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Abstract

Deep geological repositories are critical for the long-term storage of hazardous materials, where understanding the
mechanical behavior of emplacement drifts is essential for safety assurance. This study presents a surrogate modeling
approach for the mechanical response of emplacement drifts in rock salt formations, utilizing Gaussian processes (GPs).
The surrogate model serves as an efficient substitute for high-fidelity mechanical simulations in many-query scenarios,
including time-dependent sensitivity analyses and calibration tasks. By significantly reducing computational demands,
this approach facilitates faster design iterations and enhances the interpretation ofmonitoring data. The findings indicate
that only a few key parameters are sufficient to accurately reflect in-situ conditions in complex rock salt models.
Identifying these parameters is crucial for ensuring the reliability and safety of deep geological disposal systems.

Impact statement

This study provides key contributions in processing real-world geomechanical monitoring data from deep
geological cavities, applying GP-based global sensitivity analysis using time-dependent Sobol indices, and
achieving efficient calibration of geomechanical models. The structured approach demonstrates that only a few
critical material parameters need calibration to accurately reflect in-situ monitoring data within complex
constitutive models of rock salt. This finding is particularly significant for safety-critical applications such as
deep geological disposal, where precise modeling is essential for long-term safety and stability. The results
emphasize the efficiency and accuracy of the GP-based surrogate model in simplifying the calibration process
while maintaining high fidelity to real-world conditions.

1. Introduction

Deep repository material models are complex geological models that account for the mechanics of soil
and rock, hydrological properties, thermal effects, and chemical interactions (Pitz et al., 2023; Claret et al.,
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2024). They are highly parametrized and the associated numerical analyses are computationally expen-
sive (Kurgyis et al., 2024; Wojnarowicz et al., 2024). Their complexity has prevented their widespread
adoption for many-query tasks, that is, simulations to explore multiple scenarios and the effects of
uncertainties on the deep repository prognosis (Kurgyis et al., 2024). In this regard, we propose using
Gaussian processes (GPs) as surrogates for high-fidelity geological models. GPs can approximate the
outputs of complex simulations with much lower computational cost, enabling efficient calibration,
design, and validation (Radaideh and Kozlowski, 2020; Myren and Lawrence, 2021; Sung and Tuo,
2024). Speeding up the simulations with the use of a GP-based surrogate will not only allow for validated
prognoses for the repository through the assimilation of data but also help in making informed decisions
and enhancing the overall robustness and adaptability of the repository management process.

1.1. Constitutive models for deep geological repositories

Rock salt formations are one of the potential host rocks in Germany considered for secure long-term
nuclear waste storage due to their distinctive mechanical and hydraulic properties (Bollingfehr et al.,
2017; StandAG, 2017). Ensuring the natural integrity of geological barriers is crucial for safety, therefore
reliable numerical calculations that depend on advanced material models are essential (Bollingfehr et al.,
2017). The thermo-mechanical behavior of rock salt is typically assessed by means of laboratory tests, in
particular, short-term triaxial compression tests and long-term creep tests (Langer, 1985; Wittke, 2014;
Fecker, 2018). To include all the characteristics of rock salt, various constitutive models have been
developed to effectively simulate the hydraulic, thermal, and mechanical behavior of rock salt; refer, for
example, to Schulze et al. (2007) and Hampel et al. (2013, 2022a). These constitutive models are able to
capture for instance multiple creep phases, healing, and dependency on, for example, stress conditions,
time, temperature, and humidity. Several different approaches to capturing the complex behavior of rock
salt were compared and briefly described in past research projects (Hampel et al., 2010, 2016, 2022b).
Among them is the constitutive model TUBSsalt, which was developed by the Institute for Geomechanics
and Geotechnics (IGG, TU Braunschweig) and presented for the first time in Gährken et al. (2015). It has
been shown in Hampel et al. (2022a), (2016), and (2022b) that TUBSsalt, as well as other constitutive
models, accurately capture the thermal andmechanical characteristics of rock salt. The application of such
complex constitutive models requires expert knowledge and ideally data to infer the numerous model
parameters. Therefore, this constitutive model is the focus of the presented calibration process.

1.2. Gaussian processes as efficient surrogates for computationally expensive models

GPs are non-parametric probabilistic models that use Bayesian inference to make predictions and learn
from data. They are particularly useful for modeling complex input–output data relationships and for
making predictions in situations where the data is noisy or incomplete (Kennedy and O’Hagan, 2000;
Kennedy and O’Hagan, 2001; Gu and Wang, 2018; Gramacy, 2020; Teckentrup, 2020; Myren and
Lawrence, 2021). One of the key advantages of GPs over concurrent regression ansatzes, such as neural
networks, is their ability to effectively handle uncertainty (Schulz et al., 2018) and their applicability in a
low-data regime. GPs can generate probabilistic predictions of the model output, considering the
uncertainty in both the input data and the model itself. This makes GPs a good alternative for calibrating
complex and non-linear computational models (see, e.g., (Wu et al., 2018; Mahdaviara et al., 2021; Li
et al., 2023; Veasna et al., 2023) and (Sung and Tuo, 2024) for a recent review on computer model
calibration). Additionally, global sensitivity analysis for computationally expensive models, which
assesses the influence of input parameters on model output, becomes computationally feasible with
GP-based surrogates (Oakley and O’Hagan, 2004; Marrel et al., 2009; Srivastava et al., 2017). GPs have
been applied to sophisticated computer models in various fields, including nuclear physics (Kejzlar et al.,
2020), environmental science (Cheng et al., 2021), and digital twining (Thelen et al., 2022, 2023).

In Sacks et al. (1989), the concept of using GPs as surrogates to predict model outputs at untried
locations within the parameter space was introduced. The use of GPs for calibrating computer models was
then pioneered by Kennedy and O’Hagan (2000) and (2001). Subsequent work by Bayarri et al. (2007a)
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and Higdon et al. (2004) refined this framework, with Higdon adopting a fully Bayesian approach.
Extending these methodologies to multivariate data (Higdon et al., 2008), and further advancements by
others, such as Bayarri et al. (2007b), have enhanced the calibration of models with multivariate outputs.
(Santner et al., 2003), and additional studies, including those by Fang et al. (2005), Loeppky et al. (2009),
and Baker et al. (2022), provide in-depth discussions on the optimal design of computer experiments,
focusing on the strategic layout of model evaluations in parameter space. Beyond calibration, GP
emulators facilitate understanding variability in model outputs when parameters are uncertain, known
as uncertainty analysis. The tutorial by O’Hagan (2006) offers an accessible introduction to uncertainty
analysis using GP emulators.

Unlike much of the existing literature on surrogate modeling for complex mechanical systems, which
often relies on synthetic data, our study goes beyond the implementation of a surrogate modeling
approach and exploits it to enable the calibration of the TUBSsalt constitutive model using 14 years of
real-world monitoring data collected in an open drift located in the northern main drift of Gorleben,
Germany. The primary contribution of this article is to demonstrate the applicability and effectiveness of a
GP-based data-driven methodology in addressing a real-world problem. Specifically:

• We develop a GP-based surrogate model that approximates the deformation behavior of drift in rock
salt formations and verify its accuracy in closely replicating the high-fidelity model’s behavior.

• Weperform a time-dependent sensitivity analysis using Sobol’ indices, utilizing the surrogatemodel
to extract clear insights from the complex geomechanical constitutive model.

• We calibrate the model parameters using real in situ monitoring data from the Gorleben site,
benefiting from the efficiency of the GP-based surrogate model.

The remainder of this article is structured as follows: Section 2 introduces the mechanical aspects of
modeling a deep geological drift in a rock salt formation. The formulation of the calibration process from
experimental and monitoring data as well as the global sensitivity analysis is presented in Section 3. GPs as
surrogate models are described in Section 4. Section 5 contains the results of the training and validation as
well as calibrationwith the surrogatemodel. The article concludeswith a summary and outlook in Section 6.

2. Mechanical modeling and numerical solution of a drift in the deep geological formation of rock
salt

This section presents the geomechanical model for a drift located on the north-western flank of the
Gorleben salt dome in Germany. The latter has been explored with regard to its suitability as a location for
a repository for high-level radioactive waste for decades. First, the drift location is described, and the
assumptions for the computational model are outlined. Then, the kinematics, governing equations, and the
constitutive model TUBSsalt for rock salt are presented. Finally, we outline the numerical solution of the
boundary value problem.

2.1. Detailed site description and problem geometry

Themechanical model considered in this work is based on the cross-section of a drift located on the north-
western flank of theGorleben salt dome, a former salt explorationmine inGermany.Monitoring datawere
collected and provided by the German Federal Company for Radioactive Waste Disposal (BGE mbH).

The considered measurement cross-section is located in the northern main drift of Gorleben with a
depth of 840m below the top edge of the ground. Excavation in the area of the measurement location was
finished on October 19, 1999, without a recut being carried out afterwards. The monitoring data consists
of a time series of convergence measurements, which indicate the change in distance between opposing
fixed points inside the rock, from which the deformation rate of the drift contour is derived. At each
measuring location, the horizontal and vertical distances are recorded periodically as a standard proced-
ure. Consequently, the computational model adopted in this work represents a similar open emplacement
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drift of a deep geological repository based on the location where the monitoring data were obtained. Since
this phase does not involve storing highly radioactive and heat-generating waste, the problem considered
is purely mechanical.

