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We propose a robust inference method for predictive regression models under
heterogeneously persistent volatility as well as endogeneity, persistence, or heavy-
tailedness of regressors. This approach relies on two methodologies, nonlinear
instrumental variable estimation and volatility correction, which are used to deal
with the aforementioned characteristics of regressors and volatility, respectively. Our
method is simple to implement and is applicable both in the case of continuous and
discrete time models. According to our simulation study, the proposed method per-
forms well compared with widely used alternative inference procedures in terms of
its finite sample properties in various dependence and persistence settings observed
in real-world financial and economic markets.

1. INTRODUCTION

Many papers in the literature have focused on econometric analysis of predic-
tive regressions for stock returns (see Phillips, 2015, for an up-to-date review).
Predictive regression data are known to have several problematic characteristics,
especially in statistical inference of stock return predictability. First, it is widely
believed that the popular regressors, such as dividend-price and earnings-price
ratios, used in the predictive regressions have near unit roots and their innovations
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are correlated with stock returns in the long run. The characteristics of the
regressors, which are persistence and endogeneity, jointly cause standard hypoth-
esis tests to become substantially biased (see Stambaugh, 1999). Second, there is
some evidence that supporting volatility of stock returns is stochastic and highly
persistent (see, e.g., Jacquier, Polson, and Rossi, 2004; Hansen and Lunde, 2014).
Cavaliere (2004) shows that persistent stochastic volatility may cause substantial
size distortions on standard tests developed mostly under the assumption that
a volatility process is stationary with a constant unconditional mean, such as
stationary GARCH-type models. Lastly, there are several other characteristics of
predictive regression data that include heavy-tailedness of regressors as well as
jumps, structural breaks, and regime switching in volatility. These characteristics
may also yield jointly or individually a significant distortion of standard hypothesis
tests for predictive regressions.

In this paper, we propose a new method for robust inference on parameters
of predictive regression models under the aforementioned characteristics of pre-
dictive regression data. Our approach relies on a simple nonlinear instrumental
variable (IV) estimation and a nonparametric volatility correction. The nonlinear
IV estimator in our approach is an IV estimator with the instrument being the sign
transformation of the regressor. This particular IV estimator was first proposed by
Cauchy (1836), and is called the Cauchy estimator. As is known in the literature,
the use of the instrument can effectively eliminate the problems caused by the
persistent endogeneity, heavy-tailedness, and other problematic characteristics of
the regressors (see So and Shin, 1999; Choi, Jacewitz, and Park, 2016; Kim and
Meddahi, 2020). On the other hand, volatility correction is used to deal with the
problems caused by the presence of heterogeneity and persistence in stock return’s
volatility. As for the volatility correction, we consider a standard kernel-based
nonparametric estimator of volatility.

Many authors have studied the issue of persistent endogeneity of regressors in
predictive regressions. Among many of them, Campbell and Yogo (2006), Chen
and Deo (2009), and Phillips and Magdalinos (2009) have proposed tests of return
predictability, which are aimed at dealing with persistent and endogenous regres-
sors. Though their tests perform well under the presence of persistent endogeneity
of regressors, they are not expected to deal with other problematic characteristics
of predictive regression data effectively. Our simulation study shows that they
have serious size distortions under the null of no predictability when volatility
is persistent or incorporates structural breaks or regime switching. In contrast, the
robustness of our approach is quite evident. Our approach always yields almost
exact sizes in a variety of designs considered in our simulation study. Moreover, the
robustness of our approach is obtained with no significant loss of power. The dis-
criminatory powers of our test are comparable to the tests by Campbell and Yogo
(2006) and Chen and Deo (2009), which are optimal for the basic Gaussian model.

Our work is closely related to Choi et al. (2016), who propose an inference
approach for predictive regressions. Similar to our method, their approach relies
on the Cauchy estimator to eliminate the problems caused by the problematic char-
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acteristics of the regressors. They also use a nonparametric volatility correction.
However, their approach for volatility correction is quite different from ours, and
its applicability is limited to a predictive regression equipped with appropriate
high-frequency data since their method and theory are developed in a continuous
time framework. More precisely, their volatility correction, called the time change,
requires uniformly consistent estimation of a quadratic variation of a stock price for
which high-frequency observations of the stock price are necessary. Consequently,
their approach requires the assumption that the sampling interval decreases to zero,
and applications of their method on relatively low-frequency data, i.e., monthly
or quarterly data, are largely restricted. However, predictive regressions are often
estimated using monthly or quarterly data. In contrast, our method can be applied
to a discrete time model and a discrete sample collected from an underlying
continuous time model as in Choi et al. (2016). Our simulation study shows that
both our method and the method by Choi et al. (2016) perform well and have
good size and power performances under continuous time settings considered in
this paper. However, unlike our method, the Choi et al. (2016) method is not
applicable under discrete time settings. Therefore, we may say that our method
is more flexible and widely applicable since it can be applied to both high- and
low-frequency data.

The rest of the paper is organized as follows: Section 2 introduces the predictive
regression models, persistent volatility, and the Cauchy estimator. Section 3 pro-
poses the robust inference method and presents its asymptotic properties. Section
4 generalizes the baseline predictive regression models, which have one persistent
volatility factor, to have a two-factor volatility, where one factor is persistent and
the other is transient such as a stationary GARCH process. Section 5 provides
numerical results on finite sample properties of the proposed robust inference
approach. Section 6 makes some concluding remarks.

The Supplementary Material provides a discussion of the Cauchy estimator
and general nonlinear IV estimators with the relevant asymptotic results that,
in particular, point to the importance and usefulness of the Cauchy estimator
(Appendix A), useful auxiliary results (Appendix B), the proofs of the main results
in the paper (Appendix C), and some additional simulation results on finite sample
performance of inference approaches dealt with (Appendix D).

2. PREDICTIVE REGRESSIONS

2.1. Research Problems and Models

Throughout the paper, we consider (Ft)-adapted processes defined on a filtered
probability space (�,F,(Ft)t≥0,P) equipped with an increasing filtration (Ft) of
sub-σ -fields of F . We consider a test for no predictability of the process (yt)

(e.g., the time series of excess stock returns) based on some covariate process (xt)

(e.g., the time series of price-to-dividend ratios). We consider the linear predictive
regression model
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yt = α +βxt−1 +ut, t = 1,...,T, (1)

where (ut) is a martingale difference sequence (MDS) with respect to (Ft). In par-
ticular, (ut) is conditionally heteroskedastistic. Following the usual specification
for a volatility model, we assume that

ut = vtεt,

where (vt) is a volatility process and (εt) is an MDS with respect to (Ft).

Assumption 2.1. (a) (vt) is (Ft−1)-adapted and is defined on [v,v̄] for some
0 < v < v̄ < ∞, (b) E(ε2

t |Ft−1) = 1, and (c) supt≥1 E(ε4
t |Ft−1) < ∞.

The conditions (a) and (b) in Assumption 2.1 are not stringent, and are required
for the identification of the conditional variance of ut. In particular, the conditional
variance of ut given Ft−1 is well identified, and we have E(u2

t |Ft−1) = v2
t . Our test

relies on uniform convergence results for a nonparametric estimator of the volatil-
ity process (vt). The condition (c) is used to obtain a uniform convergence rate of
the nonparametric estimator of the volatility process (vt). Note that Assumption
2.1 implies supt≥1 E(u4

t ) < ∞, and hence it rules out a predictive regression model
having a heavy-tailed regression error (ut).

As for a nontrivial example, we let vt = f (zt−1) and εt ∼ iidN(0,1), where
f is a positive function and zt is an Ft-adapted process. Then (vt,εt) satisfies
Assumption 2.1. If we assume that f is bounded above, then ut = vtεt satisfies
supt≤1 E(|ut|4|Ft−1) < ∞ a.s. for any Ft-adapted process (zt) since εt ∼ iidN(0,1).
Moreover, ut is not uniformly bounded, i.e., there does not exist M such that |ut| ≤
M < ∞ with probability one even if f is bounded above, since the standard normal
random variable εt is not uniformly bounded. Further examples of martingales
with bounded conditional moments of MDS summands are provided by more
general martingale transforms and randomly stopped sums of independent r.v.’s
(see Remark 3.3 in de la Peña, Ibragimov, and Sharakhmetov, 2003).

