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ABSTRACT 

Numerous supraglacial lakes form on the Greenland Ice Sheet (GrIS) during the summer, 

and accurately estimating their depth is crucial for understanding GrIS water storage. In 

this study, we estimate the depth of 35 representative GrIS supraglacial lakes using ICESat-

2, Sentinel-2 imagery, and ArcticDEM data. ICESat-2-derived lake depth is used to validate 

the performance of three remote sensing methods, namely empirical formula method 

(EFM), radiative transfer method (RTM), and depression topography method (DTM). EFM 

relies on ICESat-2-derived lake depth to construct empirical formulas, while RTM and DTM 

do not. The results show that: (1) the green band EFM performs best; the DTM performs 

secondarily but tends to consistently underestimate depths; the green-band RTM has 

lower accuracy and overestimates depths, while the red-band RTM also has lower accuracy 

but underestimates depths. (2) Temporal changes of depression topography have limited 

impacts on the performance of DTM, whereas the uncertainties caused by lake shoreline 

height estimates should be considered. (3) The performance of RTM is significantly 

influenced by the spectral attenuation coefficient. We further identify the factors that 

affect spatiotemporal extrapolation of these methods and recommend prioritizing the use 

of the EFM when near-simultaneous ICESat-2 data are available; otherwise, DTM is 

recommended, yet an underestimation ratio should be used. 

Keywords: Supraglacial lake, Lake depth estimation, ICESat-2, ArcticDEM, Greenland Ice 

Sheet 

1 INTRODUCTION 

Each summer, surface meltwater flows into topographic depressions and forms numerous 

supraglacial lakes on the Greenland Ice Sheet (GrIS) (Sundal and others, 2009; Banwell and 
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others, 2014; Dunmire and others, 2021; Zhang and others, 2023). Some of these 

supraglacial lakes may undergo hydrofracturing at their bottoms and drain large volumes of 

meltwater through the ice sheet to the bed, consequently affecting ice sheet motion and 

stability (Das and others, 2008; Williamson and others, 2018b; Tuckett and others, 2019). 

Therefore, accurately estimating the supraglacial lake depth is crucial for analyzing surface 

meltwater storage on the GrIS and consequently improving our understanding of the GrIS 

mass balance. 

Until now, only a few field measurements of GrIS supraglacial lake depth have been 

reported. For example, Box and Ski (2007) measured the depth of two supraglacial lakes 

(1.05–11.5 m and 1.25–10.0 m) on the western GrIS using a raft equipped with a depth 

sounder. Tedesco and Steiner (2011) measured the depth of the Olivia supraglacial lake 

(max depth 4.6 m) on the western GrIS using remote-controlled boats equipped with GPS 

and sonar. Legleiter and others (2014) measured the depth of the Napoli supraglacial lake 

(max depth 10.5 m) on the southwestern GrIS using remote-controlled boats equipped 

with GPS and sonar. Fitzpatrick and others (2014) measured the depth of two supraglacial 

lakes on the southwestern GrIS (max depth ~12 and 16 m) using a raft equipped with GPS 

and a depth sounder. More recently, Lutz and others (2024) measured the depth of four 

supraglacial lakes (max depth ~14 m) in the northeastern GrIS using a self-built remote-

controlled boat equipped with a sonar sensor. However, the spatiotemporal coverage of 

these field measurements has been limited, mainly owing to the harsh GrIS natural 

conditions. 
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In recent years, the Ice, Clouds, and Land Elevation Satellite-2 (ICESat-2) raises new 

prospects for estimating supraglacial lake depth. The ICESat-2 photon clouds can penetrate 

water and thereby capture the surface and bottom elevation of shallow water 

simultaneously with high precision (Ranndal and others, 2021; Xu and others, 2021; 

