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Abstract In this paper, we study the hydrostatic approximation for the Navier-Stokes system in a thin
domain. When we have convex initial data with Gevrey regularity of optimal index 3

2
in the x variable

and Sobolev regularity in the y variable, we justify the limit from the anisotropic Navier-Stokes system
to the hydrostatic Navier-Stokes/Prandtl system. Due to our method in the paper being independent
of ε, by the same argument, we also obtain the well-posedness of the hydrostatic Navier-Stokes/Prandtl
system in the optimal Gevrey space. Our results improve upon the Gevrey index of 9

8
found in [15, 35].

1. Introduction

1.1. Presentation of the problem and related results

In this article, we study 2-D incompressible Navier-Stokes equations in a thin domain

where the aspect ratio and the Reynolds number have certain constraints:⎧⎪⎨⎪⎩
∂tU +U ·∇U − ε2(∂2

x+η∂2
y)U +∇P = 0,

div U = 0,

U |y=0 = U |y=ε = 0,

(1.1)

where t≥ 0,(x,y)∈ Sε = {(x,y) ∈ T×R : 0< y < ε} . Here, U(t,x,y),P (t,x,y) stand for the
velocity and pressure function, respectively, and η is a positive constant independent of ε.

The width of domain Sε is ε, and the boundary condition in (1.1) corresponds to the

non-slip condition at the walls y = 0,ε. In addition, the system is prescribed with the
initial data of the form
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U | t=0 =
(
u0

(
x,
y

ε

)
,εv0

(
x,
y

ε

))
= Uε

0 in Sε. (1.2)

This is a classical model with applications to oceanography, meteorology and geophysical

flows, where the vertical dimension of the domain is very small compared with the

horizontal dimension of the domain.
To study the process ε→ 0, we first fix the domain independent of ε. Here, we rescale

the system (1.1) as follows:

U(t,x,y) =
(
uε

(
t,x,

y

ε

)
,εvε

(
t,x,

y

ε

))
and P (t,x,y) = pε

(
t,x,

y

ε

)
.

We put above relations into (1.1), and then (1.1) is reduced to a scaled anisotropic Navier-

Stokes system: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂tu
ε+uε∂xu

ε+vε∂yu
ε− ε2∂2

xu
ε−η∂2

yu
ε+∂xp

ε = 0,

ε2(∂tv
ε+uε∂xv

ε+vε∂yv
ε− ε2∂2

xv
ε−η∂2

yv
ε)+∂yp

ε = 0,

∂xu
ε+∂yv

ε = 0,

(uε,vε)|y=0,1 = 0,

(uε,vε)|t=0 = (u0,v0),

(1.3)

where (x,y) ∈ S = {(x,y) ∈ T× (0,1)}.
To simplify the notations, we take η = 1 in this paper and denote Δε = ε2∂2

x+∂2
y .

Formally, taking ε→ 0 in (1.3), we derive the hydrostatic Navier-Stokes/Prandtl system

(see [22, 31]):⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂tup+up∂xup+vp∂yup−η∂2
yup+∂xpp = 0 in S × (0,∞),

∂ypp = 0 in S × (0,∞),

∂xup+∂yvp = 0 in S × (0,∞),

(up,vp)|y=0,1 = 0,

up|t=0 = u0 in S.

(1.4)

This paper aims to justify the limit from the scaled anisotropic Navier-Stokes system

(1.3) to the hydrostatic Navier-Stokes/Prandtl system (1.4) for a class of convex data in
the optimal Gevrey class with index γ = 3

2 .

Before presenting the precise statement of the main result in this paper, we recall some

results on system (1.4). If η = 0 in the system (1.4), we get the hydrostatic Euler system:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂tu+u∂xu+v∂yu+∂xp= 0 in S × (0,∞),

∂yp= 0 in S × (0,∞),

∂xu+∂yv = 0 in S × (0,∞),

v|y=0,1 = 0,

u|t=0 = u0 in S.

(1.5)

There is a lot of research on the system (1.5), and readers can refer to [3, 4, 5, 16, 20,

19, 26, 31, 38]. Renardy [31] proved the linearization of (1.5) has a growth like e|k|t if
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the initial data is not uniform convexity (or concavity) with respect to the variable y.

Local well-posedness in the analytic setting was established in [20]. Under the convexity

condition, Masmoudi and Wong [26] got the well-posedness of (1.5) in the Sobolev
space.

Next, we recall some results on the well-posedness of the hydrostatic Navier-

Stokes/Prandtl system (1.4). Similar to the classical Prandtl equation, (1.4) loses one
derivative because of the term vp∂yup. Paicu, Zhang and Zhang [30] obtained the

global well-posedness of system (1.4) when the initial data is small in the analytical

space. Meanwhile, Renardy [31] also proved that the linearization of the hydrostatic
Navier-Stokes equations at certain parallel shear flows is ill-posed and may have a

growth e|k|t which is the same as (1.5) when the initial data is not convex. Thus, to

obtain well-posedness results that break through the analytic space, one may need the

convexity condition on the velocity. For that, under the convexity condition, Gérard-
Varet, Masmoudi and Vicol proved (1.4) is local well-posedness in the Gevrey class with

index 9/8 in [15]. In [15], they first derive the vorticity equations ω = ∂yu:

∂t(∂xω)+∂xv∂yω+ · · ·= 0,

where the worst term is ∂xv leading to one derivative loss. Then, they use the ‘hydrostatic
trick’ which means that they take the inner product with ∂xω/∂yω (∂yω≥ c0 > 0) instead

of ∂xω to take advantage of the cancellation:∫
∂xv∂yω · ∂xω

∂yω
=

∫
∂xv∂xω =−

∫
∂x∂yv∂xu= 0.

Such an idea was used previously in [26]. To close the energy estimates, the ‘hydrostatic

trick’ is not enough due to the ‘bad’ boundary condition of ω

∂yω|y=0 =−∂x

∫ 1

0

u2dy+ · · · ,

which loses one derivative too. To overcome that, [15] introduce the following decompo-

sition:

ω = ωbl+ωin,

where ωbl is the boundary corrector which satisfies that

∂tω
bl−∂2

yω
bl = 0, ∂yω

bl|y=0 =−∂x

∫ 1

0

u2dy.

Following the above decomposition, [15] obtain the well-posedness results of (1.4) in the
Gevrey class with index γ = 9

8 .

To search the best functional space for the system (1.4), based on the Tollmien-

Schlichting instabilities for Navier-Stokes [17], Gérard-Varet, Masmoudi and Vicol also
give the following conjecture: ‘Our conjecture - based on a formal parallel with Tollmien-

Schlichting instabilities for Navier-Stokes [18] - is that the best exponent possible should

be γ = 3
2 , but the such result is for the time being out of reach’.
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While studying the anisotropic Navier-Stokes system (1.3) and the hydrostatic Navier-

Stokes/Prandtl system (1.4), another important problem is to justify the inviscid limit.

Under the analytical setting, Paicu, Zhang and Zhang [30] justified the limit from (1.3)
to (1.4). Based on the work [15], we [35] justified the limit in the Gevrey class with index

γ = 9
8 .

In this paper, we aim to prove the conjecture of Gérard-Varet, Masmoudi and Vicol.
To do that, we use some ideas from the classical inviscid limit theory. Next, we recall the

recent development of the classical Prandtl equation and the inviscid limit theory.

There are a lot of papers studying the well-posedness of the Prandtl equation in some
special functional space. For monotonic initial data, [29, 1, 27] used a different method

to get the local existence and uniqueness of classical solutions to the Prandtl equation in

Sobolev space. Without monotonic condition, [24, 32] proved that the Prandtl equation

is well-posedness in the analytic class; [14, 23, 6] proved the well-posedness of the Prandtl
equations in the Gevrey class for a class of concave initial data. Without any structure

assumption, Dietert and Gérard-Varet [8] proved well-posedness in the Gevrey space with

index γ = 2. According to [10], γ = 2 may be the optimal index for the well-posedness
theory. For more results on the Prandtl equation, see [18, 37, 36, 39, 40].

On the inviscid limit problem, we refer to [33, 34, 21, 28, 25, 9] for the analytical class.

Note that going from analytic to Gevrey data is a challenging problem. The first result
in the Gevrey class is given by [12]. Gérard-Varet, Masmoudi and Maekawa [12] proved

the stability of the Prandtl expansion for the perturbations in the Gevrey class when

UBL(t,Y ) is a monotone and concave function where the boundary layer is the shear

type like

uν
s = (Ue(t,y),0)+(UBL(t,

y√
ν
),0),

where ν is the viscosity coefficient. Later, Chen, Wu and Zhang [7] improved the results

in [12] to get the L2∩L∞ stability. Very recently, Gérard-Varet, Masmoudi and Maekawa

[13] used a very clever decomposition to get the optimal Prandtl expansion around the

concave boundary layer. Their results generalized the one obtained in [12, 7], which
restricted to expansions of shear flow type. In their paper, they decompose the stream

function φ as follows:

φ= φslip+φbc,

where φslip enjoys a “good” boundary condition and φbc is a corrector which recover the
boundary condition. This kind of decomposition is also used in [7]. To estimate φbc, they

also need the following decomposition

φbc = φbc,S +φbc,T +φbc,R,

where φbc,S satisfies the Stokes equation, φbc,T is to correct the stretching term with

‘good’ boundary condition and φbc,R solves formally the same system as φslip. In this

paper, we apply the decomposition in [13] to justify the limit from (1.3) to (1.4).
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1.2. Statement of the main results.

Before starting the main results, we give some assumptions on the initial data. Assume

that initial data belong to the following Gevrey class:

‖e〈Dx〉
2
3 ∂yu0‖H14,0 +‖e〈Dx〉

2
3 ∂3

yu0‖H10,0 :=M <+∞, (1.6)

where Hr,s is the anisotropic Sobolev space defined by

‖f‖Hr,s = ‖‖f‖Hr
x(T)

‖Hs
y(0,1)

.

More precisely, we consider the initial data of the form

uε(0,x,y) = u0(x,y), vε(0,x,y) = v0(x,y),

which satisfies the compatibility conditions

∂xu0+∂yv0(t,x,y) = 0, u0(t,x,0) = u0(t,x,1) = v0(t,x,0) = v0(t,x,1) = 0, (1.7)

∫ 1

0

∂xu0dy = 0, ∂2
yu0|y=0,1 =

∫ 1

0

(−∂xu
2
0+∂2

yu0)−
∫
S
∂2
yu0dxdy. (1.8)

Moreover, we assume the initial velocity satisfies the convex condition

inf
S
∂2
yu0 ≥ 2c0 > 0. (1.9)

Now, we are in the position to state the main results of our paper.

Theorem 1.1. Let initial data u0 satisfy (1.6)-(1.9). Then there exist T > 0 and C > 0

independent of ε such that there exists a unique solution of the scaled anisotropic Navier–

Stokes equations (1.3) in [0,T ], which satisfies that for any t ∈ [0,T ], it holds that

‖(uε−up,εv
ε− εvp)‖L2

x,y∩L∞
x,y

≤ Cε2,

where (up,vp) is the solution to (1.4).

Remark 1.2. Although we do not give the proof that the system (1.4) is well-posedness

in Gevrey class 3
2 , one can follow the proof of Theorem 1.1 to obtain the well-posedness.

To avoid repeatability in the proof, we omit the details. Actually, the main difference

between ε= 0 and ε �= 0 is on the construction boundary corrector φbc,S , and readers can

find more details in Remark 8.1.

Remark 1.3. In the recent work [11], they established the well-posedness of the
linearized Hydrostatic Navier-Stokes system around shear flow in Gevrey class 3

2 . In our

present work, we consider the general nonlinear system and focus on the inviscid limit

problem.
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1.3. Sketch of the proof.

In this subsection, we sketch the main ingredients in our proof.

(1) Introduce the error equations. In Section 3, we deduce the error equations. We
introduce the error

uR = uε−up, vR = vε−vp, pR = pε−pp,

which satisfies {
∂tu

R−Δεu
R+vR∂yu

p+∂xp
R = · · · ,

ε2(∂tv
R−Δεv

R)+∂yp
R = · · · .

(1.10)

Here, (up,vp,pp) is an approximate solution given in (3.1). The key point in this

paper is to obtain the uniform estimate (in ε) of (uR,εvR) in the Gevrey class

with index γ = 3
2 . In view of (1.10), since vR is controlled via the relation vR =

−
∫ y

0
∂xu

Rdy′, the main difficulty comes from the term vR∂yu
p, which loses one

tangential derivative. In [35], we justify the limit in Gevrey class 9
8 . For the data in

the Gevrey class with optimal index γ = 3
2 , we need to introduce new ideas.

(2) Introduce the vorticity formulation. In order to eliminate pR, we introduce

vorticity ωR =−ε2∂xv
R+∂yu

R and rewrite the equation of ωR by stream function

φ which satisfies

vR =−∂xφ, uR = ∂yφ+C(t), C(t) =
1

2π

∫
S
uRdxdy.

Thus, we get {
(∂t−Δε)Δεφ−∂xφ∂yω

p = · · · , (x,y) ∈ S,
φ|y=0,1 = 0, ∂yφ|y=0,1 = C(t), x ∈ T.

(1.11)

We notice the term ∂xφ∂yω
p also loses one tangential derivative. But under the

convexity condition ∂yω
p ≥ c0 > 0, one can use the ‘hydrostatic trick’ to deal

with this term. Testing ωR

∂yωp to the (1.11) instead of ωR, we have the following

cancellation:

−
∫
S
∂xφ∂yω

p · ωR

∂yωp
dxdy =−

∫
S
∂xφ�εφdxdy =

∫
S
∂x|∇εφ|2dxdy = 0,

where we use φ|y=0,1 =0. However, the boundary condition of φ is ∂yφ|y=0,1 =C(t),

which brings an essential difficulty.

By the energy estimates, taking the inner product in Xr(the definition is given
in section 2) with −∂tφ, we get

sup
s∈[0,t]

(λ‖∇εφ(s)‖2
X

7
3
+‖Δεφ(s)‖2X2) (1.12)

≤ C

∫ t

0

(ε−2‖ϕΔεφ‖2X2 + ε−2‖∇εφ‖2X2 + · · ·)ds,
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where ϕ(y) = y(1 − y). All we need to do is to control ε−1‖ϕΔεφ‖X2 and

ε−1‖∇εφ‖X2 by the left-hand side of (1.12).
Motivated by [13], we expect to achieve that by a decomposition of stream

function, φ= φslip+φbc in Gevrey 3
2 regularity. Here, φslip enjoys a ‘good’ boundary

condition and φbc is a corrector which recovers the boundary condition. In the

following, we present the decomposition precisely.

(3) Gevrey estimate under artificial boundary conditions. φslip enjoying a good

boundary condition is defined by{
(∂t−Δε)ωslip−∂xφslip∂yω

p = · · · , (x,y) ∈ S
φslip|y=0,1 = 0, ωslip|y=0,1 = 0, x ∈ T,

(1.13)

where ωslip =Δεφslip. By ‘hydrostatic trick’ and Navier-slip boundary conditions,

we obtain

λ

∫ t

0

(‖ωslip‖2
X

7
3
+‖∇εφslip‖2

X
7
3
+ |∇εφslip|y=0,1|2

X
7
3
)ds≤ C

λ

∫ t

0

‖εΔεφ‖2X2ds+ · · · .

(1.14)

The full study of the Orr-Sommerfeld formulation (1.13) with Navier-slip boundary

conditions is given in Section 7.