Depending on crystallinity and the presence of secondary aggregates, the rock salt can be divided into
homogeneous areas based on their viscous behavior, specifically the steady-state (secondary) creep rate
(Hunsche et al., n.d.). Avertical geological cross-section of the Gorleben salt dome and its homogeneous
salt areas can be found in Bornemann et al. (2008). Since the measurement location is homogeneously
surrounded by a salt formation known as Streifensalz z2HS2, interactions between different homogeneous
areas are not taken into account. Therefore, the entire numerical model can be constructed under the
assumption of a uniform rock salt material.

Figure 1a depicts the cross-section of the measurement location together with the vertical (2–4) and
horizontal (1–3) measurement distances. Figure 1b corresponds to the computational model of the drift in
FLAC3D with history locations for the evaluation of the displacements.

2.2. Continuum mechanics

Modeling in continuum mechanics involves three ingredients: (i) balance equations, (ii) kinematics, and
(iii) a constitutive model. This section introduces these three ingredients of continuum mechanics for the
deep repository under the assumptions presented in the previous section. We follow the notation for
general continuummechanical equations introduced by Anand and Govindjee (2020), Itasca Consultants
GmbH (2023). The constitutive equations for TUBSsalt are presented as they were introduced in Gährken
et al. (2015) and Epkenhans et al. (2022).

2.2.1. Balance equations and kinematics
In the current framework, we are focused only on the changes in mechanical quantities due to the
excavation of the drift, while keeping the temperature constant, as there is no significant temperature
development during the initial phase of the repository operation. Therefore, only the balance of linear
momentum needs to be considered, which in its strong form and current configuration is given by

divσþρb¼ ρ
dv
dt

inΩ, (2.1)

Figure 1.Cross-sectional representation of the drift area. a.Cross-section of themeasurement locations from
the Gorleben site, provided by the BGEmbH. b. A computational model of the drift in FLAC3D, showing the

history locations used for evaluating displacements and the mesh used in the numerical solution.
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whereΩ denotes the computational domain. Further,σ denotes theCauchy stress, ρ the density,b acceleration
caused by external body forces (here: gravitation), v the velocity vector, and dv=dt the acceleration. Dirichlet
and Neumann-type boundary conditions are defined at boundaries ΓD and ΓN , respectively, as

v¼ v on ΓD

σ �n¼ t on ΓN ,
(2.2)

where v and t denote a prescribed velocity and traction and n the surface normal vector. Due to the distinct
creep mechanisms of rock salt, a time-dependent problem needs to be considered. The mechanical initial
conditions are defined as

v t¼ 0ð Þ¼ v0
σ t¼ 0ð Þ¼ σ0:

(2.3)

The boundary value problem is complemented by the constitutive model TUBSsalt and will be solved
using the commercial software FLAC3D (Itasca Consultants GmbH, 2023).

Only small deformations are considered in this work since no long-term analysis of the rock salt
emplacement will be performed. Therefore, the kinematics are defined by

_ε¼ 1
2

grad vþgrad vT
� �

, (2.4)

where _ε is the strain rate tensor derived from the velocity vector v.

2.2.2. Constitutive model TUBSsalt
In this subsection, the constitutive model TUBSsalt is briefly introduced. This model is based on the
rheological model shown in Figure 2 and is proficient in characterizing various thermo-mechanical
aspects of rock salt such as primary, secondary, and tertiary creep, recovery creep, shear, creep and tension
failure, healing, and the influence of temperature (Gährken et al., 2015; Epkenhans et al., 2022).

Based on the rheological model, the total strain rate _ε of the TUBSsalt constitutive model is split
additively into six components as

_ε¼ _εelþ _εpþ _εsþ _εtþ _εnþ _εz|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
_εvp

: (2.5)

Here, _εel is the elastic strain rate and _εvp the inelastic, visco-plastic strain rate. The latter consists of the
primary creep rate _εp, the secondary creep rate _εs, the tertiary creep and healing rate _εt, the strain rate from
creep and shear failure _εn, and the strain rate from tension failure _εz. In Figure 2, the elastic strain rate _εel is
represented by a spring, and the creep strain rates _εp, _εs, and _εt as well as the failure strain rates _εn and _εz are
described by hardening or softening sliders with yield functions F and viscous dampers, each

Figure 2. Rheological model and corresponding strain components of the constitutive model TUBSsalt
for rock salt. While _εel is represented by a spring, _εp, _εs, _εt, _εn as well as _εz are modelled by hardening or

softening sliders and viscous dampers.
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characterised by an individual viscosity η. For a visco-elastoplastic material model, the stress increment
depends on the elastic strain component and can be written as

_σ¼D σ, κð Þ � _ε� _εvp
� �

, (2.6)

where κ is a loading-history parameter depending on visco-plastic strain rate _εvp. Rock salt is considered to
be an isotropic material, and thus D is the isotropic stiffness tensor, depending on bulk and shear moduli
K and G. Both of these properties decrease as the level of the damage-induced dilatancy εv,d (2.14)
increases. In the following, the specific forms of the strain components are introduced in more detail.

The elastic strain rate _εel is calculated according to Hooke’s law using the stiffness matrix D and the
stress rate tensor _σ as

_εel ¼D�1 � _σ: (2.7)

Primary and recovery creep only occur after a load change. An increase in the stress deviator causes
high primary creep rates, which decrease as the deformation progresses until no more primary deform-
ations occur. There holds

Fp > 0 : _εp ¼Fp

η∗p
� ∂σeq
∂σ

(2.8)

where _εp represents the primary creep rate tensor, Fp the yield function of primary creep, η∗p the current
viscosity of primary creep and ∂σeq

∂σ denotes the derivatives of the equivalent stress σeq with respect to the
components of the stress tensor. In case of a decrease of the stress deviator, the viscosity of primary creep
η∗p is replaced by the viscosity for recovery creep ηp,rec.

Secondary creep is always active as soon as a stress deviator is present and leads to a constant creep
rate for a constant stress state. It is therefore also referred to as stationary creep and defined as

_εs ¼Fs �qs
ηs

� ∂σeq
∂σ

, (2.9)

where _εs represents the secondary creep rate tensor, Fs the yield function of secondary creep, ηs is the
viscosity parameter for secondary creep, and qs is the temperature coefficient for secondary creep.

Tertiary creep initiates as soon as the stress deviator exceeds the dilatancy criteria represented by the
yield function Ft. Above this dilatancy strength, rock salt shows softening which is described by an
accelerated reduction of the viscosity η∗t depending on the level of damage-induced dilatancy εv,d (2.14):

Ft > 0 : _εt ¼ Ft � k
η∗t �qt

� ∂Qt

∂σ
, (2.10)

where _εt represents the tertiary creep rate tensor, η∗t is the current viscosity of tertiary creep, k a coefficient
for loading rate and stress state, qt a temperature coefficient, and ∂Qt

∂σ the directional derivatives of the
potential function for tertiary creepQt with respect to the components of the stress tensor. The increase in
volume or dilatancy due to microcracks is taken into account in ∂Qt

∂σ .
The process of healing replaces the tertiary creep once a stress state falls below the dilatancy threshold

and damage has already been determined. There holds

Ft > �σz : _εt ¼Ft �qv
η∗v

� ∂Qv

∂σ
, (2.11)

where σz is the tensile strength, qv a temperature coefficient, η∗v the current viscosity of healing, and
∂Qv
∂σ the

directional derivatives of the potential function for healingQv with respect to the components of the stress
tensor.

Creep and shear failure: Once the damage-induced dilatancy εv,d (2.14) exceeds the failure volu-
metric strain εv,d,b,∗, time-dependent failure deformations occur in addition to the deformations from the
creep components:
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εv,d ≥ εv,d,b∗ : _εn ¼ Fn � k
η∗n �qn

� ∂σeq
∂σ

, (2.12)

where _εn is the strain rate tensor of the post-failure, η∗n the current viscosity parameter for healing, and qn a
temperature coefficient.

Tension failure occurs when tensile material strength σz,0 is exceeded and is denoted by the strain rate
tensor _εz.

An important characteristic of the constitutivemodel is the damage-induceddilatancy εv,d,which is decisive
for the evaluation of the geological integrity of the excavation damage zone of rock salt. As soon as the
dilatancy strength of the material is exceeded, which is achieved when the yield function Ft becomes greater
than 0, softening takes place as a result of crack formation,which in turn creates pathways for radionuclides. In
the first step, the tensor of the damage-induced strain increment Δεd can be determined using a timestepΔt as

Δεd ¼ _εtþ _εnð Þ �Δt: (2.13)

The increment of the damage-induced dilatancy εv,d is equivalent to the first invariant of Δεd:

Δεv,d ¼ I1 Δεdð Þ¼Δεd,xxþΔεd,yyþΔεd,zz: (2.14)

For further details on quantities not explained in this section, such as the yield functionsFp, Ft, andFn,
the potential functions for tertiary creep and healing Qt and Qv, as well as derivations of all equations of
TUBSsalt provided here, the reader is referred to Epkenhans et al. (2022). In summary, the constitutive
model TUBSsalt comprises a total of 25 material parameters, summarized in Appendix B, Table B1.

