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Abstract In this paper, we study the hydrostatic approximation for the Navier-Stokes system in a thin

domain. When we have convex initial data with Gevrey regularity of optimal index % in the z variable

and Sobolev regularity in the y variable, we justify the limit from the anisotropic Navier-Stokes system
to the hydrostatic Navier-Stokes/Prandtl system. Due to our method in the paper being independent
of &, by the same argument, we also obtain the well-posedness of the hydrostatic Navier-Stokes/Prandtl
system in the optimal Gevrey space. Our results improve upon the Gevrey index of % found in [15, 35].

1. Introduction

1.1. Presentation of the problem and related results

In this article, we study 2-D incompressible Navier-Stokes equations in a thin domain
where the aspect ratio and the Reynolds number have certain constraints:

OU+U-VU —£*(82+n0;)U +VP =0,

div U =0, (1.1)

Uly=0 =Uly=e =0,
where t > 0,(z,y) € Sc={(2,y) e TxR:0<y <e}. Here, U(t,x,y), P(t,2,y) stand for the
velocity and pressure function, respectively, and 7 is a positive constant independent of ¢.
The width of domain 8¢ is €, and the boundary condition in (1.1) corresponds to the

non-slip condition at the walls y = 0,e. In addition, the system is prescribed with the
initial data of the form

Keywords: Navier-Stokes equations; hydrostatic approximation; thin domain
2020 Mathematics subject classification: Primary 35Q30
© The Author(s), 2023. Published by Cambridge University Press.

()

Check f
https://doi.org/10.1017/51474748023000282 Published online by Cambridge University Press Updaies.


https://orcid.org/0000-0001-9084-065X
mailto:wangchao@math.pku.edu.cn
mailto:wangyuxi@scu.edu.cn
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1474748023000282&domain=pdf
https://doi.org/10.1017/S1474748023000282
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Ult=o = (uo (x,%) LEVQ (m,%)) =U; in &°. (1.2)

This is a classical model with applications to oceanography, meteorology and geophysical
flows, where the vertical dimension of the domain is very small compared with the
horizontal dimension of the domain.

To study the process € — 0, we first fix the domain independent of €. Here, we rescale
the system (1.1) as follows:

Ul(t,z,y) = (uE (t,x,g) ,ev° (t,x,g)) and  P(t,z,y) =p° (t,:c,g) .

We put above relations into (1.1), and then (1.1) is reduced to a scaled anisotropic Navier-
Stokes system:
Opu® 4+ u®0yu’ +v°0yu’ — e20%u° — n8§u€ +0,p° =0,
£2(0pv° +u 00" +0v°0,v° — 20207 — 77831}5) +0,p° =0,
Oz u® +0yv° =0, (1.3)
(u®,v%)[y=0,1 =0,
(u€7v5)|t:0 = (U07U0)7
where (z,y) € S = {(z,y) € T x (0,1)}.
To simplify the notations, we take 7 =1 in this paper and denote A, = £20? + 85.
Formally, taking ¢ — 0 in (1.3), we derive the hydrostatic Navier-Stokes/Prandtl system
(see [22, 31]):
Dyt + upOytiy + vpOytiy — N0ty + 0ppp =0 in S x (0,00),
Oypp =0 in S x(0,00),
Oztp+0yv, =0 in S x (0,00), (1.4)
(up,Up)ly=0,1 =0,
Uplt=o =uop in S.
This paper aims to justify the limit from the scaled anisotropic Navier-Stokes system
(1.3) to the hydrostatic Navier-Stokes/Prandtl system (1.4) for a class of convex data in
the optimal Gevrey class with index v = %

Before presenting the precise statement of the main result in this paper, we recall some
results on system (1.4). If n =0 in the system (1.4), we get the hydrostatic Euler system:

Ou+ud,u+voyu+0,p=0 in S x(0,00),

Oyp=0 in S x(0,00),

Oru+0,v=0 in S x(0,00), (1.5)
vly=0,1 =0,

ugmo=up in S.

There is a lot of research on the system (1.5), and readers can refer to [3, 4, 5, 16, 20,
19, 26, 31, 38]. Renardy [31] proved the linearization of (1.5) has a growth like el*I* if
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the initial data is not uniform convexity (or concavity) with respect to the variable y.
Local well-posedness in the analytic setting was established in [20]. Under the convexity
condition, Masmoudi and Wong [26] got the well-posedness of (1.5) in the Sobolev
space.

Next, we recall some results on the well-posedness of the hydrostatic Navier-
Stokes/Prandtl system (1.4). Similar to the classical Prandtl equation, (1.4) loses one
derivative because of the term wv,0yu,. Paicu, Zhang and Zhang [30] obtained the
global well-posedness of system (1.4) when the initial data is small in the analytical
space. Meanwhile, Renardy [31] also proved that the linearization of the hydrostatic
Navier-Stokes equations at certain parallel shear flows is ill-posed and may have a
growth el¥l* which is the same as (1.5) when the initial data is not convex. Thus, to
obtain well-posedness results that break through the analytic space, one may need the
convexity condition on the velocity. For that, under the convexity condition, Gérard-
Varet, Masmoudi and Vicol proved (1.4) is local well-posedness in the Gevrey class with
index 9/8 in [15]. In [15], they first derive the vorticity equations w = 0y u:

01(0pw) + OvOyw+--- =0,

where the worst term is 0, v leading to one derivative loss. Then, they use the ‘hydrostatic
trick’ which means that they take the inner product with d,w/dyw (Oyw > ¢o > 0) instead
of 0w to take advantage of the cancellation:

/&ﬂiﬁyw- Oato _ /&Cvaww - —/aw&,v@wu =0.

Such an idea was used previously in [26]. To close the energy estimates, the ‘hydrostatic
trick’ is not enough due to the ‘bad’ boundary condition of w

1
8yw|y:():—ax/ U2dy+"'7
0

which loses one derivative too. To overcome that, [15] introduce the following decompo-
sition:

W= wbl +wzn’

where w® is the boundary corrector which satisfies that
1
O’ — 8§wbl =0, Oyuw|y—o= —630/ u?dy.
0

Following the above decomposition, [15] obtain the well-posedness results of (1.4) in the
Gevrey class with index v = %.

To search the best functional space for the system (1.4), based on the Tollmien-
Schlichting instabilities for Navier-Stokes [17], Gérard-Varet, Masmoudi and Vicol also
give the following conjecture: ‘Our conjecture - based on a formal parallel with Tollmien-
Schlichting instabilities for Navier-Stokes [18] - is that the best exponent possible should
be v= %, but the such result is for the time being out of reach’.
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While studying the anisotropic Navier-Stokes system (1.3) and the hydrostatic Navier-
Stokes/Prandtl system (1.4), another important problem is to justify the inviscid limit.
Under the analytical setting, Paicu, Zhang and Zhang [30] justified the limit from (1.3)

o (1.4). Based on the work [15], we [35] justified the limit in the Gevrey class with index
V=g

In this paper, we aim to prove the conjecture of Gérard-Varet, Masmoudi and Vicol.
To do that, we use some ideas from the classical inviscid limit theory. Next, we recall the
recent development of the classical Prandtl equation and the inviscid limit theory.

There are a lot of papers studying the well-posedness of the Prandtl equation in some
special functional space. For monotonic initial data, [29, 1, 27] used a different method
to get the local existence and uniqueness of classical solutions to the Prandtl equation in
Sobolev space. Without monotonic condition, [24, 32] proved that the Prandtl equation
is well-posedness in the analytic class; [14, 23, 6] proved the well-posedness of the Prandtl
equations in the Gevrey class for a class of concave initial data. Without any structure
assumption, Dietert and Gérard-Varet [8] proved well-posedness in the Gevrey space with
index v = 2. According to [10], v =2 may be the optimal index for the well-posedness
theory. For more results on the Prandtl equation, see [18, 37, 36, 39, 40].

On the inviscid limit problem, we refer to [33, 34, 21, 28, 25, 9] for the analytical class.
Note that going from analytic to Gevrey data is a challenging problem. The first result
in the Gevrey class is given by [12]. Gérard-Varet, Masmoudi and Mackawa [12] proved
the stability of the Prandtl expansion for the perturbations in the Gevrey class when
UBL(t,Y) is a monotone and concave function where the boundary layer is the shear
type like

= (U°(ty),0) + (U (1,-=),0),

N{
where v is the viscosity coefficient. Later, Chen, Wu and Zhang [7] improved the results
in [12] to get the L2 N L stability. Very recently, Gérard-Varet, Masmoudi and Maekawa
[13] used a very clever decomposition to get the optimal Prandtl expansion around the
concave boundary layer. Their results generalized the one obtained in [12, 7], which
restricted to expansions of shear flow type. In their paper, they decompose the stream
function ¢ as follows:

¢ = ¢slip + dbe,

where ¢4, enjoys a “good” boundary condition and ¢y, is a corrector which recover the
boundary condition. This kind of decomposition is also used in [7]. To estimate ¢p., they
also need the following decomposition

Dve = e, S + Poe, T + Poe, Ry
where ¢y g satisfies the Stokes equation, ¢y 7 is to correct the stretching term with

‘good’ boundary condition and ¢y r solves formally the same system as ¢gp. In this
paper, we apply the decomposition in [13] to justify the limit from (1.3) to (1.4).
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1.2. Statement of the main results.

Before starting the main results, we give some assumptions on the initial data. Assume
that initial data belong to the following Gevrey class:

||e<Dm>%8yu0||H14,o + H6<Dm>% o]l prro.0 == M < 400, (1.6)
where H™* is the anisotropic Sobolev space defined by
1 l[ezme = 11f | ez emy s 0,1) -
More precisely, we consider the initial data of the form
u(0,2,y) = uo(z,y), v (0,3,y) = vo(z,y),
which satisfies the compatibility conditions

Ogto + Oyvo(t,x,y) =0,  uo(t,x,0) = uo(t,x,1) = vo(t,z,0) = vo(t,2,1) =0, (1.7)

/Olaxuody =0, 8§u0|y:071 = /01(—8Iu(2)+8§u0) —/Saguodxdy. (1.8)
Moreover, we assume the initial velocity satisfies the convex condition
igf&juo > 2co > 0. (1.9)
Now, we are in the position to state the main results of our paper.

Theorem 1.1. Let initial data ug satisfy (1.6)-(1.9). Then there exist T >0 and C >0
independent of € such that there exists a unique solution of the scaled anisotropic Navier—
Stokes equations (1.3) in [0,T), which satisfies that for any t € [0,T), it holds that

[[(w® = up,ev° —evp) ||LivyﬂLg?y < Ce?,
where (up,vp) s the solution to (1.4).