The hypothesis of no predictability of (yt) corresponds to the hypothesis β = 0
in predictive model (1). It is well known that the standard ordinary least squares
(OLS)-based t-test is not robust with respect to a wide range of statistical problems
in predictive regression data. For instance, the standard OLS estimator of β is not
asymptotically Gaussian under H0 : β = 0 if (xt) is endogenous and (nearly) non-
stationary (see Elliott and Stock, 1994; Phillips, 1987b; Phillips and Magdalinos,
2007) or is stationary with infinite second moment (e.g., Granger and Orr, 1972;
Embrechts, Klüppelberg, and Mikosch, 1997; Ibragimov, Ibragimov, and Walden,
2015, and the references therein), even when there is no heteroskedasticity and
vt = σ is constant.1

In the case of predictive regressions for stock returns, the returns process (yt) is
widely believed to have time-varying stochastic volatility (see Choi et al., 2016 and

1The endogeneity of the covariate xt refers to the existence of nonzero long-run covariance between innovations of
ut and xt .
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the references therein). Moreover, the volatility process is typically very persistent.
For example, many authors have found that the autoregressive parameter for the
dynamics of the volatility process is close to one under some appropriate functional
transformations. In particular, Jacquier et al. (2004) and Hansen and Lunde (2014)
provide convincing evidence that the logarithm of the volatility process follows a
near unit-root process for a wide range of equity and foreign exchange rate time
series. It is well known that the presence of persistent volatility may cause the
distribution of the standard t-statistic to be far from standard normal, yielding a
substantial distortion in testing relying on standard normal critical values (see,
e.g., Chung and Park, 2007; Choi et al., 2016; Kim and Park, 2017).

2.2. The Cauchy Estimator

Our inference method is based on the Cauchy estimator. To effectively explain the
main idea, we consider model (1) with no intercept term, i.e., α = 0, and introduce
the Cauchy estimator β̌ for β, which is given by

β̌ =
(

T∑
t=1

|xt−1|
)−1 T∑

t=1

sign(xt−1)yt,

where sign(·) is the sign function defined as sign(x) = 1 for x ≥ 0, and sign(x) = −1
for x < 0. Thus, β̌ is an IV estimator with the instrument sign(xt−1). This particular
IV estimator was first proposed by Cauchy (1836). See, among others, So and Shin
(1999), Phillips, Park, and Chang (2004), Choi et al. (2016), and Kim and Meddahi
(2020) for econometric applications of the Cauchy estimator.

Under Assumption 2.1(b), not only εt, but also sign(xt−1)εt, hereafter denoted
by ξt, is an MDS with respect to the filtration (Ft) with E(ξ 2

t |Ft−1) = 1. Let us
define a continuous time partial sum process (WT(r),0 ≤ r ≤ 1) by

WT(r) = 1

T1/2

[Tr]∑
t=1

ξt. (2)

The stochastic process (WT(r)) takes values in DR[0,1], where DE[0,1] denotes
the space of càdlàg functions from [0,1] to E ⊂ R

d for some positive integer d.
Under Assumption 2.1(b) and (c), the partial sum process (WT(r)) follows the
usual functional central limit theorem (CLT) for martingales (see, e.g., Billingsley,
1986, Thm. 18.2), that is,

WT →d W

in DR[0,1], where W is a standard Brownian motion. The convergence WT →d W is
to be interpreted as the weak convergence in the probability measures on DR[0,1].
In our context, it is more convenient, and so is assumed, to endow DE[0,1] with the
uniform topology rather than the usual Skorohod topology (see Billingsley, 1986,
pp. 150–152).
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The use of the Cauchy estimator in our inference method is motivated by
the above functional CLT for (WT(r)). To convey the main idea, assume that
the volatility process (vt) is observable. Recall that the numerator of β̌ is∑T

t=1 sign(xt−1)yt, and it becomes
∑T

t=1 vtξt under β = 0, where ξt = sign(xt−1)εt.
One then may construct a robust test for the null hypothesis H0 : β = 0 against the
alternative H1 : β �= 0 using the following statistic:

τ(v) = 1

T1/2

T∑
t=1

sign(xt−1)
yt

vt
. (3)

In particular, for β = 0,

τ(v) = 1

T1/2

T∑
t=1

ξt = WT(1) →d W(1) = N(0,1).

In practice, however, the volatility process (vt) is not observable, and hence the
above inference procedure using τ(v) is not feasible. In Section 3, a feasible
version of the Cauchy-based inference method above will be fully addressed under
our construction of the persistent volatility introduced in Section 2.3.

2.3. Persistent Volatility

This subsection presents a time-varying and persistent volatility model, which is a
well-known stylized fact for many financial returns. We define a stochastic process
σT on DR+[0,1] as σT(r)= v[Tr]. We assume that σT has a limiting process σ defined
over 0 ≤ r ≤ 1 such that (WT,σT) converges to (W,σ ) jointly, where (WT) is defined
as in (2). Specifically, we consider the following assumption.

Assumption 2.2. There exists a positive process σ on DR+[0,1] such that

(WT,σT) →d (W,σ )

in DR×R+ [0,1], where W is a standard Brownian motion with respect to the
filtration to which W and σ are adapted.

The above assumptions hold for wide classes of models, such as models with
nonstationary volatility, regime switching, and structural breaks in volatility. It also
holds for the processes with vt = σ(t/T), where σ(s) is a deterministic function
on [0,1], considered by Cavaliere and Taylor (2007), Xu and Phillips (2008), and
Harvey, Leybourne, and Zu (2019), among others.2 The assumptions also hold
for processes with nonstationary volatilities considered by Hansen (1995) and
Chung and Park (2007), who assume that v2

t is a smooth positive transformation
of a (near) unit-root process, i.e., v2

t = σ 2(T−1/2zt−1) for a unit-root process zt.

2Assumption 2.2 is a simplified version of the condition v[Tr]/aT →d σr considered by Assumption 2 of Cavaliere and
Taylor (2009). We rule out the explosive volatility settings with aT → ∞, and consider the stable volatility processes
with aT = 1 for simplicity. The results in the paper can be obtained under the explosive volatility assumption with
aT → ∞ at the cost of a more involved analysis.
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One should note that Assumption 2.2 is more general than the volatility models
considered in the aforementioned literature and, in particular, allows the volatility
to be stochastically discontinuous, which are desirable properties for modeling
financial volatility having structural breaks or regime switching.

Assumptions 2.1 and 2.2 rule out some cases of globally homoskedastic pro-
cesses, such as stationary GARCH processes. In Section 4, we generalize the
model to have a two-factor volatility, one for a nonstationary long-run component
and the other one for a stationary short-run component, and show the validity of
our robust method introduced in Section 3 for the generalized model with the two-
factor volatility.

Under our construction of the persistent volatility, the asymptotic behavior
of the Cauchy estimator can be obtained immediately. The asymptotics of
the Cauchy estimator β̌ are mainly determined by

∑T
t=1 vtξt since β̌ = β +∑T

t=1 vtξt/
∑T

t=1 |xt−1|. Note that T−1/2 ∑[Tr]
t=1 vtξt = ∫ r

0 σT(s)dWT(s) for r ∈ [0,1],
and the weak convergence of the stochastic integral

∫
σT(r)dWT(r) is well

documented in the literature (see, e.g., Hansen, 1992, Thm. 2.1; Kurtz and Protter,
1991, Thm. 4.6), and we have (

∫
σT(r)dWT(r)) →d (

∫
σ(r)dW(r)).

Lemma 2.1. Under Assumptions 2.1 and 2.2,(
T∑

t=1

|xt−1|/
√

T

)(
β̌ −β

)
→d

∫ 1

0
σ(r)dW(r).