(4) Recovery the non-slip boundary condition. In Step (3), we use the slip
boundary condition, not the real boundary condition ∂yφ|y=0,1 = C(t). To recover

the boundary condition, we introduce the following system:{
(∂t−Δε)Δεφbc−∂xφbc∂yω

p = 0, (x,y) ∈ S
φbc|y=0,1 = 0, ∂yφbc|y=i = hi, x ∈ T,

(1.15)

where ωbc =Δεφbc and i= 0,1. And we need to choose a suitable hi such that

∂yφbc|y=0,1 =−∂yφslip|y=0,1+C(t).

Next, we give the main idea for proving the existence of hi:
1. We define φbc,S = φ0

bc,S +φ1
bc,S , where φi

bc,S solve⎧⎪⎨⎪⎩
(∂t−Δε)Δεφ

i
bc,S = 0,

φi
bc,S |y=i = 0, ∂yφ

i
bc,S |y=i = hi,

φi
bc,S |t=0 = 0,

(1.16)

where x ∈ T, y ∈ (0, +∞) for i = 0 and y ∈ (−∞,1) for i = 1. Taking Fourier

transformation on t and x, we can write the precise expression of the solution to
obtain the Gevrey estimate for φi

bc,S :∫ t

0

‖∇εφ
i
bc,S‖2

X
5
2
i

+‖ϕiΔεφ
i
bc,S‖2

X
5
2
i

+‖∂xφi
bc,S‖2

X
5
3
ds≤ C

λ
1
2

∫ t

0

|hi|2
X

7
3
ds, (1.17)
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where ϕ0(y) = y, ϕ1(y) = 1− y. Compared with the decomposition in [35], we

get more regularity of ∂xφ
i
bc,S , which is a key point to get the optimal Gevrey

regularity. The details for this step are given in Section 8.1.

2. We correct the nonlocal term constructed in the above step by considering the

following equations:{
(∂t−Δε)Δεφ

i
bc,R−∂xφ

i
bc,R∂yω

p = ∂xφ
i
bc,S∂yω

p, (x,y) ∈ S
φi
bc,R|t=0 = 0, (x,y) ∈ S

(1.18)

with Navier-slip conditions. By the same process as Step (3) and combining with

the sharp estimate (1.17) to get an estimate for φi
bc,R,

λ

∫ t

0

‖ωi
bc,R‖2

X
7
3
ds+

∫ t

0

(‖∇εφ
i
bc,R‖2

X
7
3
+ |∂yφi

bc,R|y=0,1|2
X

7
3
)ds (1.19)

≤ C

λ
1
2

∫ t

0

|hi|2
X

7
3
ds+ · · · , t ∈ [0,T ].

More details are given in Section 8.3.

3. We define φbc = φbc,S + φbc,R, where φbc,S =
∑

i=0,1φ
i
bc,S and φbc,R =∑

i=0,1φ
i
bc,R, which solves system (1.15). To match the boundary condition

on the derivative of ∂yφ|y=0,1 = C(t), we need

∂yφbc,S |y=0,1+∂yφbc,R|y=0,1 = ∂yφbc|y=0,1 =−∂yφslip|y=0,1+C(t).

On one hand, φbc,S and φbc,R are defined by hi. We define a 0-order operator

Rbc given in (8.71) such that

(1+Rbc)h
i =−∂yφslip|y=0,1+C(t).

Moreover, by the estimate in Step 1 and Step 2, we can get∫ t

0

∣∣∣Rbc[h
0,h1]

∣∣∣2
X

7
3

ds≤ C

λ
1
2

∫ t

0

|(h0,h1)|2
X

7
3
ds,

which means that (1+Rbc) is an invertible operator when λ is large. That means
that φbc,S and φbc,R are well-defined and (1.15) is well-posedness. Details are

given in Section 8.4.

Due to the transport terms, we need to introduce a new auxiliary function φbc,T

between Step 1 and Step 2. For more details, see Section 8.2.

(5) Close the energy estimates (1.12). Summing estimates (1.17) and (1.19) in

Step (4), we get an estimate for φbc :∫ t

0

‖∇εφbc‖2
X

7
3
+‖ϕΔεφbc‖2

X
7
3
ds≤ C

λ
1
2

∫ t

0

|(h0,h1)|2
X

7
3
ds

≤ C

∫ t

0

|∇εφslip|y=0,1|2
X

7
3
ds+ · · · ,
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which along with (1.14), we have∫ t

0

(‖ϕω‖2
X

7
3
+‖∇εφ‖2

X
7
3
)ds≤ C

λ

∫ t

0

‖εΔεφ‖2X2ds+ · · · ,

and then we put the above estimate into (1.12) to close the estimate for system

(1.11).

1.4. Notations

– Sε = {(x,y) ∈ T×R : 0< y < ε} and S = {(x,y) ∈ T×R : 0< y < 1} .
– ∇ε = (ε∂x,∂y) and Δε = ε2∂2

x+∂2
y .

– Vorticity of Prandtl part ωp is defined by ωp = ∂yu
p.

– Vorticity of reminder part ωR =Δεφ is defined by ωR = ε2∂xv
R−∂yu

R. In this paper,

we also define ωi
bc,j =Δεφ

i
bc,j , where i= 0,1 and j ∈ {R,T}

– Cut-off functions ϕ(y) = y(1−y) and ϕi(y) = i+(−1)iy.

– C(t) = 1
2π

∫
S u

Rdxdy.

– The Fourier transform of fΦ is defined by e(1−λt)〈k〉
2
3 f̂(k).

2. Gevrey norms and preliminary lemmas

At the beginning of this section, we define the functional space Xr and the Gevrey class.
First, we define

fΦ = F−1(eΦ(t,k)f̂(k)) = eΦ(t,Dx)f, Φ(t,k)
def
= τ(t)〈k〉 2

3 , (2.1)

where τ(t)≥ 0. Moreover, it is easy to get that Φ(t,k) satisfies the subadditive inequality

Φ(t,k)≤ Φ(t,k− )+Φ(t,). (2.2)

Now, we are in the position to define Xr
τ , which is defined by

‖f‖Xr
τ
= ‖fΦ‖Hr,0 .

We say that a function f belongs to the Gevrey class 3
2 if ‖f‖Xr

τ
<+∞.

Moreover, we need to deal with some Gevrey class functions defined on the boundary.

Thus, we introduce the following functional space:

|f |Xr
τ
= ‖fΦ‖Hr

x(T)
,

where f depends on variable x.
By the definition of Xr

τ , it is easy to see that if r′ ≥ r, then ‖ · ‖Xr′
τ

≥ ‖ · ‖Xr
τ
. For

simplicity, we drop subscript τ in the notations ‖f‖Xr
τ
,|f |Xr

τ
etc. In the sequel, we always

take

τ(t) = 1−λt,

with λ≥ 1 determined later. Thus, if we take t small enough, we have τ > 0.
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In the following, we present some lemmas on product estimates in the Gevrey class
and the readers can refer to Lemmas 2.1–2.3 in [34] for details. The first lemma is the

commutator estimate in Sobolev space:

Lemma 2.1. Let r ≥ 0, s1 >
3
2 , s >

1
2 and 0≤ δ ≤ 1. Then it holds that∥∥[〈D〉r,f ]∂xg

∥∥
L2

x
≤ C‖f‖Hs1

x
‖g‖Hr

x
+C‖f‖Hr+1−δ

x
‖g‖Hs+δ

x
.

In the Gevrey class, we have the following:

Lemma 2.2. Let r ≥ 0 and s > 1
2 . Then it holds that

|fg|Xr ≤ C|f |Xs |g|Xr +C|f |Xr |g|Xs .

For the commutator in the Gevrey class, we have the following:

Lemma 2.3. Let r ≥ 0, s1 >
3
2 , s >

1
2 and 0≤ δ ≤ 1. Then it holds that

‖(f∂xg)Φ−f∂xgΦ‖Hr
x
≤ C|f |Xs1 |g|

Xr+2
3
+C|f |Xr+1−δ |g|Xs+δ .

3. Approximate equations and Error equations

3.1. Approximate equations

By the Hilbert asymptotic method, we can obtain the approximate solutions. We define
approximate solutions as the following:⎧⎪⎨⎪⎩

up(t,x,y) = u0
p(t,x,y)+ ε2u2

p(t,x,y),

vp(t,x,y) = v0p(t,x,y)+ ε2v2p(t,x,y),

pp(t,x,y) = p0p(t,x,y)+ ε2p2p(t,x,y),

(3.1)

where (u0
p,v

0
p,p

0
p) satisfies equation (1.4) and (u2

p,v
2
p,p

2
p) satisfies equation⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂tu
2
p+u0

p∂xu
2
p+v0p∂yu

2
p+u2

p∂xu
0
p+v2p∂yu

0
p+∂xp

2
p−∂2

yu
2
p =−∂2

xu
0
p,

∂yp
2
p =−(∂tv

0
p+u0

p∂xv
0
p+v0p∂yv

0
p−∂2

yv
0
p),

∂xu
2
p+∂yv

2
p = 0,

(u2
p,v

2
p)|y=0,1 = 0,

u2
p|t=0 = 0.

(3.2)

We point here that (u1
p,v

1
p,p

1
p) = 0 by matching the equation of order ε. Based on the

equation of (u0
p,v

0
p,p

0
p) and (u2

p,v
2
p,p

2
p), we deduce the approximate solution (up,vp,pp)
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which satisfies the following equation:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂tu
p+up∂xu

p+vp∂yu
p+∂xp

p−Δεu
p =−R1,

ε2(∂tv
p+up∂xv

p+vp∂yv
p−Δεv

p)+∂yp
p =−R2,

∂xu
p+∂yv

p = 0,

(up,vp)|y=0,1 = 0,

(up,vp)|t=0 = (u0,v0),

(3.3)

where reminder (R1,R2) is given by

R1 = ε4(u2
p∂xu

2
p+v2p∂yv

2
p−∂2

xu
2
p), (3.4)

R2 = ε4
(
∂tv

2
p+u0

p∂xv
2
p+u2

p∂xv
0
p+ ε2u2

p∂xv
2
p+v0p∂yv

2
p+v2p∂yv

0
p (3.5)

+ ε2v2p∂yv
2
p−∂2

x(v
0
p+ ε2v2p)−∂2

yv
2
p

)
.

By the definition of R1 and R2, it is easy to get that

(R1,R2)∼O(ε4).

3.2. Equations of error functions

We define error functions (uR,vR,pR):

uR = uε−up, vR = vε−vp, pR = pε−pp.

It is easy to deduce the system of error functions:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂tu
R−Δεu

R+∂xp
R+uε∂xu

R+uR∂xu
p+vε∂yu

R+vR∂yu
p =R1,

ε2(∂tv
R−Δεv

R+uε∂xv
R+uR∂xv

p+vε∂yv
R+vR∂yv

p)+∂yp
R =R2,

∂xu
R+∂yv

R = 0,

(uR,vR)|y=0 = (uR,vR)|y=1 = 0,

(uR,vR)|t=0 = 0.

(3.6)

For convenience, we rewrite (3.6) as⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂tu
R−Δεu

R+up∂xu
R+uR∂xu

p+vR∂yu
p+vp∂yu

R+∂xp
R =Nu+R1,

ε2(∂tv
R−Δεv

R+up∂xv
R+uR∂xv

p+vR∂yv
p+vp∂yv

R)+∂yp
R = ε2Nv +R2,

∂xu
R+∂yv

R = 0,

(uR,vR)|y=0 = (uR,vR)|y=1 = 0,

(uR,vR)|t=0 = 0.

(3.7)

Here, (Nu,Nv) is a nonlinear term given by

Nu = − (uR∂xu
R+vR∂yu

R), Nv =−(uR∂xv
R+vR∂yv

R). (3.8)
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Based on the above system, we get the equations of the vorticity ωR = ∂yu
R−ε2∂xv

R:

∂tω
R−Δεω

R+up∂xω
R+uR∂xω

p+vp∂yω
R+vR∂yω

p (3.9)

= ∂yNu− ε2∂xNv + ε2f1+f2,

where f1,f2 are defined by

f1 =−(uR∂2
xv

p+vR∂x∂yv
p), (3.10)

f2 = ∂yR1− ε2∂xR2, (3.11)

ωp = ∂yu
p. (3.12)

Moreover, following the calculations in [34], we can obtain the boundary conditions

of ωR:

(∂y + ε|D|)ωR|y=0 = ∂y(Δε,D)−1(f −N )|y=0+
1

2π

∫
S
∂tu

Rdxdy, (3.13)

(∂y − ε|D|)ωR|y=1 = ∂y(Δε,D)−1(f −N )|y=1+
1

2π

∫
S
∂tu

Rdxdy, (3.14)

where

N = ∂yNu− ε2∂xNv =−uR∂xω
R−vR∂yω

R, (3.15)

f = f3− ε2f1−f2, (3.16)

f3 = up∂xω
R+uR∂xω

p+vp∂yω
R+vR∂yω

p, ωp = ∂yu
p. (3.17)

3.3. Equations of stream function

Thanks to ∂xu
R+∂yv

R = 0 and vR|y=0,1 = 0, there exists a stream function φ satisfying
the following system:

−∂xφ= vR, ∂yφ= uR− 1

2π

∫
S
uRdxdy. (3.18)

Since
∫
T
vRdx= 0, the function φ is periodic in x. Thanks to ∂xφ|y=0,1 = 0 and φ(1,x)−

φ(0,x) = 0, we may assume that φ|y=0,1 = 0. Thus, there holds that

Δεφ= ωR in S, φ|y=0,1 = 0. (3.19)

Taking (3.18) and (3.19) into (3.9) and using the boundary condition (uR,vR)|y=0,1 = 0,

we obtain⎧⎪⎨⎪⎩
(∂t−Δε)Δεφ+up∂xΔεφ+vp∂yΔεφ+∂yφ∂xω

p−∂xφ∂yω
p

= ∂yNu− ε2∂xNv + ε2f1+f2−C(t)∂xω
p,

φ|y=0,1 = 0, ∂yφ|y=0,1 = C(t),

(3.20)

where C(t) = 1
2π

∫
S u

Rdxdy and (Nu,Nv), f1, f2 are given in (3.8), (3.10) and (3.11).
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At the end of the subsection, we state some elliptic estimates which can be obtained
by classical theory. First, by elliptic estimate and Hardy inequality, we have

‖∇εφ‖L2 ≤ C‖ϕωR‖L2, (3.21)

where ϕ(y) = y(1− y) and ∇ε = (∂y,ε∂x). Indeed, taking the L2 inner product with −φ
in (3.19) and integrating by parts, we use boundary condition φ|y=0,1 = 0 and the Hardy

inequality to have

‖∇εφ‖2L2 =−〈ωR,φ〉L2 =−〈ϕωR,
φ

ϕ
〉L2 ≤ C‖ϕωR‖L2‖∂yφ‖L2 .

Since (uR,vR) satisfies the elliptic equations{
Δεu

R = ∂yω
R,

uR|y=0,1 = 0,

{
Δεv

R =−∂xω
R,

vR|y=0,1 = 0,

we arrive at ∥∥(uR,εvR,∂yu
R,ε∂xu

R,ε∂yv
R,ε2∂xv

R)
∥∥
Xr ≤ C‖ωR‖Xr, (3.22)

for any r ≥ 0.