Bernardis and others, 2023). Previous studies distinguished the photon clouds of the 

supraglacial lake surface and bottom using kernel density estimation algorithms and then 

estimated the lake depth accordingly (Fair and others, 2020; Datta and Wouters, 2021; Xiao 

and others, 2023). However, one ICESat-2 photon track can only generate one 

corresponding depth profile; it cannot generate complete lake bathymetry. Therefore, in 

supraglacial lake studies (and more broadly, in nearshore shallow water studies), ICESat-2-

derived water depths are commonly used for accuracy validation or are combined with 

passive optical satellite imagery to generate complete water bathymetry (Albright and 

Glennie, 2020; Ma and others, 2020; Datta and Wouters, 2021; Hsu and others, 2021).  

Currently, there are three remote sensing methods commonly used for estimating 

supraglacial lake depth (Table 1), namely the empirical formula method (EFM), radiative 

transfer method (RTM), and depression topography method (DTM). The EFM combines 

field or ICESat-2-derived lake depth measurements with the corresponding single- or dual-

band reflectance of passive optical satellite imagery (e.g., Sentinel-2, Landsat-8, and 

Planet) to construct empirical regression formulas, and the obtained formula is then 

applied to calculate lake bathymetry (Legleiter and others, 2014; Pope and others, 2016; 

Datta and Wouters, 2021). The RTM builds on the physical principle that the radiation of 
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incident light decreases as depth increases (Lyzenga, 1978; Philpot, 1989) and combines 

optical image bands (e.g., MODIS, Sentinel-2, and Landsat-8) with pre-defined coefficients 

(e.g., scattering attenuation coefficients of upward and downward light) to estimate depth 

variation (Ignéczi and others, 2016; Pope and others, 2016; Melling and others, 2024). The 

DTM generates ice surface depressions using the pre- or post-melt season digital elevation 

models (DEMs, e.g., WorldView-2 DEM, ArcticDEM, and TanDEM-X) and intersects the 

depression topography with the satellite-mapped lake shorelines to estimate lake 

bathymetry (Moussavi and others, 2016; Yang and others, 2019; Lutz and others, 2024; 

Melling and others, 2024). 

Table 1 near here 

Until recently, these three methods have been widely used, so it is crucial for 

comparing their performances. Pope and others (2016) used the field-measured lake depth 

(max depth 5 m) on the southwestern GrIS to compare the performance of the RTM and 

the dual-band EFM. Moussavi and others (2016) used DTM to estimate the depth of 14 

supraglacial lakes (max depth 7 m) on the southwestern GrIS, and the resultant depth was 

employed as validation data to compare with RTM and EFM. Melling and others (2024) 

compared the performance of ICESat-2, RTM, and DTM to estimate the depths of five 

supraglacial lakes (max depth 3.2–7.9 m) on the southwestern GrIS. Lutz and others (2024) 

used DTM to estimate the depth of 5 supraglacial lakes (max depth ~27.6 m) on the 

northeastern GrIS, providing validation data for comparison with RTM, ICESat-2-EFM and 

Sonar-EFM. Most recently, Zhou and others (2025) used ICESat-2-derived depths from 7 
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supraglacial lakes (max depth ~3.4-8.5 m) as validation to compare the performance of 

RTM, EFM, and two machine learning algorithms. Although these comparisons provide 

valuable information to guide depth estimation method selection, we suggest that a more 

detailed comparison should be conducted. First, the ICESat-2-derived depth data can be 

used as validation data, whereas DTM should be employed as a comparative method 

rather than validation data (Moussavi and others, 2016; Pope and others, 2016; Yang and 

others, 2019). Second, EFM, RTM, and DTM should all be involved in comparisons. Third, 

the depth ranges and numbers of the supraglacial lakes selected in most previous studies 

are limited, and more representative supraglacial lakes (particularly deep lakes, which may 

most challenge estimation methods) on the entire GrIS should be used. For these 

purposes, in this study, we select 35 supraglacial lakes with a large depth variation (max 

depth 2.3–12.3 m) from various regions of GrIS and use the ICESat-2-derived supraglacial 

lake depth as validation data to compare the performance of EFM, RTM, and DTM. 