2.3. Numerical solution

The constitutive model TUBSsalt is implemented into the commercial software FLAC3D (Itasca
Consultants GmbH, 2023), which is a program for three-dimensional engineering mechanics computa-
tions. FLAC3D relies on the finite difference method (FDM) and translates the continuum equations into
ordinary differential equations for each element, which are then solved using an explicit central finite
difference approach in time. The spatial discretization in FLAC3D is realized by meshing the continuum
into hexahedral elements, with the option to use tetrahedral, wedge, and pyramid elements. It is
recommended to use hexahedral elements, which are divided into tetrahedral elements to reduce the
volumetric locking effect and thus achieve more accurate results. The balance of the linear momentum,
Equation (2.1), is iterated to an equilibrium state, which is achieved when the unbalanced mechanical
force for all the grid points in the model is negligibly low.

Time-dependent phenomena such as creep require a timestepΔt to solve the equations of the TUBSsalt
constitutive model. At the same time, for creep analysis, the state of equilibrium must be maintained,
otherwise inertial effects may affect the solution. For this purpose, the unbalanced force is monitored in
the model. The finite volume scheme can be summarised for each time step as follows: After new strain
rates are determined from nodal velocities, new stresses are calculated from strain rates and previous
stresses using constitutive equations. By applying the balance of the linear momentum, new velocities,
and deformations are subsequently calculated from stresses and forces.More information on the FLAC3D
solution algorithm can be found in Itasca Consultants GmbH (2023).

3. Model calibration and sensitivity analysis

In this section, we briefly state the calibration process of the mechanical model introduced in Section 2. We
distinguish between two model calibration stages. The first stage assumes that stress–strain data are available
(Section 3.1) and the constitutive model can be directly calibrated from common geomechanical laboratory
tests. This approach is usually employed as the first calibration step to state someprior knowledge regarding the
material parameters. The second stage uses in situ monitoring data of the drift convergence (Section 3.2). This
approach is used formodel parameter recalibration and considers the real conditions of the deep repository. As
part of the calibration process, a method for global sensitivity analysis is introduced in Section 3.3.
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3.1. Initial model calibration from mechanical testing data

Commonly, laboratory tests are used for the calibration of constitutive model parameters. In the case of
rock salt and as shown in Table B1, short-term triaxial compression or extension tests, long-term creep
tests, and healing tests as well as indirect tensile tests need to be conducted under variation of temperature
and confining stress to be able to cover all strain parts described in Section 2.2.2.While strength tests use a
constant axial strain rate to apply a load on the mostly cylindrical specimens with a fixed confining
pressure, the specimens in creep and healing tests have a predefined stress state so that the time-dependent
behavior can be observed.

Common to the aforementioned mechanical tests is that strain states are considered, which yield well-
defined stress states. Hence, stress–strain data can be obtained from the mechanical tests, and the
calibration of the constitutive model is a regression problem that can be cast as the optimization problem

θ∗ ¼ arg minθ
XN
i¼1

∥σi�σ εi;θ
� �

∥2, (3.1)

with N the number of stress–strain data pairs. Here, we consider the minimization of the least-squares
error between measured stress σi and predicted stress for the associated strain value εi. The constitutive
model is parametrized in the material parameters θ, and the semicolon denotes parametrization. This
approach was used to determine and calibrate all TUBSsalt parameters for Gorleben salt, resulting in a
parameter set presented in Stahlmann et al. (2016).

However, the samples used in laboratory tests are no longer in their original state and the material tests
only give insight into thematerial behavior in localized regions fromwhere the sample has been extracted.
As a consequence, model predictions typically do not match with real-world monitoring data, necessi-
tating re-calibration of the constitutive model. Therefore, model calibration based on monitoring data is
addressed in the following section.

3.2. Inverse problem formulation for the model re-calibration

We now address the task of model calibration from monitoring data. The objective is to identify the
optimal set of material model parameters θ that minimize the discrepancy (least-squares error) between
model predictions and the in-situ monitoring data. This process is framed as an inverse problem, solved
with an optimization method.

Let YT
moni ¼ yTmoni t1ð Þ,yTmoni t2ð Þ,…,yTmoni tnð Þ� �

denote the vector of experimental observations at
different time instances for a specific location with n the total number of time instances. The correspond-
ing model prediction is denoted by si θð Þ¼ s ti,θð Þ. Then, in analogy to Equation (3.1)), material
parameters are identified from

θ∗ ¼ arg minθ
Xn
i¼1

∥ymoni tið Þ� si θð Þ∥2: (3.2)

Note that in Equations (3.1)) and (3.2) we omit a weighting matrix, which is often introduced to account
for the size of measurement errors. In our setting, the error sizes did not have a relevant influence. The
optimization problem (3.2) is implemented using the SciPy Python library (Virtanen et al., 2020),
employing a global optimization algorithm. We opted for the differential evolution algorithm (Storn
and Price, 1997), but also experimentedwith genetic and dual annealing algorithms. However, differential
evolution proved to be faster and more reliable in this context.

3.3. Sensitivity analysis based on time-dependent Sobol’ indices

Mechanical models that are used in geomechanical contexts are often characterized by a large number of
material parameters, and so is TUBSsalt. However, not every parameter in a data set may be sensitive to
specific monitoring data. To focus only on the important ones and to reduce the number of model
evaluations when solving (3.2), we perform a sensitivity analysis.
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In this contribution, we compute sensitivities based on Sobol’ indices (Sobol, 2001; Saltelli, 2002;
Saltelli et al., 2010). The first-order Sobol’ index quantifies the contribution of each parameter θj to the
variance in the predicted solution si θð Þ, while averaging out the effects of other inputs. The first-order
Sobol’ index for each time point ti is defined as:

S1i θj
� �¼Vθj Eθ�j si θð Þjθj

� �� �
V si θð Þð Þ , (3.3)

where V si θð Þð Þ is the variance of the solution at time ti, and Eθ�j si θð Þjθj
� �

is the conditional expectation
given θj.

Similarly, the total-order Sobol’ index for each solution si θð Þ¼ s ti,θð Þ and input parameter θj at time
ti measures the total effect of θj on the variance of the solution, including interactions with other inputs.
The total-order Sobol’ index is defined as:

ST i θj
� �¼ 1�Vθ�j Eθj si θð Þjθ�j

� �� �
V si θð Þð Þ , (3.4)

where Eθj si θð Þjθ�j
� �

is the conditional expectation given all parameters except θj.
Sobol’ indices S1i θj

� �
and ST i θj

� �
allow us to quantify the sensitivity of the solution s ti,θð Þ at each

time step ti to the different parameters θ. This analysis helps us understand how each parameter affects the
system’s behavior over time. To identify and potentially discard less influential parameters, we propose
calculating global indicators: cumulated, time-averaged, and maximum Sobol’ indices. These indicators
offer insights into the overall influence of the parameters throughout the time-dependent solution and are
defined as follows:

• The Normalized cumulated Sobol’ indices are calculated by summing the influence of each input
parameter over all time points and then normalizing by the maximum integrated value across all
input parameters:

Norm:

Z
S1i ¼

Pn
i¼1S1i

max
Pn

i¼1S1i,
Pn

i¼1ST i
� � , Norm:

Z
ST i ¼

Pn
i¼1ST i

max
Pn

i¼1S1i,
Pn

i¼1ST i
� � : (3.5)

• The time-averaged Sobol’ indices provide an overall measure of the importance of each input
parameter across all time points. They are computed as the mean of the Sobol’ indices at each time
step ti:

S1¼ 1
n

Xn
i¼1

S1i, ST ¼ 1
n

Xn
i¼1

ST i: (3.6)

• Themaximum Sobol’ indices identify the time steps at which each input parameter has the highest
influence. These are particularly useful for pinpointing critical moments in the time-dependent
behavior of the model:

maxS1i ¼ max
t

S1ið Þ, maxST i ¼ max
t

ST ið Þ: (3.7)

A general framework for time-dependent variance-based sensitivity analysis has been put forth in
Alexanderian et al. (2020). Therein, generalized Sobol’ indices for processes are defined via a decom-
position of the covariance function of the process. If they are approximated with an unweighted
quadrature on a uniform grid, a normalized version of the cumulated Sobol’ indices introduced above
is recovered. An even more general framework, presented in Gamboa et al. (2014), considers sensitivity
analysis of functional outputs, covering time-dependent responses as a special case.