Two main implications of Lemma 2.1 are (i) the limit distribution of the Cauchy
estimator is generally non-Gaussian and (ii) the rate of convergence of the Cauchy
estimator is nonstandard and unknown. These asymptotic properties of the Cauchy
estimator subsequently imply that the usual t-test relying on the standard normal
table becomes an invalid testing procedure for the null hypothesis of β = 0. The
limit

∫ 1
0 σ(r)dW(r) is Gaussian if and only if the limiting volatility process σ is

independent of W. In this case,
∫

σ(r)dW(r) has a mixed normal distribution and∫ s
0 σ(r)dW(r) =d MN(0,

∫ s
0 σ 2(r)dr). If the independence condition is violated,

then
∫

σ(r)dW(r) becomes a non-Gaussian martingale in general.
Clearly, β̌ requires an extremely mild condition for consistency, that is,∑T
t=1 |xt−1|/

√
T →p ∞. For example, if there exists a sequence pT of positive

numbers such that(
p−1

T

T∑
t=1

|xt−1|
)−1

= Op(1),

then β̌ − β = Op(T1/2/pT) by Lemma 2.1. For a wide class of time series, the
consistency condition T1/2/pT → 0 is satisfied since pT ≥ T unless xt ≈ 0 for
most t = 1, . . . ,T . Though it is not necessary in our subsequent theory, one may
explicitly obtain the sequence pT for some time series satisfying required regularity
conditions.
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Example 2.1. (a) For weakly stationary processes (xt) with E|xt| < ∞, pT = T .
(b) For stationary α-stable (xt) with 0 < α < 1, pT = T1/α	(T) for some slowly

varying function 	 (see Embrechts et al., 1997; Phillips and Solo, 1992; and
the references therein).

(c) For the case of unit-root and near unit-root time series (xt), pT = T3/2

(see Phillips, 1987a, 1987b; Phillips and Magdalinos, 2007; Ibragimov and
Phillips, 2008, and the references therein).

(d) For fractionally integrated I(d) processes (xt) with 1
2 < d < 3

2 , pT = Td+1/2	(T)

for some slowly varying function 	 (see Baillie, 1996; Phillips, 1999, Lem. 3.4;
Kim and Phillips, 2006; Wang, Lin, and Gulati, 2003; Chan and Wang, 2015
and the references therein).

3. NEW ROBUST INFERENCE APPROACH

Now we introduce our test for no predictability in the regression (1). The test is
motivated by τ(v) in (3). Since (vt) is not observable, we replace vt by its consistent
estimator σ̂ ((t −1)/T), and we consider the test statistic τ(σ̂ ) defined as

τ(σ̂ ) = 1

T1/2

T∑
t=1

sign(xt−1)
yt

σ̂ ((t −1)/T)
, (4)

where

σ̂ 2(r) =
∑T

t=1 û2
t Kh(r − t/T)∑T

t=1 Kh(r − t/T)
, h ≤ r ≤ 1; σ̂ 2(r) = σ̂ 2(h), 0 ≤ r < h,

(5)

where ût are the OLS residuals given as ût = yt − β̂xt−1 with the OLS estimator β̂.
Here, Kh(t) = K(t/h) with a kernel function K and bandwidth h.

The validity of our approach requires that σ̂ (r) is close enough to σT(r) = v[Tr]

for most r ∈ [0,1]. We first establish a uniform convergence result

sup
r∈Ch

∣∣σ̂ 2(r)−σ 2
T (r)

∣∣ = op(1) (6)

for some Ch ⊂ [0,1]. Invoking the convergence in Assumption 2.2, σT →d σ is
interpreted as the weak convergence in the probability measures on DR+ [0,1]
endowed with the uniform topology. By virtue of the so-called Skorohod represen-
tation theorem (e.g., Pollard, 1984, pp. 71–72), it is indeed possible to construct σT

and σ on a common probability space, up to the distributional equivalence, so that
σT →a.s. σ uniformly on [0,1]. For our development of the uniform convergence
results (6), we assume that σT is defined up to the distributional equivalence such
that σT →a.s. σ uniformly on [0,1]. This assumption is not restrictive since we are
interested in the convergence of σ̂ 2 to σ 2

T rather than σ 2.
For the nonparametric estimator σ̂ , we assume that the kernel function K

satisfies the following assumption.
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Assumption 3.1. (a) A nonnegative kernel K has a compact support [0,1] with∫ 1
0 K(r)dr = 1, (b) |K(r)−K(s)| ≤ K̄|r − s| for all r,s ∈ R, and supr K(r) < K̄ for

some 0 < K̄ < ∞.

The condition (b) in Assumption 3.1 is standard in the investigation of uniform
consistency. In Assumption 3.1(a), we assume a nonstandard assumption that K is
a one-sided kernel, which is unnecessary in developing the uniform consistency
(6). When we establish τ(σ̂ ) →d N(0,1) under β = 0, however, it is important to
make σ̂ (t/T) measurable with respect to Ft+1 so that we can apply a martingale
CLT to τ(σ̂ ).3 For a more precise explanation, we write

σ̂ 2(r) = σ̂ 2
1 (r)+ σ̂ 2

2 (r)+ σ̂ 2
3 (r)+ σ̂ 2

4 (r), (7)

where

σ̂ 2
1 (r) =

∑T
t=1 E(u2

t |Ft−1)Kh(r − t/T)∑T
t=1 Kh(r − t/T)

, σ̂ 2
2 (r) =

∑T
t=1(u

2
t −E(u2

t |Ft−1))Kh(r − t/T)∑T
t=1 Kh(r − t/T)

,

σ̂ 2
3 (r) = (β̂ −β)2

∑T
t=1 x2

t−1Kh(r − t/T)∑T
t=1 Kh(r − t/T)

, σ̂ 2
4 (r) = 2(β̂ −β)

∑T
t=1 xt−1utKh(r − t/T)∑T

t=1 Kh(r − t/T)
.

In the decomposition (7), σ̂ 2
1 (r)−σ 2

T (r) is a bias term since E(u2
t |Ft−1) = v2

t =
σ 2

T (t/T), whereas σ̂ 2
2 (r) is a variance term involving a martingale. On the other

hand, σ̂ 2
3 and σ̂ 2

4 are error components induced by using ût, instead of ut, in
the kernel estimation of σ 2

T . Under Assumption 3.1(a), σ̂ 2
1 (t/T) is Ft−1-adapted,

whereas σ̂ 2
2 (t/T) isFt-adapted. Consequently, σ̃ 2(t/T), where σ̃ 2 = σ̂ 2

1 + σ̂ 2
2 , isFt-

adapted, from which one may show that τ(σ̃ ) →d N(0,1), where τ(σ̃ ) is defined as
τ(σ̂ ) but with σ̂ replaced σ̃ , by a martingale CLT as long as |σ̃ 2(r)−σ 2

T (r)| = op(1)

for most r ∈ [0,1]. However, σ̂ 2
3 (t/T) and σ̂ 2

4 (t/T) are not Ft-measurable since
β̂ is not Ft-measurable for any t < T . Consequently, we cannot directly apply a
martingale CLT to show τ(σ̂ ) →d N(0,1). Alternatively, for these two terms, it
is shown that they have negligible effects in the test statistic τ(σ̂ ), and we have
τ(σ̂ ) = τ(σ̃ )(1+op(1)) as long as β̂ →p β sufficiently quickly. For the asymptotic
negligibilities of σ̂ 2

3 and σ̂ 2
4 , we assume the following.

Assumption 3.2. For any deterministic sequence (ct)
T
t=1 such that 0 ≤ ct ≤ 1 for

all t,
∑T

t=1 ctxt−1ut = Op

(
Tp

(∑T
t=1 x2

t−1

)1/2
)

, for some p ∈ [0,1/8).

Assumption 3.2 is very general, and many time series models satisfy the
condition. In particular, it holds with p = 0 if (xt) is either (near) unit root or
stationary with finite variance. Moreover, if (xt) is stationary with unbounded
variance, then the condition holds with p = 0 under some additional conditions
on (xt) and (ut) (see, e.g., Samorodnitsky et al., 2007).