 

2 DATA AND STUDY LAKES 

2.1 Data 

ICESat-2 is equipped with the Advanced Topographic Laser Altimeter System (ATLAS), which 

utilizes green (wavelength 532 nm) laser light and single-photon sensitive detection to 

measure surface height along each of its six beams (Markus and others, 2017). ICESat-2 

produces footprints on the ground spaced ~0.7 m along the track and is capable of 

penetrating water up to ~40 m (Parrish and others, 2019; Ranndal and others, 2021). 
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ICESat-2 ATL03 is a global geolocated photon data product with a measurement accuracy 

of 5 cm and a precision of 13 cm (Brunt and others, 2019), and this product can capture 

both surface and bottom photon clouds of lakes (Jasinski and others, 2023). ICESat-2 ATL06 

is a land ice elevation product produced by fitting the ATL03 photon data as a function of 

along-track distance with a linear model in each 40 m segment (Smith and others, 2019), 

with a measurement accuracy of 3 cm and a precision of 9 cm (Brunt and others, 2019). In 

this study, we use the ICESat-2 ATL06 data to determine the photon cloud scope of the 

ICESat-2 ATL03 and to remove a portion of noise photons, and the ICESat-2 ATL03 data to 

measure the depth of supraglacial lakes. 

Sentinel-2A/B are earth observation satellites launched by European Space Agency 

(ESA) Copernicus program, with a 290 km swath width and a revisit period of less than 5 

days. The Sentinel-2A/B images cover 13 spectral bands, including visible, near-infrared 

(NIR), and shortwave infrared (SWIR), with a 10 m spatial resolution for visible and NIR 

bands (Drusch and others, 2012). In this study, we use the Sentinel-2 Level-2A surface 

reflectance product to identify the extent of a supraglacial lake and to build EFM and RTM 

depth estimation formulas. All images are acquired through the Google Earth Engine (GEE) 

platform (https://earthengine.google.com/). 

ArcticDEM, released by the Polar Geospatial Center, is a high-resolution digital surface 

model (DSM) for the entire Arctic region. ArcticDEM is generated from WorldView-1/2/3 

and GeoEye-1 optical stereo imagery using Surface Extraction software with TIN-based 

Search-Space Minimization (SETSM), which has the validation accuracy of 0.2 m (Noh and 
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Howat, 2015). In this study, we use the 2 m-resolution ArcticDEM strip data (version 

s2s041) (Porter and others, 2022) to derive ice surface depression topography. Importantly, 

the ArcticDEM data used in this study are made by using pre- or post-melt season optical 

stereo imagery, ensuring that the studied ice surface depressions are not covered by 

supraglacial lakes, following Moussavi and others (2016), Yang and others (2019), and 

Melling and others (2024). 

 

2.2 Study lakes 

We select 35 supraglacial lakes across various regions of the Greenland Ice Sheet (GrIS) 

(Fig. 1), based on the following criteria: first, near-simultaneous (± 3 days) ICESat-2 tracks 

and Sentinel-2 imagery are available. Second, ICESat-2 tracks do not cross floating ice on 

the supraglacial lake. Third, ArcticDEM data from the same year during the dry period 

(determined by visually inspecting near-simultaneous Sentinel-1/2 imagery in GEE) of the 

selected lake is available. The selected lakes cover a maximum depth range of 2.3 to 12.3 

m, providing continuous depth observations (at least one lake per meter of depth range).  

These 35 lakes are ranked as Lakes 1–35 in terms of their maximum depth. Lakes 1–12 

are classified as shallow lakes (max depth 2.3–4.8 m), while Lakes 13–35 are classified as 

deep lakes (max depth 5.4–12.3 m), based on a 5 m threshold for maximum lake depth. 