The convergence of the Sobol’ indices estimation can be assessed using themaximum relative change
between successive iterations. The relative change for each Sobol’ index is calculated as the absolute
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difference between the current and previous indices, normalized by the previous indices plus a small
constant to avoid division by zero. Specifically, the relative change for S1i is given by:

S1i relative change¼
S1icurr�S1iprev
�� ��
S1iprevþ1× 10�10 , (3.8)

and the maximum value across all indices is monitored. The same applies to ST i. If the maximum change
in both indices is below a predefined threshold (0:01), the process is deemed converged, indicating that the
sampling effort is sufficient for accurate sensitivity analysis.

A bottleneck is that a sensitivity analysis using Sobol’ indices with Saltelli’s algorithm (Saltelli et al.,
2010), pick-and-freeze estimators (Gamboa et al., 2016), or other methods requires a significant number
of model evaluations. One way to bind the associated computational cost is by using surrogate models
such as the Polynomial Chaos expansion (Sudret, 2008) or GPs. In this contribution, GPs are used and
presented in the next section.

4. Gaussian processes as surrogate models for complex computer models

The model si θð Þ represents the mechanical behavior of the deep geological repository introduced in
Section 2. Evaluating si θð Þ directly is computationally demanding, especially in many-query scenarios
such as model calibration, optimization, or design. Surrogate modeling offers an efficient alternative to
address the computational challenges associated with directly solving si θð Þ. Among the available
techniques, Proper Orthogonal Decomposition (POD) (Agarwal et al., 2024) and Physics-Informed
Neural Networks (PINNs) (Anton et al., 2024) are particularly suitable for full-field simulations where
capturing the entire spatial domain is crucial. However, GPs present a compelling optionwhen the focus is
on specific quantities of interest, such as an excavation convergence as in the present study, rather than the
entire field. GPs are especially advantageous due to their ability to provide probabilistic predictions and
handle smaller datasets effectively. In this study, we adopt GPs to develop a surrogate model, denoted asbsi θð Þ, to approximate the complex behavior of si θð Þ.

In scenarios where s predicts a time-sequence output, we define a set of GPs, bsif gni¼1. Each bsi
corresponds to a distinct time instance ti, as:

bsi θð Þ�GP mi θð Þ, ki θð ,θ0Þð Þ, (4.1)

where mi θð Þ is the mean function and ki θ,θ0ð Þ is the covariance (or kernel) function for the i-th GP. This
function quantifies the similarity between two sets of parameter configurations, θ and θ0, for the specific
time point. Each GP bsi is independently trained on a subset of the data corresponding to its time point:

bsi θ1ð Þ, bsi θ2ð Þ,…,bsi θNð Þ½ � �N 0,Kið Þ, (4.2)

where Ki is the covariance matrix for the ith GP, computed using a kernel ki. Note that we could also
introduce a priori correlation between GPs at different points in time; however, the independence
assumption is very common. Here, for each GP, we use the Matérn kernel (with smoothness parameter
ν¼ 5=2) defined as:

ki θ,θ0ð Þ ¼ σ2i 1þ
ffiffiffi
5

p
rþ5

3
r2

	 

exp �

ffiffiffi
5

p
r

� �
, (4.3)

where r θ,θ0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPD

d¼1
θd�θ0d
ld,i

� �2
r

, with ld,i and σ2i being the length-scales and variance parameter for the
ith GP.

The next crucial step is the determination of the GP-based surrogate model hyperparameters. These
hyperparameters include the length-scales ld,i, variance σ2i , and any other parameters specific to the chosen
kernel function. The hyperparameters are typically optimized by maximizing the likelihood of the
observed data under the GP model. This optimization can be formulated as:
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max
σi, ld,i

logL σi, ld,ijDið Þ, (4.4)

whereL is the likelihood of the training dataDi given the hyperparameters. This process is often carried
out using gradient-based optimization techniques.

Upon training eachbsi with a datasetDi ¼ θ1,si1ð Þ,…, θN ,siNð Þf g, where sij is the output from s for input
θj at time ti, each GP can make predictions for unseen parameter sets θ∗ at its respective time instance.
This ensemble of GPs allows for efficient evaluation of the time-sequenced outputs of s ti,θð Þ without
relying on computationally expensive numerical solutions.

The mean prediction μi θ∗ð Þ and the standard deviation σi θ∗ð Þ at each time point ti are given by:

μi θ∗ð Þ¼KT
∗K

�1
i s, σ2i θ∗ð Þ¼ ki θ∗,θ∗ð Þ�KT

∗K
�1
i K∗, (4.5)

where K∗ is the covariance vector between the training inputs and θ∗, andKi is the covariance matrix of
the training inputs.

These predictions not only provide the expected output of the model s for an unseen parameter set but
also quantify the uncertainty associated with these predictions. This feature of GPs is particularly useful in
decision-making processes where uncertainty plays a crucial role.

It is important to note that before training the GP-based surrogate model, we perform feature scaling on
both input parameters and outputs to achieve zero mean and unit variance. This step is crucial for
enhancing the surrogate model’s numerical stability, which is developed using the Scikit-learn library
(Pedregosa et al., 2011). This library offers a ready-to-usemodule to build surrogate models based onGPs
for multivariate nonlinear regression problems. GP hyperparameters are optimized using the Limited-
memory Broyden–Fletcher–Goldfarb–Shannowith bound constraints (L-BFGS-B) algorithm; see Scikit-
learn library documentation for more details. This optimization process is key to maximizing the log-
marginal likelihood defined in (4.4), ensuring that the kernel parameters are finely tuned to best represent
the underlying patterns of the data.

5. Numerical analysis

As described in Section 2, TUBSalt is a highly nonlinear time-dependent constitutive material model with
25 material parameters. After a preliminary study, we train a GP-based surrogate model (Section 4) to
capture the input–output relationship between selected parameters of the constitutivemodelTUBSsalt and
the drift convergence at different time instances, conduct a sensitivity analysis and calibrate the
constitutive model. This section is structured as follows: First, the high-fidelity model evaluation and
dataset creation for training the GP-based surrogate model is presented in Section 5.1. Section 5.2 deals
with the training of the GP-based surrogate model, the accuracy evaluation with testing data, and
sensitivity analysis using Sobol’ indices. Finally, in Section 5.3, the model parameters are calibrated
using in situ monitoring data.

5.1. High-fidelity model simulation

Monitoring data: The mechanical model described in Section 2 represents an open drift located in the
northern main drift of Gorleben for which monitoring data is available. The first convergence measure-
ment took place on October 20, 1999, 1 day after the excavation of the drift. This is important because it
allows for the measurement of primary creep, which is most pronounced at the beginning of the
excavation. On the day of the initial measurement, the horizontal distance (1–3) measured 8:94 m, and
the vertical distance (2–4) was 6:00 m, as depicted in Figure 1a. The duration of the monitoring was
approximately 14:3 years, with a significant variation of time intervals between measurements. During the
first 2 months, measurements were taken every 2–3 days to capture the high creep rates. Subsequently, the
measurement interval was increased from 1 week to 1 month, and from the end of 2002 onwards,
measurements were taken approximately every 6 months as a constant creep rate had been achieved. Since
the measuring points of the convergence distances are anchored in the rock over an anchoring length, the
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deformations of the cavity are alsomeasured at these fixed points in the rock salt. Those locations are defined
as history points in the numerical model in FLAC3D, demonstrated in Figure 1b. The convergences
yTmoni tið Þ¼ Δux tið Þ, Δuz tið Þ½ �T are measured as a vertical and horizontal distance between two points,
therefore the displacements ux in horizontal and uz in vertical direction are obtained from the displacement
vectoru for the specific nodes.The uncertainty of the convergencemeasurements is around ± 0:5mm,while
observations are on the order O 102

� �
. Consequently, we consider the monitoring data to be noise-free.

Model setup: Since only one material is considered and the cross-section of the drift is almost
symmetric, only the right symmetry half of the model needs to be discretized. Dirichlet boundary
conditions are applied by fixing the left, right, and bottom sides of the system in their normal directions.
Wemodel the overburden with a load of 16:774MPa applied to the top of the model, which is a Neumann
boundary condition. According to the geology of the site given inBornemann et al. (2008), the load results
from the different heights and densities of the rock salt, cap rock, tertiary and quaternary layer. The
densities were obtained fromKock et al. (2012). The initial stress state is derived from the overburden load
and displacements for time t¼ 0 are set to zero. The initial stress state is assumed to be isotropic. The slight
directional dependence of the monitoring data can be attributed to the differing dimensions of the drift
cross-section in the x and z directions. The absence of nearby geotechnical structures and the sufficient
distance between the measurement site and other side drifts, or homogeneous areas allow the model to be
simplified to a 2Dmodel. The dimensions in the x and z direction for the model are given by lx ¼ 50mand
lz ¼ 100 m, so that an influence of the drift on the system boundaries can be excluded. Temperature
measurements conducted in the close area of the drift show an almost constant value of 37 ° C. Therefore,
a constant temperature is assumed over the entire system as a simplification. The mesh density of the
model was optimized by performing a convergence study, ensuring that increasing the number of
elements results in no significant changes in the curves of simulated horizontal and vertical convergences.
Before the time-dependent creep analysis, the model reaches an equilibrium state twice: first, after
applying the initial and boundary conditions, and second, after setting the stresses in the zones inside the
cross section to zero to simulate the excavation. The equilibrium state is reached as soon as the average
ratio between out-of-balance and total forces falls below 1 �10�6.