3For the same reason, Hansen (1995) considered a one-sided kernel.
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Lemma 3.1. If Assumptions 2.1 and 3.2 hold, then |β̂ − β| =
Op

(
Tp

(∑T
t=1 x2

t−1

)−1/2
)

.

We will show below that the rate of convergence of β̂ in Lemma 3.1 is enough to
obtain the required uniform convergences of σ̂ 2

3 and σ̂ 2
4 as well as their asymptotic

negligibility in the test relying on the statistic (4).
On the other hand, the convergence |σ̂ 2

1 (r) − σ 2
T (r)| →p 0 requires that σ 2

T be
left-continuous at r due, in particular, to the fact that K is a one-sided kernel
having support [0,1]. However, σT may have countably many jumps since σT ∈
D[0,1]. In particular, at a discontinuity point r with σ(r) �= σ(r−), we have
|σ̂ 2

1 (r)−σ 2
T (r−)| →p 0 instead of |σ̂ 2

1 (r)−σ 2
T (r)| →p 0. Therefore, the set Ch in (6)

should effectively exclude a set of discontinuity points as well as its neighborhoods
so that the uniform convergence result holds. Under our convention of σT →a.s. σ

uniformly on [0,1], we only need to consider σ ’s discontinuity points, and we
define

Ch = [h,1]\Jh, where Jh = {[r,r +h) ⊂ [0,1]|σ(r) �= σ(r−)}. (8)

Clearly, Ch is a set of left-continuity points, and we establish the uniform conver-
gence result (6) over Ch.

A martingale exponential inequality can be used to show the asymptotic negligi-
bility of the variance component σ̂ 2

2 (r) uniformly in r (see, e.g., de la Peña, 1999;
Bercu and Touati, 2008). In this paper, we use the two-sided exponential inequality
in Bercu and Touati (2008) under which we can relax the moment condition for
(εt) at the cost of an assumption on the stochastic order of the extremal process of
(εt).

Assumption 3.3. For some q ∈ [0,1/8), max1≤t≤T |εt| = Op(Tq).

Assumption 3.3 is not stringent, and a wide class of time series models
for εt satisfies the condition.4 For instance, if εt is a Gaussian process with
cov(ε1,εT) logT → 0, then max0≤t≤T |εt| = Op(

√
logT) and the condition (a) holds

for any q > 0 (see, e.g., Leadbetter and Rootzén, 1988, Thm. 2.5.2).

Assumption 3.4. As h → 0 and T → ∞, (a) hT1/2−2p → ∞ where p ∈ [0,1/8)

is defined as in Assumption 3.2, and (b) hT1−4q → ∞ and hT2q → 0, where q ∈
[0,1/8) is defined as in Assumption 3.3.

Assumption 3.4 provides the connections among the stochastic orders in
Assumptions 3.2 and 3.3 and the bandwidth h. If we let h = cT−α for c,α > 0
as in the typical situation, then Assumption 3.4 holds for 2q < α < min{1/2 −
2p,1 − 4q}. Note that such α always exists for p,q ∈ [0,1/8). In particular, if

4Instead of Assumption 3.3, one may obtain the subsequent results by assuming an additional moment condition, i.e.,
E|εt|4r < ∞, for some r ≥ 1. For a relevant approach, the reader is referred to, e.g., Theorem 2.1 of Wang and Chan
(2014).
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p = q = 0, then h = cT−α satisfies Assumption 3.4 for 0 < α < 1/2. We note that
the condition (a) is used to guarantee σ̂ 2

3 and σ̂ 2
4 being asymptotically negligible

in our inference method. In condition (b), hT1−4q → ∞ is needed for the uniform
convergence of σ̂ 2

2 , whereas hT2q → 0 is used to effectively handle discontinuity
points of σ 2 at which σ̂ 2 becomes inconsistent.

Proposition 3.2. Let Assumptions 2.1, 2.2, and 3.1–3.4 hold. As h → 0 and
T → ∞, we have

(a) sup
r∈Ch

|σ̂ 2
1 (r)−σ 2

T (r)| = op(1), (b) sup
h≤r≤1

|σ̂ 2
2 (r)| = Op

(
T2q (log(hT)/(hT))1/2

)
,

(c) sup
h≤r≤1

|σ̂ 2
3 (r)| = Op

(
T2p/(hT)

)
, (d) sup

h≤r≤1
|σ̂ 2

4 (r)| = Op

(
T2p/(hT)

)
,

and the uniform convergence result (6) holds.

Under Assumption 3.4, we have

T2p/(hT) = o
(
T2q (log(hT)/(hT))1/2),

from which we can see that the error components σ̂ 2
3 and σ̂ 2

4 have smaller orders
than σ̂ 2

2 . Indeed, it is shown in the proof of Theorem 3.3 that σ̂ 2
3 and σ̂ 2

4 have
negligible effects in the test statistic τ(σ̂ ), and we have τ(σ̂ ) = τ(σ̃ )(1 + op(1)),
where σ̃ 2 = σ̂ 2

1 + σ̂ 2
2 . However, the orders of σ̂ 2

1 and σ̂ 2
2 are not sufficiently small to

show directly that τ(σ̃ ) = τ(σT)(1 + op(1)) even though σ̃ 2 converges uniformly
to σ 2

T . That is because the convergence rate of σ̂ 2
2 (r) →p 0 is not fast enough for

the direct approximation τ(σ̃ ) = τ(σT)(1 + op(1)), and the convergence rate of
|σ̂ 2

1 (r) − σ 2
T (r)| → 0 depends on the degrees of left continuity of σ 2

T which are
unknown in general.

Alternatively, we use the weak convergence of the stochastic integral∫ 1
0 (σT(r)/σ̃ (r))dWT(r), as in Lemma S.8, jointly with the facts that σ̃ (t/T) is
Ft-adapted and supr∈Ch

|σ̃ 2(r) − σ 2
T (r)| = op(1). Here, in particular, we require

Ch →a.s. [0,1], which holds when σ has finitely many jumps almost surely.

Assumption 3.5. σ has finitely many jumps almost surely.5

Theorem 3.3. Let Assumptions 2.1, 2.2, and 3.1–3.5 hold. As h → 0 and T →
∞, we have the following.

(a) Under β = 0, τ(σ̂ ) →d N(0,1).
(b) If β �= 0 and

∑T−1
t=1 |xt|/

√
T →p ∞, then

|τ(σ̂ )| ≥ |β|
v

1√
T

T−1∑
t=1

|xt|+Op(1) →p ∞,

and hence P
[|τ(σ̂ )| > c

] → 1 for any positive constant c.

5In other words, σ is of finite activity, so that the probability measure of any set {ω : r �→
σ(r,ω) has finitely many jumps in r ∈ [0,1]} is one.
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Remark 3.1. The asymptotic power result in Theorem 3.3(b) implies that the

testing power is mainly determined by the asymptotic behavior of
∑T−1

t=1 |xt|. As an
illustration, assume that there exists a diverging sequence pT such that pT/T1/2 →
∞ and

1

pT

T∑
t=1

|xt−1| →d P (9)

for a random variable P > 0. Clearly, a wide class of time series satisfies (9)
(see, e.g., Example 2.1). It then follows immediately from Theorem 3.3(b) that
|τ(σ̂ )| →p ∞ and the speed of divergence is no slower than pT/

√
T .

Heuristically, we may consider the power of the proposed test by considering
local alternatives in which β �= 0, but β → 0 at an appropriate rate. For our purpose,
let (PT(r),0 ≤ r ≤ 1) be a continuous time process defined as

PT(r) = 1

pT

[Tr]∑
t=1

|xt−1|
σT(t/T)

for a diverging sequence pT such that pT/T1/2 → ∞. We then assume instead of
(9) that

PT →d P (10)

for a stochastic process (P(r),0 ≤ r ≤ 1) having a positive support. If the conver-
gence (10) holds jointly with the convergence in Assumption 2.2, then we may
develop the power of the proposed test by considering the following alternative
hypothesis:

β = β̄ ×
√

T

pT
(11)

for a constant β̄ ∈R\{0}. Clearly, the hypothesis (11) can be interpreted as a local
alternative since β �= 0 and β → 0. Our construction of the local alternative (11) is
useful to develop the asymptotic power result in a unified framework, especially
when the covariate (xt) is general, but satisfies (10). Under the local alternative
(11), one can easily deduce from the proof of Theorem 3.3 with (10) that

τ(σ̂ ) →d β̄P(1)+N(0,1).

