deep learning
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Wavelets TV

Shearlets Crops

Figure 1.10 Reconstruction from 6% Walsh measurements for a 1024 × 1024 image, using a
similar variable-density strategy to that of Fig. 1.5.

have begun to emerge in the last several years. As the reader is no doubt aware, deep
learning has been used with tremendous effect in computer vision tasks such as image
classification and recognition. It is therefore unsurprising that it has begun to percolate
into the domain of image reconstruction. The aim of Part V of this book is to give an
overview of this nascent topic and its relation to compressed sensing techniques.
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1.7.1 From Model-Based to Data-Driven

Compressed sensing is primarily a model-based approach. The image model (i.e. struc-
tured sparsity in a fixed sparsifying transform) and reconstruction procedure (e.g. solving
QCBP or LASSO) are both carefully designed in advance. However, in many imaging
applications one has access to large databases of training images. This raises the follow-
ing question: why not learn the reconstruction procedure instead of crafting it from a
fixed model? Such approaches are often referred to as data-driven.

This is by no means a new idea. In the well-established field of dictionary learning,
rather than using a fixed transform such as wavelets, one seeks to compute a better
sparsifying transform Φ from the training data. In essence, an image model specific to
the problem is learned explicitly from the data. This can then be incorporated into the
QCBP or LASSO optimization problem to give a new recovery map based on the learned
Φ. We discuss dictionary learning briefly in Chapter 4.

In some senses, the goal of deep learning is to go even further. Rather than just learning
a better sparsifying transform, one instead seeks to learn the whole reconstruction map
R: Cm → CN . In other words, an image model is now implicitly learned in the process
of learning R. The key idea is to choose R as a neural network.

1.7.2 Deep Learning for Image Reconstruction

We now describe a standard setup. Consider a training set

Θ = {(yi, xi)}Ki=1 ⊂ C
m × CN, yi = Axi,

where the xi are the images and the yi their respective measurements. Let N denote
a family of neural networks N: Cm → CN . We forgo a formal definition for now (see
Chapter 18) and simply remark that a neural network is a mapping formed by alternately
composing affine maps with an elementwise nonlinear function, known as an activation
function. Why do this? Again, we shall not discuss the details now. But the effectiveness
of deep learning on computer vision tasks strongly suggests that neural networks are
capable of encoding complex image structures. Hence this is a seemingly good choice
for the related problem of image reconstruction.

Having fixed N , our task is to find a suitable reconstruction map N ∈ N . This is
usually done by solving an optimization problem that minimizes a so-called cost (or
loss) function over the training data. A simple example is the �2-loss, in which case this
problem takes the form

min
N∈N

1
K

K∑
i=1

‖N(yi) − xi ‖2
�2 . (1.13)

The reconstruction map N̂ is taken as a minimizer of (1.13). Solving (1.13) is known as
training the network.

So far, all seems straightforward. However, behind this simple description lie many
complexities. For one, there is the question of how to choose the class of neural networks
N . This is often termed choosing the architecture. Neural networks come in all sorts of

https://doi.org/10.1017/9781108377447.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108377447.002


20 Introduction

flavours – feedforward, recurrent, fully connected, convolutional and so forth – and so
there are countless ways to select N . Quite unlike the case of model-based approaches,
there is little theoretical guidance on which choice will work best in practice. Second,
the optimization problem (1.13) – as well as the many variations that it, too, can have – is
large-scale and nonconvex. It requires specialized techniques such as backpropagation
and stochastic gradients to compute approximate minimizers.

Yet neither issue is a barrier to progress. There are heuristic principles for designing
neural network architectures which work well in practice. Computations are also being
made increasingly more manageable because of the development of specialized soft-
ware and hardware (e.g., GPUs). Training neural networks for image reconstruction is
becoming ever more feasible for practical problems.

1.7.3 The Accuracy–Stability Barrier

In Chapters 18 and 19 we present an overview of neural networks and deep learning, with
a focus on the above questions. After this, we turn our attention to the following question.
Supposing one has fixed an architecture and successfully trained a neural network, how
good is this as a reconstruction map? In particular, is it stable, how accurate is it, and does
it outperform state-of-the-art model-based techniques based on compressed sensing?

We shall see that some trained neural networks can indeed offer very high accuracy
for certain image reconstruction tasks. Yet there is reason for concern. It is well known
that trained neural networks for image classification problems are highly unstable, which
makes them vulnerable to so-called adversarial attacks. A small perturbation of an image
of a ‘cat’, often imperceptible to the human eye, can cause it to be mislabelled as a ‘dog’
by the network. Adversarial attacks and how to combat them is now an active area of
research within the computer vision field.