This 5 m threshold represents the maximum penetration depth of the red band and is 

widely used in previous supraglacial lake studies (Moussavi and others, 2016; Pope and 

others, 2016; Melling and others, 2024). Therefore, we followed this depth threshold to 
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make our results comparable with previous studies. The data used for depth estimation 

are listed in Table S1. 

Figure 1 near here 

 

3 METHODS 

3.1 ICESat-2 Watta lake depth estimation method 

We use the Watta algorithm (Datta and Wouters, 2021) to derive supraglacial lake depth 

profiles from ICESat-2 at the native 0.7 m resolution of ATL03 photon clouds. First, this 

algorithm selects the ATL03 photon clouds within a distance of 50 m around the elevation 

of the corresponding ICESat-2 ATL06 photons to remove a portion of noise photons. 

Second, a sliding window of 75 ATL03 photons is applied to generate a probability density 

curve of photon elevations within each window through kernel density estimation. The 

two obtained elevation values with the highest probability density within each window are 

assigned as the lake surface and bottom elevations, respectively. Third, to obtain more 

reliable lake bottom elevations, the Watta algorithm conducts kernel density estimation 

again in a larger window of 5,000 ATL03 photons to remove the outliers of the bottom 

elevations due to the low photon density there. Fourth, the depth of each photon point is 

calculated by subtracting the lake bottom elevation from the lake surface elevation and 

applying a refractive index of ~0.75 to remove the refraction influence:  

Lake depth = (Lake surface elevation – Lake bottom elevation) * 0.75   (1) 

The corrected lake bottom elevation is then derived as:  
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Lake bottom elevation after refraction correction = Lake surface elevation – Lake depth

 (2) 

In this study, we use Sentinel-2 green and NIR bands to calculate the Normalized 

Difference Water Index (NDWI = (green- NIR)/(green+ NIR), green and NIR are the 

reflectance of green and near-infrared bands, respectively) (McFeeters, 1996), with a 

threshold of 0.3 to extract water masks and generate supraglacial lake shorelines. The 

ICESat-2 ATL03 photon points within each lake shoreline are then extracted and stratified 

at 1 m intervals of lake depth to avoid uneven distribution of water depths at sample 

points due to random sampling. Next, 70% of the photon points from each meter depth 

are randomly selected to form the training dataset, with the remaining 30% points used as 

validation data, ensuring a balanced evaluation of model training and validation(Nguyen 

and others, 2021). 

 

3.2 Empirical formula method  

The empirical formula method (EFM) attempts to establish exponential, quadratic, or 

logarithmic empirical regression formulas between field-measured or ICESat-2-derived lake 

depth and the corresponding pixel reflectance of optical remote sensing imagery (Box and 

Ski, 2007; Williamson and others, 2018a). The quadratic formula, widely used in previous 

studies (Legleiter and others, 2014; Moussavi and others, 2016; Pope and others, 2016), is 

selected in this study for comparison. We build the quadratic empirical formula by fitting 

the Sentinel-2 water pixel reflectance and ICESat-2-derived supraglacial lake depth 
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following Datta and Wouters (2021): 

𝑍 =  𝑎 + 𝑏𝑋 + 𝑐𝑋2#(3)  

𝑋 = 𝑙𝑛 (
𝑅1

𝑅2
) #(4)  

where Z represents the estimated lake depth, a, b, and c are fitting parameters, and X 

represents the logarithm of the ratio of the reflectance of the two spectral bands, R1 and 

R2, in the Sentinel-2 imagery. 

Moreover, we use the optimal band ratio analysis (OBRA) to select the optimal band 

combination following Legleiter and others (2009). First, a total number of N(N-1)/2 band 

combination ratios are obtained by pairing N bands. These band ratios are calculated, and 

then the training datasets are used to establish empirical formulas, with their R2 and RMSE 

calculated. Next, the band combination with the highest R2 and the lowest RMSE is 

determined as the optimal choice, and the associated depth estimates are then compared 

with other methods. 