Remark 1.2. Although we do not give the proof that the system (1.4) is well-posedness
in Gevrey class %, one can follow the proof of Theorem 1.1 to obtain the well-posedness.
To avoid repeatability in the proof, we omit the details. Actually, the main difference
between ¢ =0 and € # 0 is on the construction boundary corrector ¢y, g, and readers can
find more details in Remark 8.1.

Remark 1.3. In the recent work [11], they established the well-posedness of the
linearized Hydrostatic Navier-Stokes system around shear flow in Gevrey class % In our
present work, we consider the general nonlinear system and focus on the inviscid limit
problem.
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1.3. Sketch of the proof.

In this subsection, we sketch the main ingredients in our proof.

(1) Introduce the error equations. In Section 3, we deduce the error equations. We
introduce the error

URZUE—UP, UR:UE—UP, pR:ps_pp,

which satisfies

Ol — Ajuf +0Bo uP + 9,p% = - -
{ ' v b (1.10)

20Tt — A+ 9, p =

Here, (uP,vP,pP) is an approximate solution given in (3.1). The key point in this
paper is to obtain the uniform estimate (in ¢) of (uff,ev®) in the Gevrey class
with index = 2. In view of (1.10), since v% is controlled via the relation v? =
— foy Oyuftdy’, the main difficulty comes from the term v%d,uP, which loses one
tangential derivative. In [35], we justify the limit in Gevrey class %. For the data in
the Gevrey class with optimal index v = %, we need to introduce new ideas.

(2) Introduce the vorticity formulation. In order to eliminate p*, we introduce
vorticity w! = —29, 07 4+ 9,u’® and rewrite the equation of w’ by stream function
¢ which satisfies

vt = 0,0, u'=0,0+C(), C(t)= i/ ulldady.
S

™

Thus, we get

{(atAs)Aeqsaﬂfd)aywp_.“’ (Ly) GS’ (1'11)

Oly=01=0, Oyoly=01=C(t), x€T.

We notice the term 0,¢0,w” also loses one tangential derivative. But under the
convexity condition dywP > ¢y > 0, one can use the ‘hydrostatic trick’ to deal
with this term. Testing 5?% to the (1.11) instead of w’, we have the following
cancellation:

B

—/ Oz pOyw? - dxdy = —/ 0, 0N\ pdady = / 02|Veo|*dxdy =0,
s Oyw? s s

where we use ¢|y=o,1 = 0. However, the boundary condition of ¢ is 9y¢|y=0,1 = C(t),
which brings an essential difficulty.

By the energy estimates, taking the inner product in X" (the definition is given
in section 2) with —0;¢, we get

sup (A[Ve ()], 1 +112:6(s)lI%2) (1.12)

s€[0,t]

t
<c / (62D 2en +2 2 Vedl|n + - )ds,
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where ¢(y) = y(1 —y). All we need to do is to control e !||pA.¢|x= and
e71|V.¢| x> by the left-hand side of (1.12).

Motivated by [13], we expect to achieve that by a decomposition of stream
function, ¢ = ¢siip + ¢pe in Gevrey % regularity. Here, ¢, enjoys a ‘good’ boundary
condition and ¢y, is a corrector which recovers the boundary condition. In the
following, we present the decomposition precisely.

(3) Gevrey estimate under artificial boundary conditions. ¢, enjoying a good
boundary condition is defined by

{(875 - AE)Wslip - am¢slipaywp =y (%,y) €S

(1.13)
¢Slip|y:0,1 =0, wslip‘y:O,l =0, z €T,

where wgip = Acpsiip. By ‘hydrostatic trick’ and Navier-slip boundary conditions,
we obtain

t t
C
)‘/0 (”wSlip”i(% + ”vegbslip”i(% + |v6¢8lip|y:(),l|§(%)ds < X/o ||€AE¢||§(2dS+ cee
(1.14)

The full study of the Orr-Sommerfeld formulation (1.13) with Navier-slip boundary
conditions is given in Section 7.

(4) Recovery the non-slip boundary condition. In Step (3), we use the slip
boundary condition, not the real boundary condition dy¢|y—o,1 = C(t). To recover
the boundary condition, we introduce the following system:

{(6t - AE)AE¢bC - 87;¢bc8ywp =0, (.Z‘,y) €S

; 1.15
¢bc|y:0,1 =0, ay¢bc|y:i = hl, z €T, ( )

where wpe = Acpe and i =0,1. And we need to choose a suitable h* such that

8y¢bc‘y:0,1 = _ay¢slip|y:0,1 + O(t)

Next, we give the main idea for proving the existence of h':
1. We define ¢y 5 = @y, g+ By, 5, Where ¢}, ¢ solve

(815 - AE)A€¢20,S =0,
¢Zc,s|y:i =0, 8y¢éc,s|y:i = hia (1-16)

¢zc7s|t=0 = Oa

where z € T, y € (0,4 00) for i =0 and y € (—o0,1) for ¢ = 1. Taking Fourier
transformation on ¢ and z, we can write the precise expression of the solution to
obtain the Gevrey estimate for ¢§m7 g

t t
/0 ”Va¢bc,5’”i? +ll¢ AE%C,SHi? + ||8$¢bc,SH§(gd3 < )\7%/0 |h |§(gd3’ (1.17)
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where ©°(y) =y, ¢'(y) =1 —y. Compared with the decomposition in [35], we
get more regularity of 81,(;5@6, g» which is a key point to get the optimal Gevrey
regularity. The details for this step are given in Section 8.1.

. We correct the nonlocal term constructed in the above step by considering the

following equations:

(0r — AE)AEQS’ZL.)C,R - axqbzc,Raywp = ax(bzc,saywp, (z,y) €S (1.18)
(béc,R‘t:O =0, ('/an) €S

with Navier-slip conditions. By the same process as Step (3) and combining with
the sharp estimate (1.17) to get an estimate for ¢};C7R,

t t
i 2 i 2 i 2
)\/o Hwbc,R”X%dS—l-/O (||Vs¢bc,R||X§ +|ay¢bc,R|y:0,1|Xg)dS (1.19)
t
Sg/ |hz|21d5+7 tE[O,T]
A2 Jo X3

More details are given in Section 8.3.

. We define ¢pe = ¢be,s + dbe.r, Where ¢pes = D o105 and dper =

> i—0.1 Phe, r» Which solves system (1.15). To match the boundary condition
on the derivative of dy¢|y=0,1 = C(t), we need

ay¢bc,5’|y:0,1 + ay¢bc,R|y:O,1 = ay¢bc|y:0,1 = _6y¢slip|y:(),1 + C(t)

On one hand, ¢pe, s and ¢pc r are defined by hi. We define a 0-order operator
Ry given in (8.71) such that

(]- + Rbc)hi = _aygbslip‘y:(),l + C(t)

Moreover, by the estimate in Step 1 and Step 2, we can get

! 071 2 c ! 0 11y|2
/O | Ricln®, ]’X%dsg/\—%/o |(h, BN 2 5 ds,

which means that (1+ Rp.) is an invertible operator when A is large. That means
that ¢pc.s and ¢pe g are well-defined and (1.15) is well-posedness. Details are
given in Section 8.4.

Due to the transport terms, we need to introduce a new auxiliary function ¢y 1
between Step 1 and Step 2. For more details, see Section 8.2.

(5) Close the energy estimates (1.12). Summing estimates (1.17) and (1.19) in

Step (4), we get an estimate for ¢y, :

t C t
L 19ty +loton g ds < S5 [ 100007 g ds

t
7 2 . e
< C/O |v5¢sl1p‘y:0,1|xgd8+ ,
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which along with (1.14), we have

t C t
[ g #1900 s < § [ leacolfads+on

and then we put the above estimate into (1.12) to close the estimate for system
(1.11).

1.4. Notations
-8 ={(z,y) eTxR:0<y<e}and S={(z,y) eTxR:0<y<1}.
~ Ve =(€0,,0,) and A, =202+ 0.
— Vorticity of Prandtl part w? is defined by w? = 9, u”.
~ Vorticity of reminder part wt = A.¢ is defined by w® = 29,v" — 9, u”. In this paper,
we also define w};w = quﬁéc,j, where i =0,1 and j € {R,T}
— Cut-off functions ¢(y) =y(1—y) and ¢"(y) =i+ (—1)"y.
- C(t) = 5= [gutdady.

2 ~
3

f (k).

— The Fourier transform of fg is defined by e(! =)

2. Gevrey norms and preliminary lemmas

At the beginning of this section, we define the functional space X" and the Gevrey class.
First, we define

i

Jo = F MG F(k)) = 2 @00 £ a(tk) L () k)3, (2.1)
where 7(t) > 0. Moreover, it is easy to get that ®(t,k) satisfies the subadditive inequality
D(t,k) < D(t,k— L)+ P(L,0). (2.2)

Now, we are in the position to define X7, which is defined by

[ fllxz = [ ol zro.

We say that a function f belongs to the Gevrey class 3 if || f||xr < +oo0.
Moreover, we need to deal with some Gevrey class functions defined on the boundary.
Thus, we introduce the following functional space:

|flxr = [l follzr ),

where f depends on variable z.

By the definition of X7, it is easy to see that if v/ >, then ||y~ > |||/ xr. For
simplicity, we drop subscript 7 in the notations || f||xr,| f|xr etc. In the sequel, we always
take

T(t) =1-=At,

with A > 1 determined later. Thus, if we take ¢ small enough, we have 7 > 0.
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In the following, we present some lemmas on product estimates in the Gevrey class
and the readers can refer to Lemmas 2.1-2.3 in [34] for details. The first lemma is the
commutator estimate in Sobolev space:

Lemma 2.1. Letr >0, s; > %, s> % and 0 < <1. Then it holds that
IKD)", 10wg]| 2 < Clf iz llglmz +CllF | gya-sllglpgees-
In the Gevrey class, we have the following:

Lemma 2.2. Letr >0 and s > % Then it holds that

|fglxr < C|f|xs

9glxr +Clflxrlglxe
For the commutator in the Gevrey class, we have the following:

Lemma 2.3. Letr >0, s; > 3

% s>% and 0 < 9§ <1. Then it holds that

[(fOrg)e = fOrgallmy < Clflxeilgl iz +Clf[xre1-slglxe+s.

3. Approximate equations and Error equations

3.1. Approximate equations

By the Hilbert asymptotic method, we can obtain the approximate solutions. We define
approximate solutions as the following;:

uP(tz,y) = ud(t,z,y) + el (t,2,y),
0P (tm,y) = vp(t,m,y) + 20 (t,3,y), (3.1)
PP (tz,y) = py(tz,y) +e°pp(tz,y),

where (u,v9,p)) satisfies equation (1.4) and (uZ,v2,p3) satisfies equation

Btuf, + ugawui + Ugﬁyui + ugaggug + vfﬁyug + 8$p12, — ('“)zuf, = —Qiug,

prz = —(8tv2 +u28wv2 —l—vg@yvg — 85112),

Dpus +dyv2 =0, (3.2)
(. vp)ly=0.1 =0,

uf,|t:0 =0.