A similar phenomenon also occurs in image reconstruction. Deep learning for com-
pressive imaging has a tendency to produce networks that are unstable and highly sus-
ceptible to small perturbations in their input (the measurements y). Specifically, if R is
a trained neural network reconstruction map, x ∈ CN is a fixed image and y = Ax ∈ Cm
its measurements, it is possible to find perturbations r ∈ CN for which

‖R(y + Ar) − R(y)‖�2 � 1, ‖r ‖�2 
 1. (1.14)

Figure 1.11 shows a typical instance of this phenomenon. The network recovers the
image extremely well from the unperturbed measurements y. But the reconstruction
from the perturbed measurements y + Ar is badly affected by artefacts, even though
the perturbed image x + r is nearly indistinguishable from the original image x. As we
explain in Chapter 20, this is not a rare event. Many trained networks are susceptible to
perturbations, including, in some cases, completely random perturbations.

Much of Chapter 20 explores the theoretical reasons why this instability phenomenon
occurs. The general idea is that the training procedure (1.13) can encourage the re-
construction map to over-perform, which forces it to become unstable. Specifically, the
training procedure can lead to a neural network N̂ that is able to reconstruct two distinct
images x and x ′ (e.g. two elements of the training set) whose difference x − x ′ lies
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(a) |x | (b) R(Ax) (c) |x + r | (d) R(A(x + r))

Figure 1.11 Reconstruction of a (complex-valued) image x via a deep learning strategy from
Fourier measurements. For full details of this experiment, see Fig. 20.2. (a) Original image
(absolute value is shown). (b) Reconstruction via the trained neural network reconstruction map R
from unperturbed measurements y = Ax. (c) Perturbed image x + r (absolute value is shown).
(d) Reconstruction from perturbed measurements y + Ar . The perturbation is designed to ensure
(1.14), i.e. to cause a significant effect on the output while being small in magnitude.

(a) |x | (b) R(Ax) (c) |x + r | (d) R(A(x + r))

Figure 1.12 Reconstruction of the same image as in Fig. 1.11 from the same measurements
using a stable neural network R. For full details of this experiment, see Fig. 21.1. (a) Original
image (absolute value is shown). (b) Reconstruction from unperturbed measurements y = Ax.
(c) Perturbed image x + r (absolute value is shown). (d) Reconstruction from perturbed
measurements y + Ar . The perturbation is designed to destabilize the network to the maximum
extent possible, as in (1.14).

close to the null space of the measurement matrix A. In other words, N̂ can reconstruct
features that it has no right to recover from the measurements it sees. This lack of kernel
awareness necessarily results in instabilities.

Key Point #10. Current deep learning strategies for compressive imaging are prone
to instabilities, with certain small perturbations in the measurements leading to
severe image artefacts. This arises because of the training procedure, which can
cause the resulting network to over-perform.

1.7.4 Stable and Accurate Neural Networks for Compressive Imaging

This situation is rather unsatisfactory. While neural networks have produced stunning
results in various imaging tasks, their use in compressive imaging appears hampered
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by issues of instability. There is also an uncertainty surrounding their accuracy. Trained
neural networks can sometimes produce very good reconstructions, yet there is little
theoretical understanding as to when they do so and why.

All this raises the question: can stable and accurate neural networks be computed
for compressive imaging problems? This book concludes by answering this question
in the affirmative. Neural networks with the same accuracy and stability guarantees as
compressed sensing are indeed computable. This is the objective of Chapter 21. To
achieve this, one needs to develop a fundamental link between compressed sensing,
optimization algorithms for problems such as QCBP and LASSO and neural networks.
This is done through unravelling, the principle that a finite number of iterations of a
standard optimization method for solving, for example, the QCBP problem (1.9) can be
viewed as a neural network. Hence, by carefully choosing the number of iterations, one
may assert the existence of a neural network with accuracy and stability matching that of
compressed sensing. Through some further analysis, using similar ideas to those behind
Key Point #6, one deduces that such a network can also be computed.

Key Point #11. While current training procedures can readily lead to instabilities,
neural networks for compressive imaging that match the stability and accuracy of
compressed sensing are computable.