4. Estimate of ∇εφ and Δεφ in the Gevrey space

Before giving the estimate of ∇εφ and Δεφ, we need the estimates of the reminder terms

R1 and R2 which are defined by the approximate solution up and vp. For (up,vp), we have
the following bound:

Lemma 4.1. Let initial data u0 of (1.4) satisfy (1.6)-(1.9). There exists a time Tp such

that (ui
p,v

i
p), i= 0,2 defined in (1.4) and (3.2) have the following estimates:

‖v0p‖X11 +‖(u0
p,εv

0
p)‖X12 +‖∂yu0

p‖X12 +‖∂3
yu

0
p‖X8 ≤ C,

‖v2p‖X9 +‖(u2
p,εv

2
p)‖X10 +‖∂yu2

p‖X10 +‖∂3
yu

2
p‖X6 ≤ C,

for t ∈ [0,Tp].

Moreover, according to (3.1), it holds that

‖vp‖X9 +‖(up,εvp)‖X10 +‖∂yup‖X10 +‖∂3
yu

p‖X6 ≤ C, t ∈ [0,Tp]

and

∂yω
p ≥ c0, t ∈ [0,Tp].

Proof. Here, the key of this lemma is to prove that (1.4) is well-posedness in the Gevrey
class 3

2 which is the conjecture in [15]. If we set ε= 0 and follow the step-by-step process

in this paper, we can get the conjecture proved. Here, to avoid repeatability, we leave the

proof to the readers.
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Then, by the definition of (R1,R2) in (3.4)-(3.5), using Lemma 2.2, we get the following:

Lemma 4.2. It holds that

‖(R1,R2)‖X3 ≤ Cε4, ‖∇(R1,R2)‖X2 ≤ Cε4, t ∈ [0,Tp].

Now, we state our main result in this section:

Proposition 4.3. There exist 0<T <min{Tp,
1
2λ} and λ0 ≥ 1, such that for any t∈ [0,T ]

and λ≥ λ0, it holds that

sup
s∈[0,t]

(
λ‖∇εφ(s)‖2

X
7
3
+‖Δεφ(s)‖2X2

)
+

∫ t

0

(
‖∂t∇εφΦ‖2H2,0 +‖∇εω

R‖2L2

)
ds

≤ C

∫ t

0

(
ε−2‖ϕ�εφ‖2X2 + ε−2‖∇εφ‖2X2 +‖Δεφ‖2X2 +‖(Nu,εNv)‖2X2 +‖N‖2L2 + ε8

)
ds,

where Δεφ= ωR, ϕ(y) = y(1−y) and C is a constant independent of ε.

Proof. Acting eΦ(t,Dx) on the both sides of the first equation of (3.20), we get

(∂t+λ〈Dx〉
2
3 −Δε)ΔεφΦ+(up∂xΔεφ+vp∂yΔεφ)Φ+(∂yφ∂xω

p−∂xφ∂yω
p)Φ

= ∂y(Nu)Φ− ε2∂x(Nv)Φ+(ε2f1+f2)Φ−C(t)∂xω
p
Φ.

Taking H2,0 inner product with −∂tφΦ and using boundary conditions

φΦ|y=0,1 = 0, ∂yφΦ|y=0,1 = C(t),

we integrate by parts to arrive at

1

2

d

dt
(λ‖∇εφ‖2

X
7
3
+‖Δεφ‖2X2)+‖∂t∇εφΦ‖2H2,0 −

〈
ΔεφΦ,∂t∂yφΦ

〉
H2

x

∣∣∣y=1

y=0
(4.1)

=
〈
(up∂xΔεφ+vp∂yΔεφ)Φ,∂tφΦ

〉
H2,0

+
〈
(∂yφ∂xω

p−∂xφ∂yω
p)Φ,∂tφΦ

〉
H2,0

+
〈
∂y(Nu)Φ− ε2∂x(Nv)Φ,−∂tφΦ

〉
H2,0

+
〈
(ε2f1+f2)Φ,−∂tφΦ

〉
H2,0

−
〈
C(t)∂xω

p
Φ,−∂tφΦ

〉
H2,0

= I1+ · · ·+ I5.

First, let’s estimate Ii, i= 1, · · · ,5 term by term.

Estimate of I1. Since divergence free condition ∂xu
p+∂yv

p = 0, we get

(up∂xΔεφ+vp∂yΔεφ)Φ = ∂x(u
pΔεφ)Φ+∂y(v

pΔεφ)Φ.
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According to (up,vp)|y=0,1 = 0, we use integration by parts and Lemma 2.2 to have

I1 = −
〈
(upΔεφ)Φ,∂t∂xφΦ

〉
H2,0

−
〈
(vpΔεφ)Φ,∂t∂yφΦ

〉
H2,0

≤ C
∥∥∥|up

ϕ
|X2 |ϕΔεφ|X2

∥∥∥
L2

y

‖∂t∂xφΦ‖H2,0 +C
∥∥∥|vp

ϕ
|X2 |ϕΔεφ|X2

∥∥∥
L2

y

‖∂t∂yφΦ‖H2,0

≤ C‖|u
p

ϕ
|X2‖L∞

y
‖ϕΔεφ‖X2‖∂t∂xφΦ‖H2,0 +C

∥∥∥|vp
ϕ
|X2‖L∞

y
‖ϕΔεφ‖X2‖∂t∂yφΦ‖H2,0

≤ Cε−1‖ϕΔεφ‖X2‖∂t∇εφΦ‖H2,0 .

Estimate of I2. Similarly, we write

(∂yφ∂xω
p−∂xφ∂yω

p)Φ =
(
∂x(∂yφω

p)−∂y(∂xφω
p)
)
Φ
.

Then, along with φ|y=0,1 = 0, we use integration by parts and Lemma 2.2 to deduce

I2 =
〈
∂x(∂yφω

p)Φ−∂y(∂xφΦω
p)Φ,∂tφΦ

〉
H2,0

= −
〈
(∂yφω

p)Φ,∂t∂xφΦ

〉
H2,0

+
〈
(∂xφω

p)Φ,∂t∂yφΦ

〉
H2,0

≤ C‖|ωp|X2‖L∞
y
‖∂yφ‖X2‖∂t∂xφΦ‖H2,0 +C‖|ωp|X2‖L∞

y
‖∂xφ‖X2‖∂t∂yφΦ‖H2,0

≤ Cε−1‖∇εφ‖X2‖∂t∇εφΦ‖H2,0 .

Estimate of I3. Due to φ|y=0,1 = 0, taking integration by parts, it yields that

I3 ≤ C‖(Nu,εNv)‖X2‖∂t∇εφΦ‖H2,0 .

Estimate of I4. Recall f1 and f2 in (3.10)-(3.11). According to (3.22) and Lemma 4.2,
we have

I4 ≤ C(‖ε2f1‖X2 +‖f2‖X2)‖∂tφΦ‖H2,0

≤ C(ε2‖uR‖X2 + ε‖εvR‖X2 + ε4)‖∂t∂yφΦ‖H2,0

≤ C(ε‖Δεφ‖X2 + ε4)‖∂t∂yφΦ‖H2,0 .

Estimate of I5. Poincaré inequality implies

‖∂tφΦ‖H2,0 ≤ C‖∂t∂yφΦ‖H2,0,

for φ|y=0,1 = 0. Since

|C(t)|= | 1
2π

∫
S
uRdxdy| ≤ C‖uR‖L2 ≤ C‖ωR‖L2 ≤ C‖Δεφ‖L2,

we get

I5 ≤ C‖Δεφ‖L2‖∂t∂yφΦ‖H2,0 .
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Collecting I1− I5 together, it holds that

I1+ · · ·+ I5 ≤ Cε−1‖ϕΔεφ‖X2‖∂t∇εφΦ‖H2,0 +Cε−1‖∇εφ‖X2‖∂t∇εφΦ‖H2,0

+C‖(Nu,εNv)‖X2‖∂t∇εφΦ‖H2,0 +C‖Δεφ‖L2‖∂t∂yφΦ‖H2,0 (4.2)

+C(ε‖Δεφ‖X2 + ε4)‖∂t∂yφΦ‖H2,0

≤ 1

10
‖∂t∇εφΦ‖2H2,0 +C

(
ε−2‖ϕΔεφ‖2X2 + ε−2‖∇εφ‖2X2 +‖Δεφ‖2X2

)
+C

(
‖(Nu,εNv)‖X2 + ε8

)
.

Next, we focus on the boundary term
〈
ΔεφΦ,∂t∂yφΦ

〉
H2

x

∣∣∣y=1

y=0
. First, we give the

estimate of C ′(t): ∫
S
∂tu

Rdxdy =

∫
S
∂2
yu

Rdxdy =

∫
S
∂yω

Rdxdy,

which gives ∣∣∣∫
S
∂tu

Rdxdy
∣∣∣≤ ‖∂yωR‖L1 . (4.3)

Owing to

∂t∂yφ̂Φ|y=0,1(k) = C ′(t)δ(k),

where δ(k) is a Dirac function and k ∈ Z, we have〈
ΔεφΦ,∂t∂yφΦ

〉
H2

x

∣∣∣y=1

y=0
=

〈
Δεφ

∣∣∣y=1

y=0
,C ′(t)

〉
L2

x

=
〈∫ 1

0

∂yΔεφdy,C
′(t)

〉
L2

x

≤ CC ′(t)‖∂yωR‖L2 ≤ C‖∂yωR‖2L2,

where we used (4.3) in the last step.

Putting the above estimate and (4.2) into (4.1), we get

1

2

d

dt
(λ‖∇εφ‖2

X
7
3
+‖Δεφ‖2X2)

≤ C
(
ε−2‖ϕΔεφ‖2X2 + ε−2‖∇εφ‖2X2 +‖(Nu,εNv)‖2X2 +‖Δεφ‖2X2 +‖∂yωR‖2L2 + ε8

)
.

(4.4)

Next, we give the estimates of ‖∂yωR‖2L2 . First, we recall the equation of ωR:

∂tω
R−Δεω

R+up∂xω
R+uR∂xω

p+vp∂yω
R+vR∂yω

p (4.5)

= ∂yNu− ε2∂xNv + ε2f1+f2,

with boundary conditions

(∂y + ε|D|)ωR|y=0 = ∂y(Δε,D)−1(f −N )|y=0+
1

2π

∫
S
∂tu

Rdxdy, (4.6)

(∂y − ε|D|)ωR|y=1 = ∂y(Δε,D)−1(f −N )|y=1+
1

2π

∫
S
∂tu

Rdxdy, (4.7)

where f1, f2,f and N are given in (3.10)-(3.16).
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Taking the L2 inner product with ωR on (4.5) and integration by parts, it follows from

(Nu,εNv)|y=0,1 = 0 and (up,vp)|y=0,1 = 0 to obtain

1

2

d

dt
‖ωR‖2L2+‖∇εω

R‖2L2 −
∫
T

∂yω
RωRdx

∣∣∣y=1

y=0
(4.8)

≤ C‖(uR,vR)‖L2‖ωR‖L2 +C‖(Nu,εNv)‖L2‖∇εω
R‖L2

+C(‖ε2uR‖L2 +‖ε2vR‖L2 + ε4)‖ωR‖L2

≤ 1

10
‖∇εω

R‖2L2 +C(‖(Nu,εNv)‖2L2 +‖ωR‖2H1,0 + ε8).

For the boundary term, we use (4.6)-(4.7) to write∫
T

∂yω
RωRdx

∣∣∣y=1

y=0
=

∫
T

(
ε|D|ωR|y=1+∂y(Δε,D)−1(f −N )|y=1+C(t)

)
ωR|y=1dx

−
∫
T

(
− ε|D|ωR|y=0+∂y(Δε,D)−1(f −N )|y=0+C(t)

)
ωR|y=0dx

=

∫
T

(ε|D|ωR ωR)|y=0,1dx+C(t)

∫
T

ωR|y=1
y=0dx

+

∫
S
∂y

(
∂y(Δε,D)−1(f −N )ωR

)
dxdy =B1+B2+B3.

Let y0 ∈ [0,1] so that

‖ε|D|ωR(y0)‖L2
x
≤ ‖ε|D|ωR‖L2 .

Then, along with Gagliardo-Nirenberg inequality

‖g‖L∞
y

≤ C‖g‖
1
2

L2
y

(
‖g‖

1
2

L2
y
+‖∂yg‖

1
2

L2
y

)
, (4.9)

it infers that

B1 =

∫ 1

y0

∂y(ε|D|ωRωR)dxdy+

∫ 0

y0

∂y(ε|D|ωRωR)dxdy+2

∫
T

(ε|D|ωR ωR)|y=y0
dx

≤ C‖ε|D|ωR‖L2‖∂yωR‖L2 +C‖ε|D|ωR‖L2‖ωR‖L∞
y (L2

x)

≤ Cε‖ωR‖2H1,0 +Cε‖∂yωR‖2L2 .

Similarly, we use (4.9) and |C(t)| ≤ C‖uR‖L2 ≤ C‖ωR‖L2 to have

B2 ≤ C|C(t)|‖ωR‖L∞
y (L2

x)
≤ C‖ωR‖

3
2

L2(‖ωR‖
1
2

L2 +‖∂yωR‖
1
2 )

L2

≤ 1

10
‖∂yωR‖2L2 +C‖ωR‖2L2 .

All we have left is to doB3.With the fact that operator ∂y(�ε,D)−1, ∂y(�ε,D)−1(∂y,ε∂x)

and ∂2
y(�ε,D)−1 are bounded from L2 → L2, we have
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B3 =

∫
S
∂2
y(�ε,D)−1(f −N )ωRdxdy+

∫
S
∂y(�ε,D)−1∂y(v

pωR)∂yω
Rdxdy

+

∫
S
∂y(�ε,D)−1(f −∂y(v

pωR)−∂yNu− ε2∂xNv)∂yω
Rdxdy

≤ C‖f −N‖L2‖ωR‖L2 +C‖vpωR‖L2‖∂yωR‖L2

+C(‖f −∂y(v
pωR)‖L2 +‖(Nu,εNv)‖L2)‖∂yωR‖L2 .

According to the definition of (3.16) and (3.15), we have

‖f‖L2 ≤ C(‖∂xωR‖L2 +‖∂yωR‖L2 +‖(uR,vR)‖L2 + ε4)

≤ C(‖ωR‖H1,0 +‖∂yωR‖L2 + ε4),

and

‖f −∂y(v
pωR)‖L2 ≤ C(‖∂xωR‖L2 +‖(uR,vR)‖L2 + ε4)

≤ C(‖ωR‖H1,0 + ε4),

which give that

B3 ≤ C(‖ωR‖H1,0 +‖∂yωR‖L2 +‖N‖L2 + ε4)‖ωR‖L2

+C(‖ωR‖H1,0 +‖(Nu,εNv)‖L2 + ε4)‖∂yωR‖L2

≤ 1

10
‖∂yωR‖2L2 +C(‖ωR‖2H1,0 +‖(Nu,εNv)‖2L2 +‖N‖2L2 + ε8).

Summarizing B1−B3 together, we obtain∣∣∣∫
T

∂yω
RωRdx

∣∣∣y=1

y=0

∣∣∣≤ (
1

5
+Cε)‖∂yωR‖2L2 +C(‖ωR‖2H1,0 +‖(Nu,εNv)‖2L2 +‖N‖2L2 + ε8).