We point here that (u;,v}),p},) = 0 by matching the equation of order . Based on the

equation of (ug,vg,pg) and (ui,vi,pﬁ) we deduce the approximate solution (uP,vP,pP)
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which satisfies the following equation:
Oy +uP O, uP +-vP 0 ul 4+ 0, p — AcuP = — Ry,
52(8tvp +uP O 0P + 0P OyvP — A vP) 4 0yp? = —Ra,
Ozuf +0yv?P =0,
(u?,v?)|y=01 =0,
(u?,0P)|t=0 = (uo,v0),

where reminder (Ry,Rz) is given by

_ 4,28 2 029 2 42 2
Ry = &"(u,0zu;, +v,0yv, — Oyus),

_ .4 2,.09.,2,.29 .0, .2 29 .2, 09,2, .29 0
Ry=¢ (@vp + 02V, + Uy, 020y, + U0z vy, + v, 0y vy, + v, 0y v,

+e2020,0F — 02(0f +£%02) — 9202).
By the definition of R; and Rs, it is easy to get that
(R1,R2) ~ O(e").

3.2. Equations of error functions

’U,R R R).

We define error functions (u't,v't p

uft =uf —uP, v =0 -0, pf=p°—pP.

It is easy to deduce the system of error functions:

o — Auf + 0,p" +uf0,u" + w0, uP + v 0, u" + v o uP = Ry,
200" — Acv® +uf 00" Fult 0P 020, v + 00, 0P) +0,p" = Ry,
aqu + ava =0,

(w0 y=0 = (u,v™)]y=1 = 0,

(uR,vR)|t:0 =0.

For convenience, we rewrite (3.6) as

o — At +uP 9, ul + w9 uP + 00, uP + PO ult + 0,p™ = N, + Ry,

Dpu 0,0 =0,

(u®0)ly=0 = (u,0")

(u®, 0B |—o = 0.

|y:1 =0,

Here, (N,,N,) is a nonlinear term given by

N, = — (uRaqu+1}R8yuR), N, = —(uRava—I—vRava).
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Based on the above system, we get the equations of the vorticity w® = 8yuR —e20,v":
O™ — Acwf + uPo,w + uRo,wP + vpawa + vRaywp (3.9)
- ay-/\/,u _628IN”U +52fl +f27
where f1, fo are defined by
fi = —(uR0?v? +vR0,0,07), (3.10)
f2 = 81,R1 - széng, (3.11)
wP =0y uP. (3.12)
Moreover, following the calculations in [34], we can obtain the boundary conditions
of wf:
1
(ay +€|D|)wR|y:O = ay(AE7D)_1(f —N)Iy:0 + %/ atuRd.’L‘d:% (313)
s
1
(81/ —€|D|)wR|y:1 = ay(AE7D)_1(f —N)Iy:1 + %/ at’u,Rd-Td:% (314)
s
where
N = O,N, —20,N, = —uf0,w" —vf0,w", (3.15)
f=fs—e*fi—fo (3.16)
f3 = uP 0w +uf0,wP + PO wt + oo wP, WP = dyuP. (3.17)

3.3. Equations of stream function

Thanks to 9, u®® +9,v" =0 and v¥|,_o 1 =0, there exists a stream function ¢ satisfying
the following system:

—0,0 =08, aqu:uR—%/uRdxdy. (3.18)
S

Since fTdex =0, the function ¢ is periodic in z. Thanks to 9;¢|y—0,1 =0 and ¢(1,z) —
¢(0,z) =0, we may assume that ¢|y—o,1 = 0. Thus, there holds that

Acp=w® inS, @ly=01=0. (3.19)
Taking (3.18) and (3.19) into (3.9) and using the boundary condition (u?,v%)|,—¢1 =0,
we obtain
(0 — Ac)Acp+uP O, AL+ 0P Oy AL+ 0y pOpwP — Oy pOyw?
= OyN, — 20, Ny + €2 f1 + fo — C(1)0pw?, (3.20)

Ply=0,1=0, Oydly=0,1=C(2),
where C(t) = &= [sufldzdy and (N, N,), f1, f2 are given in (3.8), (3.10) and (3.11).

T
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At the end of the subsection, we state some elliptic estimates which can be obtained
by classical theory. First, by elliptic estimate and Hardy inequality, we have

IVegllze < Cllow™| e, (3.21)

where p(y) =y(1—y) and V. = (9,,£0,). Indeed, taking the L? inner product with —¢
in (3.19) and integrating by parts, we use boundary condition ¢|,=¢,1 =0 and the Hardy
inequality to have

¢
IVedlli = —(w", )12 = *<SDWR7;>L2 < Cllpw™ |2 19yl -

Since (uff,0f) satisfies the elliptic equations

{ AEUR = 8wa7 { AEUR = waa

uly—o1 =0, vy=0,1 =0,
we arrive at
| (u®,ev®,0,u", c0,ult,e0,0" 20, 0") ||XT < Cllw| xr, (3.22)

for any r > 0.

4. Estimate of V.¢ and A.¢ in the Gevrey space

Before giving the estimate of V.¢ and A.¢, we need the estimates of the reminder terms
R; and Ry which are defined by the approximate solution «? and v?. For (uP,vP), we have
the following bound:

Lemma 4.1. Let initial data ug of (1.4) satisfy (1.6)-(1.9). There exists a time T}, such

that (ul,vy,), i =0,2 defined in (1.4) and (3.2) have the following estimates:

lopllxe + l(upevp)llxaz + 10y up 12 + |Gy | xs < C,

lvpllxs + 1 (upevp) o + 18yl xi0 + |0y upllxe < C,

fort € 0,T,)].
Moreover, according to (3.1), it holds that
[Pl +[I(uP,e0”) [ x10 + |0y || x10 + [Ogul | xe < C,  t € [0,T;]
and
Oyw? > ¢y, t€[0,7,).

Proof. Here, the key of this lemma is to prove that (1.4) is well-posedness in the Gevrey
class % which is the conjecture in [15]. If we set ¢ =0 and follow the step-by-step process
in this paper, we can get the conjecture proved. Here, to avoid repeatability, we leave the
proof to the readers. O
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Then, by the definition of (Ry,R2) in (3.4)-(3.5), using Lemma 2.2, we get the following:
Lemma 4.2. It holds that

[(Ri,R2)||lxs < Ce*, || V(R1,Ra)||lx= <Ce*, t€0,T,).
Now, we state our main result in this section:

Proposition 4.3. There exist 0 <T <min{Ty, 55 } and Ao > 1, such that for any t € [0,T]
and X > \g, it holds that

sup (MT0(5)1% +18:0()3=) + [ (10V-ba e + T ) s

t
s€[0,t] 0
t

<cC / (e 2o 22001z +729 20052 + 1826152 + (Vo eNo) e + I3 +2% ) s,

where A.¢p =w®, p(y) =y(1—y) and C is a constant independent of .
Proof. Acting e®(:P=) on the both sides of the first equation of (3.20), we get

(0 + )\<D1>% —A) AP + (UPO AP+ VPO AL P) o + (Oy pOpw? — 0,00y wP) o
= ay(NU)<1> _5281(/\[1;)@ + (52f1 + f2)q> — C(t)amwg.

Taking H?9 inner product with —9,¢¢ and using boundary conditions
Paly=01=0, Oydaly=01=C(?),

we integrate by parts to arrive at

=1

1d

5 g MVl 5 18603+ 105000 — (BcbwDidyon) |~ (4)
= <(upamA6¢+UpayAe¢)@76t¢¢>H2,0 + <(ay¢awwp - 8m¢aywp)¢>,6t¢<b>H

+ <3y(/\/u)<1> —62595(./\[1;)@, - at¢¢>H2vU + <(€2f1 +f2)<1>, - 3t¢q>>H

- <C(t)3mwg, —at¢¢>
=4+

2,0
2,0

H?2.0

First, let’s estimate I;, t =1,---,5 term by term.
Estimate of I;. Since divergence free condition d,u” + 9,vP =0, we get

(UpaxA£¢+ UpayAe¢)<I> =0, (UPA6¢)<I> +8y ('UpAe(b)(I»
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According to (u?,vP)],=0,1 =0, we use integration by parts and Lemma 2.2 to have

L= —(("Dd)e.didute) | —(("A0)a0:0,00)

2,0

uP
< i sl

VP
19090120 +C || = xelpAcdlx:
L2 ¥

Lo 10:0ydal a0

uP VP ’
< Ol byl bl 02uolluzs +C| 1= e ool 109,00
< Ce7HlpAcplx2 10V eba | o.

Estimate of I. Similarly, we write

(Oy002t” = 200,07 )0 = (02(00") = 0, (Bus?) )
Then, along with ¢|,—¢ 1 =0, we use integration by parts and Lemma 2.2 to deduce

I = <8$(8y¢wp)q> — @y(31¢q>wp)¢73t¢q>>myo

= —((Oy0w)0.000000)  + (Do 0,000 )

Clllw®]x2|[ e |0y @l x2(|0:02d0 || 2.0 + Cl|wP | x2 | Lo |020| x2(| 010y P | 1120
< Ce Ve x20:Vedol rr2o.

IA

Estimate of I3. Due to ¢|y—0,1 =0, taking integration by parts, it yields that
I3 < C|[(Nuw,eNo) |l x2]10:Vedol 120

Estimate of I . Recall f; and f2 in (3.10)-(3.11). According to (3.22) and Lemma 4.2,
we have

L < C(I€ fullxz + I f2llx2) 10 b [l 20

C
O[] x= +ellev®| x2 +e")10:0y b || 2.0
C

<
< C(e]|Acollx2 +Y)(|10:0y b rr2.0.

Estimate of I5. Poincaré inequality implies

10:a || 20 < Cl0:0ya | 20,

for ¢|y—o0,1 = 0. Since
1
[CM)] = I%/URdxdyl < Clufl2 < Cllw™||z2 < ClIAGI L2,
s

we get

I5 < C| Al L2]|0:0y ba || 1120
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Collecting I; — I5 together, it holds that
L+ 15 < CeHpAcgl x2(|0: Vol 2o +Ce™H[Vegl| x2 [0V e pp || 120
+ Cl|(NueNo)llx210:Vedal 20 + Cll Azl L2 1010y do | 2.0 (4.2)
+C (el Aol x2 + €100y P | 2.0

1 _ -
< 10 Vetallipns + O (= 2llpAc0l%e +22IVeglke + 1A:6 %2 )

+ O ([N 2 +2°).