To illustrate this, in Fig. 1.12 we show the same experiment as in Fig. 1.11, except using
a stable neural network that was constructed in this way. The perturbation is once again
computed with a view to causing a worst-case effect on the output. Yet because the
network is stable, it does not lead to significant artefacts in the reconstruction. Note that
this network also recovers the image from the unperturbed measurements with similar
accuracy to the unstable network of Fig. 1.11.

1.7.5 Outlook

This book therefore ends on a positive note. Image reconstruction was first upended by
the advent of compressed sensing. It now seems set to undergo a similar process through
the introduction of neural networks and deep learning. These promising developments,
however, come with pitfalls insofar as accuracy (Objective #1) and stability (Objective
#3) are concerned. However, they certainly have substantial potential. As Key Point
#11 makes clear, neural networks can at the very least perform as well as the current
state-of-the-art. The questions of whether or not deep learning can do better, how it can
do so, and by how much, are tantalizing ones on which to end this book.

1.8 Overview and Highlights

The aim of this book is to develop compressive imaging and the mathematics that
underlies it. It is divided into five parts.

In Part I we cover the essentials of compressive imaging. We explain how popular
imaging modalities can be formulated as linear inverse problems of the form (1.1) and
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(1.3), and then how to apply compressed sensing techniques to them (Chapters 2 and
3). We also discuss sampling strategies and various methods for enhancing performance
(Chapter 4). This part focuses on Key Points #1, #2, #3, #8 and #9.

Part II introduces the mathematics of compressive imaging via compressed sens-
ing. We provide an overview of standard compressed sensing theory (Chapters 5 and
6), optimization for compressed sensing (Chapters 7 and 8), and wavelets and sparse
approximation (Chapters 9 and 10). This part focuses on Key Points #4, #5, #6 and #7.

Next, in Part III, we develop a general compressed sensing framework that goes beyond
that of Chapters 5 and 6 and, crucially, incorporates local sparsity structure (Chapters 11–
13). This part of the book develops the tools needed in Part IV. We also consider the
issue of discretization and develop so-called infinite-dimensional compressed sensing
(Chapter 14) for overcoming the standard discretization errors in Fourier imaging.

In Part IV we use the techniques developed in Part III to examine the application of
compressed sensing to imaging. In Chapters 15 and 16, we address the key question
raised in §1.6: given the freedom, which (Fourier or Walsh) frequencies should one
acquire? These chapters focus on wavelet sparsity. In Chapter 17 we consider gradient
sparsity and TV minimization for imaging. This part focuses on Key Points #7, #8 and #9.

Finally, in Part V we address neural networks and deep learning. We first give a
short introduction to the subject (Chapter 18), including an overview of its use in image
classification. Next, we develop deep learning for compressive imaging (Chapter 19).
We then conclude with two chapters examining accuracy and stability. Chapter 20
investigates how and why existing approaches tend to be unstable. On the other hand,
Chapter 21 shows that neural networks that are as stable and accurate as compressed
sensing are indeed computable. This part focuses on Key Points #10 and #11.

1.9 Disclaimers

1.9.1 What this Book Is and What it Is Not

Imaging is a vast topic. There are many interesting aspects of it that cannot be included
in a single text. The guiding principle behind this book is to be both relevant to practice
and mathematically rigorous, wherever possible. It aims to strike a delicate balance
between methods that admit theory and those that are used in practice. Fortunately, these
two sets have a large intersection! Moreover, many, if not most of the techniques used
in practice are close cousins of those that can be theoretically analysed. This is arguably
one of the most exciting aspects of compressed sensing research. This book therefore
assumes the reader is interested not only in methods for compressive imaging, but also
how and why they work. For readers only interested in finding an off-the-shelf, state-of-
the-art reconstruction algorithm, this is not the best place to look. Having said that, in
Chapter 4 we do give some recommendations for a good all-round compressive imaging
strategy.
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1.9.2 Areas Not Covered

This book is about image reconstruction from indirect measurements. A related problem
is image restoration, in which one directly samples a corrupted version of the image
itself. Denoising, deblurring and inpainting are examples of image restoration problems.
While these are important image processing tasks, they are outside the scope of this book.

The underlying inverse problem encountered in this book is either well-posed (e.g.
the Fourier transform) or only mildly ill-posed (e.g. the Radon transform). Sparsity ap-
pears frequently in ill-posed inverse problems as a regularization tool, wherein it is often
termed sparse regularization. This topic is similar, but not the same as compressed sens-
ing. Generally speaking, compressed sensing is concerned with issues around sampling
and the number of measurements needed to achieve good recovery. In sparse regulariza-
tion, by contrast, the main concern is often with the nature and quality of the solutions
obtained from a sparsity-promoting regularization procedure.