Clearly, τ(σ̂ ) under (11) is not Gaussian asymptotically unless P(1) is either
constant or Gaussian.

Example 3.1. Let σT(r) = σ for all r ∈ [0,1].

(a) (xt) be a stationary process such that T−1 ∑T
t=1 |xt| →p E|x1| < ∞. Under (11)

with pT = T , τ(σ̂ ) →d N
(
(β̄/σ )E|x1|, 1

)
.

(b) (xt) be a unit-root (or near unit-root) process such that T−3/2 ∑T
t=1 |xt| →d∫ 1

0 |X(r)|dr, where (X(r)) is the limiting Brownian motion (or
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Ornstein–Uhlenbeck process) of (xt) such that XT →d X for XT(r) =
T−1/2x[Tr].6 Under (11) with pT = T3/2, τ(σ̂ ) →d (β̄/σ )

∫ 1
0 |X(r)|dr +N(0,1).

When σT(r) = σ , for all r ∈ [0,1], and (xt) is stationary with E(x2
t ) < ∞, the

usual t-test procedure is a valid hypothesis testing procedure for the model (1).
In this case, the asymptotic power property of the usual t-test is also well known
under the local alternative hypothesis (11) with pT = T , and is given by

t-statistic →d N
(
(β̄/σ )(E(x2

t ))
1/2, 1

)
.

The ratio of the asymptotic biases of the t-test and our test, obtained in Example
3.1(a), is given by (E(x2

t ))
1/2/E|xt|. Importantly, the ratio is always greater than

one as long as E(x2
t ) < ∞ due to Jensen’s inequality. This implies that the usual

t-test is more powerful than our test under the ideal assumptions, even though
the statistics in both tests diverge at the same rate T1/2 under a fixed alternative
hypothesis. However, when one or more of the ideal assumptions are violated,
our test remains valid, whereas the usual t-test becomes invalid. This is another
example of the traditional issue of trade-off between efficiency and robustness.

Remark 3.2. A number of works in statistics and econometrics have focused on
robust inference using sign tests applied to different models, including time series
regressions (see, among others, Dufour and Hallin, 1993; Campbell and Dufour,
1995; So and Shin, 2001; de la Peña and Ibragimov, 2017; Brown and Ibragimov,
2019; Kim and Meddahi, 2020, and the references therein). For instance, Campbell
and Dufour (1995) propose sign tests for testing independence of a zero median
time series Yt with P(Yt = 0) = 0, e.g., a time series with continuous distributions
symmetric about zero, of past values of Yt and another time series Xt. The tests
in Campbell and Dufour (1995) are based on the observation that, under the
above independence/orthogonality hypothesis, for any T ≥ 1, the sign statistic like
S0 = 0.5(

∑T
t=1 sign(YtXt−1)+ T) and its more general analogs follow a Binomial

distribution with parameters T and 0.5: S0 ∼ Bi(T,0.5) (the results in Brown and
Ibragimov (2019) imply that sign tests for general zero median or symmetric
processes Yt can be based on similar statistics with randomization over zero values
of Yt). Efron (1969), Edelman (1990), Dufour and Hallin (1993), Pinelis (1994),
and de la Peña and Ibragimov (2017) consider related testing procedures based on
bounds for tail probabilities of t-statistics of a parameter of interest (e.g., a location
parameter or a regression/autoregression coefficient) under symmetry assumptions
implied by (sharp) bounds on tail probabilities of weighted sums of i.i.d. symmetric
Bernoulli r.v.’s.

Naturally, in the time series regression context, the above sign-based inference
approaches are more robust to moment assumptions and heavy tails than the

6The reader is referred to Phillips (1987b) and Park (2003) for more discussion about the near unit-root process and
its limiting behaviors. Here, in particular, the Ornstein–Uhlenbeck process X follows

dX(r) = cX(r)dr +dV(r), X(0) = 0,

where V is a Brownian motion.
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inference procedures based on the Gaussian asymptotics for the full-sample OLS
and Cauchy estimators. Typically, the sign-based tests can be used without any
moment conditions on the time series considered, e.g., under infinite variances.
However, they usually require symmetry or zero median assumptions on the
processes. Such assumptions are often too restrictive in empirical applications,
including the analysis of financial markets due to the stylized fact of gain–loss
asymmetry in financial returns (see, among others, Cont, 2001 and the references
therein). Further, sign-based tests are less efficient than those on the Gaussian
asymptotics for the OLS estimator under the validity of the latter tests.

Remark 3.3. Our method can be applied to a discrete time model and a discrete
sample collected from an underlying continuous time model as in Choi et al.
(2016). The main difference between our approach to Choi et al. (2016) is that
we do not require the assumption δ → 0, where δ is the sampling interval of the
discrete samples. Clearly, the method of Choi et al. (2016) is applicable to high-
frequency data. Therefore, we may say that our method is more flexible since it
can be applied to both high- and low-frequency data. The price we have to pay for
the flexibility is the persistent volatility assumption σT →d σ in Assumption 2.2.
Persistent volatility is a well-known stylized fact of financial time series and, in
our view, is best considered within the model formulation.

Our method is also comparable to the IVX approach proposed by Phillips and
Magdalinos (2009). The IVX approach is based on a self-generated instrument
obtained by differencing the predictor xt and using an autoregressive filter to
construct the instrument. As is shown in Phillips and Magdalinos (2009), the
IVX approach is robust to a (near) unit-root or mildly explosive predictor. The
Cauchy estimator approaches to inference, including ours and Choi et al. (2016),
are restricted to a single regressor.7 Unlike the Cauchy-based inferences, the IVX
approach is applicable to predictive regressions with multiple regressors. We also
note that the IVX approach allows for conditional heteroskedasticity. However,
to the best of our knowledge, it is not known whether the IVX approach is
valid when the volatility is persistent or the predictor is heavy-tailed with infinite
second moments, and a continuous time extension of the IVX approach is not
available in the literature. Therefore, our method and the IVX may be regarded
as complementing each other.

Hansen (1995) provides a nonparametric generalized least squares (GLS)
method for regression models with nonstationary volatility using the estimator σ̂ to
correct the heteroskedasticity. One should note that the assumptions on the limiting
volatility σ are more general than those in Hansen (1995) and other work in the

7In general, a test relying on a single regressor exhibits size distortion when some relevant regressors are omitted.
To overcome the issue induced by a single regressor in our approach, one may extend our approach to a multivariate
setting based on the recent paper by Shephard (2020) in which a multivariate extension of the Cauchy estimator is
proposed. An alternative extension is to use the parsimonious system approach (see Ghysels, Hill, and Motegi, 2020;
Xu and Guo, 2022), which is based on a set of misspecified regression models with only one group of regressors,
allowing a single regressor for each regression. We leave these extensions for future research.
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literature on the topic. In particular, the assumptions in Hansen (1995) do not allow
for structural changes or regime switching in the volatility process as the limiting
volatility is assumed to have continuous sample paths almost surely. In contrast,
the limiting volatility is allowed to have an arbitrary number of jumps in this
paper, and hence structural changes or regime switching are allowed. Moreover,
we further extend our model to have a two-factor volatility in Section 4.

4. AN EXTENSION TO TWO-FACTOR VOLATILITY MODELS

In this section, we generalize the model (1) to have a two-factor volatility in the
regression error (ut). More specifically, we assume that (εt) is conditionally het-
eroskedastic, rather than conditional homoskedastic as is assumed in Assumption
2.1(b).

Assumption 4.1. (a) E(ε2
t |Ft−1) = w2

t and E(w2
t ) = 1. (b) maxt≥1 E(|wt|2η1) <

∞, for some η1 > 2. (c) (wt) is α-mixing such that the mixing coefficient α satisfies
α(k) ≤ Ak−η2 , for some A < ∞ and η2 > (2η1 + 2)/(η1 − 2). (d) hTη3 → ∞ for
some η3 > (η2(1−2/η1)−2/η1 −2)/(η2 +2).