=1
. First, we give the

Yy
Next, we focus on the boundary term <AE¢¢,,8t8yqbq>>H2

#1y=0
estimate of C’(t):

/ dultdedy = / 5§uRdxdy = / 3wadzdy,
S S s
which gives

‘/@uRdchy‘ < 10,w L1 (4.3)

S
Owing to

00y P ly=0.1 (k) = C'(1)3(k),

where (k) is a Dirac function and k € Z, we have
1

_ ' _ /
= (ac[Zom),, = ([ assamc)

< CC')I0yw | 2 < CllOyw I3z,

=1 y:l

(8e0n00y0m) [

y=0 y=0

where we used (4.3) in the last step.
Putting the above estimate and (4.2) into (4.1), we get

S OIV0I 5 +1A:0]%)
< C( 7 lpActlke +2 2Vl ke + I Ne Moo + 1Al %a + 10,7 2 +%).
(4.4)
Next, we give the estimates of [|9,w!||2.. First, we recall the equation of w’:
O — Acwf +uPo,wf + uRo,wP + vpawa + vR(‘?ywp (4.5)

= OyNy — 20, Ny + 2 f1 + fo,

with boundary conditions

1
(0y +¢|D)w|y=0 = 0y (Ac. ) H(f = N)|y=0 + %/ dvultdady, (4.6)
s

1
(0, ~<ID)" o1 =0,(Aep) M (F = Nlyer 5 [ Budady, (47
S

where f1, fo,f and N are given in (3.10)-(3.16).
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Taking the L? inner product with w® on (4.5) and integration by parts, it follows from
(Nu,eNy)ly=0,1 =0 and (uP,vP)|y=0,1 = 0 to obtain

1
5351 1V s = [ o’ (18)

< Cll@™ o) g2 w2 + Cl (N eNo) 22 [[Vew™ ]| 2

JrC’(IISQURHm+||<€2vR||L2+E ™|

1
< 15l Vew e + CUIWweN)IIZ: + w0 +2%).

For the boundary term, we use (4.6)-(4.7) to write

1
AawawRdm‘Zzo /(5|D|w ly=1+ 0y (Acp) " (f —=N)|y=1 +C(t ))wR|y:1dac
= [ (=D 040,80 0) 7 =N+ O(0) )" o
_ /(E\Dw wR)|y:0,1d:c+0(t)/ Ry=Ly
T T
+ [ 0,(0,(800) ™ = N ) dady = By + B+ By,
S

Let yo € [0,1] so that
lel DI ™ (yo)llz2 < llel D]w™ ||z

Then, along with Gagliardo-Nirenberg inequality

1 1 1
lgllzz < Clglz; (lgllE; + 19,911 7,): (49)

it infers that

1 0
B, = / Gy(s|D|waR)dmdy+/ 8y(5\D\waR)dxdy+2/(5|D|wR W) y=yod
Yo Yo T

< Clle|Dlw®[|2l|8yw || 22 + Clle[ DIw ™| £2 llw™ || Lo (2)

< Cel|lw™|f3.0 + Celloyw ™| 7.
Similarly, we use (4.9) and |C(t)| < C||uf||L2 < C||wF||L2 to have
3 1 1
By < CICMIw | (z2) < Cllw 22 (w172 + 19y 72
< 10||ay°JR||L2 + O3

All we have left is to do Bs. With the fact that operator 9, (A p) ™1, 0y (Le, p) ™1 (9y,€0:)
and 8;(&6,[))’1 are bounded from L% — L?, we have
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B3 = /8§(AE)D)_1(f—N)wRdxdy+/ay(AE7D)_18y(vaR)8wad$dy
S S

+ / Oy(De,p) M (f = 0y (VP W) — 0N, — 20, N,,) Oyw'idzdy
s
< C|If = Nllz2 w2 + CllvPw™| L2 | 0yw™| L2
+O(|f = 9y (0P w™)| L2 + (N eNo ) 22) |8y w0 2.
According to the definition of (3.16) and (3.15), we have
1£llz2 < CU110w™ | L2 + 10y | 2 + [[(u®,0™)|[ L2 +€%)
< O(lw®llmno + [10yw ™| 22 +€*),
and
1f =0y (WP ™)l 2 < C(10sw ™| 2 + I (w,0") | 2 +*)
< C([lwflzo +),
which give that
By < C([lw"mro + [18yw | 2 + IV 2 + ) [l 2
+ O (w10 + [|(NuseNo ) 22 +€1) 18y 2

1
< 1gllOww e + Clw 30 + | (N eNIE2 + V172 +%).

Summarizing B; — B3 together, we obtain

| [ atuttas|'” | < (2 + o3 + Ol rno + [(Nune Al + NI +2).
' " (4.10)
Substituting (4.10) into (4.8), we take € small enough to arrive at
It 5 IV 3
< C([(NueNo) 22 + w1310 +€°)
+ O F0 + [Ny eNo) 172 + V122 +€°)
< C([|AcolFro + [[(NuseNo) 172 + [N [72 +€%).

Bring the above estimate into (4.4) and integrate time from 0 to ¢ to get the desired
results. L

5. Sketch the proof to Theorem 1.1
In this section, we shall sketch the proof of Theorem 1.1. In the paper, we use the continued
argument. Here, we define

def

T* = sup{t > 0] sup [|w?|x> < €3}. (5.1)
s€[0,t]
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5.1. The key a priori estimates.

In this subsection, we shall present the key a priori estimates used in the proof of
Theorem 1.1.

By Proposition 4.3, we need the estimates of fJ(HVEQSH%(z +|lpAs¢[/32)ds to close the
energy.

Proposition 5.1. Let ¢ be the solution of (3.20). Then there exists \g > 1 and 0 < T <
min{7T), 35} such that for X\ > X and t € [0,T], it holds that

t t
/0 (1Ve8l%2 +llpAco|kz)ds < © / (Ve N [z + €] 5 +e¥)ds,  (5.2)
with t € [0,T7].

The proof of the above proposition is the main part of this paper, and we prove it in
Section 6.

5.2. Proof of Theorem 1.1

Before we prove Theorem 1.1, we first give the estimates for the nonlinear terms:

Proposition 5.2. Under the assumption (5.1), there holds that

t t
/0 |(None ) [Zeads < O / " %ads, (5.3)

t t
/ IN[22ds < Cet / 1V ocoP 2. ds, (5.4)
0 0
where t € [0,T7].

Proof. By the definition of N,, we have
t t t
| WalBeds < [ a0, um s + [ "0t 3ads = 1+ I
0 0 0
It follows from Lemma 2.2 and (3.22) that
! Ug 2 R|2
1< C [ 152 gry 0 ads
t
< €72 [ s (s + 0,07 )]0, o
t
< 05*2/ w52 ds,
0

where we use the Gagliardo-Nirenberg inequality (4.9) in the second step.
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Similarly, we use Lemma 2.2 and (3.22) to deduce

t t
B < C [ g 0" s < C=2 [ bl 0,u" e

t
0672/ ||wRH§(2ds,
0

where we use vt = —foy d,uftdy’ in the second step.
Collecting I; and I together and using (5.1), it holds that

t t t
/O [N |%eds < Ce2 / "l Yads < C<* / P %ads.

The estimate for e, is obtained by changing u® into ev’ in the above argument and
we omit details. Thus, we obtain (5.3).
For (5.4), we use the definition of A/ to have

t t t
/||N||%2ds§ / HuRawanide/ 07 0," |2, ds
0 0 0
t t
el A R e ey (T P e
t t
€= [ o pnoleBuFads+C [ 300, 3ds
0 0

< 0% wp " / IV 2 ds

t
< 084/ |Vewf||2.ds
0

by (5.1), and we obtain (5.4). O

With Proposition 5.1 and Proposition 5.2 in hand, we are in the position to prove
Theorem 1.1. By Proposition 4.3, Proposition 5.1 and Proposition 5.2, we get

t t
sup (A[Veo(s)]% 5 +HA6¢(8)II§<2)+/ 10:V 0|20 < Ct€6+0/ 18:(5)l%-ds,
0 0

s€[0,t]

for t € [0,T]. By the Gronwall inequality and choosing a small 7' < min{T}, 55 }, we get

that
! ¢
sup (MVeo(s)IP g+ [w)+ | 107 olno < G
s€[0,t] 0

By the Sobolev embedding theorem and Lemma 4.1, we get Theorem 1.1 proved.
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6. The proof of Proposition 5.1

All we have left is to prove Proposition 5.1. To prove that, we first give the following
decomposition of ¢:

(ZS = ¢slip + (bbcv (61)

where ¢g;, satisfies that

(at - AE)A€¢Slip + upamA6¢slip + ’UpayAE(bslip + ay¢slipamwp - 8$¢slip8ywp
= OyNy — 20, Ny + €2 f1 + fo — O(t)0,wP,

(6.2)
Ostiply=01 =0, Achsiip|ly=0,1 =0,
Gstiplt=0 =0,
and ¢y satisfies that
(0 = Do) Acppe +1uP 0 Ac ppe + 0P Oy A Poe 4 Oy P Opw? — Op P Oyw? = 0,
Bvely=01=0, Oydvcly=0,1 = —0yPsiiply=0,1 +C(t) (6.3)

®belt=0 = 0.

To prove Proposition 5.1, we need the estimates of ¢4, and ¢y.. First, we notice that
®s1ip has a good boundary condition. We use the ‘hydrostatic trick’ method to get its
estimates. The proof of the following proposition is given in Section 7.

Proposition 6.1. There exists A\g > land 0 < T < min{T}, 55 } such that for all t € [0,T],
A > Ao, there holds that

t t
180l b | (IAetuip g +IVeutpl g +1Veutplynlg st | I9eBeuipl s

t C t
<c / (NaweNo)|[eads + & / 1,21 f2)I1 5 ds.
0 A 0 X3

The estimates of ¢p. are much more difficult. Here, we state the main results on it:

Proposition 6.2. There exists \g > land 0 < T < min{T}, 55 } such that for all t € [0,T],
A > Ao, there holds that

t C t
[ 190l g +lebctnelBnds < 7 [ (I9buglymoally +10GE) s (6.4

where C is a universal constant.

The proof of Proposition 6.2 is given in Section 8.
Based on the above two propositions, we are in the position to prove Proposition 5.1.
First, we give the estimates of ||uf||;> which are used to control the C(t).

Lemma 6.3. There ezist 0 <T < min{T}, 55} and Ao > 1 such that for t € [0,T] and
A > Ao, it holds that
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t t

||6(1’”)(UR,€”UR)H%2+>\/ IIB(l’“)(uR,evR)II%zdS+/ [0V (uF ev®)[|72ds (6.5)
0 0

t ) C t
< C/ (||€(1_)‘6)(J\/‘U,ENU)H%2-I—Eg)ds-l—X/ |V-0||%-=ds.
0 0

Remark 6.4. We use weighted quantity ||e(1 A (uft ev®)| 2 instead of ||(ul,ev™)]|L»
to obtain a small constant factor in front of fo |VE¢||X2ds in (6.5).