(4.10)

Substituting (4.10) into (4.8), we take ε small enough to arrive at

1

2

d

dt
‖ωR‖2L2+

1

2
‖∇εω

R‖2L2

≤ C(‖(Nu,εNv)‖2L2 +‖ωR‖2H1,0 + ε8)

+C(‖ωR‖2H1,0 +‖(Nu,εNv)‖2L2 +‖N‖2L2 + ε8)

≤ C(‖Δεφ‖2H1,0 +‖(Nu,εNv)‖2L2 +‖N‖2L2 + ε8).

Bring the above estimate into (4.4) and integrate time from 0 to t to get the desired
results.

5. Sketch the proof to Theorem 1.1

In this section, we shall sketch the proof of Theorem 1.1. In the paper, we use the continued

argument. Here, we define

T ∗ def
= sup{t > 0| sup

s∈[0,t]

‖ωR‖X2 ≤ Cε3}. (5.1)
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5.1. The key a priori estimates.

In this subsection, we shall present the key a priori estimates used in the proof of

Theorem 1.1.

By Proposition 4.3, we need the estimates of
∫ t

0
(‖∇εφ‖2X2 +‖ϕΔεφ‖2X2)ds to close the

energy.

Proposition 5.1. Let φ be the solution of (3.20). Then there exists λ0 ≥ 1 and 0< T <

min{Tp,
1
2λ} such that for λ≥ λ0 and t ∈ [0,T ], it holds that∫ t

0

(‖∇εφ‖2X2 +‖ϕΔεφ‖2X2)ds≤ C

∫ t

0

(‖(Nu,εNv)‖2X2 +‖εΔεφ‖2
X

5
3
+ ε8)ds, (5.2)

with t ∈ [0,T ].

The proof of the above proposition is the main part of this paper, and we prove it in

Section 6.

5.2. Proof of Theorem 1.1

Before we prove Theorem 1.1, we first give the estimates for the nonlinear terms:

Proposition 5.2. Under the assumption (5.1), there holds that∫ t

0

‖(Nu,εNv)‖2X2ds≤ Cε4
∫ t

0

‖ωR‖2X2ds, (5.3)

∫ t

0

‖N‖2L2ds≤ Cε4
∫ t

0

‖∇εω
R‖2L2ds, (5.4)

where t ∈ [0,T ∗].

Proof. By the definition of Nu, we have∫ t

0

‖Nu‖2X2ds≤
∫ t

0

‖uR∂xu
R‖2X2ds+

∫ t

0

‖vR∂yuR‖2X2ds= I1+ I2.

It follows from Lemma 2.2 and (3.22) that

I1 ≤ C

∫ t

0

‖u
R
Φ

ε
‖2L∞

y (H2
x)
‖ε∂xuR‖2X2ds

≤ Cε−2

∫ t

0

‖uR‖X2(‖uR‖X2 +‖∂yuR‖X2)‖ε∂xuR‖2X2ds

≤ Cε−2

∫ t

0

‖ωR‖4X2ds,

where we use the Gagliardo-Nirenberg inequality (4.9) in the second step.
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Similarly, we use Lemma 2.2 and (3.22) to deduce

I2 ≤ C

∫ t

0

‖vRΦ‖2L∞
y (H2

x)
‖∂yuR‖2X2ds≤ Cε−2

∫ t

0

‖ε∂xuR‖2X2‖∂yuR‖2X2ds

≤ Cε−2

∫ t

0

‖ωR‖4X2ds,

where we use vR =−
∫ y

0
∂xu

Rdy′ in the second step.

Collecting I1 and I2 together and using (5.1), it holds that∫ t

0

‖Nu‖2X2ds≤ Cε−2

∫ t

0

‖ωR‖4X2ds≤ Cε4
∫ t

0

‖ωR‖2X2ds.

The estimate for εNv is obtained by changing uR into εvR in the above argument and

we omit details. Thus, we obtain (5.3).

For (5.4), we use the definition of N to have∫ t

0

‖N‖2L2ds≤
∫ t

0

‖uR∂xω
R‖2L2ds+

∫ t

0

‖vR∂yωR‖2L2ds

≤ ε−2

∫ t

0

‖uR‖2L∞
y (H1

x)
‖ε∂xωR‖2L2ds+

∫ t

0

‖vR‖2L∞
y (H1

x)
‖∂yωR‖2L2ds

≤ Cε−2

∫ t

0

‖ωR‖2H1,0‖ε∂xωR‖2L2ds+C

∫ t

0

‖ωR‖2H2,0‖∂yωR‖2L2ds

≤ Cε−2 sup
s∈[0,t]

‖ωR‖2X2

∫ t

0

‖∇εω
R‖2L2ds

≤ Cε4
∫ t

0

‖∇εω
R‖2L2ds

by (5.1), and we obtain (5.4).

With Proposition 5.1 and Proposition 5.2 in hand, we are in the position to prove
Theorem 1.1. By Proposition 4.3, Proposition 5.1 and Proposition 5.2, we get

sup
s∈[0,t]

(λ‖∇εφ(s)‖2
X

7
3
+‖Δεφ(s)‖2X2)+

∫ t

0

‖∂t∇εφΦ‖2H2,0 ≤ Ctε6+C

∫ t

0

‖Δεφ(s)‖2X2ds,

for t ∈ [0,T ]. By the Gronwall inequality and choosing a small T <min{Tp,
1
2λ}, we get

that

sup
s∈[0,t]

(λ‖∇εφ(s)‖2
X

7
3
+‖ωR‖2X2)+

∫ t

0

‖∂t∇εφΦ‖2H2,0 ≤
C

2
ε6.

By the Sobolev embedding theorem and Lemma 4.1, we get Theorem 1.1 proved.
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6. The proof of Proposition 5.1

All we have left is to prove Proposition 5.1. To prove that, we first give the following
decomposition of φ:

φ= φslip+φbc, (6.1)

where φslip satisfies that⎧⎪⎪⎪⎨⎪⎪⎪⎩
(∂t−Δε)Δεφslip+up∂xΔεφslip+vp∂yΔεφslip+∂yφslip∂xω

p−∂xφslip∂yω
p

= ∂yNu− ε2∂xNv + ε2f1+f2−C(t)∂xω
p,

φslip|y=0,1 = 0, Δεφslip|y=0,1 = 0,

φslip|t=0 = 0,

(6.2)

and φbc satisfies that⎧⎪⎨⎪⎩
(∂t−Δε)Δεφbc+up∂xΔεφbc+vp∂yΔεφbc+∂yφbc∂xω

p−∂xφbc∂yω
p = 0,

φbc|y=0,1 = 0, ∂yφbc|y=0,1 =−∂yφslip|y=0,1+C(t)

φbc|t=0 = 0.

(6.3)

To prove Proposition 5.1, we need the estimates of φslip and φbc. First, we notice that

φslip has a good boundary condition. We use the ‘hydrostatic trick’ method to get its

estimates. The proof of the following proposition is given in Section 7.

Proposition 6.1. There exists λ0 > 1and 0<T <min{Tp,
1
2λ} such that for all t∈ [0,T ],

λ≥ λ0, there holds that

‖Δεφslip‖2X2+λ

∫ t

0

(‖Δεφslip‖2
X

7
3
+‖∇εφslip‖2

X
7
3
+ |∇εφslip|y=0,1|2

X
7
3
)ds+

∫ t

0

‖∇εΔεφslip‖2X2ds

≤ C

∫ t

0

‖(Nu,εNv)‖2X2ds+
C

λ

∫ t

0

‖(C(t),ε2f1,f2)‖2
X

5
3
ds.

The estimates of φbc are much more difficult. Here, we state the main results on it:

Proposition 6.2. There exists λ0 > 1and 0<T <min{Tp,
1
2λ} such that for all t∈ [0,T ],

λ≥ λ0, there holds that∫ t

0

‖∇εφbc‖2
X

7
3
+‖ϕΔεφbc‖2X2ds≤

C

λ
1
2

∫ t

0

(
|∇εφslip|y=0,1|2

X
7
3
+ |C(s)|2

)
ds, (6.4)

where C is a universal constant.

The proof of Proposition 6.2 is given in Section 8.

Based on the above two propositions, we are in the position to prove Proposition 5.1.

First, we give the estimates of ‖uR‖L2 which are used to control the C(t).

Lemma 6.3. There exist 0 < T < min{Tp,
1
2λ} and λ0 ≥ 1 such that for t ∈ [0,T ] and

λ≥ λ0, it holds that
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‖e(1−λt)(uR,εvR)‖2L2+λ

∫ t

0

‖e(1−λs)(uR,εvR)‖2L2ds+

∫ t

0

‖e(1−λs)∇ε(u
R,εvR)‖2L2ds (6.5)

≤ C

∫ t

0

(‖e(1−λs)(Nu,εNv)‖2L2 + ε8)ds+
C

λ

∫ t

0

‖∇εφ‖2X2ds.

Remark 6.4. We use weighted quantity ‖e(1−λt)(uR,εvR)‖L2 instead of ‖(uR,εvR)‖L2

to obtain a small constant factor in front of
∫ t

0
‖∇εφ‖2X2ds in (6.5).

Proof. Taking the L2 inner product with e2(1−λt)uR in the first equation of (3.7) and

with e2(1−λt)vR in the second equation of (3.7), we use the fact

∂t(e
2(1−λt)f) = e2(1−λt)∂tf +2λe2(1−λt)f

and integrate by parts by boundary condition (uR,vR)|y=0,1 = 0 to yield

1

2

d

dt
‖e(1−λt)(uR,εvR)‖2L2 +λ‖e(1−λt)(uR,εvR)‖2L2 +‖e(1−λt)∇ε(u

R,εvR)‖2L2

≤ C(‖e(1−λt)(uR,vR)‖L2 +‖e(1−λt)(Nu,εNv)‖L2 +‖(R1,R2)‖L2)‖e(1−λt)(uR,εvR)‖L2

≤ λ

2
‖e(1−λt)(uR,εvR)‖2L2 +C(‖e(1−λt)(Nu,εNv)‖2L2 + ε8)+

C

λ
‖e(1−λt)∂xu

R‖2L2,

where we write vR = −
∫ y

0
∂xu

Rdy′ and use the fact ∂xu
p + ∂yv

p = 0 to eliminate the

transport term and ∂xu
R+∂yv

R = 0 to eliminate the pressure term, respectively.
Afterwards, integrating time from 0 to t and using ∂xu

R =−∂x∂yφ, we obtain

‖e(1−λt)(uR,εvR)(t)‖2L2+λ

∫ t

0

‖e(1−λs)(uR,εvR)‖2L2ds+

∫ t

0

‖e(1−λs)∇ε(u
R,εvR)‖2L2ds

≤ C

∫ t

0

(‖e(1−λs)(Nu,εNv)‖2L2 + ε8)ds+
C

λ

∫ t

0

‖e(1−λs)∂x∂yφ‖2L2ds.

Finally, we use ‖e(1−λs)∂x∂yφ‖L2 ≤ C‖∇εφ‖X2 to complete the proof.

Proof of Proposition 5.1. Now, we give the proof Proposition 5.1. We divide this proof
into two parts.

Estimates of
∫ t

0
‖∇εφ‖2X2 . Since

|C(t)|= | 1
2π

∫
S
uRdxdy| ≤ C‖uR‖L2 ≤ C‖e(1−λt)uR‖L2,

by Lemma 6.3, we ensure

|C(t)|2 ≤ C

∫ t

0

(‖e(1−λs)(Nu,εNv)‖2L2 + ε8)ds+
C

λ

∫ t

0

‖∇εφ‖2X2ds. (6.6)

By the definition of f1 and f2, we obtain that∫ t

0

‖f1‖2
X

5
3
+‖f2‖2

X
5
3
ds≤ C

∫ t

0

(‖ε�εφ‖2
X

5
3
+ ε8)ds,
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and we get

λ

∫ t

0

(‖Δεφslip‖2
X

7
3
+‖∇εφslip‖2

X
7
3
+ |∇εφslip|y=0,1|2

X
7
3
)ds (6.7)

≤ C

∫ t

0

‖(Nu,εNv)‖2X2ds+
C

λ

(
|C(t)|2+

∫ t

0

(‖εΔεφ‖2
X

5
3
+ ε8)ds

)
.

Then, it follows φ= φslip+φbc and (6.4) to deduce

∫ t

0

‖∇εφ‖2X2ds≤
∫ t

0

‖∇εφslip‖2X2ds+

∫ t

0

‖∇εφbc‖2X2ds (6.8)

≤ C

λ

∫ t

0

‖(Nu,εNv)‖2X2ds+
C

λ2

(∫ t

0

‖εΔεφ‖2
X

5
3
+ ε8ds

)
+

C

λ
1
2

∫ t

0

|∇εφslip|y=0,1|2
X

7
3
ds+

C

λ
1
2

|C(t)|2,

≤ C

λ
1
2

|C(t)|2+ C

λ

∫ t

0

‖(Nu,εNv)‖2X2ds+
C

λ2

∫ t

0

(‖εΔεφ‖2
X

5
3
+ ε8)ds.

Plusing (6.6) and above estimates together and taking λ large enough, we get

|C(t)|2+
∫ t

0

‖∇εφ‖2X2ds≤ C

∫ t

0

‖(Nu,εNv)‖2X2ds+C

∫ t

0

(‖εΔεφ‖2
X

5
3
+ ε8)ds. (6.9)

Estimates of
∫ t

0
‖ϕ�εφ‖2X2 .

It follows from (6.7) and (6.9) that

∫ t

0

‖Δεφslip‖2X2ds≤
C

λ

∫ t

0

‖(Nu,εNv)‖2X2ds+
C

λ

(
|C(t)|2+

∫ t

0

(‖εΔεφ‖2
X

5
3
+ ε8)ds

)
≤ C

λ

∫ t

0

(‖(Nu,εNv)‖2X2 +‖εΔεφ‖2
X

5
3
+ ε8)ds.

Applying Proposition 6.2 again, we get∫ t

0

‖ϕΔεφbc‖2X2ds≤ C

∫ t

0

(‖(Nu,εNv)‖2X2 +‖εΔεφ‖2
X

5
3
+ ε8)ds.

Combining the above two estimates, we get∫ t

0

‖ϕΔεφ‖2X2ds≤ C

∫ t

0

(‖(Nu,εNv)‖2X2 +‖εΔεφ‖2
X

5
3
+ ε8)ds.

By now, we get the desired results.
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7. Vorticity estimates under artificial boundary condition: Proof of

Proposition 6.1

In this section, we give the proof of Proposition 6.1. To simplify the notation, we drop

the subscript in the system (6.2):⎧⎪⎪⎪⎨⎪⎪⎪⎩
(∂t−Δε)Δεφ+up∂xΔεφ+vp∂yΔεφ+∂yφ∂xω

p−∂xφ∂yω
p

= ∂yNu− ε2∂xNv + ε2f1+f2−C(t)∂xω
p,

φ|y=0,1 = 0, Δεφ|y=0,1 = 0,

φ|t=0 = 0.

(7.1)

The goal in this section is to establish a uniform (in ε) estimate of vorticity ω =�εφ.

Proposition 7.1. There exists λ0 > 0 and 0<T <min{Tp,
1
2λ} such that for all t∈ [0,T ],

λ≥ λ0, the following holds:

‖ω(t)‖2X2+λ

∫ t

0

(‖ω‖2
X

7
3
+‖∇εφ‖2

X
7
3
+ |∇εφ|y=0,1|2

X
7
3
)ds+

∫ t

0

‖∇εω‖2X2ds

≤ C

∫ t

0

‖(Nu,εNv)‖2X2ds+
C

λ

∫ t

0

‖ε2f1,f2,C(t)‖2
X

5
3
ds.