Under Assumptions 2.1(a) and 4.1, the regression error (ut) in the model (1)
can be written as ut = vtwtet, where (et) is an MDS with respect to (Ft) such that
E(e2

t |Ft−1) = 1. Clearly, (ut) has two volatility factors, (vt) and (wt), where (vt) is
the long-run component by Assumption 2.2 and (wt) is the short-run component by
Assumption 4.1(c). Moreover, under Assumption 2.2 and the condition E(w2

t ) = 1
in Assumption 4.1, we can identify and estimate the persistent volatility component
vt by the nonparametric estimator (5). In particular, under Assumption 4.1, we may
show that

sup
h≤r≤1

∣∣∣∣∣ 1

hT

T∑
t=1

(w2
t −1)Kh(r − t/T)

∣∣∣∣∣ = Op
(
(logT/(hT))1/2

)

using an exponential inequality for a strongly mixing process (see, e.g., Liebscher,
1996, Thm. 2.1; Kristensen, 2009, Thm. 1; Vogt, 2012, Thm. 4.1). The above
uniform convergence result for the mixing process is sufficient to develop the
required uniform convergence of the volatility estimator as well as the validity of
the inference procedure proposed in Section 3. We also note that the conditions for
h and T in Assumptions 3.4 and 4.1(d) hold simultaneously for any p,q ∈ [0,1/8)

as long as Assumption 4.1(d) holds for some η3 > 1/4, which is not stringent.
For instance, if (wt) is a stationary GARCH(1,1) process and β-mixing with
exponential decay, which hold under some mild conditions (see, e.g., Carrasco
and Chen, 2002; Francq and Zakoïan, 2006), then both Assumptions 3.4 and 4.1(d)
hold for any p,q ∈ [0,1/8) since Assumption 4.1(d) holds for any η3 > 1.

For our purpose, we again consider the decomposition (7) of the nonparametric
estimator (5), and write σ̂ 2 = ∑4

k=1 σ̂ 2
k . We then can obtain the uniform conver-

gence rate of each component σ̂ 2
k , for k = 1,2,3,4, as in Proposition 3.2, and
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Table 1. Size for the continuous time models

κ̄ = 0 κ̄ = 5 κ̄ = 20

T 5 20 50 5 20 50 5 20 50

CNST OLS 42.2 42.0 43.0 19.5 19.5 19.7 11.1 11.2 10.9

BQ 8.6 4.9 4.3 7.5 4.5 4.2 8.6 4.1 3.2

RLRT 8.5 7.7 8.1 5.4 5.9 5.6 4.8 5.2 5.3

Cauchy RT 5.3 4.9 5.3 5.2 5.4 4.7 5.5 5.1 5.1

τ(σ̂ ) 5.6 5.0 5.3 5.4 5.0 5.1 5.4 5.0 4.8

SB OLS 38.3 38.8 39.9 29.6 30.8 31.2 24.3 26.4 26.0

BQ 18.1 12.9 11.9 17.0 15.1 14.1 17.4 14.8 14.3

RLRT 23.8 22.8 23.6 21.0 21.9 21.8 22.4 24.5 23.6

Cauchy RT 5.6 5.0 5.1 5.2 5.3 5.0 5.4 5.0 4.9

τ(σ̂ ) 8.0 6.7 6.3 7.8 6.5 6.0 7.9 6.4 6.0

RS OLS 42.9 43.6 44.6 22.0 23.4 24.5 14.9 18.9 19.5

BQ 8.8 6.3 6.0 9.8 7.2 6.8 12.6 8.9 8.4

RLRT 9.3 10.0 10.7 7.5 9.4 9.6 9.6 13.0 14.2

Cauchy RT 5.0 4.8 5.2 4.9 4.9 4.9 5.4 5.1 4.8

τ(σ̂ ) 5.2 5.4 6.1 5.2 5.1 5.8 5.6 5.8 5.8

GBM OLS 52.2 53.7 53.1 28.6 30.2 30.9 23.2 26.0 27.0

BQ 16.8 12.5 11.3 13.9 12.4 13.2 15.8 11.7 12.0

RLRT 21.7 22.3 21.9 16.3 17.8 19.0 21.4 23.3 23.5

Cauchy RT 4.4 4.7 4.4 4.3 4.5 4.4 4.6 4.5 4.5

τ(σ̂ ) 5.4 5.5 6.1 5.7 5.7 5.9 5.7 5.9 6.5

Notes: The parameter κ̄ measures the degree of persistence in the predictor. The sample size
corresponds to T yearly observations (total 12T observations). CNST, SB, GBM, and RS denote,
respectively, constant volatility, structural break, geometric Brownian motion, and regime switching
in volatility.

establish the validity of the inference method relying on the test statistic (4) as
in Theorem 3.3.

Corollary 4.1. Let Assumptions 2.1(a) and (c), 2.2, 3.1–3.5, and 4.1 hold. As
h → 0 and T → ∞, Proposition 3.2 and Theorem 3.3 remain valid.

5. MONTE CARLO SIMULATIONS

This section provides the numerical results on finite sample performance of the
proposed robust test based on τ(σ̂ ). We present the comparisons of the finite
sample properties of the test with the test proposed by Choi et al. (2016) (denoted
by Cauchy RT; RT for random time) and also two other tests considered in Choi
et al. (2016): the Bonferroni Q-test of Campbell and Yogo (2006) (denoted by BQ)
and the restricted likelihood ratio test of Chen and Deo (2009) (denoted by RLRT).
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Table 2. Size for the discrete time models with CNST and SB

κ̄ = 0 κ̄ = 5 κ̄ = 20

T 5 20 50 5 20 50 5 20 50

CNST OLS 43.9 43.8 44.7 19.4 19.8 20.1 9.7 11.2 10.8

BQ 8.4 5.2 4.8 7.8 4.9 4.5 9.2 4.1 3.4

RLRT 8.3 8.0 8.1 5.2 5.4 5.3 4.1 5.4 5.3

τ(σ̂ ) 5.5 5.1 5.0 5.5 4.8 5.1 5.1 5.2 5.2

SB OLS 38.0 39.6 40.0 29.1 31.1 31.4 22.1 26.1 26.8

BQ 17.2 12.8 12.3 16.5 15.1 14.5 17.7 15.0 15.2

RLRT 23.1 23.5 24.2 19.9 21.8 21.4 21.2 24.6 25.1

τ(σ̂ ) 8.0 6.7 6.3 7.9 6.2 5.8 7.5 6.5 6.2

ARCH(1) OLS 45.0 44.1 43.5 23.5 22.5 21.2 17.2 17.0 15.2

α = 0.5773 BQ 9.7 5.4 4.8 9.5 5.8 4.6 13.1 6.3 4.6

ξ = 4 RLRT 9.6 8.8 8.7 9.0 7.9 6.7 13.1 11.3 9.1

τ(σ̂ ) 6.1 5.4 6.0 6.1 5.2 5.4 6.0 5.9 6.1

ARCH(1) OLS 45.8 44.0 43.6 24.4 24.1 22.6 19.7 19.8 18.1

α = 0.7325 BQ 10.2 6.2 5.2 10.4 7.1 5.8 14.7 8.3 6.8

ξ = 3 RLRT 10.7 10.0 9.2 10.6 10.0 8.1 15.9 14.9 12.9

τ(σ̂ ) 5.9 5.8 6.5 6.2 5.6 6.0 6.4 6.1 6.1

IGARCH(1,1) OLS 44.9 45.8 45.6 20.1 21.8 24.3 11.1 14.9 17.3

α = 0.9 BQ 8.9 5.8 6.0 7.8 6.0 6.9 9.3 5.3 6.4

β = 0.1 RLRT 9.1 10.1 11.5 5.7 8.3 9.8 6.2 9.0 11.5

τ(σ̂ ) 6.2 5.5 5.5 5.8 5.6 6.0 5.9 5.8 5.7

IGARCH(1,1) OLS 46.0 46.5 45.1 26.9 28.5 28.0 21.6 26.1 26.2

α = 0.1 BQ 11.7 8.3 8.1 12.7 10.4 10.9 16.4 12.2 13.4

β = 0.9 RLRT 13.3 13.0 12.7 13.7 14.7 15.1 20.2 23.7 23.2

τ(σ̂ ) 6.3 6.4 7.4 6.9 6.7 7.2 6.6 6.9 6.9

Notes: The parameter κ̄ measures the degree of persistence in the predictor. The sample size
corresponds to T yearly observations (total 12T observations). CNST, SB, GBM, and RS denote,
respectively, constant volatility, structural break, geometric Brownian motion, and regime switching
in volatility.