Preliminary parameter selection: TUBSalt has a total of 25 material parameters. Out of these, 5
parameters can be read directly from laboratory stress–strain data, namely K0, G0, εv,d,b, σz,0 and ρ. In the
following, these are considered as well-calibrated and independent of the monitoring data. The remaining
20 parameters serve as potential parameters for calibration. We then conducted a preliminary, empirical
study with only two simulations: several damage-associated strain components were deactivated, and the
result was compared with a reference solution obtained with the full set of strain components (2.5). It has
been found that the test case considered is dominated by primary and secondary creep mechanisms and
damage-associated strain components are negligible. Details can be found in Appendix A. As a result, in
the followingwe focus on a total of 7 TUBSsalt parameters for primary and secondary creep: ηp, σ0,eq,p, pp,
and Ep for primary creep and ηs, σ0,eq,s, and ps for secondary creep, and thus
θ¼ ηp,σ0,eq,p,pp,Ep,ηs,σ0,eq,s,ps

� �
. The parameter ranges of those 7 parameters, as well as the parameters

that are considered as fixed, are summarized in Appendix B, Table B1.
Sampling of parameter values in FLAC3D: Following the approach in Section 3.1, a parameter set

for the constitutive model TUBSsalt based on laboratory strength and creep tests has been determined in a
project presented in Stahlmann et al. (2016) for the Gorleben site. These values serve as characteristic
parameter values for Gorleben salt and also help define reasonable parameter ranges for those parameters
that need calibration, see also Table B1 in Appendix B. To create training and testing data by means of a
multitude of simulations, the parameter values of the selected TUBSsalt parameters are sampled in the
given ranges in Table B1 assuming a uniform distribution. For this purpose, a SciPy Quasi-Monte Carlo
generator is used to generate a Sobol sequence by creating low-discrepancy, quasi-random numbers
(Sobol, 1967; Owen, 2019). The loop for parameter sampling is implemented in the creep analysis of
Flac3D, so that the saved equilibrium state of the model is recalled for every iteration. The creep analysis
is performed for the same duration of the monitoring. To maintain the state of equilibrium, the average
ratio between out-of-balance and total forces is limited to 5 �10�6. The timestep increases over time with a
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maximum of Δt¼ 5:56 h.With the given configuration, a single simulation run of the high-fidelity model
requires approximately 4 min.

Processing the full-field simulation results to convergences: After carrying out the simulations to
create training and testing data, the displacements derived at the history locations are converted into
convergences at the time instances for which monitoring data are available. To determine the vertical
convergences, the amounts of the vertical displacements uz tið Þ at the top and bottom are summed up
together. To determine the horizontal convergences, the amount of the horizontal displacements ux tið Þ is
multiplied by two to account for the symmetry of the system. The displacements of an exemplary full-field
simulation at t¼ 14:5 year is depicted in Figure 3. To compare the simulated convergences with the
monitoring data, the convergences of the simulations must be set to zero at the time of the initial
monitoring measurement. Therefore, the convergences from the first day after excavation of the drift
can not be analysed and will be neglected. Convergences are determined at all points in time at which
monitoring is available. As a result, Figure 4 shows the processed data of 200 simulations. Figure 4a
depicts the histograms obtained after sampling the input material parameters, while Figure 4b,c corres-
pond to the vertical and horizontal convergences over time (blue lines) in comparison with the corres-
ponding monitoring data (black squares) and the obtained probability density function (PDF) at selected
time instances (red area). This figure illustrates how the uncertainty in material parameters propagates
through the mechanical model implemented in FLAC3D, reflecting its nonlinearity. That is, uniformly
sampled inputs result in heavily tailed outputs. The task of the GP-based surrogate is to represent this
input–output relationship by learning the PDF of the convergences at different time instances as a function
of the model parameters.

To understand the individual and combined effect of the material parameters on the drift convergence,
Sobol’ indices-based global sensitivity analysis can be performed as outlined in Section 3.3.

5.2. GP-based surrogate and sensitivity analysis

In this subsection, we focus on developing a surrogate model for predicting the temporal evolution of
horizontal and vertical drift convergences based on the synthetic dataset described in the previous
Section 5.1. The GP-based surrogate is constructed so that it predicts the convergences at those time

Figure 3. Full-field simulation at t¼ 14:5 yr corresponding to the geometry depicted in Figure 1b.
a. Vertical uz and b. horizontal displacements ux. History locations are marked by gray dots. The

simulation uses TUBSsalt parameters: ηp ¼ 8:0 �104 MPa�d, Ep ¼ 75 MPa, σ0,eq,p ¼ 30 MPa, pp ¼ 0:5,
ηs ¼ 3:0 �107 MPa�d, σ0,eq,s ¼ 30 MPa, and ps ¼ 1:5.
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instances ti for which monitoring data are available. As shown in Figure 4, the original density of the
measurement data is significantly higher at the beginning of the monitoring. To prevent distortion of both
the time-dependent Sobol’ indices and the subsequent calibration process, the available data points in the
first 3:6 years are filtered based on the time intervals in such a way that the measurement points are
distributed as evenly as possible over time. As a result, our approach treats horizontal and vertical
convergences at 40 equidistant time instances as independent outputs, framing our problem amultivariate
nonlinear regression with 7 inputs (parameters of the TUBSsalt material model for rock salt) and 80
outputs (the drift convergence at 40 different selected time instances). This finally leads to an ensemble of
80GPs, 40 each for both vertical and horizontal convergences. Each GP takes the 7material parameters as
input and outputs the value of the convergence at its specific time instance as output.

GP-based surrogatemodel:We split the dataset into training (75%) and testing (25%) datasets, which
results in 150 model realizations for training and 50 for testing the accuracy of the surrogate model. The
selected amount of training data results from an investigation of the relation between the amount of training
data and the accuracy of the surrogate model prediction. On the one hand, we experienced that fewer model
realizations led to a significant decrease in the R2 coefficient for the testing dataset. On the other hand, if
more model realizations were used, only a marginal increase in the R2 coefficient would be achieved
compared with the computational cost required to train the surrogate model. Note that the number of model

a b

c

Figure 4. Input–output simulation data at the monitoring location. a. Histograms for the input material
parameters ηp, Ep, ηs, ps, σ0,eq,p, pp, and σ0,eq,s of TUBSsalt. b. Vertical and c. horizontal convergence
trajectories over time. b. and c. show the monitoring data (black squares) and 200 model realizations
(blue lines) from the FLAC3D simulations along with the obtained PDF at selected time instances

(red area).
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realizations can be further reduced and optimized using adaptive sampling strategies, see Fuhg et al. (2021)
for a recent review. The generation of theGP-based surrogatemodel with 7 parameters and 150 training data
samples takes 12:3 s.

Figure 5 displays scatter plots comparing the true output versus predicted output for the GP-based
surrogate model trained to predict vertical and horizontal convergence at different time instances. Each
subplot represents a distinct time instance, in years, as indicated in their titles, respectively. The blue dots
indicate training data, and the red dots indicate testing data. The black diagonal line represents perfect
predictions. The high R2 scores for the training data across all components indicate that the model fits the
training data extremely well. The testing R2 scores range from 0:960 to 0:983 for both vertical and
horizontal convergence, indicating a very good generalization to unseen data. The consistently high R2

scores and tight clustering of data points confirm the model’s robustness and reliability in predicting
convergence accurately at the selected time instances.

Sensitivity analysis:With the GP-based surrogate model at hand, we compute the first-order (S1) and
the total-order (ST) Sobol’ indices. Figure 6 displays the results of the time-dependent sensitivity analysis.
From the figure, it is clear that the effect of each parameter varies over time. The parameters for primary
creep ηp and Ep have a significant impact at the beginning of the simulation, but this effect diminishes as
time progresses. Conversely, ηs and ps initially have little influence but become more impactful over time
as they are parameters of secondary creep. In particular, σ0,eq,p, pp, and σ0,eq,s have little to no influence on
the output variation. Therefore, these material parameters can be fixed by taking the reference value from
Stahlmann et al. (2016) and removed from further analysis.

The indicators defined in Section 4 are computed from the time series shown in Figure 6 to quantify the
effect of each parameter on themodel output variationmore precisely. Figure 7 presents these indicators as
bar plots for both the first-order (S1) and total-order (ST) Sobol’ indices. These bar plots clearly indicate
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Figure 5. Accuracy evaluation of the GP-based surrogate model. The true versus predicted outputs for 5
out of the 40GPs that constitute the surrogate model, for both a. vertical and b. horizontal convergence at
different time instances. Each GP approximates the convergence at a different time instance as indicated
in the title of each subplot. The blue dots represent training data, and the red dots represent testing data.

The black diagonal line denotes the line of perfect prediction.
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which parameters most significantly affect the model outputs. Figure 7 complements our observation
from Figure 6: the horizontal and vertical convergences were found to be sensitive only to the parameters
θ¼ ηp,Ep,ηs,ps

� �
.