This book takes a deterministic approach to image reconstruction in inverse problems
(with the caveat that the sampling strategies are themselves random). Statistical method-
ologies such as Bayesian inverse problems have their place in compressive imaging –
especially with the latest innovations in deep learning – but they are outside our scope.

1.9.3 Topics Not Covered

Within compressive imaging, we have tended to exclude, or only lightly touch upon
methods that lack theory. For example, much of the book focuses on wavelets or TV
minimization. We spend more time on the former, not because we advocate for it
strongly over the latter, but because compressed sensing theory for wavelets is more
comprehensive. We recommend the practitioner try both.

We have also omitted in-depth descriptions of curvelets and shearlets, as well as
generalizations of TV such as Total Generalized Variation (TGV). The compressed
sensing theory for these approaches is generally less mature than that for wavelets
and TV, although one might expect an eventual theory to be qualitatively similar, at
least when it comes to the issue of sampling and sparsity structure. We also largely
avoid more sophisticated reconstruction procedures, including learned strategies and
nonconvex approaches. In Chapter 4 we briefly overview these and other techniques for
boosting practical performance. We also do not treat structured sparsity models such as
wavelet trees. While interesting, it is arguably the case that such models have not found
widespread use in compressive imaging.

In terms of imaging modalities, after Part I we largely ignore tomographic imaging
via the Radon transform. This is primarily because this problem has so far resisted
substantial mathematical analysis from the compressed sensing perspective. We also
focus on static, single-image recovery problems. Compressed sensing techniques have
been applied to many dynamic imaging problems. Arguably, though, the particularities
of dynamic compressive imaging are sufficiently manifold for it to be worthy of a book
in its own right. For this reason, we also do not discuss low-rank matrix recovery. While
closely related to compressed sensing, its use in imaging has predominantly been in
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dynamic imaging scenarios. We mainly treat standard, but ubiquitous, imaging models
which can be recast as linear inverse problems of the form (1.1) or (1.3). We do not
address nonlinear sampling operators. In particular, the phase retrieval problem, while
it arises in some common imaging modalities, is outside the scope of this book. We also
do not address calibration in any depth. While this is an important challenge in many
practical imaging systems, it is also one that is often very specific to the modality.

Learning some part of the imaging process is an important topic in compressive
imaging. As noted, a common approach is dictionary learning. Optimization parameters,
sampling strategies and various other components of the imaging pipeline can also be
learned. While much can and has been written about these ‘classical’ approaches to
learning, we have chosen to forgo this. We have instead focused Part V of the book on
the most contemporary approaches to learning in compressive imaging, namely, deep
learning. Some discussion on dictionary learning is included in Chapter 4.

Note that many of the topics mentioned above are discussed in a little more detail in
the Notes section of subsequent chapters, along with references for further reading.

Finally, we remark that we generally do not concern ourselves with constants in this
book. Theoretically obtaining explicit constants in compressed sensing is a challenge,
and one that arguably sheds little light on the underlying principles. We use the notation
� and � quite liberally throughout.

1.10 Reading this Book

We encourage everyone to read Part I to get a taste of compressive imaging. Readers
familiar with conventional compressed sensing, optimization and wavelets may wish to
skip elements of Part II. After Chapter 11, the remainder of Part III contains the main
technical mathematics in the book. Part IV – specifically, Chapters 15 and 17 – answers
one of the book’s main questions: how should one sample? These chapters are intended
to be read without necessarily having read Part III in detail. Finally, we recommend
Part V to anyone who is interested in the latest innovations in compressive imaging.

1.10.1 Examples and Code

Aiming to make this book a practical guide for compressive imaging, we have included
many numerical examples. A companion software library, CIlib, is available online:

https://github.com/vegarant/cilib

It is also accessible through the book’s website

www.compressiveimagingbook.com

This library contains a broad set of functions and tools for compressive imaging, as well
as code that reproduces many of the figures in the book. We encourage the reader to inves-
tigate this library. The website also contains further information about the experimental
setup and software packages used.
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1.10.2 Notes

Each subsequent chapter of this book concludes with a Notes section (or sections). These
contain additional information, discussion and suggestions for further reading.

1.10.3 Prerequisites

In closing this chapter, we remark that this book assumes a level of mathematical
background of a typical early-stage graduate student, but little specialist knowledge. The
Appendices, while not comprehensive, contain some additional background material.
The Notes sections at the ends of the chapters also give additional information and
references.
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