We consider two different settings for simulation models: continuous time and
discrete time data generating processes (DGPs). As for the continuous time DGPs,
we follow the simulation designs of Choi et al. (2016). The data are generated in
the continuous time setting using the following DGP:

dYt = β̄

T
Xtdt +dUt, dUt = σt

(
dW1t +

∫
R

x�(dt,dx)

)
, (12)

dXt = − κ̄

T
Xtdt +σtdW2t, (13)

where W1t and W2t are Brownian motions with E(W1tW2t) = −0.98t. We set the
constant term in the predictive regression to be zero and use recursive de-meaning.
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Figure 1. Power for SB (continuous time).

We assume that the continuous time models are observed at δ-intervals over T years
with δ = 1/252, which corresponds to daily observations of size 252T .

The volatility process considered in the numerical results is assumed to follow
one of the following models:

• Model CNST. Constant volatility: σ 2
t = σ 2

0 , σ0 = 1.
• Model SB. Structural break in volatility: σ0 +(σ1 −σ0)1{t/T ≥ 4/5} with σ0 = 1

and σ1 = 4.
• Model GBM. Geometric Brownian motion: dσ 2

t = 1
2

ω̄2

T σ 2
t dt + ω̄2√

T
σ 2

t dZt, where
Zt is a Brownian motion with E(W1tZt) = −0.4t, and ω̄ = 9.

• Model RS. Regime switching: σt = σ0(1− st)+σ1st, where st is a homogeneous
Markov process indicating the current state of the world which is independent
of both Yt and Xt with the state space {0,1} and the transition matrix

Pt =
(

0.8 0.2
0.8 0.2

)
+

(
0.2 −0.2

−0.8 0.8

)
exp

(
− λ̄

T
t

)
,
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Figure 2. Power for GBM (continuous time).

where λ̄ = 60, σ0 = 1, and σ1 = 4. The process st is initialized by its invariant
distribution.

We set the number of years T ∈ {5,20,50} (which corresponds to 60, 240, and 600
monthly data) and consider the values κ̄ ∈ {0,5,10} for the persistence parameter
κ̄ of Xt in (13).

As indicated before, in contrast to the Cauchy RT test in Choi et al. (2016), our
test is applicable, not only in the continuous time models, but also in the discrete
time framework. We consider the following discrete time models in the analysis
of the finite sample performance of the tests:

yt = β̄

T
xt−1 +σε,tεt, xt =

(
1− κ̄

T

)
xt−1 +ση,tηt, (14)

for t = 2, . . . ,T , where T ∈ {60,240,600} (the same number of monthly observa-
tions as in continuous time simulations) and the same values of β̄ and κ̄ . Here,
the innovations (εt,ηt) are assumed to be multivariate normal with the correlation
coefficient −0.98.
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Figure 3. Power for RS (continuous time).

For the volatility processes in the discrete time setting, we consider three
specifications: Model CNST and Model SB as in the continuous time setup, and
GARCH volatility dynamics with

σ 2
ε,t = 1+αε2

t−1 + θσ 2
ε,t−1, σ 2

η,t = 1+αη2
t−1 + θσ 2

η,t−1.

In the numerical analysis, we consider the ARCH(1) processes with θ = 0, α =
0.5773 (stationary with infinite fourth moment); θ = 0, α = 0.7325 (stationary with
infinite third moment); and IGARCH(1,1) models with α = 0.9, θ = 0.1 and α =
0.1, θ = 0.9 (nonstationary). Note that the ARCH(1) processes in our simulations
violate the moment conditions in Assumption 4.1. As shown in our simulation
results below, our approach has reliable size and power properties even though the
required moment conditions are violated.8

8See, among others, Davis and Mikosch (1998), Mikosch and Stărică (2000), Ibragimov, Pedersen, and Skrobotov
(2021), and the references therein for the results on moment properties of GARCH processes and their importance in
robust econometric inference.
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Figure 4. Power for SB (discrete time).

5.1. Finite Sample Size Properties

In this section, we analyze finite sample size properties of the no predictability tests
by setting β̄ = 0 in the regression models (12) and (14). The numerical results on
the finite sample size properties are presented in Tables 1 and 2.

Table 1 provides the finite sample size results for models CNST, SB, GBM, and
RS in the continuous time setting. The finite sample size values for the OLS, BQ,
RLRT, and Cauchy RT tests are exactly the same as those reported in Choi et al.
(2016). These numerical results show that the size of the OLS, BQ, and RLRT
tests is highly distorted for most of the time-varying volatility models considered.
In contrast, the rejection probabilities of the proposed test are very close to their
nominal levels, such as the Cauchy RT test, regardless of the values of κ̄ and T,
and the volatility models we consider in our simulations. For the 5% test, rejection
probabilities stay between 4% to 8% without any exception.

As mentioned before, the Cauchy RT test is inapplicable in the discrete time
settings. Table 2 provides the numerical results on finite sample size properties of
all the tests except Cauchy RT under the discrete time settings. The quantitative

https://doi.org/10.1017/S0266466623000117 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466623000117


22 RUSTAM IBRAGIMOV ET AL.

OLS: , Bonf. Q: RLRT: , NP:

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

β

(a) κ = 0, T = 60

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

β

(d) κ = 5, T = 60

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

β

(g) κ = 20, T = 60

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

β

(b) κ = 0, T = 240

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

β

(e) κ = 5, T = 240

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

β

(h) κ = 20, T = 240

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

β

(c) κ = 0, T = 600

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

β

(f) κ = 0, T = 600

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

β

(i) κ = 20, T = 600

Figure 5. Power for GARCH with α = 0.9 and θ = 0.1 (discrete time).

and qualitative comparisons of the size properties of the tests are similar to the
continuous time case. In summary, the finite sample size properties reported in
Tables 1 and 2 show that the proposed test has a reliable size performance and is
widely applicable for both discrete and continuous time settings.

5.2. Finite Sample Power Properties

Figures 1–6 present the results on finite sample power properties of the tests
considered.9 In our simulations, we consider the DGPs in (12) in continuous time
and (14) in discrete time with β̄ ranging from 0 to 20. All the power curves
presented in the figures are size-adjusted. Taking into account the results of finite
sample size performance of the tests and their comparisons, we mainly focus on
two tests: the Cauchy RT and our test, in the analysis of finite sample power

9We report the power properties for Models SB, GBM, and RS (continuous time) as well as Models SB and GARCH
(discrete time) in Section 5.2. The power properties for the other models, Model CNST (continuous time) as well as
Models CNST and ARCH (discrete time), are presented in the Supplementary Material.
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Figure 6. Power for GARCH with α = 0.1 and θ = 0.9 (discrete time).

properties. For comparison, the analysis also provides the numerical results on
the finite sample power of the OLS, BQ, and RLRT tests.

In Figure 1, for the case of the structural break in volatility, one observes that
the Cauchy RT test appears to be superior to other testing approaches (except in
the cases with κ̄ = 0 and large β̄). At the same time, the proposed test τ(σ̂ ) also
appears to have good finite sample power properties especially in the case of highly
persistent predictors.