Convergence analysis of the Sobol’ indices was performed as specified in Section 3.3. The process
begins with an initial set of 27 ¼ 128 samples and iteratively increases the sample size by 27 in each step
until either a maximum of 216 ¼ 65536 samples is reached or convergence is achieved. From (3.8), it was
concluded that 214 ¼ 16384 samples are enough to assure Sobol’ indices analysis convergence according
to criterion (3.8). In particular, themaximum changes for S1 and STwere 0:0093 and 0:0071, respectively.
The simulation time required for 214 surrogate model evaluations was 4:5 min.

5.3. Model calibration from in-situ monitoring data

The final task is to calibrate the four sensitive model parameters comprised in θ using real drift
convergence monitoring data. To achieve this, we embed the surrogate model trained in Section 5.2 into
the optimization problem (3.2) using only the mean values of the GP-based surrogate prediction as
defined in (4.5). Figure 8 displays the results obtained from the optimization problem. The results show
that the simulation data generated from the high-fidelity model and the predictions from the GPs almost
overlap, demonstrating the effectiveness of the surrogatemodel in calibration. It is crucial to highlight that

0.0

0.5

1.0

p

Vertical convergence

First-order Sobol Index
Total-order Sobol Index

0.0

0.5

1.0
Horizontal convergence

0.0

0.5

1.0

eq, 0, p

0.0

0.5

1.0

0.0

0.5

1.0

pp

0.0

0.5

1.0

0.0

0.5

1.0

Ep

0.0

0.5

1.0

0.0

0.5

1.0

s

0.0

0.5

1.0

0.0

0.5

1.0

eq, 0, s

0.0

0.5

1.0

0 2 4 6 8 10 12 14
Time [years]

0.0

0.5

1.0

ps

0 2 4 6 8 10 12 14
Time [years]

0.0

0.5

1.0

a b

Figure 6. Time-dependent global sensitivity analysis. First and total order Sobol’ indices over time for
a. vertical and b. horizontal convergences, showing the influence of the primary creep parameters (ηp,
σ0,eq,p, pp, Ep) and secondary creep parameters (ηs, σ0,eq,s, ps), presented from top to bottom, respectively.
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model calibration is often a computationally demanding task, typically requiring multiple calls of the
model. The global optimization of the remaining 4 model parameters converged within 29 iterations,
which required 1805 surrogate model evaluations. For comparison, training the GP-based surrogate
model, used for both sensitivity analysis and calibration, only required 150 model evaluations. The
optimization took less than 1 s to be completed on a standard laptop. This represents a dramatic reduction
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using the optimal parameter values (blue line) for a. the vertical and b. horizontal convergences.
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in the computational resources required to calibrate the deep-repository model, underscoring the effi-
ciency of our surrogate modeling approach. The predicted parameter values agree very well with expert
intuition so that the result can be considered reasonable.

6. Conclusions

Deep geological disposal of hazardousmaterials requires robust numerical models to ensure long-term safety
and stability. The calibration of such models with real-world monitoring data is essential for accurately
reflecting in situ conditions and enhancing repository management. This study contributes to advancing
digital twinning for deep geological disposals by automating the calibration process using GP-based
surrogate models. The presentedworkflow combines sensitivity analysis, surrogate modeling, and optimiza-
tion to enable efficient calibration of amechanicalmodel representing the behavior of an emplacement drift in
rock salt formations located in the northern main drift of the Gorleben salt dome in Germany.

The results demonstrate the efficiency and accuracy of the proposed approach. Initially, training of the
GP-based surrogate model with 7 input parameters, 150 training data samples and 80 outputs took 12:3
s. The subsequent accuracy evaluation yielded R2 scores between 0:960 and 0:983. Afterwards, a
sensitivity analysis using time-dependent Sobol’ indices was performed with 16,384 surrogate model
calls within 4:5min to identify four relevant material parameters. Finally, the GP-based surrogate model
was calibrated based on 14 year of convergence measurements, including the convergence of the global
optimization in 29 iterations, 1805model evaluations for gradient construction, and a duration of less than
1 s. The surrogate model prediction provided both very good agreement with the monitoring data and
valid values for parameters of the constitutive model TUBSsalt.

This approach reduces the computational burden associated with traditional high-fidelity models and
enables rapid, iterative updates to model parameters as new monitoring data becomes available. By
enhancing the scalability and adaptability of numerical models, this work lays the foundation for
integrating advanced surrogatemodeling techniques into themanagement of deep geological repositories.

While the workflow demonstrated high efficiency and accuracy for the presented mechanical model,
further developments are required to extend its applicability. Specifically, first, the GP-based surrogate
model calibration and optimization method must be extended to account for higher-dimensional moni-
toring data, which could include extensometer and permeability measurements. Second, an alternative
formulation would be developing a time-dependent surrogate model, which enables forecasting capabil-
ities together with uncertainty propagation. Third, efforts have to be undertaken to account for the multi-
physics nature of deep geological disposal. Apart from the purely mechanical model investigated here, a
variety of models has been developed in the past that describe, for example, transport of radio-nuclides
through fluid flow, heat generation from high-level radioactive waste, or hydration of a sealing structure.

Data availability statement. All source code and simulation data used for the presented benchmark studies are published at https://
doi.org/10.5281/zenodo.15049774 (Paul et al., 2025). Restrictions apply to the availability of the monitoring data, which were used
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Endlagerung mbH (BGE).

Acknowledgments. We are grateful for the provision and preparation of monitoring data from the Bundesgesellschaft für
Endlagerung mbH (BGE).

Author contribution. Conceptualization: L.P., JH.UQ., U.F., A.H., and H.W.; Methodology: L.P., JH.UQ., U.F., H.Y., and H.W.;
Software: L.P., JH.UQ., U.F., and A.H.; Data curation: L.P., U.F., and A.H.; Data visualization: L.P., JH.UQ., and U.F.; Formal
analysis: L.P., JH.UQ., and U.F.; Writing original draft: L.P., JH.UQ., U.F., A.H., H.Y., H.W., U.R., and J.S.; Funding acquisition:
J.S., U.R., and H.W.; All authors approved the final submitted draft.

Funding statement. This research is funded by the German Federal Ministry for the Environment, Nature Conservation, Nuclear
Safety, and Consumer Protection (BMUV) and managed by project management agency Karlsruhe (PTKA) under grant number
02E12102.

Competing interests. The authors declare none.

Ethical standard. The research meets all ethical guidelines, including adherence to the legal requirements of the study country.

e26-18 Lennart Paul et al.

https://doi.org/10.1017/dce.2025.17 Published online by Cambridge University Press

https://doi.org/10.5281/zenodo.15049774
https://doi.org/10.5281/zenodo.15049774
https://doi.org/10.1017/dce.2025.17


References
AgarwalG,Urrea-Quintero J-H,WesselsH andWickT (2024) Parameter identification and uncertainty propagation of hydrogel

coupled diffusion-deformation using pod-based reduced-order modeling. Computational Mechanics 75, 515–545.
AlexanderianA,GremaudPAandSmithRC (2020)Variance-based sensitivity analysis for time-dependent processes.Reliability

Engineering & System Safety 196, 106722.
Anand L and Govindjee S (2020) Continuum Mechanics of Solids. Oxford University Press.
Anton D, Tröger J-A, Wessels H, Römer U, Henkes A and Hartmann S (2024) Deterministic and statistical calibration of

constitutive models from full-field data with parametric physics-informed neural networks. arXiv preprint arXiv:2405.18311.
BakerE,Barbillon P,FadikarA,GramacyRB,Herbei R,HigdonD,Huang J, JohnsonLR,MaP,MondalA,Pires, B, Sacks,

J and Sokolov, V (2022) Analyzing stochastic computer models: A review with opportunities. Statistical Science 37(1), 64–89.
Bayarri MJ, Berger JO, Cafeo J, Garcia-Donato G, Liu F, Palomo J, Parthasarathy RJ, Paulo R, Sacks J and Walsh D

(2007b) Computer model validation with functional output. The Annals of Statistics 35(5),1874–1906.
Bayarri MJ, Berger JO, Paulo R, Sacks J, Cafeo JA, Cavendish J, Lin C-H and Tu J (2007a) A framework for validation of

computer models. Technometrics 49(2), 138–154.
Bollingfehr W, Buhmann D, Dörr S, Filbert W, Gehrke A, Heemann U, Keller S, Krone J, Lommerzheim A, Mönig J,

Mrugalla S, Müller-Hoeppe N, Rübel A, Weber JR and Wolf J (2017) Evaluation of methods and tools to develop safety
concepts and to demonstrate safety for an HLW repository in salt. Final Report, TEC-03-2017-AB.

Bornemann O, Behlau J, Fischbeck R,Hammer J, Jaritz W,Keller S,Mingerzahn G, SchrammM (2008) Description of the
Gorleben Site Part 3: results of the geological surface and underground exploration of the salt formation. In Bundesanstalt für
Geowissenschaften und Rohstoffe (BGR). Hannover.