Proof. By Lemma 4.1, we have

∂yω
p ≥ c0 > 0.

Hence, we use the ‘hydrostatic trick’ to get the desired results. First, acting operator

eΦ(t,Dx) on the first equation of (6.2), we get

(∂t+λ〈Dx〉
2
3 −Δε)ωΦ+up∂xωΦ+vp∂yωΦ−∂xφΦ∂yω

p (7.2)

=−(∂yφ∂xω
p)Φ− [eΦ(t,Dx),up∂x]ω− [eΦ(t,Dx),vp∂y]ω

+[eΦ(t,Dx),∂yω
p]∂xφ+∂y(Nu)Φ− ε2∂x(Nv)Φ+(ε2f1+f2−C(t)∂xω

p)Φ.

In view of (7.2), the terrible term comes from ∂xφΦ∂yω
p, which loses one tangential

derivative. In order to overcome the derivative loss, we take 〈Dx〉2 on the (7.2) and then

take the L2 inner product with 〈Dx〉2ωΦ

∂yωp to obtain that

1

2

d

dt

∥∥∥ 〈Dx〉2ωΦ√
∂yωp

∥∥∥2

L2
+λ

∥∥∥ 〈Dx〉
7
3 ωΦ√

∂yωp

∥∥∥2

L2
+
∥∥∥∇ε〈Dx〉2ωΦ√

∂yωp

∥∥∥2

L2

= −
∫
S
〈Dx〉2ωΦ · (ε∂x,∂y)

1

∂yωp
· (ε∂x,∂y)〈Dx〉2ωΦdxdy

+

∫
S
|〈Dx〉2ωΦ|2

(
∂x(

up

∂yωp
)+∂y(

vp

∂yωp
)
)
dxdy−

∫
S

[
〈Dx〉2,up∂x+vp∂y

]
ωΦ

〈Dx〉2ωΦ

∂yωp
dxdy

−
∫
S
〈Dx〉2(∂yφ∂xωp)Φ

〈Dx〉2ωΦ

∂yωp
dxdy+

∫
S
[〈Dx〉2,∂yωp]∂xφΦ

〈Dx〉2ωΦ

∂yωp
dxdy

+

∫
S
〈Dx〉2∂xφΦ〈Dx〉2ωΦdxdy−

∫
S
〈Dx〉2

(
[eΦ(t,Dx),up∂x]ω

) 〈Dx〉2ωΦ

∂yωp
dxdy
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−
∫
S
〈Dx〉2

(
[eΦ(t,Dx),vp∂y]ω

) 〈Dx〉2ωΦ

∂yωp
dxdy

+

∫
S
〈Dx〉2

(
[eΦ(t,Dx),∂yω

p]∂xφ
) 〈Dx〉2ωΦ

∂yωp
dxdy

+

∫
S
〈Dx〉2

(
∂y(Nu)Φ− ε2∂x(Nv)Φ

) 〈Dx〉2ωΦ

∂yωp
dxdy

+

∫
S
〈Dx〉2(ε2f1+f2−C(t)∂xω

p)Φ
〈Dx〉2ωΦ

∂yωp
dxdy

= T 0+ · · ·T 10.

The boundary term is zero due to artificial boundary condition ω|y=0,1 =Δεφ|y=0,1 = 0.

Integrating on [0,t) with t≤ T and using ∂yω
p ≥ c0, we obtain

‖ω(t)‖2X2 +2λ

∫ t

0

‖ω‖2
X

7
3
ds+2

∫ t

0

‖∇εω‖2X2ds≤ C

∫ t

0

|T 0|+ · · ·+ |T 10|ds.

Now, we estimate T i,i= 0, · · · ,10 one by one.

Estimate of T 0 and T 1. Since ∂yω
p ≥ c0 > 0 and Lemma 4.1 imply

|(ε∂x,∂y)
1

∂yωp
| ≤ C, |∂x(

up

∂yωp
)|+ |∂y(

vp

∂yωp
)| ≤ C,

it is easy to see

|T 0|+ |T 1| ≤ C‖ω‖X2(‖∇εω‖X2 +‖ω‖X2).

Estimate of T 2 and T 4. By using Lemma 2.1, we get

‖[〈Dx〉2,up∂x+vp∂y
]
ωΦ‖L2 ≤ C(‖ω‖X2 +‖∂yω‖X2),

‖[〈Dx〉2,∂yωp]∂xφΦ‖L2 ≤ C‖φ‖X2 ≤ C‖∂yφ‖X2,

where we used the Poincaré inequality and φ|y=0,1 = 0 to ensure

‖φ‖Xr ≤ C‖∂yφ‖Xr, r ≥ 0 (7.3)

in the last step.

According to

Δεφ= ω, φ|y=0,1 = 0, (7.4)

classical elliptic estimate and (7.3) imply

‖∇εφ‖2L2 ≤ ‖ω‖L2‖φ‖L2 ≤ C‖ω‖L2‖∂yφ‖L2,

which gives

‖∇εφ‖Xr ≤ ‖ω‖Xr, r ≥ 0. (7.5)

Therefore, it follows from ∂yω
p ≥ c0 > 0 to get

|T 2|+ |T 4| ≤ C(‖∂yω‖X2 +‖ω‖X2)‖ω‖X2 .
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Estimate of T3. Using Lemma 2.2 and (7.5), it shows

|T 3| ≤ C‖∂yφ‖X2‖ω‖X2 ≤ C‖ω‖2X2 .

Estimate of T . This term is a troubling term because it loses one tangential derivative.

However, the hydrostatic trick implies

T 5 =

∫
S
〈Dx〉2∂xφΦ〈Dx〉2ΔεφΦdxdy =−

∫
S
〈Dx〉2∂x∇εφΦ〈Dx〉2∇εφΦdxdy

= − 1

2

∫
S
∂x|〈Dx〉2∇εφΦ|2dxdy = 0,

by using φ|y=0,1 = 0.
Estimate of T 6,T 7 and T 8. Let’s estimate commutators by Lemma 2.3. Since ∂yω

p ≥
c0 > 0, we use Lemma 2.3 to ensure that

|T 6| ≤ C‖(up∂xω)Φ−up∂xωΦ‖
H

2− 1
3
,0‖ω‖

X
7
3
≤ C‖ω‖

X
2+1− 1

3
− 1

3
‖ω‖

X
7
3
= C‖ω‖2

X
7
3
,

|T 7| ≤ C‖∂yω‖X2‖ω‖X2,

|T 8| ≤ C‖(∂xφ∂yω
p)Φ−∂xφΦ∂yω

p‖
H

2− 1
3
‖ω‖

X
7
3
≤ C‖∂xφ‖

X
2− 1

3
− 1

3
‖ω‖

X
7
3
≤ C‖φ‖

X
7
3
‖ω‖

X
7
3

≤ C‖ω‖2
X

7
3
.

Here, we use (7.3) and (7.5) in the last estimate.

Estimate of T 9 and T 10. Integration by parts and boundary condition ω|y=0,1 = 0 give
that

|T 9|=
∫
S
〈Dx〉2(Nu,εNv)Φ ·∇ε

( 〈Dx〉2ωΦ

∂yωp

)
dxdy

≤ C‖Nu,εNv‖X2(‖ω‖X2 +‖∇εω‖X2).

However, using the Hölder inequality, we get

|T 10| ≤ C‖ε2f1+f2−C(t)∂xω
p‖

X
5
3
‖ω‖

X
7
3
.

Collecting T 0−T 10 together, we finally obtain∫ t

0

|T 0|+ · · ·+ |T 10|ds≤ C

∫ t

0

‖Nu,εNv‖X2(‖∇εω‖X2 +‖ω‖X2)

+‖ω‖
X

7
3
(‖ω‖

X
7
3
+‖∇εω‖X2 +‖ε2f1+f2−C(t)∂xω

p‖
X

5
3
)ds

≤ 1

10

∫ t

0

‖∇εω‖2X2ds+C

∫ t

0

‖Nu,εNv‖2X2ds

+(C+
λ

4
)

∫ t

0

‖ω‖2
X

7
3
ds+

C

λ

∫ t

0

‖ε2f1+f2−C(t)∂xω
p‖2

X
5
3
ds.
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Taking λ large enough, we deduce

‖ω(t)‖2X2 +λ

∫ t

0

‖ω‖2
X

7
3
ds+

∫ t

0

‖∇εω‖2X2ds (7.6)

≤ C

∫ t

0

(‖Nu,εNv‖2X2ds+
C

λ

∫ t

0

‖ε2f1+f2−C(t)∂xω
p‖2

X
5
3
ds.

However, (7.5) gives

‖∇εφ‖
X

7
3
≤ C‖ω‖

X
7
3
.

Calderon-Zygmund inequality and Gagliardo-Nirenberg inequality (4.9) imply

|∇εφ|y=0,1|
X

7
3
≤ C‖∇εφ‖

1
2

X
7
3
(‖∇εφ‖

1
2

X
7
3
+‖∇ε∂yφ‖

1
2

X
7
3
)≤ C‖ω‖

X
7
3
.

Along with (7.5) and (7.6), we get the desired result.

8. Construction of the boundary corrector: Proof of Proposition 6.2

In the previous section, we construct a solution to the Orr-Sommerfeld equation with
artificial boundary conditions: we replace condition ∂yφ|y=0,1 = 0 by Δεφ|y=0,1 = 0. To

go back to the original system, we need to correct Neumann’s condition. Thus, we define

φbc which satisfies the following system:⎧⎪⎨⎪⎩
(∂t−Δε)Δεφbc+up∂xΔεφbc+vp∂yΔεφbc+∂yφbc∂xω

p−∂xφbc∂yω
p = 0,

φbc|y=0,1 = 0, ∂yφbc|y=0,1 =−∂yφslip|y=0,1+C(t),

φ|t=0 = 0,

(8.1)

To estimate φbc, we use the following decomposition:

φbc = φbc,S +φbc,T +φbc,R.

The definitions and estimates of φbc,S,φbc,T and φbc,R are given in the following

subsections.

8.1. The estimates of φbc,S: Stokes equation

In this subsection, we deal with φbc,S .

Because of two boundaries y = 0 and y = 1, we define

φbc,S = φ0
bc,S +φ1

bc,S,

where φ0
bc,S satisfies the following Stokes equation:⎧⎪⎨⎪⎩

(∂t−Δε)Δεφ
0
bc,S = 0, (x,y) ∈ T× (0,+∞)

φ0
bc,S |y=0 = 0, ∂yφ

0
bc,S |y=0 = h0,

φ0
bc,S |t=0 = 0,

(8.2)
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and φ1
bc,S satisfies the following Stokes equation:⎧⎪⎨⎪⎩

(∂t−Δε)Δεφ
1
bc,S = 0, (x,y) ∈ T× (−∞,1)

φ1
bc,S |y=1 = 0, ∂yφ

1
bc,S |y=1 = h1,

φ1
bc,S |t=0 = 0,

(8.3)

where t ∈ [0,T ]. Here, (h0,h1) is a given boundary data satisfying (h0(t),h1(t)) = 0 for

t= 0 and t≥ T. Here, we point out that hi is defined by

hi =A(−∂yφslip|y=0,1+C(t)),

where the operator A is a zero-order operator which is defined later.
In the following, we only give the process for φ0

bc,S . The case of φ
1
bc,S is almost the same

and we leave details to readers.

At first, we give zero extension of φ0
bc,S and h0 with t ≤ 0 such that we can take a

Fourier transform in t. Let φ̂0
bc,S = φ̂0

bc,S(ζ,k,y) be the Fourier transform of φ0
bc,S on x

and t. Then ̂(φ0
bc,S)Φ satisfies the ODE:⎧⎨⎩− (∂2

y − ε2|k|2)2 ̂(φ0
bc,S)Φ+(iζ+λ〈k〉

2
3 )(∂2

y − ε2|k|2) ̂(φ0
bc,S)Φ = 0, y > 0,

̂(φ0
bc,S)Φ|y=0 = 0, ∂y ̂(φ0

bc,S)Φ|y=0 = ĥ0
Φ,

(8.4)

where ζ ∈R and k ∈ Z. Assuming the decay of (|k|φ0
bc,S,∂yφ

0
bc,S) and the boundedness of

∂yφ
0
bc,S, we obtain the formula

̂(φ0
bc,S)Φ(ζ,k,y) = − e−γy − e−ε|k|y

γ− ε|k| ĥ0
Φ(ζ,k), y > 0 (8.5)

γ = γ(ζ,k,ε,λ) =

√
ε2|k|2+λ〈k〉

2
3 + iζ, (8.6)

where the square root is taken so that the real part is positive, and it follows that

ε|k|, λ 1
2 〈k〉

1
3 ≤

√
ε2|k|2+λ〈k〉

2
3 ≤Re(γ)≤ |γ| ≤ 2Re(γ). (8.7)

This inequality will be used frequently. It is easy to calculate that

∂y ̂(φ0
bc,S)Φ = − e−γyĥ0

Φ− ε|k| ̂(φ0
bc,S)Φ, (8.8)

(∂2
y − ε2|k|2) ̂(φ0

bc,S)Φ = (γ+ ε|k|)e−γyĥ0
Φ. (8.9)

The formula (8.8) will be used in estimating velocity and (8.9) will be used in estimating

vorticity. With the same process above, we get the formula for ̂(φ1
bc,S)Φ :

̂(φ1
bc,S)Φ(ζ,k,y) =

e−γ(1−y)− e−ε|k|(1−y)

γ− ε|k| ĥ1
Φ(ζ,k), y < 1, (8.10)
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with γ given in (8.6). It is easy to see

∂y ̂(φ1
bc,S)Φ = e−γ(1−y)ĥ1

Φ+ ε|k| ̂(φ1
bc,S)Φ, (8.11)

(∂2
y − ε2|k|2) ̂(φ1

bc,S)Φ = − (γ+ ε|k|)e−γ(1−y)ĥ1
Φ. (8.12)

Remark 8.1. For ε= 0 in (8.2), �0 = ∂2
y .

̂(φ0
bc,S)Φ(ζ,k,y) =− ĥ0

Φ

γ0
(e−γ0y −1), γ0 =

√
λ〈k〉

2
3 + iζ (8.13)

solves (8.4) with ε= 0 and ̂(φ0
bc,S)Φ holds limy→+∞ =

̂h0
Φ

γ0
. Though ̂(φ0

bc,S)Φ does not tend

to zero as y tends to infinity, the solution ̂(φ0
bc,S)Φ is only used to correct the boundary

condition near y = 0, and we do not care about its value at infinity. It is easy to deduce

∂y ̂(φ0
bc,S)Φ = ĥ0

Φe
−γ0y, ∂2

y
̂(φ0
bc,S)Φ =−γ0ĥ0

Φe
−γ0y, (8.14)

and we find these two terms decay to zero as y tends to infinity. By the same method,

we can get another solution near y = 1 :

̂(φ1
bc,S)Φ(ζ,k,y) =

ĥ0
Φ

γ0
(e−γ0(1−y)−1). (8.15)

These constructions are the main difference between ε= 0 and ε �= 0, but they enjoy the

same properties stated below.