We conduct two experiments to analyze the spatiotemporal extrapolation of the EFM. 

Spatially, we construct an overall empirical formula based on all 35 study lakes, and then 

apply the resultant empirical formula to estimate lake depths for each lake. This 

experiment allows us to analyze the spatial stability of the overall empirical formula over 

space. Temporally, we select the supraglacial lakes covered by two different ICESat-2 tracks 

on different days. For each selected lake, we use the early-day ICESat-2 and Sentinel-2 

imagery to construct the EFM, then apply the resultant empirical formula to estimate lake 

depths from the late-day Sentinel-2 imagery. Finally, we validate the estimated depths 
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using the late-day ICESat-2-derived depths. This experiment allows us to analyze the 

temporal stability of the empirical formula over different depth ranges as the study lakes 

expand or shrink over time. 

 

3.3 Radiative transfer method 

The radiative transfer method (RTM) builds on the physical principle that incident radiation 

decreases with increasing water depth (Philpot, 1989), and assumes that the lake has few 

impurities, small particles, uniform lake bed sediment, and a relatively calm water surface 

with minimal wind and wave influence (Sneed and Hamilton, 2007). These assumptions are 

generally met in clean meltwater lakes, and therefore, the RTM has been widely used for 

estimating GrIS supraglacial lake depth before the advent of ICESat-2 (Sneed and Hamilton, 

2007; Georgiou and others, 2009; Morriss and others, 2013; Langley and others, 2016). 

One key consideration of RTM is to select appropriate spectral bands, and numerous 

studies have shown that the shorter wavelengths allow for estimating deeper water depth 

due to their slower attenuation in the water (Moussavi and others, 2016; Pope and others, 

2016). The green and red bands are most commonly used in previous studies (Table 1), and 

thereby, we also select these two bands. The RTM formulas are as follows: 

𝑍 =
[𝑙𝑛(𝐴𝑑 − 𝑅∞) − 𝑙𝑛(𝑅𝑤 − 𝑅∞)]

𝑔
 #(5)  

𝑔 ≈ 𝐾𝑢 + 𝐾𝑑#(6)  

𝐾𝑑 = 𝑎 +
1

2
𝑏#(7)  

where Z represents the lake depth, Ad is the lake bottom reflectance, 𝑅∞ is the deep ocean 
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reflectance, Rw is the lake pixel reflectance, g is the spectral attenuation coefficient, Ku and 

Kd represent the scattering attenuation coefficients of upward and downward light, 

respectively, a is the absorption coefficient for water, and b is the backscattering 

coefficient for water. 

Ad is calculated as the average reflectance value in a 30 m-wide buffer around each 

lake shoreline following Moussavi and others (2020), and the standard deviation value is 

used to represent the uncertainty of Ad. We calculate the mean pixel reflectance in the 

deep ocean area of the imagery to estimate 𝑅∞; and if no deep water is available in the 

imagery, the neighboring coastal imagery from the same period and orbit under similar 

atmospheric conditions is used, following Sneed and Hamilton (2007). Previous studies 

assumed that Kd = Ku and thereby g = 2Kd (Sneed and Hamilton, 2007; Banwell and others, 

2014; Pope and others, 2016). In this study, we use agreen = 0.0619 m-1 and ared = 0.429 m-1 

(Pope and Fry, 1997), and bgreen = 0.0012 m-1 and bred = 0.0006 m-1 (Buiteveld and others, 

1994) to calculate Kd, resulting in ggreen = 0.1250 m-1 and gred = 0.8586 m-1. For g = mKd, 

although m = 2 is most commonly used, Kirk (1989) suggested that m should vary between 

2 and 3.5 and Melling and others (2024) recommended m = 2.75. We conduct a sensitivity 

experiment to compare the estimated depths under different m values with a step size of 

0.25. 