Proof. Taking the L? inner product with e2!=*)4 in the first equation of (3.7) and

with e2(0=2)y% in the second equation of (3.7), we use the fact
D,(2030) £y = 2120 g ¢ 4 93 201-M) ¢
and integrate by parts by boundary condition (uf,v%)|,—¢1 =0 to yield
2 Lt W o)+ Ae® A0 o) s 4+ eIV (o)
< C([eM A (w0 |2 + (e (N eNG) 22 + ([ (R, Bo) | 2 e (w,e0™) | 2
< D100 @ o)+ Ol NN [ +5) 4 5 et 290,07,

where we write v = —foy O,uldy’ and use the fact O u? + 0yv? =0 to eliminate the
transport term and 9, u® + ava =0 to eliminate the pressure term, respectively.
Afterwards, integrating time from 0 to ¢ and using 0,uf* = —9,0,¢, we obtain

t t
10730 (4B o) ()2 47 / €039 (P o) [2,ds + / 02T (W, com)|[2, ds
0 0
t C t
<O [ et IUN N+ s+ S [ 1e090,0,0]3ds.
0 0

Finally, we use [ =*%)9,0,6||1: < C||V.4| x> to complete the proof. O

Proof of Proposition 5.1. Now, we give the proof Proposition 5.1. We divide this proof
into two parts. O

Estimates of fot |Ve9||%-- Since

1 _
CO)| =I5z [ udady] < e < O
by Lemma 6.3, we ensure

t t
c)? < c/ (\\e(l_/\s)(/\/u,sj\fv)||%z+58)ds+§/ IVedldads.  (6.6)
0 0

By the definition of f; and fa, we obtain that

t t
2 2 2 8
[l 1 gas < [ (lenol g +<)as
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and we get

¢
AA (”As(bslzp”i% +||v5¢slzp||§(% +|V5¢slzp‘y:0,1|§(%)ds (67)
t C t
<0 [ NN Bnds+ S (ICOF + [ (lebeol? g +<)ds).
0 A 0 X3

Then, it follows ¢ = ¢s1ip + Ppe and (6.4) to deduce

[ 1eleds < [ Vbl t [ 19003t ©5)
< € [N B+ G ([ leaiolz g +eas)
+ G [ Wetulymaallgis+ GiowP,
< CioP+S [N Beds+ 5 [ (el g +e)ds

Plusing (6.6) and above estimates together and taking A large enough, we get
t

t t
COE+ [ 190l <C [ INeeNo)lFds +C [ (leadll g +)ds. (69)

Estimates of fg leAed%o-
It follows from (6.7) and (6.9) that

‘ 2 c ¢ 2 c 2 ! 2 8
[ 180w s < § [ INVeN s+ S (10OF + [ (leacol? g +)as)
C t
< 5 [ AN e+ 0012, g +25s.
0

Applying Proposition 6.2 again, we get

t
0

t
| letctnlads < [ INweNo) s+ 1Bt g +e5ds

Combining the above two estimates, we get

t t
[ leacolBads <0 [ (1NN e+ 108012 5 + s

By now, we get the desired results.
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7. Vorticity estimates under artificial boundary condition: Proof of
Proposition 6.1

In this section, we give the proof of Proposition 6.1. To simplify the notation, we drop
the subscript in the system (6.2):
(0 — Ac)Acp+uP 0, AL p+ 0P Oy Acp+ 0y pOrwP — 05 pOyw?
= Oy Ny — 20, Ny + €% f1 + fo — O(t) 0P,
Ply=0,1=0, Ac¢ly=01=0,
Pli=0 =0

The goal in this section is to establish a uniform (in €) estimate of vorticity w = A ¢.

(7.1)

Proposition 7.1. There exists A\g >0 and 0 < T < min{Tp,i} such that for all t € [0,T],
A > Ao, the following holds:

t t
2 2 2 2 2
JO+A | (g + V012 +Vetlym01 st [ 19wl

t C t
<0 [ 1NN s + 5 [ 122 COOI, 4 ds
0 0

Proof. By Lemma 4.1, we have
8ywp >co > 0.
Hence, we use the ‘hydrostatic trick’ to get the desired results. First, acting operator
e®(t:D:2) on the first equation of (6.2), we get
(O + A(Dq)% — A )we +uP Orwa + 0P Oywe — Op o Oyw? (7.2)
= (@000 ~ [e* ) D, Lo — [e*0 D) 070,
+[e®P) 9, wP10, ¢ + 0y (Ny) o — €205 (Ny)a + (€2 f1 + fo — C(£)pw?) .

In view of (7.2), the terrible term comes from 0,¢¢0,w?, which loses one tangential
derivative. In order to overcome the derivative loss, we take (D,)? on the (7.2) and then

2
take the L? inner product with % to obtain that
Y

(D2)2we \ (D)5 we |2 Vo (Dy) 2wy ||2
ZdtH \/W‘LQ—F H \/37 L2 H \/W ‘Lﬁ
- —/(D P (€00y) 5 (£0n D) (D) ey
P P (Dq)*we
+/| Ywe|? 8 ( )+a (7))d$dy L[(D@%u Oz + 070y |we dedy
- (Do @,00.0m i DR dwayt [ (D2 0,70.00 1DeE 2% duay
+/(Dz>281¢q><Dz)2wcpdacdyf/<Dz>2 [e%Dw),uPaz]w) %ﬂdmy
S S ywp
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D.)?
_/;<Dx>2([e<b<t,Dﬂ)7vpay]w) %dmdy
2(1.3(t,Dy) (Dz)?we
+ /S (Dy) ([e t ,aywp]azgzs) o dady
(Dz)’we
+/$<Dz>2(8y(/\/'u)q>75281(/\/})@) Wda:dy
2
+ [P0+ fa = Cwpm)0 P Gy
s OywP

— T0+'--T10.

The boundary term is zero due to artificial boundary condition w|y=g1 = As@|y=0,1 =0.
Integrating on [0,¢) with ¢t <T and using dyw? > ¢y, we obtain

t t t
||w(t)||§(2+2)\/ ||w||‘;%ds+2/ HngH%@dsgC/ T4+ + T ds.
0 0 0

Now, we estimate 7%,4=0,---,10 one by one.
Estimate of 7% and 7. Since 9,w? > ¢y >0 and Lemma 4.1 imply

1 uP

P
< — — <
|(Eaa:aay)aywp‘ = 07 |8I(aywp)‘+|a’ll(8ywp)| — 07

it is easy to see
T+ (T < Cllwllxz (I Vewllx2 + [[w]l x2)-

Estimate of T2 and T%. By using Lemma 2.1, we get

I(D2)?,uP 0 + 070y |wa || 2 < C([lwllx2 + 10ywl|x2),
I(D2)?,8yw?10: 00 12 < Cl¢llx2 < Cl|0y 6| x>,
where we used the Poincaré inequality and ¢|,—o 1 =0 to ensure
[6llxr < CllOy¢llxr, 720 (7.3)

in the last step.
According to

Acp=w, ¢ly—0,1=0, (7.4)
classical elliptic estimate and (7.3) imply
IVelZe < llwllzllé]l 22 < Cllwlz [0yl 2,
which gives
[Vedlxr < llwlxr, r=0. (7.5)
Therefore, it follows from 9yw? > ¢y > 0 to get

72|+ 17 < C(l|oyw ]l x2 + [lwllx2) | x2-
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Estimate of T3. Using Lemma 2.2 and (7.5), it shows

7% < Cllaygllxzllwlx2 < Cllw%--

Estimate of T" This term is a troubling term because it loses one tangential derivative
However, the hydrostatic trick implies

T5: /<Dm>281¢<1><Dz>2As¢<I>dxdy:_/<Dz>2azvs¢<l><Dz>2vs¢<I>dxdy
S S
= =5 [ 0D 6u sy~
2 S

by using ¢|y=o,1 =0.

Estimate of 76,77 and T®. Let’s estimate commutators by Lemma 2.3. Since d,w? >
co >0, we use Lemma 2.3 to ensure that

6
7% < CllW D)o o Buton | oy ol

7 < Cfuw| 241-1
3 = X
IT7| < Clloywl x2 |[w]l x2,

syl g =Cllel? 5.
IT%| < Cll(0:60yw" )0 — 822 dyw”|| o y Wil 7 < CllOdll ooy _yllwll 7 <ClSIl 7 lwll g
<Clwlf? 7
X3

Here, we use (7.3) and (7.5) in the last estimate.

Estimate of 7% and T"'°. Integration by parts and boundary condition w|,—g1 = 0 give
that

- , v ({Dx)’wae
|T°| = /S<Da:> (Nu.eNo)ae V5< Oyw? )dmdy

< ClNweNo|lx2 ([wllxz + [ Vewll x2)-

However, using the Holder inequality, we get
(T < Cll 1+ fo — OO s Il 3

Collecting TY —T19 together, we finally obtain

t t
/ 70 4+ [TV]ds < © / NNz (1 el 2 + ol xc2)
0 0

Flwll g (ol 7 + Vel +1e2f1 + o — C(E)D?| 5 )ds
1

t t
<L / IV ol|ads + C / NN | eads

A ¢ 2 C t 2 D2
+(C+Z)/O ||w||X%ds+X/0 1% 1+ fo = CO)0pwP [ 5 ds.
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Taking A large enough, we deduce
¢ ¢
Ol A [ ol g+ [ 19wl (7.6)
0 X3 0
t C t
< c/ (||Nu,eNU||§(2ds+—/ 1E2f1 + fo — C()0e?|2. ¢ ds.
0 AJo X3

However, (7.5) gives
19.6ll 7 < Cllwll 5.

Calderon-Zygmund inequality and Gagliardo-Nirenberg inequality (4.9) imply

|va¢|y:071

3 SCIVSIE (Vo1 +19.0,0111 1) < Ol 5.

Along with (7.5) and (7.6), we get the desired result. O

8. Construction of the boundary corrector: Proof of Proposition 6.2

In the previous section, we construct a solution to the Orr-Sommerfeld equation with
artificial boundary conditions: we replace condition 0y¢|y,—0,1 =0 by A.¢|y—0,1 = 0. To
go back to the original system, we need to correct Neumann’s condition. Thus, we define
e Which satisfies the following system:

(Or = A2)Achpe +uP 0 Ac e + VP Oy A Ppe + Oy Poe 0w’ — Oy Oyw” = 0,
Gbely=0,1 =0,  Oyducly=0,1 = —O0yPsiiply=0,1 +C(1), (8.1)
Pli=0 =0,
To estimate ¢y, we use the following decomposition:
Pbe = Gbe, s + Poe, T + Gbe, R-
The definitions and estimates of @ s5,0pc,7 and ¢p. r are given in the following

subsections.