Lemma 8.2. Let φi
bc,S be the solution of (8.2). It holds that∑

k∈Z

‖(ε|k| ̂(φi
bc,S)Φ,∂y

̂(φi
bc,S)Φ)‖L2

ζ,y
≤ C

λ
1
4

∑
k∈Z

‖〈k〉−
1
6 ĥi

Φ‖L2
ζ
, (8.16)

where i= 0,1 and L2
ζ,y = l2ζ(L

2
y(0,+∞)) for i= 0 and L2

ζ,y = l2ζ(L
2
y(−∞,1)) for i= 1.

It is also held that ∑
k∈Z

‖k ̂(φi
bc,S)Φ‖L2

ζ,y
≤ C

λ
1
2

‖k〈k〉−
1
3 ĥi

Φ‖L2
ζ
, (8.17)

where i= 0,1 and L2
ζ,y = l2ζ(L

2
y(0,1)).

Proof. We only give the proof for i= 0. The case i= 1 is almost the same, and we omit

details to readers.

(8.16) follows from (8.5), (8.8) and the Plancherel theorem by observing the estimate
for multipliers

‖e−Re(γ)y‖L2
y(0,∞) ≤

C

λ
1
4 〈k〉

1
6

, (8.18)

‖ε|k| ·e−ε|k|y · |1− e−(γ−ε|k|)y

γ− ε|k| |‖L2
y(0,+∞) ≤

C

λ
1
4 〈k〉

1
6

. (8.19)
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The estimate (8.18) is a direct consequence of

Re(γ)≥ 1

λ
1
2 〈k〉

1
3

. (8.20)

For (8.19), we divide it into two cases: 1. ε|k| ≤ 1
2λ

1
2 〈k〉

1
3 , and 2. ε|k| ≥ 1

2λ
1
2 〈k〉

1
3 . In case 1,∣∣∣γ− ε|k|

∣∣∣≥ ε|k|+λ
1
2 〈k〉

1
3

C
,

which implies

‖ε|k| ·e−ε|k|y · |1− e−(γ−ε|k|)y

γ− ε|k| |‖L2
y(0,+∞) ≤

C

ε|k|+λ
1
2 〈k〉

1
3

‖ε|k|e−ε|k|y‖L2
y(0,+∞)

≤ C
(ε|k|) 1

2

ε|k|+λ
1
2 〈k〉

1
3

≤ C

λ
1
4 〈k〉

1
6

.

In case 2, we use the bound

|1− e−z

z
| ≤ C,

for Re(z)> 0, which implies that

‖ε|k| ·e−ε|k|y · |1− e−(γ−ε|k|)y

γ− ε|k| |‖L2
y(0,+∞) ≤‖yε|k|e−ε|k|y‖L2

y(0,+∞) ≤
C

(ε|k|) 1
2

≤ C

λ
1
4 〈k〉

1
6

.

Combining cases 1–2, we complete (8.19), which yields (8.16). The estimate (8.17) is
proved by using (8.5), Placherel theorem and

‖e−ε|k|y · |1− e−(γ−ε|k|)y

γ− ε|k| |‖L2
y(0,1)

≤ C

λ
1
2 〈k〉

1
3

. (8.21)

Indeed, note that the integral interval is y ∈ (0,1) and we also divide it into ε|k| ≤ 1
2λ

1
2 〈k〉

1
3

and ε|k| ≥ 1
2λ

1
2 〈k〉

1
3 . When ε|k| ≥ 1

2λ
1
2 〈k〉

1
3 , the similar argument above gives that

‖e−ε|k|y · |1− e−(γ−ε|k|)y

γ− ε|k| |‖L2
y(0,1)

≤ C

λ
3
4 〈k〉

1
2

. (8.22)

When ε|k| ≤ 1
2λ

1
2 〈k〉

1
3 ( with ε|k| � 1), we compute as

‖e−ε|k|y · |1− e−(γ−ε|k|)y

γ− ε|k| |‖L2
y(0,1)

≤ C‖ 1

ε|k|+λ
1
2 〈k〉

1
3

‖L2
y(0,1)

≤ C

λ
1
2 〈k〉

1
3

.

The finite interval (0,1) is essential here. Thus, we complete this lemma.

To express this clearly, we introduce norms related to y > 0 and y < 1, respectively. For

any function f, we define

‖f‖Xr
i
= ‖fΦ‖L2

y(Ii;H
r
x)
, (8.23)
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where I0 = (0,+∞) and I1 = (−∞,1). It is obvious to see ‖ ·‖Xr ≤ ‖·‖Xr
i
for any i= 0,1.

Using Lemma 8.2 above, we can deduce the estimate for ∇εφ
i, where i= 0,1.

Proposition 8.3. Let φi
bc,S be the solution of (8.2). It holds that∫ t

0

‖∇εφ
i
bc,S‖2

X
7
3
+ 1

6
i

ds≤ C

λ
1
2

∫ t

0

|hi|2
X

7
3
ds, (8.24)∫ t

0

‖∂xφi
bc,S‖2

X
5
3
ds≤ C

λ

∫ t

0

|∂xhi|2
X

4
3
ds. (8.25)

Proof. The proof is done by using (8.16) and (8.17).

Next, we give the estimate to the boundary term φ0
bc,S |y=1 and φ1

bc,S |y=0.

Lemma 8.4. For any M ≥ 0 and i= 0,1, it holds that∫ t

0

|(ε∂x)Mφi
bc,S |y=1−i|2

Xr+1
3
ds≤C

λ

∫ t

0

|hi|2Xrds, (8.26)

and ∫ t

0

|(ε∂x)M∂yφ
i
bc,S |y=1−i|2

Xr+1
3
ds≤C

λ

∫ t

0

|hi|2Xrds, (8.27)

for any r ≥ 0.

Proof. We only give the proof for the case i = 0; the case i = 1 is similar and we omit

details to readers. Taking y = 1 in (8.5) and using∣∣∣(ε|k|)M ·e−ε|k| · e
−(γ−ε|k|)−1

γ− ε|k|

∣∣∣≤ C

λ
1
2 〈k〉

1
3

, (8.28)

we get ∫ t

0

|(ε|k|)Mφ0
bc,S |y=1|2

Xr+1
3
ds≤C

λ

∫ t

0

|h0|2Xrds.

However, we refer to (8.8) and take y = 1 in it by noticing∣∣∣e−Re(γ)(ε|k|)M
∣∣∣≤∣∣∣e− 1

2 ε|k|(ε|k|)Me−
1
2λ

1
2 〈k〉

1
6

∣∣∣≤ Ce−
1
2λ

1
2 〈k〉

1
3 ≤ C

(λ〈k〉
2
3 )N/2

,

for any N ≥ 0, and combining with (8.28) to deduce∫ t

0

|(ε∂x)M∂yφ
0
bc,S |y=1|2

Xr+1
3
ds≤C

λ

∫ t

0

|h0|2Xrds. (8.29)

Thus, we finish our proof.

At the end of this subsection, we give some weight estimates of vorticity ωi
bc,S =Δεφ

i
bc,S .

Denote

ϕ0(y) = y, ϕ1(y) = 1−y. (8.30)
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Proposition 8.5. It holds that

| ̂(ωi
bc,S)Φ(ζ,k,y)|+ |ϕi∂y ̂(ωi

bc,S)Φ(ζ,k,y)| ≤ C(|γ|+ ε|k|)e−Re(γ)ϕi |ĥi
Φ(ζ,k)|. (8.31)

As a consequence, we get for θ′ ∈ [− 1
2,2]

∫ t

0

‖(ϕi)1+θ′ωi
bc,S‖2

X
7
3
+ 1

3
(θ′+1

2
)

i

+‖(ϕi)2+θ′(∂y,ε|k|)ωi
bc,S‖2

X
7
3
+ 1

3
(θ′+1

2
)

i

ds≤ C

λ
1
2
+θ′

∫ t

0

|hi|2
X

7
3
ds.

Proof. The result is obtained by using formula (8.6), (8.9) and (8.12), the Plancherel

theorem and by observing that multiplier ϕi(y) gains 1

λ
1
2 〈k〉

1
3
. More precisely,

‖(ϕi)1+m|γ|e−Re(γ)ϕi‖L2
y(Ii)

≤ (
C

λ
1
2 〈k〉

1
3

)m+ 1
2 .

Thus, we complete the proof.

Based on the above proposition, we have more estimates on ωi
bc,S :

Proposition 8.6. Let θ ∈ [0,2]. It holds that∫ t

0

‖ϕiΔεφ
i
bc,S‖2

X
7
3
+ 1

6
i

+‖(ϕi)2∂yΔεφ
i
bc,S‖2

X
7
3
+ 1

6
i

ds≤ C

λ
1
2

∫ t

0

|hi|2
X

7
3
ds, (8.32)

∫ t

0

‖〈Dx〉
θ
3− 1

3 (ϕi)θ+
3
2 (∂xΔεφ

i
bc,S)‖2X2

i
ds≤ C

λθ+1

∫ t

0

|hi|2
X

7
3
ds, (8.33)

∫ t

0

‖〈Dx〉
θ
3−

1
3 (ϕi)θ+

3
2 (∂yΔεφ

i
bc,S)‖2X2

i
ds≤ C

λθ

∫ t

0

|hi|2
X

5
3
ds. (8.34)

Proof. (8.32) is a direct result of Lemma 8.5 by taking θ = 0. It is easy to check

‖〈k〉
θ
3− 1

3 (ϕi)θ+
3
2 k ̂Δε(φi

bc,S)Φ‖L2
y(Ii)

≤ C
〈k〉

2
3+

θ
3

(λ
1
2 〈k〉

1
3 )θ+

1
2+

1
2

|ĥi
Φ|=

C〈k〉
1
3

λ
1
2 (θ+1)

|ĥi
Φ|

by taking θ′ = θ+ 1
2 in Lemma 8.5 and completing (8.33). Similarly, we check

‖〈k〉
θ
3− 1

3 (ϕi)θ+
3
2 ∂y ̂Δε(φi

bc,S)Φ‖L2
y(Ii)

≤ C〈k〉
θ
3− 1

3

λ
θ
2 〈k〉

θ
3

|ĥi
Φ| ≤

C

λ
θ
2 〈k〉

1
3

|ĥi
Φ|

by taking θ′ = θ− 1
2 in Lemma 8.5 to completing (8.34).

8.2. The estimates of φbc,T : vorticity transport estimate.

φbc,T is defined by

φbc,T = φ0
bc,T +φ1

bc,T ,
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where φ0
bc,T is defined by⎧⎪⎪⎨⎪⎪⎩
(∂t−Δε)Δεφ

0
bc,T +up∂xΔεφ

0
bc,T +vp∂yΔεφ

0
bc,T

=−up∂xΔεφ
0
bc,S −vp∂yΔεφ

0
bc,S

def
= H0, (x,y) ∈ T× (0,+∞)

φ0
bc,T |y=0 = 0, Δεφ

0
bc,T |y=0 = 0, φ0

bc,T |t=0 = 0,

(8.35)

and φ1
bc,T is defined by⎧⎪⎪⎨⎪⎪⎩

(∂t−Δε)Δεφ
1
bc,T +up∂xΔεφ

1
bc,T +vp∂yΔεφ

1
bc,T

=−up∂xΔεφ
1
bc,S −vp∂yΔεφ

1
bc,S

def
= H1, (x,y) ∈ T× (−∞,1)

φ1
bc,T |y=1 = 0, Δεφ

1
bc,T |y=1 = 0, φ1

bc,T |t=0 = 0.

(8.36)

We need to emphasize that we extend (up,vp) to y ∈R by zero, which means that (up,vp)=

0 when y ∈ R\ [0,1].
Before we give the estimates of φi

bc,T , we use Proposition 8.6 and (up,vp)|y=0,1 = 0 to
get that∫ t

0

‖(ϕi)
1
2+θHi‖2

X
5
3
+ θ

3
i

ds≤ C

∫ t

0

‖(ϕi)
3
2+θ(∂xΔεφ

i
bc,S +∂yΔεφ

i
bc,S)‖2

X
5
3
+ θ

3
i

ds (8.37)

≤ C

∫ t

0

|hi|2
X

7
3
ds,

where θ = 0,1,2.

We are in the position to give the estimates of φi
bc,T :

Proposition 8.7. Let θ= 0,1,2 and i= 0,1. There exists λ0 > 1 and 0<T <min{Tp,
1
2λ}

such that for all t ∈ [0,T ], λ≥ λ0, it holds that

‖(ϕi)θωi
bc,T ‖2

X
11
6

+ θ
3

i

+λ

∫ t

0

‖(ϕi)θωi
bc,T ‖2

X
13
6

+ θ
3

i

ds

+

∫ t

0

‖(ϕi)θ∇εω
i
bc,T ‖2

X
11
6

+ θ
3

i

ds≤ C

λ
1
2

∫ t

0

|hi|2
X

7
3
ds,

where Δεφ
i
bc,T = ωi

bc,T and ϕi is given in (8.30).

Proof. Acting eΦ(t,Dx) on the first equation of (8.35), we obtain

(∂t+λ〈Dx〉
2
3 −Δε)(ω

i
bc,T )Φ+up∂x(ω

i
bc,T )Φ+vp∂y(ω

i
bc,T )Φ (8.38)

+
(
(up∂xω

i
bc,T )Φ−up∂x(ω

i
bc,T )Φ

)
+
(
(vp∂yω

i
bc,T )Φ−vp∂y(ω

i
bc,T )Φ

)
=Hi

Φ.

Then, taking the L2
y(Ii;H

11
6 + θ

3
x ) inner product with (ϕi)2θ(ωi

bc,T )Φ, we get by using

ωi
bc,T |y=i = 0, ∂xu

p+∂yv
p = 0 and integrating by parts that
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1

2

d

dt
‖(ϕi)θωi

bc,T ‖2
X

11
6

+ θ
3

i

+λ‖(ϕi)θωi
bc,T ‖2

X
13
6

+ θ
3

i

+‖(ϕi)θ∇εω
i
bc,T ‖2

X
11
6

+ θ
3

i

= −
∫
Si

(ϕi)2θ[〈Dx〉
11
6 + θ

3 ,up∂x+vp∂y](ω
i
bc,T )Φ 〈Dx〉

11
6 + θ

3 (ωi
bc,T )Φdxdy

+
1

2

∫
Si

∂y
(
(ϕi)2θ

)
vp|〈Dx〉

11
6 + θ

3 (ωi
bc,T )Φ|2dxdy

−
∫
Si

〈Dx〉
11
6 + θ

3

(
(up∂xω

i
bc,T )Φ−up∂x(ω

i
bc,T )Φ

)
〈Dx〉

11
6 + θ

3 (ωi
bc,T )Φ(ϕ

i)2θdxdy

−
∫
Si

〈Dx〉
11
6 + θ

3

(
(vp∂yω

i
bc,T )Φ−vp∂y(ω

i
bc,T )Φ

)
〈Dx〉

11
6 + θ

3 (ωi
bc,T )Φ(ϕ

i)2θdxdy

−
∫
Si

∂y
(
(ϕi)2θ

)
〈Dx〉

11
6 + θ

3 ∂y(ω
i
bc,T )Φ 〈Dx〉

11
6 + θ

3 (ωi
bc,T )Φdxdy

+

∫
Si

〈Dx〉
11
6 + θ

3Hi
Φ 〈Dx〉

11
6 + θ

3 (ωi
bc,T )Φ(ϕ

i)2θdxdy

= Ii1+ · · ·+ Ii6,

where Si = T× Ii. Integrating on [0,t) with t≤ T , we obtain

‖(ϕi)θωi
bc,T (t)‖2

X
11
6

+ θ
3

i

+2λ

∫ t

0

‖(ϕi)θωi
bc,T ‖2

X
13
6

+ θ
3

i

ds+2

∫ t

0

‖(ϕi)θ∇εω
i
bc,T ‖2

X
11
6

+ θ
3

i

ds

(8.39)

≤2

∫ t

0

|Ii1|+ · · ·+ |Ii6|ds.