 

3.4 Depression topography method 

The depression topography method (DTM) estimates lake depth by intersecting the DEM-
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derived depression topography with the satellite-mapped lake shoreline (Moussavi and 

others, 2016; Pope and others, 2016; Yang and others, 2019). First, we fill the ArcticDEM 

data acquired during the dry period of a supraglacial lake, and subtract the data before and 

after filling to obtain the depression topography raster, with each pixel value representing 

its elevation difference (i.e., height) from the depression outer boundary, following 

Karlstrom and Yang (2016). Next, we intersect the satellite-mapped lake shoreline with the 

depression topography to calculate the height of the lake shoreline. Ideally, the obtained 

shoreline height values should be equal; however, due to the accuracy limitation of the 

ArcticDEM data, the obtained height values vary considerably (Yang and others, 2019). 

Therefore, their average value is used to represent the lake shoreline height and their 

standard deviation to represent uncertainty. The average height value is subtracted from 

each depression topography pixel within the lake water mask to obtain the lake depth 

raster.  

The ArcticDEM data and Sentinel-2 imagery we used are acquired at different dates, 

potentially impacting depth estimation due to changes in depression topography (Ignéczi 

and others, 2018). To mitigate this problem, we select ArcticDEM data obtained in the 

same year as the Sentinel-2 imagery to conduct method comparison. Moreover, to analyze 

the impact of ArcticDEM data selection on the lake depth estimation, we conduct a 

sensitivity experiment using multiple ArcticDEM data obtained ± 1 year from the Sentinel-2 

imagery acquisition dates. 
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3.5 Indicators for validating accuracy 

We validate the accuracy of the depths estimated by EFM, RTM, and DTM (Dest) with the 

ICESat-2-derived depth (DIS2), using the following indicators: the coefficient of 

determination (R2), bias, root mean square error (RMSE), and relative root mean squared 

error (RRMSE). The validation is formed using the 30% of the dataset, which is not involved 

in constructing the EFM. The evaluation metrics are calculated as follows: 

𝑅2 = 1 −
∑(𝐷𝑒𝑠𝑡 − 𝐷𝐼𝑆2)2

∑(𝐷𝐼𝑆2 − 𝐷𝐼𝑆2
̅̅ ̅̅ ̅̅ )2

#(8)  

𝐵𝑖𝑎𝑠 =
1

𝑁
∑( 𝐷𝑒𝑠𝑡 − 𝐷𝐼𝑆2)#(9)  

𝑅𝑀𝑆𝐸 = √(
∑(𝐷𝑒𝑠𝑡 − 𝐷𝐼𝑆2)2

𝑁
) #(10)  

𝑅𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝐷𝐼𝑆2
̅̅ ̅̅ ̅̅

#(11)  

where 𝐷𝐼𝑆2
̅̅ ̅̅ ̅̅  is the mean of the ICESat-2-derived depths (DIS2), and N is number of ICESat-2-

derived depths used for the comparison. 

For the DTM method specifically, we additionally calculate the underestimation ratio 

(UR) to quantify its tendency to underestimate lake depths. The UR is defined as: 

𝑈𝑅 = −
1

𝑁
∑

(𝐷𝐷𝑇𝑀 − 𝐷𝐼𝑆2)

𝐷𝐼𝑆2
#(12)  

where DDTM is the depth estimated by the DTM. 