Figure 2 provides the numerical results on finite sample properties of the tests
in the geometric Brownian motion case. For the case of a unit-root regressor, the
power properties of the proposed test based on τ(σ̂ ) appear to outperform those
of the Cauchy RT test which in turn outperforms other tests considered. However,
the finite sample power performance of the Cauchy RT test improves in the case
of near unit-root regressor with κ̄ = 5 and κ̄ = 20.

The power curves for the regime switching case presented in Figure 3 demon-
strate that the test based on the proposed test τ(σ̂ ) has better power properties
than other tests in the case κ̄ = 0. For the case of the near unit-root persistence in
the regressor, the power properties of the Cauchy RT test appear to be better than
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those of the test based on τ(σ̂ ) for relatively small sample sizes (small values of
T). However, as the sample size increases, the test based on τ(σ̂ ) becomes more
powerful than the Cauchy RT test (see, e.g., Figure 3 for the case κ̄ = 5 and T = 50).
For large deviations from a unit-root regressor (κ̄ = 20), the Cauchy RT is more
powerful than other tests, but the power curves appear to be very similar.

Figures 4–6 present the numerical results on power properties under discrete
time settings for all the tests considered except Cauchy RT, which is inapplicable
in discrete time settings. Results in the figures are provided for the cases of the
structural break in volatility (Figure 4); the GARCH cases with (α,θ) = (0.9,0.1)

(Figure 5) and (α,θ) = (0.1,0.9) (Figure 6). For all the cases, the conclusions on
power properties of the tests and their comparisons are virtually the same as in the
continuous time framework.

Overall, the numerical results on finite sample properties of the tests indicate
good performance of the test based on τ(σ̂ ) in comparison to the Cauchy RT.
Again, the latter test is inapplicable in the discrete time settings. Their relative
finite sample performances vary across different models. Which test should be
used in practice depends on the availability of high-frequency data as well as the
size-power trade-off for a specific model. Therefore, the test proposed in this paper
and the Cauchy RT complement rather than substitute one another.

6. CONCLUSION

Endogenously persistent regressors have been extensively analyzed in the pre-
dictive regression literature. A widely believed characteristic of stock returns is
heteroskedastic and persistent volatility, which is often ignored in the predictive
regression literature except for Choi et al. (2016). These two characteristics cause
standard hypothesis tests to become substantially biased and often over-reject the
null of no predictability. The main contribution of this paper is to provide an
inference method that is designed to be robust to these problematic characteristics
of predictive regression data. The proposed method relies on the Cauchy estimator
and a kernel-based nonparametric correction of volatility. Its theoretical validity
is provided by analyzing the asymptotic size and power properties. Moreover, it
is shown through a simulation study that the proposed method has a reliable finite
sample performance compared to the most advanced existing inference methods.

Our inference method is comparable to the method proposed by Choi et al.
(2016). Similar to our method, their approach relies on the Cauchy estimator and
a nonparametric volatility correction. However, their approach to the volatility
correction is quite different from ours, and its applicability is limited to a predictive
regression equipped with appropriate high-frequency data. In terms of finite
sample properties, our method and the method by Choi et al. (2016) perform
well and have good size and power performances under continuous time settings.
However, unlike our method, Choi et al. (2016) method is not applicable under
discrete time settings. In contrast, our method can be applied to a discrete time
model as well as a discrete sample collected from an underlying continuous time
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model. Therefore, our method is more flexible and widely applicable since it can
be applied to both high- and low-frequency data.

A further approach to robust inference in predictive regressions under hetero-
geneous and persistent volatility as well as endogenous, persistent, or heavy-
tailed regressors is provided by the simple to implement robust t-statistic inference
approach (see Ibragimov and Müller, 2010) based on asymptotically normal group
Cauchy estimators of a regression parameter of interest. This approach will be
explored in a companion paper now in preparation.

SUPPLEMENTARY MATERIAL

Ibragimov, R., Kim, J, and Skrobotov, A. (2022): Supplement to “New robust infer-
ence for predictive regressions,” Econometric Theory Supplementary Material. To
view, please visit: https://doi.org/10.1017/S02664666230001
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Mikosch, T. & C. Stărică (2000) Limit theory for the sample autocorrelations and extremes of a
GARCH(1,1) process. Annals of Statistics 28, 1427–1451.

Park, J.Y. (2003) Weak Unit Roots. Unpublished manuscript.
http://www.ruf.rice.edu/econ/papers/2003papers/17park.pdf.

Phillips, P.C.B. (1987a) Time-series regression with a unit root. Econometrica 55, 277–301.
Phillips, P.C.B. (1987b) Towards a unified asymptotic theory for autoregression. Biometrika 74,

535–547.
Phillips, P.C.B. (1999) Discrete Fourier Transforms of Fractional Processes. Cowles Foundation

Discussion paper no. 1243.
Phillips, P.C.B. (2015) Halbert White Jr. Memorial JFEC Lecture: Pitfalls and possibilities in predictive

regression. Journal of Financial Econometrics 13, 521–555.
Phillips, P.C.B. & T. Magdalinos (2007) Limit theory for moderate deviations from a unit root. Journal

of Econometrics 136, 115–130.
Phillips, P.C.B. & T. Magdalinos (2009) Econometric Inference in the Vicinity of Unity, Working paper,

Yale University and University of Nottingham.
Phillips, P.C.B., J.Y. Park, & Y. Chang (2004) Nonlinear instrumental variable estimation of an

autoregression. Journal of Econometrics 118, 219–246.
Phillips, P.C.B. & V. Solo (1992) Asymptotics for linear processes. Annals of Statistics 20, 971–1001.
Pinelis, I. (1994) Extremal probabilistic problems and Hotelling’s t test under a symmetry condition.

Annals of Statistics 22, 357–368.
Pollard, D. (1984) Convergence of Stochastic Processes, Springer Series in Statistics. Springer.
Samorodnitsky, G., S.T. Rachev, J.-R. Kurz-Kim, & S.V. Stoyanov (2007) Asymptotic distributions

of unbiased linear estimators in the presence of heavy-tailed stochastic regressors and residuals.
Probability and Mathematical Statistics 27, 275–302.

Shephard, N. (2020) An Estimator for Predictive Regression: Reliable Inference for Financial Eco-
nomics. Working paper, Harvard University.

So, B. & D. Shin (1999) Cauchy estimators for autoregressive processes with applications to unit root
tests and confidence intervals. Econometric Theory 15, 165–176.

So, B. & D. Shin (2001) An invariant sign tests for random walks based on recursive median adjustment.
Journal of Econometrics 102, 197–229.

Stambaugh, R.F. (1999) Predictive regressions. Journal of Financial Economics 54, 375–421.
Vogt, M. (2012) Nonparametric regression for locally stationary time series. Annals of Statistics 40,

2601–2633.
Wang, Q. & N. Chan (2014) Uniform convergence rates for a class of martingales with application in

non-linear cointegrating regression. Bernoulli 20, 207–230.
Wang, Q., Y.-X. Lin, & C.M. Gulati (2003) Asymptotics for general fractionally integrated processes

with applications to unit root tests. Econometric Theory 19, 143–164.
Xu, K.-L. & J. Guo (2022) A new test for multiple predictive regression. Journal of Financial

Econometrics, nbac030. https://doi.org/10.1093/jjfinec/nbac030.
Xu, K.-L. & P.C.B. Phillips (2008) Adaptive estimation of autoregressive models with time-varying

variances. Journal of Econometrics 142, 265–280.

https://doi.org/10.1017/S0266466623000117 Published online by Cambridge University Press

http://www.ruf.rice.edu/econ/papers/2003papers/17park.pdf
https://doi.org/10.1093/jjfinec/nbac030
https://doi.org/10.1017/S0266466623000117

	1 INTRODUCTION
	2 PREDICTIVE REGRESSIONS
	2.1 Research Problems and Models
	2.2 The Cauchy Estimator
	2.3 Persistent Volatility

	3 NEW ROBUST INFERENCE APPROACH
	4 AN EXTENSION TO TWO-FACTOR VOLATILITY MODELS
	5 MONTE CARLO SIMULATIONS
	5.1 Finite Sample Size Properties
	5.2 Finite Sample Power Properties

	6 CONCLUSION