Now, we estimate Iij, j = 1, · · · ,6 term by term.
Estimate of Ii1. It follows from Lemma 2.1 that

‖[〈Dx〉
11
6 + θ

3 ,up∂x+vp∂y](ω
i
bc,T )Φ‖L2

x
≤ C(‖(ωi

bc,T )Φ‖
H

11
6

+ θ
3

x

+‖∂y(ωi
bc,T )Φ‖

H
11
6

+ θ
3

x

),

which deduces that

|Ii1| ≤ C(‖(ϕi)θωi
bc,T ‖

X
11
6

+ θ
3

i

+‖(ϕi)θ∂yω
i
bc,T ‖

X
11
6

+ θ
3

i

)‖(ϕi)θωi
bc,T ‖

X
11
6

+ θ
3

i

≤ 1

10
‖(ϕi)θ∂yω

i
bc,T ‖2

X
11
6

+ θ
3

i

+C‖(ϕi)θωi
bc,T ‖2

X
11
6

+ θ
3

i

.

Estimate of Ii2. Thanks to

|∂y
(
(ϕi)2θ

)
vp|= |2θ(ϕi)′(ϕi)2θ−1vp| ≤ Cθ(ϕi)2θ|v

p

ϕi
| ≤ Cθ(ϕi)2θ, (8.40)

by using vp|y=i = 0, it is obvious to see

|Ii2| ≤ Cθ‖(ϕi)θωi
bc,T ‖2

X
11
6

+ θ
3

i

.
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Estimate of Ii3. Applying Lemma 2.3, we find

|Ii3| ≤‖(ϕi)θ〈Dx〉
9
6+

θ
3

(
(up∂xω

i
bc,T )Φ−up∂x(ω

i
bc,T )Φ

)
‖L2

y(Ii;L
2
x)
‖(ϕi)θωi

bc,T ‖
X

13
6

+ θ
3

i

≤ C‖(ϕi)θωi
bc,T ‖2

X
13
6

+ θ
3

i

.

Estimate of Ii4. Applying Lemma 2.2, we get

|Ii4| ≤ C‖(ϕi)θ∂yω
i
bc,T ‖

X
11
6

+ θ
3

i

‖(ϕi)θωi
bc,T ‖

X
11
6

+ θ
3

i

≤ 1

10
‖(ϕi)θ∂yω

i
bc,T ‖2

X
11
6

+ θ
3

i

+C‖(ϕi)θωi
bc,T ‖2

X
11
6

+ θ
3

i

.

Estimate of Ii5. By the fact

∂y
(
(ϕi)2θ

)
= 2θ(ϕi)2θ−1,

we have

|Ii5| ≤ Cθ‖(ϕi)θ∂yω
i
bc,T ‖

X
11
6

+ θ
3

i

‖(ϕi)θ−1ωi
bc,T ‖

X
11
6

+ θ
3

i

≤ 1

10
‖(ϕi)θ∂yω

i
bc,T ‖2

X
11
6

+ θ
3

i

+Cθ2‖(ϕi)θ−1ωi
bc,T ‖2

X
11
6

+ θ
3

i

.

Estimate of Ii6. It follows from

‖〈Dx〉2+
θ
3 (ωi

bc,T )Φ(ϕ
i)θ−

1
2 ‖L2

y(Ii;L
2
x)

≤ ‖〈Dx〉
13
6 + θ

3 (ωi
bc,T )Φ(ϕ

i)θ‖
1
2

L2
y(Ii;L

2
x)
‖〈Dx〉

11
6 + θ

3 (ωi
bc,T )Φ(ϕ

i)θ−1‖
1
2

L2
y(Ii;L

2
x)

≤ ‖(ϕi)θωi
bc,T ‖

1
2

X
13
6

+ θ
3

i

‖(ϕi)θ−1ωi
bc,T ‖

1
2

X
11
6

+ θ
3

i

,

for θ = 1,2 and

‖〈Dx〉2(ωi
bc,T )Φ(ϕ

i)−
1
2 ‖L2

y(Ii;L
2
x)

≤‖〈Dx〉
13
6 (ωi

bc,T )Φ‖
1
2

L2
y(Ii;L

2
x)
‖〈Dx〉

11
6 (ωi

bc,T )Φ(ϕ
i)−1‖

1
2

L2
y(Ii;L

2
x)

≤ C‖ωi
bc,T ‖

1
2

X
13
6

i

‖∂yωi
bc,T ‖

1
2

X
11
6

i

,

by using Hardy inequality for θ = 0. Therefore, we get for θ = 0,1,2 that

|Ii
6| ≤ C‖(ϕi

)
1

2
+θ

H
i‖

X
5
3
+ θ

3
i

×‖(ϕi
)
θ
ω

i
bc,T ‖

1

2

X
13
6

+ θ
3

i

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

‖(ϕi
)
θ−1

ω
i
bc,T ‖

1

2

X
11
6

+ θ
3

i

, θ = 1,2,

‖∂yω
i
bc,T ‖

1

2

X
11
6

i

, θ = 0,

≤
1

10
‖∂yω

i
bc,T ‖2

X
11
6

i

+
λ

4

(
‖(ϕi

)
θ
ω

i
bc,T ‖2

X
13
6

+ θ
3

i

+
θ2

2
‖(ϕi

)
θ−1

ω
i
bc,T ‖2

X
11
6

+ θ
3

i

)
+

C

λ
1

2

‖(ϕi
)

1

2
+θ

H
i‖2

X
5
3

+ θ
3

i

.
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Putting Ii1− Ii6 together, we have

|Ii1|+ · · ·+ |Ii6| ≤
1

2
‖(ϕi)θ∂yω

i
bc,T ‖2

X
11
6

+ θ
3

i

+(C+
λ

4
)‖(ϕi)θωi

bc,T ‖2
X

13
6

+ θ
3

i

+
λ

8
θ2‖(ϕi)θ−1ωi

bc,T ‖2
X

11
6

+ θ
3

i

+
C

λ
1
2

‖(ϕi)
1
2
+θHi‖2

X
5
3
+ θ

3
i

.

Then we insert them into (8.39) and take λ large enough to obtain

‖(ϕi)θωi
bc,T (t)‖2

X
11
6

+ θ
3
+
3

2
λ

∫ t

0

‖(ϕi)θωi
bc,T ‖2

X
13
6

+ θ
3
ds+

∫ t

0

‖(ϕi)θ∇εω
i
bc,T ‖2

X
11
6

+ θ
3
ds

≤ C

λ
1
2

∫ t

0

‖(ϕi)
1
2+θHi‖2

X
5
3
+ θ

3
+

λ

8

∫ t

0

θ2‖(ϕi)θ−1ωi
bc,T ‖2

X
11
6

+ θ
3
ds

≤ C

λ
1
2

∫ t

0

|hi|2
X

7
3
ds+

λ

8

∫ t

0

θ2‖(ϕi)θ−1ωi
bc,T ‖2

X
11
6

+ θ
3
ds,

where we use (8.37) in the last step.

All we have left to do is to control the last term of the above inequality. For that, we

rewrite it as follows:

λ

8

∫ t

0

θ2‖(ϕi)θ−1ωi
bc,T ‖2

X
11
6

+ θ
3
ds≤ λ

2

2∑
θ=1

∫ t

0

‖(ϕi)θ−1ωi
bc,T ‖2

X
13
6

+ θ−1
3

ds

=
λ

2

1∑
θ=0

∫ t

0

‖(ϕi)θωi
bc,T ‖2

X
13
6

+ θ
3
ds.

Combing all the above estimates, we get the desired results.

Based on estimates of ωi
bc,T , we use the elliptic equation to get the estimates of φi

bc,T .

Corollary 8.8. There exists λ0 > 1 and 0< T <min{Tp,
1
2λ} such that for all t ∈ [0,T ],

λ≥ λ0, it holds that∫ t

0

(
‖∇εφ

i
bc,T ‖2

X
7
3
+ 1

6
+ |∂yφi

bc,T |y=0,1|2
X

7
3
+‖∂xφi

bc,T ‖2
X

5
3
+ |φi

bc,T |y=1−i|2
X

8
3

)
ds

≤ C

λ

∫ t

0

|hi|2
X

7
3
ds. (8.41)

Proof. Here, we only give the proof of the case i= 0. The case i= 1 is the same.

We recall the elliptic equation

Δεφ
0
bc,T = ω0

bc,T , φ0
bc,T |y=0 = 0, (8.42)

for y > 0. Then we take the Xr
0 inner product with φ0

bc,T and use the Hardy inequality to

get

‖∇εφ
0
bc,T ‖2Xr

0
≤ ‖ϕ0ω0

bc,T ‖Xr
0
‖
φ0
bc,T

ϕ0
‖Xr

0
≤ C‖ϕ0ω0

bc,T ‖Xr
0
‖∂yφ0

bc,T ‖Xr
0
,

https://doi.org/10.1017/S1474748023000282 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748023000282


Optimal Gevrey stability of hydrostatic approximation 1557

which implies

‖∇εφ
0
bc,T ‖Xr

0
≤ C‖ϕ0ω0

bc,T ‖Xr
0
, (8.43)

for r ≥ 0. By Proposition 8.7, we get∫ t

0

‖∇εφ
0
bc,T ‖2

X
5
2
0

ds≤
∫ t

0

‖ϕ0ω0
bc,T ‖2

X
5
2
0

ds≤ C

λ
3
2

∫ t

0

|h0|2
X

7
3
ds. (8.44)

For the boundary term, using the interpolation inequality, we get

|∂yφ0
bc,T |y=0,1|

X
7
3
≤ C‖∂yφ0

bc,T ‖
1
2

X
5
2
0

‖∂2
yφ

0
bc,T ‖

1
2

X
13
6

0

≤ C‖ϕ0ω0
bc,T ‖

1
2

X
5
2
0

‖ω0
bc,T ‖

1
2

X
13
6

0

,

where we use (8.43) and the Calderon-Zygmund inequality in the last step. Along with

Proposition 8.7, we arrive at∫ t

0

|∂yφi
bc,T |y=0,1|2

X
7
3
ds≤C

λ

∫ t

0

|hi|2
X

7
3
ds. (8.45)

Next, we deal with the term ‖∂xφ0
bc,T ‖X 5

3
. Taking the Fourier transform in x to (8.42),

we write the solution

φ̂0
bc,T (k,y) =

∫ y

0

e−ε|k|(y−y′)

∫ +∞

y′
e−ε|k|(y′′−y′)ω̂0

bc,T (k,y
′′)dy′′dy′. (8.46)

Then we have

|φ̂0
bc,T (k,y)| ≤

∫ y

0

∫ +∞

y′
|ω̂0

bc,T (k,y
′′)|dy′′dy′.

Decomposing the integral
∫ y

0
into

∫min{y,〈k〉−
1
3 }

0
and

∫ y

min{y,〈k〉−
1
3 }
, it follows from the

Hölder inequality that

sup
y≥0

|φ̂0
bc,T (k,y)| ≤ C〈k〉−

1
6 ‖yω̂0

bc,T ‖L2
y(I0)

+C〈k〉
1
6 ‖y2ω̂0

bc,T ‖L2
y(I0)

.

We take summation
∑

k∈Z
and use the Plancherel theorem to deduce

sup
y≥0

‖φ0
bc,T (·,y)‖L2

x
≤ C‖〈Dx〉−

1
6 yω0

bc,T ‖L2
y(I0;L

2
x)
+‖〈Dx〉

1
6 y2ω0

bc,T ‖L2
y(I0;L

2
x)
. (8.47)

Thus, we get that∫ t

0

(
‖∂xφi

bc,T ‖2
X

5
3
+ |φi

bc,T |y=1−i|2
X

8
3

)
ds≤ C

∫ t

0

‖ϕiωi
bc,T ‖2

X
5
2
i

ds+C

∫ t

0

‖(ϕi)2ωi
bc,T ‖2

X
17
6

i

ds

(8.48)

≤C

λ

∫ t

0

|hi|2
X

7
3
ds.

Collecting (8.44), (8.45) and (8.48) together, we get the corollary proved.
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8.3. The estimates of φbc,R: full construction of boundary corrector

All we have left is the term φbc,R. Like the previous argument, we define

φbc,R = φ0
bc,R+φ1

bc,R,

where φi
bc,R satisfies that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∂t−Δε)Δεφ
0
bc,R+up∂xΔεφ

0
bc,R+vp∂yΔεφ

0
bc,R+∂yφ

0
bc,R∂xω

p−∂xφ
0
bc,R∂yω

p

=−∂y(φ
0
bc,S +φ0

bc,T )∂xω
p+∂x(φ

0
bc,S +φ0

bc,T )∂yω
p, t > 0, x ∈ T, y ∈ (0,1),

def
= G0,

φ0
bc,R|y=0 = 0, φ0

bc,R|y=1 =−(φ0
bc,S +φ0

bc,T )|y=1, Δεφ
0
bc,R|y=0,1 = 0,

φ0
bc,R|t=0 = 0.

(8.49)

and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∂tΔε)Δεφ
1
bc,R+up∂xΔεφ

1
bc,R+vp∂yΔεφ

1
bc,R+∂yφ

1
bc,R∂xω

p−∂xφ
1
bc,R∂yω

p

=−∂y(φ
1
bc,S +φ1

bc,T )∂xω
p+∂x(φ

1
bc,S +φ1

bc,T )∂yω
p, t > 0, x ∈ T, y ∈ (0,1),

def
= G1,

φ1
bc,R|y=0 =−(φ1

bc,S +φ1
bc,T )|y=0, φ1

bc,R|y=1 = 0, Δεφ
1
bc,R|y=0,1 = 0,

φ1
bc,R|t=0 = 0.

(8.50)

For simplicity, denote ωi
bc,R =Δεφ

i
bc,R, which has the following relationship:{

Δεφ
0
bc,R = ω0

bc,R,

φ0
bc,R|y=0 = 0, φ0

bc,R|y=1 = f0,
(8.51)

and {
Δεφ

1
bc,R = ω1

bc,R,

φ1
bc,R|y=0 = f1, φ1

bc,R|y=1 = 0,
(8.52)

where

f0 = f0(t,x) = − (φ0
bc,S +φ0

bc,T )|y=1, (8.53)

f1 = f1(t,x) = − (φ1
bc,S +φ1

bc,R)|y=0. (8.54)

To homogenize boundary conditions, we introduce

φ̃0
bc,R = φ0

bc,R+g0, g0 = y(φ0
bc,S +φ0

bc,T ), (8.55)

where φ̃0
bc,R satisfies {

Δεφ̃
0
bc,R = ω0

bc,R+Δεg
0,

φ̃0
bc,R|y=0,1 = 0,

(8.56)
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where

Δεg
0 = y(Δεφ

0
bc,S +Δεφ

0
bc,T )+2(∂yφ

0
bc,S +∂yφ

0
bc,T ). (8.57)

Similarly, we introduce

φ̃1
bc,R = φ1

bc,R+g1, g1 = (1−y)(φ1
bc,S +φ1

bc,T ), (8.58)

and φ̃1
2 satisfies {

Δεφ̃
1
bc,R = ω1

bc,R+Δεg
1,

φ̃1
bc,R|y=0,1 = 0,

(8.59)

where

Δεg
1 = (1−y)(Δεφ

1
bc,S +Δεφ

1
bc,T )−2(∂yφ

1
bc,S +∂yφ

1
bc,T ). (8.60)

First, we give some elliptic estimates.