 

4 RESULTS 

4.1 Accuracy comparison of three methods 

The ICESat-2-derived lake depth profiles are used to validate the performance of the three 

depth estimation methods, including the green-band EFM, green-band and red-band 
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RTMs, and DTM (Figs. 2, 3, S1; Table S2). The results show that the green-band EFM is most 

accurate and stable, with an average of R2 = 0.93 ± 0.06, bias = 0.00 ± 0.03 m, and RMSE = 

0.48 ± 0.25 m for the 35 lake profiles. The DTM yields the second-highest accuracy, with an 

average of R2 = 0.75 ± 0.18 and RMSE = 0.95 ± 0.45 m, tending to underestimate lake depth 

(bias = -0.60 ± 0.55 m). The green-band and red-band RTMs yield the lowest and most 

unstable accuracy, with an average of R2 = 0. 60 ± 0.09 and 0.48 ± 0.11, and RMSE = 2.79 ± 

1.10 m and 2.74 ± 1.71 m, respectively. Additionally, the green-band RTM significantly 

overestimates lake depth (bias = 2.62 ± 1.13 m), whereas the red-band RTM significantly 

underestimates (-2.01 ± 1.65 m) lake depth. 

Figure 2 near here 

Figure 3 near here 

Shallow and deep lakes are analyzed separately to further compare the three depth 

estimation methods (Fig. 3; Table S2). The green-band EFM and DTM show no significant 

difference in estimating shallow and deep lake depths (Mann-Whitney U-test, p > 0.05), 

hence their performances are not sensitive to depth variations. However, the green-band 

RTM shows a significant difference (Mann-Whitney U-test, p < 0.05), performing well for 

deep lakes but substantially overestimating shallow lake depth (R2 = 0.66 versus 0.42; bias 

= 2.37 m versus 3.41 m), while the red-band RTM also shows a significant difference 

(Mann-Whitney U-test, p < 0.05), performing well for shallow lakes but substantially 

underestimating deep lake depth (R2 = 0.63 versus 0.41; bias = -0.10 m versus -3.00 m). 

This finding suggests that the performance of RTMs is very sensitive to lake depth 
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variations. 

 

4.2 Band optimization and spatiotemporal extrapolation of the EFM 

OBRA is used to determine the optimal band combination for EFM, and the results show 

that the single green-band EFM performs best across all 35 lakes (R2 = 0.92 ± 0.05 and 

RMSE = 0.48 ± 0.25 m) (Fig. 4). Dual blue-green bands, recommended by Moussavi and 

others (2016), perform very similarly to the single green band (R2 = 0.91 ± 0.08 and RMSE = 

0.54 ± 0.37 m) (Figs. 4a-b). In contrast, the red-band and dual red-other bands performs 

well for shallow lakes (Figs. 4c-d) but least accurate for deep lakes (Figs. 4e-f). This finding 

is consistent with previous results showing that the red-band EFM is only suitable for 

estimating shallow lake depth (max depth < 5 m), while the green-band and dual green-

blue bands are suitable for deep lakes (max depth > 5 m) (Moussavi and others, 2016). 

Figure 4 near here 

The reflectance-depth empirical formulas obtained from different lakes are 

considerably different (Fig. 5a; Table S2). Additionally, the overall empirical formula 

performs significantly poorer than the empirical formula constructed for each lake (R² = 

0.66 ± 0.24 versus 0.93 ± 0.06, RMSE = 1.46 ± 0.92 versus 0.48 ± 0.25 m, bias = 0.15 ± 1.45 

versus 0.00 ± 0.03 m) (Fig. 5b). These findings indicate that the empirical formulas derived 

by the EFM vary considerably over space and its spatial extrapolation ability is limited. 

Figure 5 near here 

Among our 35 lakes, there are six lakes covered by two different ICESat-2 tracks on 
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different days (Fig. 6a). When validating with the independent late-day ICESat-2 tracks, the 

accuracy of the EFM decreases but remains higher than the RTM and the DTM (Figs. 6d-g). 

The EFM performs well within the depth range of the data used for construction, with 

estimated depths closely matching the ICESat-2-derived depths. In contrast, when 

extrapolated beyond this range, the estimated depths exhibit significant bias (Figs. 6b-c). 

This finding indicates that the EFM constructed for a specific lake captures some useful 

information about snow/ice surfaces beneath and near the lake (Fig. 6a), thereby allowing 

for the temporal extrapolation. 