8.1. The estimates of ¢ s: Stokes equation

In this subsection, we deal with ¢ s.
Because of two boundaries y =0 and y = 1, we define

Dbe, s = ¢gc,s + ¢1%C7sa
where (;5207 g satisfies the following Stokes equation:

(815_A€)A6¢gc,5 =0, (1:7?!) eTx (0,+OO)
¢2c,s|y:0 =0, ay¢gc,s|y:0 - hoa (8-2)

0
¢>bc,s|t:O =0,
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and qﬁ})c’ ¢ satisfies the following Stokes equation:

(at*AE)AEQS;C,S :03 (x,y) €T x (70071)
¢11;C,S|y:1 =0, 8y¢l£c,s|y:1 = hlv (8.3)
qblic,Slt:O = 07

where t € [0,T]. Here, (h°,h') is a given boundary data satisfying (h°(t),h'(t)) =0 for
t =0 and t > T. Here, we point out that h’ is defined by

Rt = A(=0ydstiply—0.1 + C (1)),

where the operator A is a zero-order operator which is defined later.

In the following, we only give the process for qbgc, g The case of qbllm, g is almost the same
and we leave details to readers.

At first, we give zero extension of ¢, ¢ and h® with ¢ <0 such that we can take a
Fourier transform in t. Let ¢), ¢ = ¢}, 5(¢,k,y) be the Fourier transform of ¢p, 5 on z

—

and t. Then (¢}, ¢)s satisfies the ODE:

(02— 2|k|2)2 (6], o+ (i + AR D) (@2 — 2 K2)(0), g)a =0, y >0, o

(Phe.5)@ly=0 =0,  0y(dp,, 5)ly=0 = G,

where ¢ € R and k € Z. Assuming the decay of (|k|#y, ¢y, 5) and the boundedness of
ay@bg@ g, we obtain the formula

e~V _ e—clkly ~

(0 ) (Ghy) = = BR(GR), 9> 0 (8:5)
Y=k = VR A +ic, (8.6)

where the square root is taken so that the real part is positive, and it follows that

elkl, AT (k)S < /e2[k[2 4+ A(K)® < Re(y) < 7] < 2Re(7). (8.7)

This inequality will be used frequently. It is easy to calculate that

Oy(Phe s)a = —e "hy —elkl(¢p, 5)a (8.8)
(07 =2 kI*) () g ) = (y+elk)e VR, (8.9)

The formula (8.8) will be used in estimating velocity and (8.9) will be used in estimating

vorticity. With the same process above, we get the formula for ((béc $)a

e~ Y(1—y) _ p—elkl(1-y) ~
he(Gk), y <1, (8.10)

(QSgC,S)@(C?k?y): ,Y_€|k_|
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with 7 given in (8.6). It is easy to see

0,(dh, 5)o = e YIVRL L elk(L, o) (8.11)
(02— k%) (DL, 5o = — (v +elk])e " DAL, (8.12)

Remark 8.1. For ¢ =0 in (8.2), Ag = 5.

o~

— hl 2
(D9e.5)a(Chy) = *Tj(eﬂr’y —1), 0=\ AE)®+iC (8.13)
solves (8.4) with e =0 and (@@ holds limy_, 4o = :—% Though (@(@ does not tend

to zero as y tends to infinity, the solution (¢, g)a is only used to correct the boundary
condition near y = 0, and we do not care about its value at infinity. It is easy to deduce

-

Dy (8% 5)e = WY, (90, )w = —yohGe O, (8.14)

and we find these two terms decay to zero as y tends to infinity. By the same method,
we can get another solution near y =1

o~

— hO
(Dhe.5)a(Chy) = 7‘5(@*%(1*’/) -1). (8.15)

These constructions are the main difference between € =0 and € # 0, but they enjoy the
same properties stated below.

Lemma 8.2. Let ¢li7c,S be the solution of (8.2). It holds that

N 1
> I Elkl(4, 5)w:0 (%o s)e)lzz, S*Z (k)" hg iz, (8.16)
k€L k€EZ
where i = 0,1 and L, = IZ(L3(0, +00)) fori=0 and L, =IZ(L;(—00,1)) fori=1.
1t is also held that

—_ C 1
S sJollzz , <kl ¥Rl (3.17)

kEZ

where i = 0,1 and Léy = lg(Lg(O,l)).

Proof. We only give the proof for i = 0. The case i =1 is almost the same, and we omit
details to readers.

(8.16) follows from (8.5), (8.8) and the Plancherel theorem by observing the estimate
for multipliers

_ C
lle L2(0,00) Si)\l(lﬂé’ (8.18)
4
B 1—e—(y—¢lkDy C
le[k]-e 5‘k‘y'|w\\|m0,+m) S/\ﬂkﬁ (8.19)
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The estimate (8.18) is a direct consequence of

1
(k)
/\%(kﬁ, and 2. e|k| > %)\%<k>%. In case 1,

Re(7) >

. (8.20)

W=
Wl

A
For (8.19), we divide it into two cases: 1. e|k| < %

elk| + A (k)5

a2 7
[y ekl = =5
which implies
1 —e—(v=elkDy
lelkl - =Y | ————|ll 2 (0,4 00) <=7 llelkle™*¥1¥]| L2 (0, 4
y—elkl T A (b (o)
1
<c (€|k|32 < 10 1
elkl+Az(k)s Ai(k)®
In case 2, we use the bound
1 —z
——l<c

for Re(z) > 0, which implies that
1— e~ (y—clkDy C C
elk|-emlkly | ———— oo <|lyelkle™*1¥| 12 0. 400y < < .

Combining cases 1-2, we complete (8.19), which yields (8.16). The estimate (8.17) is
proved by using (8.5), Placherel theorem and

. 1—e—(r—clkDy C
el | ==l 20,1 <—

Az (k)
Indeed, note that the integral interval is y € (0,1) and we also divide it into e]k| < %A% (l{:)é
and e|k| > %Aﬂk}é. When ¢|k| > %/\%(kﬁ, the similar argument above gives that

(8.21)

wl—

v —elk|

1 —e—(v—elkDy

e—clkly. 201 < _. 8.22
e = e < 3 (5:22)
When elk| < %)\%U{:)%( with e|k| < 1), we compute as
B 1 —e—(v—elkDy 1
e =lkly | i |HL§(0,1) < C”ﬁ“L%(O,l) <—¥-
v —elk| elk| + A2 (k)? AZ (k)3
The finite interval (0,1) is essential here. Thus, we complete this lemma. O

To express this clearly, we introduce norms related to y > 0 and y < 1, respectively. For
any function f, we define

[fllxr = [IfellLz i mz), (8.23)
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where Iy = (0, +00) and I; = (—o0,1). It is obvious to see ||| x- < |- xr for any i =0,1.
Using Lemma 8.2 above, we can deduce the estimate for V.¢*, where i =0,1.

Proposition 8.3. Let ¢}, ¢ be the solution of (8.2). It holds that

/ IV-thesl 3.y / WP d (8.24)
i 2 o i2
/0||8x¢bC7SHX%ds§ A/0 D1y ds. (8.25)

Proof. The proof is done by using (8.16) and (8.17). O

Next, we give the estimate to the boundary term ¢267 gly=1 and ¢z1)c, sly=0.

Lemma 8.4. For any M >0 and i = 0,1, it holds that

/|ga M sl y ds < f/ I [%0ds, (8.26)

and

t ; C t ;
| 16000, 00 sl a5 <5 [ s, (8.27)

for any r > 0.

Proof. We only give the proof for the case i = 0; the case i =1 is similar and we omit
details to readers. Taking y =1 in (8.5) and using

e—(r—elkl) _q

k)M ekl | < 8.28
|(elk]) e e Ebvyes (8.28)
we get
' M 40 2 C (" op
J DYl s <5 [ 0o
However, we refer to (8.8) and take y =1 in it by noticing
e—Re(fy)(E“ﬂl)M‘ S’e—%s\k|(5|k_‘)Me—%>\%(k % < 06_5 %(k)% < #’
(A(k) )N/
for any N >0, and combining with (8.28) to deduce
! Mg 10 2 C [ o0
[ 10 0,8 sl ds <5 [ 0. (8.20)
Thus, we finish our proof. O

At the end of this subsection, we give some weight estimates of vorticity wj 05 = A 5"
Denote

W)=y, o'y=1-y. (8.30)
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Proposition 8.5. It holds that
|(Whe 5)e (G h9) |+ [9°0y (Wi o) (G Ry)| < Cly] +elke B Ri (GR)|. (8.31)
As a consequence, we get for §' € [—%,2]
¢ iN14+0" 2 24607 i 2 c ¢ 02
/O ll(©") wbc,S||X§+%(9/+%) +11(#") (8y:5‘k|)wbc,5'||X1%+%(9/+%)dS < /\%T/o Pl 7 ds

Proof. The result is obtained by using formula (8.6), (8.9) and (8.12), the Plancherel
theorem and by observing that multiplier ¢*(y) gains ——L—. More precisely,

A2 (k)3
7 m —Re i C m+ 1
1) yle™ B L2 1y < (=)™ 2.
Az (k)?
Thus, we complete the proof. O

Based on the above proposition, we have more estimates on wy, :

/ |h’|2 (8.32)

6_ 1 O ¢ i
N e g (539

Proposition 8.6. Let 0 € [0,2]. It holds that

/||soA¢bcsH2g% 60,8t 5. s

t

W\

0

t

D255 @Al s) rds < 55 [ W2 g, (3.34)
0 0

Proof. (8.32) is a direct result of Lemma 8.5 by taking 6 = 0. It is easy to check

2 [ 1
01 sigus T (k)sts —  Clk)3
1{k)* % (¢ )6+2kAs(¢ic,s)<I>||L§(Ii) = C(A%(k>%)9+%+% |he| = A3 (0+1) 7|

by taking ¢’ = 9—&—% in Lemma 8.5 and completing (8.33). Similarly, we check

w|o
i

o_1, . 3 —_ C<k> —~ —
kY373 ()29, A (4 2y < ——L——|hi| < — |t
(k)2 (") 20y Ac (D, s) ol L2 (1) < Y |he| < A%<k>§| ol
by taking 6’ =6 — % in Lemma 8.5 to completing (8.34). O

8.2. The estimates of ¢, 7: vorticity transport estimate.
@ve, 7 is defined by

0 1
Pve, 7 = Ppe, 7+ Poc, 1
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where ¢1?c,T is defined by

(0r — AE)Ae(bgc T+ upawAE‘bgc 7 +vP0 AE¢20,T
=-u a A (bch_’U aA ¢bc$’d_efH07 ($7y)€TX(0a+OO) (835)

¢20,T|y:0 =0, A€¢bc,T|y:0 =0, (bbc,T‘t:O =0,
and ¢y, p is defined by
(at - AE)AEQS})C T + upawAe¢;c T + vpa A qj)lic,T

= —uP9, A gbbc g—vPo Asgébc g d—Qle7 (z,y) € T x (—00,1) (8.36)

¢11)C,T|y:1 =0, A€¢bc,T|y:1 =0, ¢bc,T|t:0 =0.