Lemma 8.9. Let (f0,f1), (g0,g1) – introduced in (8.53)–(8.54), (8.55) and (8.58). It
holds that ∫ t

0

(
|f i|2

X
8
3
+‖∇εg

i‖2
X

5
2
+‖Δεg

i‖2
X

5
2

)
ds≤ C

λ
1
2

∫ t

0

|hi|2
X

7
3
ds (8.61)

for i= 0,1.

Moreover, φi
bc,R (i= 0,1) has the following estimates:∫ t

0

‖∇εφ
i
bc,R‖2

X
7
3
ds≤ C

λ
1
2

∫ t

0

|hi|2
X

7
3
ds+C

∫ t

0

‖ωi
bc,R‖2

X
7
3
ds. (8.62)

Proof. Here we only prove the case i= 0. The case i= 1 is almost the same, and we omit

details to readers. We first give the proof for f0. By the definition of f0, we get∫ t

0

|f0|2
X

8
3
ds≤

∫ t

0

|φ0
bc,S |y=1|2

X
8
3
ds+

∫ t

0

|φ0
bc,T |y=1|2

X
8
3
ds≤ C

λ

∫ t

0

|h0|2
X

7
3
ds,

where we used Lemma 8.4 and Corollary 8.8.

For g0, by Corollary 8.8, Proposition 8.3, we have∫ t

0

‖∇εg
0‖2

X
5
2
ds≤

∫ t

0

(
‖∇εφ

0
bc,S‖X 5

2
+‖∇εφ

0
bc,T ‖X 5

2
+‖φ0

bc,S‖X 8
3
+‖φ0

bc,T ‖X 8
3

)
ds

≤ C

λ
1
2

∫ t

0

|h0|2
X

7
3
ds.

On one hand, using Proposition 8.3, Proposition 8.5, Corollary 8.8 and Proposition 8.7,

we get∫ t

0

(
‖yΔεφ

0
bc,S‖2

X
5
2
+‖∂yφ0

bc,S‖2
X

5
2
+‖yΔεφ

0
bc,T ‖2

X
5
2
+‖∂yφ0

bc,T ‖2
X

5
2

)
ds≤ C

λ
1
2

∫ t

0

|h0|2
X

7
3
ds,
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which implies that ∫ t

0

‖Δεg
0‖2

X
5
2
ds≤ C

λ
1
2

∫ t

0

|h0|2
X

7
3
ds.

At last, we prove (8.62). Taking the X
7
3 inner product with φ̃0

bc,R toward (8.56), we use

integration by parts and then integrate time from 0 to t that∫ t

0

‖∇εφ̃
0
bc,R‖2

X
7
3
ds=−

∫ t

0

〈ω0
bc,R,φ̃

0
bc,R〉X 7

3
ds+

∫ t

0

〈Δεg
0,φ̃0

bc,R〉X 7
3
ds.

Due to φ̃0
bc,R|y=0,1 = 0, we use the Poincaré inequality to imply∫ t

0

〈ω0
bc,R,φ̃

0
bc,R〉X 7

3
ds≤ 1

10

∫ t

0

‖∂yφ̃0
bc,R‖X 7

3
ds+C

∫ t

0

‖ω0
bc,R‖2

X
7
3
ds. (8.63)

According to (8.61), we get∫ t

0

〈Δεg
0,φ̃0

bc,R〉X 7
3
ds≤

∫ t

0

‖Δεg
0‖

X
7
3
‖φ̃0

bc,R‖X 7
3
ds (8.64)

≤ 1

10

∫ t

0

‖∂yφ̃0
bc,R‖2

X
7
3
ds+

C

λ
1
2

∫ t

0

|h0|2
X

7
3
ds.

Combining (8.63) and (8.64), we deduce∫ t

0

‖∇εφ̃
0
bc,R‖2

X
7
3
ds≤ C

λ
1
2

∫ t

0

|h0|2
X

7
3
ds+C

∫ t

0

‖ω0
bc,R‖2

X
7
3
ds.

Bringing ∇εφ
0
bc,R =∇εφ̃

0
bc,R−∇εg

0 into the above inequality, we obtain∫ t

0

‖∇εφ
0
bc,R‖2

X
7
3
ds≤

∫ t

0

‖∇εφ̃
0
bc,R‖2

X
7
3
ds+

∫ t

0

‖∇εg
0‖2

X
7
3
ds

≤ C

λ
1
2

∫ t

0

|h0|2
X

7
3
ds+C

∫ t

0

‖ω0
bc,R‖2

X
7
3
ds.

By now, we finish the proof.

In order to estimate the right-hand side of (8.49) and (8.50) and the boundary term,
we need the following results:

Lemma 8.10. For i= 0,1, we have that∫ t

0

(
‖∂x(φi

bc,S +φi
bc,T )‖2

X
5
3
+‖∂y(φi

bc,S +φi
bc,T )‖2

X
5
3

)
ds≤ C

λ
1
2

∫ t

0

|hi|2
X

7
3
ds, (8.65)∫ t

0

|∂yφi
bc,R|y=0,1|2

X
7
3
ds≤ C

∫ t

0

‖ωi
bc,R‖2

X
7
3
ds+

C

λ
1
2

∫ t

0

|hi|2
X

7
3
ds, (8.66)∫ t

0

〈
∂x(φ

i
bc,R)Φ,∂y(φ

i
bc,R)Φ

〉
H2

x

∣∣∣y=1

y=0
ds≤ C

∫ t

0

‖ωi
bc,R‖2

X
7
3
ds+

C

λ
1
2

∫ t

0

|hi|2
X

7
3
ds. (8.67)
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Proof. Here, we only prove the case i = 0. The case i = 1 is almost the same, and we
omit details to readers.

By Proposition 8.3 and Corollary 8.8, we get (8.65) proved.

Next, we deal with the boundary term. A direct calculation gives that

∂yφ
0
bc,R|y=1 = (∂yφ̃

0
bc,R−∂yg

0)|y=1

= ∂yφ̃
0
bc,R|y=1− (∂yφ

0
bc,S +∂yφ

0
bc,T )|y=1− (φ0

bc,S +φ0
bc,T )|y=1,

and

∂yφ
0
bc,R|y=0 = (∂yφ̃

0
bc,R−∂yg

0)|y=0 = ∂yφ̃
0
bc,R|y=0,

due to φ0
bc,S |y=0 = φ0

bc,T |y=0 = 0.

By Corollary 8.8, we get∫ t

0

|∂yφ̃0
bc,R|y=0,1|2

X
7
3
ds≤ C

λ
1
2

∫ t

0

|h0|2
X

7
3
ds+C

∫ t

0

(‖ω0
bc,R‖2

X
7
3
+‖Δεg

0‖2
X

7
3
)ds

≤ C

∫ t

0

‖ω0
bc,R‖2

X
7
3
ds+

C

λ
1
2

∫ t

0

|h0|2
X

7
3
ds,

where we use an elliptic estimate and the Calderon-Zygmund inequality

‖∂yφ̃0
bc,R‖X 7

3
+‖∂2

y φ̃
0
bc,R‖X 7

3
≤ C‖ω0

bc,R‖X 7
3
+C‖Δεg

0‖
X

7
3
.

For the last estimate, we use (8.66) and (8.61) to imply∫ t

0

〈
∂x(φ

0
bc,R)Φ,∂y(φ

0
bc,R)Φ

〉
H2

x

∣∣∣y=1

y=0
ds≤ C

∫ t

0

|(φ0
bc,S +φ0

bc,T )|y=1|
X

8
3
|∂yφ0

bc,R|y=1|
X

7
3
ds

≤ C

∫ t

0

|f0|
X

8
3
|∂yφ0

bc,R|y=1|
X

7
3
ds

≤ C

∫ t

0

‖ω0
bc,R‖2

X
7
3
ds+

C

λ
1
2

∫ t

0

|h0|2
X

7
3
ds.

Here, we complete this lemma.

We are coming to the main part of this section. We shall give the estimate for the

system (8.49) and (8.50).

Proposition 8.11. Let φ0
bc,R and φ1

bc,R be the solution of (8.49) and (8.50), respectively,

and ωi
bc,R =Δεφ

i
bc,R for i= 0,1. Then, for every i= 0,1, it holds that

‖ωi
bc,R(t)‖2X2+λ

∫ t

0

‖ωi
bc,R‖2

X
7
3
ds+

∫ t

0

(‖∇εφ
i
bc,R‖2

X
7
3
+ |∂yφi

bc,R|y=0,1|2
X

7
3
)ds+

∫ t

0

‖∇εω
i
bc,R‖2X2ds

≤ C

λ
1

2

∫ t

0

|hi|2
X

7
3
ds, t ∈ [0,T ],

where 0< T <min{Tp,
1
2λ}.

Proof. The result mainly comes from the process of Proposition 7.1. Here we take

(Nu,εNv) = 0 and ε2f1 + f2 −C(t)∂xω
p is replaced by Gi = −∂y(φ

i
bc,S + φi

bc,T )∂xω
p +
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∂x(φ
i
bc,S + φi

bc,T )∂yω
p for i = 0,1. In order to estimate the source term

∫ t

0
‖Gi‖2

X
5
3
ds,

using Lemma 8.10 and product estimate in Lemma 2.2, we get∫ t

0

‖Gi‖2
X

5
3
ds≤ C

∫ t

0

‖∂y(φi
bc,S +φi

bc,T )‖2
X

5
3
ds+C

∫ t

0

‖∂x(φi
bc,S +φi

bc,T )‖2
X

5
3
ds

≤ C

λ
1
2

∫ t

0

|hi|2
X

7
3
ds.

The only difference comes from the boundary conditions

φi
bc,R|y=i = 0, φi

bc,R|y=1−i =−(φi
bc,S +φi

bc,T )|y=1−i,

which are not zero compared with equation (6.2). We review T 5 in Propoposition 7.1.

After integration by parts, the boundary term is left. More precisely, we need to estimate∫ t

0

〈
∂x(φ

i
bc,R)Φ,∂y(φ

i
bc,R)Φ

〉
H2

x

∣∣∣y=1

y=0
ds. According to Lemma 8.10, we have

∫ t

0

〈
∂x(φ

i
bc,R)Φ,∂y(φ

i
bc,R)Φ

〉
H2

x

∣∣∣y=1

y=0
ds≤ C

∫ t

0

‖ωi
bc,R‖2

X
7
3
ds+

C

λ
1
2

∫ t

0

|hi|2
X

7
3
ds.

Here, we take λ large enough to complete the proof.

8.4. Proof of Proposition 6.2

In this subsection, we combine all the above estimates to finish the proof of Proposi-
tion 6.2. Recalling the definition of φbc:

φbc = φbc,S +φbc,T +φbc,R, (8.68)

we get that⎧⎪⎨⎪⎩
(∂t−Δε)Δεφbc+up∂xΔεφbc+vp∂yΔεφbc+∂yφbc∂xω

p−∂xφbc∂yω
p = 0,

φbc|y=0,1 = 0, ∂yφbc|y=0 = h0+R00
bc +R01

bc , ∂yφbc|y=1 = h1+R10
bc +R11

bc ,

φbc|t=0 = 0.

(8.69)

Here, Rji
bc (j = 0,1, i= 0,1) are linear operators and are defined by

R00
bc =

(
∂yφ

0
bc,T +∂yφ

0
bc,R

)
|y=0,

R01
bc =

(
∂yφ

1
bc,S +∂yφ

1
bc,T +∂yφ

1
bc,R

)
|y=0,

R10
bc =

(
∂yφ

0
bc,S +∂yφ

0
bc,T +∂yφ

0
bc,R

)
|y=1,

R11
bc =

(
∂yφ

1
bc,T +∂yφ

1
bc,R

)
|y=1.

Compared with the system (8.1), we need to find (h0,h1) such that{
h0+R00

bc +R01
bc =−∂yφslip|y=0+C(t),

h1+R10
bc +R01

bc =−∂yφslip|y=1+C(t)
(8.70)
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hold. To do that, we define an operator Rbc[h
0,h1], which is defined by

Rbc[h
0,h1] =

(
R00

bc R01
bc

R10
bc R11

bc

)
, (8.71)

which is a 2×2 matrix operator and is well-defined on the Banach space

Zbc = {(h0,h1) ∈ L2(0,t;L2)|
∫ t

0

|(h0,h1)|2
X

7
3
ds <+∞}. (8.72)

Proposition 8.12. There exists λ0 ≥ 1 such that if λ ≥ λ0, the map Rbc : Zbc → Zbc

defined by (8.71) satisfies∫ t

0

∣∣∣Rbc[h
0,h1]

∣∣∣2
X

7
3

ds≤ C

λ
1
2

∫ t

0

|(h0,h1)|2
X

7
3
ds. (8.73)

Hence, the operator I+Rbc is invertible in Zbc. Moreover, there exists (h0,h1) ∈ Zbc such

that (8.70) holds and (h0,h1) is defined by

(h0,h1) = (I+Rbc)
−1(−∂yφslip|y=0+C(t),−∂yφslip|y=1+C(t)).

Proof. First, by Lemma 8.4, Proposition 8.8, Corollary 8.7 and Proposition 8.11, it is
easy to get ∫ t

0

∣∣∣Rbc[h
0,h1]

∣∣∣2
X

7
3
ds≤ C

λ
1
2

∫ t

0

|(h0,h1)|2
X

7
3
ds.

Taking λ large enough, we get that the operator I+Rbc is invertible in Zbc. Thus, there

exists (h0,h1) ∈ Zbc such that (8.70) holds.

Let’s continue to prove Proposition 6.2. According to Proposition 8.3, Proposition 8.6,

Corollary 8.8 and Proposition 8.11, we get by (8.68) that∫ t

0

‖∇εφbc‖2
X

7
3
ds≤

∫ t

0

‖∇εφbc,S‖2
X

5
2
ds+

∫ t

0

‖∇εφbc,T ‖2
X

5
2
ds+

∫ t

0

‖∇εφbc,R‖2
X

7
3
ds

≤ C

λ
1
2

∫ t

0

|(h0,h1)|2
X

7
3
ds,

and∫ t

0

‖ϕΔεφbc‖2X2ds≤
∫ t

0

‖ϕΔεφbc,S‖2
X

5
2
ds+

∫ t

0

‖ϕΔεφbc,T ‖2
X

5
2
ds+

∫ t

0

‖Δεφbc,R‖2
X

7
3
ds

≤ C

λ
1
2

∫ t

0

|(h0,h1)|2
X

7
3
ds,

which imply ∫ t

0

‖∇εφbc‖2
X

7
3
+‖ϕΔεφbc‖2X2ds≤

C

λ
1
2

∫ t

0

|(h0,h1)|2
X

7
3
ds.
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Due to Proposition 8.12 and taking A= (I+Rbc)
−1, we know A is a zero-order bounded

operator in Zbc and obtain∫ t

0

|(h0,h1)|2
X

7
3
ds=

∫ t

0

|A(−∂yφslip|y=0+C(s),−∂yφslip|y=1+C(s))|2
X

7
3
ds

≤ C

∫ t

0

(
|∇εφslip|y=0,1|2

X
7
3
+ |C(s)|2

)
ds,

which finishes this proposition.
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