Cheng S, Konomi BA, Matthews JL, Karagiannis G and Kang EL (2021) Hierarchical Bayesian nearest neighbor co-kriging
Gaussian process models; an application to intersatellite calibration. Spatial Statistics 44, 100516.

Claret F,Prasianakis NI,BaksayA,LukinD,PepinG,Ahusborde E,Amaziane B,BátorG,BeckerD,BednárA, et al. (2024)
Eurad state-of-the-art report: development and improvement of numerical methods and tools for modeling coupled processes in
the field of nuclear waste disposal. Frontiers in Nuclear Engineering 3, 1437714.

Epkenhans I,Wacker S and Stahlmann J (2022) Weiterentwicklung und Qualifizierung der gebirgsmechanischen Modellierung
für die HAW-Endlagerung im Steinsalz (WEIMOS): (Verbundprojekt: Teilprojekt D) Endbericht des Teilprojekts. Research
Report. Technische Universität Braunschweig, Braunschweig, Germany.

Fang K-T, Li R and Sudjianto A (2005) Design and Modeling for Computer Experiments. Chapman and Hall/CRC.
Fecker E (2018) Baugeologie, 3 ed. Springer Spektrum.
Fuhg JN, Fau A and Nackenhorst U (2021) State-of-the-art and comparative review of adaptive sampling methods for kriging.

Archives of Computational Methods in Engineering 28,2689–2747.
Gährken A, Missal C and Stahlmann J (2015) A thermal-mechanical constitutive model to describe deformation, damage and

healing of rock salt. In Proceedings of the 8th Conference on the Mechanical Behavior of Salt, Rapid City, USA, pp. 331–338.
Gamboa F, Janon A, Klein T and Lagnoux A (2014) Sensitivity analysis for multidimensional and functional outputs.
Gamboa F, Janon A,Klein T, Lagnoux A and Prieur C (2016) Statistical inference for Sobol pick-freeze Monte Carlo method.

Statistics 50(4), 881–902.
Gramacy RB (2020) Surrogates: Gaussian Process Modeling, Design, and Optimization for the Applied Sciences. Chapman and

Hall/CRC.
GuM andWang L (2018) Scaled Gaussian stochastic process for computer model calibration and prediction. SIAM/ASA Journal

on Uncertainty Quantification 6(4), 1555–1583.
Hampel A,Argüello JG,Hansen FD,Günther R-M, Salzer K,MinkleyW, Lux K-H,Herchen K,Düsterloh U, Pudewills A,

Yildirim S, Staudtmeister K,Rokahr R, Zapf D,Gährken A,Missal C and Stahlmann J (2013) Benchmark calculations of
the thermo-mechanical behavior of rock salt – results from a us-german joint project. In Proceedings of the 47th US Rock
Mechanics Symposium (ARMA 13–456), Salt Lake City, USA.

Hampel A,Günther R-M, SalzerK,MinkleyW,Leuger B,Zapf D,RokahrR,HerchenK,Wolters R andDüsterlohU (2010)
Vergleich aktueller Stoffgesetze und Vorgehensweisen anhand von 3D-Modellberechnungen zum mechanischen Langzeitver-
halten eines realen Untertagebauwerks im Steinsalz—Synthesebericht. Research Report, Federal Ministry of Education and
Research (BMBF), Mainz, Germany.

Hampel A, Herchen K, Lux K-H, Günther R-M, Salzer K, Winkley W, Pudewills A, Yildirim S, Rokahr R, Gährken A,
Missal C and Stahlmann J (2016) Vergleich aktueller Stoffgesetze und Vorgehensweisen anhand von Modellberechnungen
zum thermo-mechanischen Verhalten und zur Verheilung von Steinsalz—Synthesebericht. Research Report, Federal Ministry
for Economic Affairs and Energy (BMWi), Berlin, Germany.

Hampel A,Lüdeling C,Günther R-M, Salzer K,Yildirim S,Zapf D,Epkenhans I,Wacker S,GährkenA, Stahlmann J, Sun-
Kurczinski JQ,Wolters R,HerchenKandLuxK-H (2022b)Weiterentwicklung undQualifizierung der gebirgsmechanischen
Modellierung für die HAW-Endlagerung im Steinsalz (WEIMOS)—Synthesebericht. Research Report, Federal Ministry for
Economic Affairs and Energy (BMWi), Berlin, Germany.

Hampel A,Lüdeling C,Günther R-M, Sun-Kurczinski JQ,Wolters R,DüsterlohU,LuxK-H,Yildirim S,Zapf D,Wacker S,
Epkenhans I, Stahlmann J and Reedlunn B (2022a) Weimos: simulations of two geomechanical scenarios in rock salt

Data-Centric Engineering e26-19

https://doi.org/10.1017/dce.2025.17 Published online by Cambridge University Press

https://doi.org/10.48550/arXiv.2405.18311
https://doi.org/10.1017/dce.2025.17


resembling structures at wipp. In Proceedings of the 10th Conference on the Mechanical Behavior of Salt, Utrecht, Netherlands,
pp. 421–435.

HigdonD,Gattiker J,WilliamsB andRightleyM (2008) Computer model calibration using high-dimensional output. Journal of
the American Statistical Association 103(482), 570–583.

Higdon D, Kennedy M, Cavendish JC, Cafeo JA and Ryne RD (2004) Combining field data and computer simulations for
calibration and prediction. SIAM Journal on Scientific Computing 26(2), 448–466.

Hunsche U, Schulze O, Walter F and Plischke I (2003) Projekt Gorleben: Thermomechanisches Verhalten von Salzgestein –

Abschlussbericht. Technical Report, Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Hannover
Itasca Consultants GmbH (2023) Itasca Software 9.0 documentation—FLAC Theory and Backround. https://docs.itascacg.com/

itasca900/flac3d/docproject/source/theory/theory.html?node2293.
Kejzlar V,Neufcourt L,NazarewiczWand Reinhard P-G (2020) Statistical aspects of nuclear mass models. Journal of Physics

G: Nuclear and Particle Physics 47(9), 094001.
KennedyMCandO’HaganA (2000) Predicting the output from a complex computer codewhen fast approximations are available.

Biometrika 87(1), 1–13.
KennedyMC and O’Hagan A (2001) Bayesian calibration of computer models. Journal of the Royal Statistical Society: Series B

(Statistical Methodology) 63(3), 425–464.
Kock I, Eickemeier R, Frieling G, Heusermann S, Knauth M, Minkley W, Navarro M, Nipp H-K and Vogel P (2012)

Vorläufige Sicherheitsanalyse für den Standort Gorleben—Bericht zum Arbeitspaket 9.1: Integritätsanalyse der geologischen
Barriere. Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH

Kurgyis K,Achtziger-Zupani Pc
^
c
^
,BjorgeM,BoxbergMS,BroggiM,Buchwald J,Ernst OG,Flügge J,Ganopolski A,Graf

T, et al. (2024)Uncertainties and robustness with regard to the safety of a repository for high-level radioactive waste: introduction
of a research initiative. Environmental Earth Sciences 83(2), 82.

Langer M (1985) Hohlraumbau im Salzgebirge—Überblick über den Stand der Wissenschaft und Technik—Teil A Geologische
und mechanische Grundlagen. Taschenbuch für den Tunnelbau 1985, pp. 287–300.

Li Y, Hariri-Ardebili MA, Deng T,Wei Q and Cao M (2023) A surrogate-assisted stochastic optimization inversion algorithm:
parameter identification of dams. Advanced Engineering Informatics 55, 101853.

Loeppky JL, Sacks J andWelchWJ (2009) Choosing the sample size of a computer experiment: a practical guide. Technometrics
51(4), 366–376.

Mahdaviara M, Rostami A, Keivanimehr F and Shahbazi K (2021) Accurate determination of permeability in carbonate
reservoirs using Gaussian process regression. Journal of Petroleum Science and Engineering 196, 107807.

Marrel A, Iooss B, Laurent B and Roustant O (2009) Calculations of sobol indices for the Gaussian process metamodel.
Reliability Engineering & System Safety 94(3), 742–751.

Myren S and Lawrence E (2021) A comparison of Gaussian processes and neural networks for computer model emulation and
calibration. Statistical Analysis and Data Mining: The ASA Data Science Journal 14(6), 606–623.

O’Hagan A (2006) Bayesian analysis of computer code outputs: a tutorial. Reliability Engineering & System Safety 91(10–11),
1290–1300.

Oakley JE andO’HaganA (2004) Probabilistic sensitivity analysis of complexmodels: a Bayesian approach. Journal of the Royal
Statistical Society Series B: Statistical Methodology 66(3), 751–769.

Owen AB (2019) Monte Carlo Book: the Quasi-Monte Carlo parts. Stanford University.
Paul L, Urrea-Quintero J-H and Fiaz U (2025) Code and data repository: Gaussian processes enabled model calibration in the

context of deep geological disposal. Zenodo. https://doi.org/10.5281/zenodo.15049774.
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V,

Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M and Duchesnay E (2011) Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research 12, 2825–2830.