We need to emphasize that we extend (u?,v?) to y € R by zero, which means that (u?,vP) =
0 when y € R\ [0,1].

Before we give the estimates of ¢, ,,, we use Proposition 8.6 and (u?,v”)|y=0,1 = 0 to
get that

t
[ R g gas< 0 [ 108 40,8000 gt (830
0

where 6 =0,1,2.
We are in the position to give the estimates of ¢§;C7T:

Proposition 8.7. Let 6 =0,1,2 and i =0,1. There exists Ao > 1 and 0 <T < min{T,,, 2)\}
such that for all t € [0,T], A > Ao, it holds that

[ (" )waCTHQ % g / (e wbcT||2 13, %ds

X
T 2 s < W ds
i bl pigds <57 [T pds,

where quﬁ};C’T = w};c,T and @' is given in (8.30).
Proof. Acting e®®P=) on the first equation of (8.35), we obtain

(DAADL) S — A) (Wi 1) + 0Py (Wi 1) + 070y (he 1) (8.38)
+ (W0wie r)o — w0 0u(whe o ) + (" Byeohe ) — 070, (whe ) ) = H.

10 , .
Then, taking the L2(IZ,H 5 +3) inner product with (@’)ze(w})c)T)@, we get by using
wbc,T'?/—l =0, O,u” + 0,vP =0 and integrating by parts that
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e

\_/

. - A
bcT”2 P gJF)\H(‘PZ) wbcT”i% %+“(¢2) szic,THi%+g

1, i

2dt

= — [ (©)*UDy) T HE 0P, + 0P D, (Whe ) (D)™t 3 (Wi p)adady

1 ’ .
+5/5 0y (£ ) 0P (D2} ® 5 (whe 7)o *ddy

wlo
wlo

(D2) 78 (WP Oathe r)o —10u(Wher)o ) (D2 B8 (wihe r)o (o) dady

-

Ly

o
wl

J

= [ (070,0h )0 = 90yl o) (D) ¥ H (wh ol dndy
S
J

3y ()W D,) T +30, (Wheg) o (Du) s 5 (whe ) adady

+ / (Da) FHEHY (Do) %+ (w7 )a ()20 dedy
S;

:Ii‘_|_..._|_]é7

where S; =T x I;. Integrating on [0,t) with ¢ <T', we obtain

I e (422 / I e 3 g2 / 1) el ., s
(8.39)

7,

t
§2/ i+ -+ |TE|ds.
0

Now, we estimate I}, 7=1---,6 term by term.
Estimate of I%. It follows from Lemma 2.1 that

11,0 i % 7
(D) &5, uP 0y + 070 | (whe,r) el 2 < Cllwicer)allsg + 10y (@i r)all

which deduces that

111 < CUE) wherll g g + 1) Oywierll B ) Wizl g

z 7.

Lo N
STOH(@ )0aywbcT||2 TS +C|l(e )ewbc,T||i%+g~

Estimate of I§. Thanks to
19y ((¥")*) %] = [260(")' (¢")*'~ 0P| < CO(p )29| | < 00(¢")*, (8.40)
by using v?|,—; =0, it is obvious to see
1131 < COl(e") wherll 11 ys-

11,6
6 "3
X;

https://doi.org/10.1017/51474748023000282 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748023000282

Optimal Gevrey stability of hydrostatic approximation 1555

Estimate of I%. Applying Lemma 2.3, we find

i i 2+ i i i
113] <) (Do) 858 (W 0utvhe r)o = 0D whe ) ) 22 sz | () o

1,

N\Q)

m

< CJl(¢"’ Wherl? 1 PRCRY

L

Estimate of Ii. Applying Lemma 2.2, we get
115 < Cl (") Oywhe, 2l X co I whe 7l x84

1. i Y
<31 Ol sy g + Ol el sy

z i

Estimate of IZ. By the fact

we have

15| < COl|(¢ )eaywbcTH &+ g||(<P )9 ' bcTH % +2

7,

ll(» )08 wbcT||2%% C‘L)ZH( ) WbcTHQ%g

x
—10
Estimate of I§. It follows from

[ ing—1
{D2)** 5 (whe, ) (") % |23 15522)

13

V0|3 e iN0—13
< (D) &5 (@he,r)a (0 )Nz (1,22 1{D2) ® 5 (Whe, ) () N 72 1,129

0—1

. 1
<N el g 16 bl oy .

for 6 =1,2 and
i iy—1 B 3 L V=13
||<Dw>2(wbc,T)<I>(‘P )7 HLg(Ii;LQ) SI{Dz) s (whe T)<I>HL2(1 ~L2)||<Dw> 5 (Whe, 1)@ (#") 1||L§(11;L§)

< C”Wbc T|| : 13 ||8ywbc T|| s

by using Hardy inequality for 6 = 0. Therefore, we get for § = 0,1,2 that

=

, 0=12,

0—1
1) ezl

wio

1
2

1151 < Cll (e B I 58 10" whe, 7l S X

w\@

& 3 1
2

10yt rll2 0 0=0,

>4

6? 0—1 i c iNL40 rri2
+ 2 (166 whe 22 g + 5100 e 22 %+g)+Ai\|(¢)2+H||Xg+%~

lovwhe ol P

»Ty
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Putting I} — I} together, we have

) ) 1 ) ) A . . A
1]+ + |1g] Siﬂ(@l)eaywll)c,THQ 11,0 +(C+ Z)”(@l)ewic,T”Q +20%|(H)° lwbc rl?
x,6 "3 8

| e P

C

+— )2 O 5,0
)\2 X1.3 3

Then we insert them into (8.39) and take A large enough to obtain
o
16 ke O g+ 57 [ N gt [N Tl
1461702 201(,,\0—1, i |2
<—/n Hw%%+géem¢>n%j@%%m

72 2 i\0—1 i 2
7%/0 |h |X%d3+§/0 0°[(»") wbc,T”X%JrgdS,

where we use (8.37) in the last step.
All we have left to do is to control the last term of the above inequality. For that, we
rewrite it as follows:

A

2 t
A \0— i
8/92H( o~ el 4g $§2;/0 (") 1wa7T|@%+%dS
A= (10 e
=33 [N b g
6=0

Combing all the above estimates, we get the desired results. O

Based on estimates of w};c’T, we use the elliptic equation to get the estimates of ¢};C7T.

Corollary 8.8. There exists \g >1 and 0 <T < min{Tp,%} such that for all t € [0,T],
A > Ao, it holds that

t
/@%%ﬂﬂm+@%ﬂwmﬁﬂﬁwﬂﬁ+mwb1@9%
0
c [t .
SX/O |hl|§(%ds. (8.41)

Proof. Here, we only give the proof of the case i = 0. The case i =1 is the same.
We recall the elliptic equation

Aad)gc,T = wl())(:,T7 ¢8¢,T|y20 = 07 (842)

for y > 0. Then we take the X{ inner product with ¢2C’T and use the Hardy inequality to
get

Bbe, 7
IVebe, rlliy < 10 whe rllxg =5~ llxp < Clle whe 7l x5 10y Phe, 7ll x5
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which implies

IV ebhe,rllxg < Clle whe rllxg, (8.43)

for r > 0. By Proposition 8.7, we get

t t t
C
[ Ivetorl? yas < [ tuierlP yas < [P gas (s
0 s XOQ 0 s on )\5 0 X3
For the boundary term, using the interpolation inequality, we get

o 0 < Cllo 0 % 82 0 %
| y¢bc,T|y=0,1|X% <C| y¢bc,T||X | y(bbc,T”X%S

5
2
0 0

1 1
< Clle’wpe,rll? g lwpe,rll? 1o
XO XO

where we use (8.43) and the Calderon-Zygmund inequality in the last step. Along with
Proposition 8.7, we arrive at

t ; C t ;
[ 1006ttt gas <§ [ pas (8.45)

Next, we deal with the term ||8$¢267T||X%. Taking the Fourier transform in z to (8.42),
we write the solution

-~ Y ’ +OO 1" ’
¢>2c,T(k7y)=/ efa‘k‘(y’y)/ e MW =G0, p(kyy)dy" dy . (8.46)
0 y’

Then we have
n vo[tee 0
Rer e < [ [ By layay’
0o Jy’

win(u ()3} g v

Decomposing the integral foy into |, in{y, ()
min{y,

-3y it follows from the

Holder inequality that

~ _1 1 ~
Sl;lgwgc,T(k,y)\ < Ck) ™0 ly@he, | 2 (10) + CR) 1y°Dpe, 71 22 (10) -
y=

We take summation ), ., and use the Plancherel theorem to deduce
_1 1
Sg}gllﬁc,T(wy)HLg < CI(D2) S ywierll 22 (r0;22) + {Dx) Sy whe L2 (10;22)- (8:47)
y>

Thus, we get that

t t t
L 2 3 2 L, 0 2 AV 2
[ (10bicrtg Hl6erlumifly Jis < © [ etuirl? gds 0 [ 16 uherl? s

(8.48)
t
gg/ B2 . ds.
0 X3

Collecting (8.44), (8.45) and (8.48) together, we get the corollary proved. O
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8.3. The estimates of ¢, r: full construction of boundary corrector
All we have left is the term ¢y, r. Like the previous argument, we define
Pbe,R = ¢l?c,R + ¢gc7R7
where qbéq , satisfies that
(at - AE)A5¢2C,R + UpaxAs¢gc,R + UpayAs¢gc,R + 8y¢gc,Raxwp - ax¢gc,R6ywp
= _a’y(¢gc,5 +¢2c,T)azwp +BI(¢2(:,S + ()bgc,T)aywp? t> Oa HAS T7 Yy S (071)7
d:ef GO,
¢20,R|y:0 = Oa ¢gc,R|y:1 = 7(¢2c,5 +¢20,T)|y:17 AE¢20,R|y:0,1 = 07

¢2c,R|t:0 =0.

(8.49)

and
(8tAE)AE¢I%c, R + upaxAE(ﬁéc,R + UpayA5¢ll7c,R + 8y¢éc,R8xwp - 8$¢11>0,R8ywp
= _8y(¢l£c,s +¢éc,T)8Twp +8w(¢éc,s + ¢;C,T)8ywp7 t> 01 T e T7 (AS (071)7

d:efGl7
¢éc,R|y:0 = _(¢gc,5 +¢11JC,T)|y:0a ¢11;¢,R|y:1 =0, As¢zl,C,R|y:0,1 =0,

¢éc,R|t:0 =0.