Pitz M, Grunwald N, Graupner B, Kurgyis K, Radeisen E, Maßmann J, Ziefle G, Thiedau J and Nagel T (2023)
Benchmarking a new th2m implementation in ogs-6 with regard to processes relevant for nuclear waste disposal. Environmental
Earth Sciences 82(13), 319.

Radaideh MI and Kozlowski T (2020) Surrogate modeling of advanced computer simulations using deep Gaussian processes.
Reliability Engineering & System Safety 195, 106731.

Sacks J, Schiller SB and Welch WJ (1989) Designs for computer experiments. Technometrics 31(1), 41–47.
Saltelli A (2002) Making best use of model evaluations to compute sensitivity indices. Computer Physics Communications 145(2),

280–297.
Saltelli A, Annoni P, Azzini I, Campolongo F, Ratto M and Tarantola S (2010) Variance based sensitivity analysis of model

output. design and estimator for the total sensitivity index. Computer Physics Communications 181(2), 259–270.
Santner TJ,Williams BJ,NotzWI andWilliams BJ (2003) The Design and Analysis of Computer Experiments, Vol. 1. Springer.
Schulz E, SpeekenbrinkM and Krause A (2018) A tutorial on Gaussian process regression: modelling, exploring, and exploiting

functions. Journal of Mathematical Psychology 85, 1–16.
Schulze O,Heemann U, Zetsche F,Hampel A, Pudewills A,Günther R-M,MinkleyW, Salzer K,Hou Z,Wolters R,Rokahr

R and Zapf D (2007) Comparison of advanced constitutive models for the mechanical behavior of rock salt – results from a joint
research project – I. modeling of deformation processes and benchmark calculations. In Proceedings of the 6th Conference on the
Mechanical Behavior of Salt, Hannover, Germany, pp. 77–88.

e26-20 Lennart Paul et al.

https://doi.org/10.1017/dce.2025.17 Published online by Cambridge University Press

https://docs.itascacg.com/itasca900/flac3d/docproject/source/theory/theory.html?node2293
https://docs.itascacg.com/itasca900/flac3d/docproject/source/theory/theory.html?node2293
https://doi.org/10.5281/zenodo.15049774
https://doi.org/10.1017/dce.2025.17


Sobol IM (1967) On the distribution of points in a cube and the accurate evaluation of integrals. Zhurnal Vychislitel’noiMatematiki i
Matematicheskoi Fiziki 7( 4), 784–802.

Sobol IM (2001) Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates.Mathematics and
Computers in Simulation 55(1–3), 271–280.

Srivastava A, Subramaniyan AK andWang L (2017) Analytical global sensitivity analysis with Gaussian processes. AI EDAM
31(3), 235–250.

Stahlmann J,Missal C and Gährken A (2016) Geomechanische Modellberechnungen zur Offenhaltungsphase des Bergwerkes
Gorleben. unpublished.

StandAG (2017) Site Selection Act of 5 May 2017 (Federal LawGazette I p. 1074), last modified by Article 8 of the Act of 22March
2023 (Federal Law Gazette 2023 I No. 88).

Storn R and Price K (1997) Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces.
Journal of Global Optimization 11, 341–359.

Sudret B (2008). Global sensitivity analysis using polynomial chaos expansions. Reliability Engineering & System Safety 93(7),
964–979.

Sung C-L and Tuo R (2024) A review on computer model calibration.Wiley Interdisciplinary Reviews: Computational Statistics
16(1), e1645.

TeckentrupAL (2020) Convergence of Gaussian process regression with estimated hyper-parameters and applications in Bayesian
inverse problems. SIAM/ASA Journal on Uncertainty Quantification 8(4), 1310–1337

Thelen A, Zhang X, Fink O, Lu Y, Ghosh S, Youn BD, Todd MD, Mahadevan S, Hu C and Hu Z (2022) A comprehensive
review of digital twin—part 1: modeling and twinning enabling technologies. Structural and Multidisciplinary Optimization
65(12), 354.

Thelen A, Zhang X, Fink O, Lu Y, Ghosh S, Youn BD, Todd MD, Mahadevan S, Hu C and Hu Z (2023) A comprehensive
review of digital twin—part 2: roles of uncertainty quantification and optimization, a battery digital twin, and perspectives.
Structural and Multidisciplinary Optimization 66(1), 1.

Veasna K, Feng Z, Zhang Q and Knezevic M (2023) Machine learning-based multi-objective optimization for efficient
identification of crystal plasticity model parameters. Computer Methods in Applied Mechanics and Engineering 403, 115740.

VirtanenP,GommersR,Oliphant TE,HaberlandM,ReddyT,CournapeauD,BurovskiE,Peterson P,WeckesserW,Bright
J et al. (2020) SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods 17(3), 261–272.

Wittke W (2014) Laboratory Tests. John Wiley & Sons, Ltd, chapter 14, pp. 403–450.
Wojnarowicz M,Madaschi A and Laloui L (2024) A methodology to optimize complex models in the context of nuclear waste

repositories. Computers and Geotechnics 173, 106579.
Wu X, Kozlowski T,Meidani H and Shirvan K (2018) Inverse uncertainty quantification using the modular Bayesian approach

based on Gaussian process, part 2: application to trace. Nuclear Engineering and Design 335, 417–431.

Data-Centric Engineering e26-21

https://doi.org/10.1017/dce.2025.17 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2025.17


A. Appendix—Preliminary parameter selection
A preliminary parameter selection was performed to identify relevant strain components of TUBSsalt given the considered
monitoring data. For this purpose, several damage-associated strain components were deactivated, in particular tertiary creep _εt ,
creep and shear failure _εn and tension failure _εz. A comparison between 274 gridpoint displacements at 40 time instances is given in
Figure A1 below, in which the vertical (Figure A1a) and horizontal (Figure A1b) displacements were simulated once with and once
without damage strains. From the comparison, it can be observed that no deviation from the diagonal line is visible, which is also
confirmed by the R2 value close to 1:0. Thus, the considered test case is dominated by creep mechanisms and softening, and post-
failure strains are considered negligible.

Figure A1.Comparison of displacements with and without damage-associated strains by evaluating 274
gridpoints at 40 time instances for a. vertical and b. horizontal displacements. The simulations use
TUBSsalt parameters: ηp ¼ 8:0 �104 MPa�d, Ep ¼ 75 MPa, σ0,eq,p ¼ 30 MPa, pp ¼ 0:5, ηs ¼ 3:0 �107

MPa�d, σ0,eq,s ¼ 30 MPa and ps ¼ 1:5.
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B. Appendix—Material parameter
Table B1 contains parameter values and ranges for the constitutive model TUBSsalt.As reference serves a parameter set determined
for Gorleben salt in Stahlmann et al. (2016). However, it should be noted that the parameter set has been identified using data from
various salt formations of Gorleben, and not only from the homogeneous z2HS2 area. As no parameters for healing are given in
Stahlmann et al. (2016), ηv and mv are obtained from Epkenhans et al. (2022).

Cite this article: Paul L, Urrea-Quintero J.-H, Fiaz U, Hussein A, Yaghi H, Stahlmann J, Römer U andWessels H (2025). Gaussian
processes enabled model calibration in the context of deep geological disposal. Data-Centric Engineering, 6, e26. doi:10.1017/
dce.2025.17

Table B1. TUBSsalt material parameter under consideration of reference values from Stahlmann et al.
(2016). The parameters highlighted in red are directly read from experimental data. For the

parameters highlighted in blue, a range of values is indicated to perform the sensitivity analysis.

Symbol Description Value or range Unit

Elastic strain
K0 Initial bulk modulus 22000 MPa
G0 Initial shear modulus 14500 MPa
pel Damage exponent 2:2 –

Primary creep
ηp Viscosity of primary creep 5 �104�60 �104 MPa�d
Ep Hardening modulus 60�90 MPa
σ0,eq,p Start of slope change 20�40 (later set to 30) MPa
pp Curvature parameter 0:3�1:0 (later set to 0:5) –

Secondary creep
ηs Viscosity of secondary creep 5 �107�50 �107 MPa�d
σ0,eq,s Start of slope change 20�40 (later set to 30) MPa
ps Curvature parameter 0:5�2:0 –

Tertiary creep
ηt Viscosity of tertiary creep 27:5 MPa�d
t0 Initial slope 60 °
t1 Maximum yield stress 27:5 MPa
ψ Angle of dilatancy 22:5 ∘

mt Damage coefficient 0:5 –

εv,d,b Volumetric strain at failure 0:025 –

Healing
ηv Viscosity of healing 2:7 �106 MPa�d
mv Healing coefficient 0:55 –

Creep, shear and tension failure
ηn Viscosity after failure 12000 MPa�d
n0 Initial slope 60 ∘

n1 Maximum yield stress 27:5 MPa
mn Post failure coefficient 2:2 –

σz,0 Initial tensile strength 1:5 MPa
Others
ρ Density 2200 �10�6 Gg/m3

Q Activation energy 22000 J/mol
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