(8.50)
For simplicity, denote wéq R= AEQSZQ R, which has the following relationship:
ool Tl . (8.51)
¢bc,R|y:0 = 07 (bbc,Rly:l = f )
and
Jret s el (8.52)
¢bc,R|y:0 =f, ¢bc,R|y:1 =0,
where
fo :fo(t,l‘) = _(¢8C,S+¢207T)|y=1’ (853)
fl = fl(t7$) = - (¢éc,5 +¢ic,R)|y:0' (854>
To homogenize boundary conditions, we introduce
qj)gc,R = (bgc,R +gO’ g() = y(¢gc,3 +¢gc,T)7 (855>
where &5207 , satisfies
AcGhe p = whe n+Acg",
{{ bt T be T (8.56)
Pbe, Rly=0,1 =0,
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where
Acg’ = y(Achle 5+ Dbl 1) +2(0ybhe s + Oy bpe. 1) (8.57)
Similarly, we introduce
Gbe,n = Ohe,nt9" 9" = (1=9)(Shes+dher), (8.58)

and 5% satisfies

A ~1C :wlc +A 1’
{~15¢b R = Whe, R T Acg (8.59)
(bbc,R‘y:O»l =0,
where
Acg' = (1= 9)(Aebh s+ Debhr) — 20,0 5 +0,6h 7). (8.60)

First, we give some elliptic estimates.

Lemma 8.9. Let (f°,f1), (¢°,g') — introduced in (8.53)—(8.54), (8.55) and (8.58). It
holds that

t t
. , , C ,
72 7|12 112 7|2
L (7R 19 180 Jas < [0 g (8.61)

fori=0,1.
Moreover, ¢ZC7R (i=0,1) has the following estimates:

t t t
7 C 7 7
/0 IVeienl? s <57 / WP ds+C / ool 7 . (8.62)

Proof. Here we only prove the case i = 0. The case i =1 is almost the same, and we omit
details to readers. We first give the proof for f°. By the definition of f0, we get

t t t t
C
LR gas< [iehslPgdst [ty ds <5 [ 02 s

where we used Lemma 8.4 and Corollary 8.8.
For ¢°, by Corollary 8.8, Proposition 8.3, we have

t t
[ 19 gt < [ (1900l g + 19l + 1683 + 68l )

t
gg/ IRO2 . ds,
Az Jo X3

On one hand, using Proposition 8.3, Proposition 8.5, Corollary 8.8 and Proposition 8.7,
we get

C t
2 0 2 0 2 02
s A g + 10,00 11 s < 15 [ 102 gds

t
[ (lwacdh oIy 10,65
0
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t C t
/ 18612 - ds < 71/ IRO2 . ds,
0 X2 )\§ 0 3

At last, we prove (8.62). Taking the X 3 inner product with (qu r toward (8.56), we use
integration by parts and then integrate time from 0 to ¢ that

which implies that

t t t
/ Hvséﬁgc,RHigdS:*/o <WI?C,R7¢gc,R>X%d8+/O <A590,¢2c,R>X§d«9-
0
Due to 526’ rly=0,1 =0, we use the Poincaré inequality to imply
t t
02
[t is <ot [ 103 al g+ [ lobnllgas. 669

According to (8.61), we get

t
/0 (Beg® B p)  gds < / 18060l 5 188, gl 7 ds (8.64)

N Ny
Combining (8.63) and (8.64), we deduce

t t t
~ C
02 0|2 0 |2
L 19l as <y [ s C [ lodnl? s
Bringing Veqﬁgc) R= Veagc) r— Ve ¢° into the above inequality, we obtain

t t t
L 19l s < [ IVl g st [ 19 g s

<C L op asro [ el 2 ds
=i o x3 o e RlyE

By now, we finish the proof. O

In order to estimate the right-hand side of (8.49) and (8.50) and the boundary term,
we need the following results:

Lemma 8.10. Fori=0,1, we have that
t ) ) ) ) c [t .
| 100G+ ey 10,6l + el Jas <7 [ W gds (5.9
t , t c ot
[ 100hrlmonlgds < € [ lodenl?gdst 5 [ WEds s60)

/t<a (Sho. )0y Gher)e) ["d <c/twi 2 ds+C/t|hi|2 ds.  (.67)
0 2\ Pbe, R) P Yy\Pbc, R) P m2ly—o S > 0 be, R % )\% 0 X% : .
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Proof. Here, we only prove the case i = 0. The case i =1 is almost the same, and we
omit details to readers.

By Proposition 8.3 and Corollary 8.8, we get (8.65) proved.

Next, we deal with the boundary term. A direct calculation gives that

ay¢gc,R|y:1 = (ay¢gc,R - ay90)|y:1
= y¢gc,R|y:1 - (ay¢gc,s + 3y¢gc,T)|y:1 - (d)gc,S + ¢gc,T)|y:17

and
ay(bl?c,R‘y:O = (ayd)gc,R - 3yg0)\y=0 = 8y¢gc,R‘y=07

due to ¢26,S|y:0 = ¢gc,T|y:0 =0.
By Corollary 8.8, we get

t t t
~ C
[ 10nlmorPyds <57 [0 gas+C [ (It nll g + 180001, s

t t
c
< 02 02
< C/o ||Wbc,R||ngS+>\%/o W[, 7 ds,

where we use an elliptic estimate and the Calderon-Zygmund inequality
10000 all 5 + 16288 &l 5 < Cllt gl 3 +ClASN 5.

For the last estimate, we use (8.66) and (8.61) to imply
! 0 0 y=1 Lo 0 o
o <am(¢bc,R)<I>;ay(¢bc,R)¢‘>Hg ‘y:ods S C o |(¢bc,s + ¢bc,T)|y:1 |X% |6y¢>bc7R|y:1 |X% ds
t
<€ [ 1£°1,510,08 rlymal 3 s

t C t
< 0/ lwpe, &I 1d5+*1/ |h°? 1 ds.
0 ? X3 A2 Jo X3

Here, we complete this lemma. O

We are coming to the main part of this section. We shall give the estimate for the
system (8.49) and (8.50).

Proposition 8.11. Let ¢EC,R and (bl%C,R be the solution of (8.49) and (8.50), respectively,
and Wi, p =A@y, g fori=0,1. Then, for everyi=0,1, it holds that

. t . t . . t .
e, Ot [ el 3 st [ (IVe0he, g +10uhe, mlumoa 2 st [ IVewsie, s
c [t .
<< [P ds telom),
Az Jo X3
where 0 < T < min{T}, 55 }.

Proof. The result mainly comes from the process of Proposition 7.1. Here we take
(Nw,eNy) =0 and €2f) + fo — C(t)0,wP is replaced by G' = —3y(¢§,c75 + ¢207T)3zwp +
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0 (Ph g + Db 7)OywP for i =0,1. In order to estimate the source term fg HGiHiéds
, , g

7

using Lemma 8.10 and product estimate in Lemma 2.2, we get

t t t
L 16 g5 < € [ 10,6k + b g s C [ 10,0+ bhar) P

t
gg/ [ . ds.
Az Jo X3

The only difference comes from the boundary conditions

Gbe,rly=i =0,  Ghe rly=1-i = —(Phe. 5 + Phe. 1) ly=1—i»

which are not zero compared with equation (6.2). We review T° in Propoposition 7.1.
After integration by parts, the boundary term is left. More precisely, we need to estimate

, y
fo < qbbc r)®,0 (¢EC’R)¢>H2’ Ods. According to Lemma 8.10, we have
2ly=

t , . y=1 b c [t
2 2
| (i modu@iemn), | s < C [ bl sty [ qas
Here, we take A large enough to complete the proof. O

8.4. Proof of Proposition 6.2

In this subsection, we combine all the above estimates to finish the proof of Proposi-
tion 6.2. Recalling the definition of ¢y.:

®oc = Pbe, s + Goe, 7 + Poc, R, (8.68)
we get that
(0r = A2)Acppe +uP 0p Acppe + 0P Oy Ac e + Oy ppc 0w — OpppcOyw? = 0,
Docly=0,1 =0, Oydpely—o ="+ Rje + Rpe,  Oyducly—1 = h' + RpO+ Rp, (8.69)
Pelt=0 =0

Here, Rgi (j=0,1, :=0,1) are linear operators and are defined by

= ( y¢bcT+ay¢bc &) ly=0:
= (Oy®be, 5+ OyBpe,r+ Oybie, ) ly=0,
= (ByPe,s + OyBpe, 7+ 0yBpe, r) ly=1,
= (8yPoe,r + Oy e, ) ly=1-

Compared with the system (8.1), we need to find (h°h') such that

{h° + R0+ Ryt = =0y daiply—0 + C (1),

8.70)
hl + R;g +Rgc1 = 7ay¢slip‘y:1 + C(t) (
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hold. To do that, we define an operator Ry.[h°,h'], which is defined by
)= (% 8, o
which is a 2 x 2 matrix operator and is well-defined on the Banach space
Zpe = {(h°, 1) € L?(0,t; L?)| /Ot |(h°,h1)\§(%ds < 400} (8.72)

Proposition 8.12. There exists \g > 1 such that if X > Ay, the map Ryc : Zpe — Zpe
defined by (8.71) satisfies

t
/
Hence, the operator I + Ry, is invertible in Zy.. Moreover, there exists (ho,h1) € Zpe such
that (8.70) holds and (ho,h1) is defined by

(ho,h1) = (I+ Roe) " (=0yBatiply=0 + C(t), = ydatiply=1+ C(1)).

2 c [
011 0 11\(2
Ry RO, }‘X%dsgg/o |(h0,h1)P. 1 ds. (8.73)

Proof. First, by Lemma 8.4, Proposition 8.8, Corollary 8.7 and Proposition 8.11, it is

easy to get
t
J

Taking A large enough, we get that the operator I 4+ Ry is invertible in Z,.. Thus, there
exists (ho,h1) € Zp. such that (8.70) holds. O

2 c [
01 0 7,1y(2
Rb(‘[h 7h ]’X%dSS )\%/0 ‘(h ah )|X%d8

Let’s continue to prove Proposition 6.2. According to Proposition 8.3, Proposition 8.6,
Corollary 8.8 and Proposition 8.11, we get by (8.68) that

t t t t
[ 190l s < [ Vet ydst [ IVl gdst [ IV nenlgds

c [
< 1/ |<h07h1)|§(%d‘9’
Az Jo

and

t t t t
/0||¢Ae¢bc||§<zd5§/0 H@Aa%qs\igds-f—/o H@Aa%c,:r\li%ds-i—/o ||Aa¢bc7R||i%dS

t
<& [ w0 ds,
Az Jo X3

which imply

t t
C
L 190l g +lohctnelfads <53 [ 10D gas.
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Due to Proposition 8.12 and taking A = (I + Ry.) !, we know A is a zero-order bounded
operator in Zp. and obtain

t t
J 10RO s = [ AC-0y0umlyma + C5) =~ Obuiplyms + O s
0 0

t
) 2 2
<0 [ (IVebuphmoaliy +ICOR)ds

which finishes this proposition.
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