Figure 6 near here 

 

4.3 Sensitivity analysis of the attenuation coefficient in the RTM 

The impacts of different spectral attenuation coefficient (g = mKd) values on the 

performance of the RTM are evaluated (Fig. 7). The results show that the green-band RTM 

is more sensitive to m values than the red-band RTM, consistent with findings of Moussavi 

and others (2016) and Melling and others (2024). Additionally, the commonly used m = 2 

for pure water induces the green-band RTM to significantly overestimate both shallow and 

deep lake depths, and induces the red-band RTM to significantly underestimate deep lake 

depth. Increasing m values can improve the green-band’s performance for estimating both 

shallow and deep lake depth, with m = 3 minimizing the average bias for the green band 

RTM in deep (max depth > 5 m) lakes (Fig. 7a). However, increasing m values declines red-

band’s performance for estimating both shallow and deep lake depth, with m = 2 
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minimizing the average bias for the red band RTM in shallow (max depth < 5 m) lakes (Fig. 

7b). Moreover, the Ad value calculated using the average reflectance of pixels around the 

lake shoreline also affects the depth estimates. Pixels around the lake shoreline with 

notable reflectance differences induce a large standard deviation of Ad value and 

consequently high depth uncertainty, as shown by the large depth range of Lake 20 and 

Lake 24 (Fig. 2). 

Figure 7 near here 

 

4.4 Uncertainty analysis of the multi-period ArcticDEM DTM 

Multi-period ArcticDEM data is used to analyze the impact of depression topography 

changes on the performance of the DTM (Fig. 8). Although the ArcticDEM-derived height 

variations (represented as standard deviations, ~0.2-1.6 m) of the lake shoreline pixels 

induce considerably large uncertainties in depth estimates of multi-period ArcticDEM 

DTMs (pale orange ranges in Fig. 2), their accuracy differences calculated from average 

height values of the lake shoreline pixels (orange lines in Fig. 2) remain smaller than their 

differences with other comparison methods (Fig. 2). For the 18 lakes with multi-period (2-5 

times) strips of 2 m ArcticDEM data available (Fig. 8a), multi-period ArcticDEM DTMs are 

more accurate than the green-band and red-band RTMs, and particularly, for Lake 11 and 

31, multi-period ArcticDEM DTM is even comparable to the best-performing green-band 

EFM (Figs. 8b-c). This finding suggests that the temporal changes of depression topography 

have limited impacts on the performance of the DTM, whereas the uncertainties caused by 

Downloaded from https://www.cambridge.org/core. 19 Apr 2025 at 19:22:26, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


 

20 

lake shoreline height estimates should be considered when conducting DTM.  

Figure 8 near here 

 

5 DISCUSSION 

5.1 Applicability of the empirical formula method (EFM) 

Our comparison shows that the EFM performs best in estimating supraglacial lake depth on 

the GrIS (Fig. 3; Table S2). This is predictable because it relies on synchronous ICESat-2 data 

to build empirical formulas, whereas RTM and DTM do not. However, the reflectance-

depth empirical formulas obtained from different lakes are considerably different (Fig. 5a; 

Table S2), and the overall empirical formula performs significantly poorer than the 

empirical formula constructed for each lake (Fig. 5b), indicating that the EFM is challenging 

for spatial extrapolation. In previous studies, only one global empirical formula was used to 

estimate supraglacial lake depth over long periods (Box and Ski, 2007; Fitzpatrick and 

others, 2014) and large study areas (Fitzpatrick and others, 2014; Zhang and others, 2023). 

We suggest that this is problematic and recommend using EFM in small areas within the 

depth range of the training data used to construct the EFM.  

The spatial extrapolation of the EFM is mainly limited by variable atmospheric 

conditions (Zhou and others, 2025), illumination angles (Wang and Zender, 2010), and 

snow/ice surfaces beneath and near lakes (Schröder and others, 2020). We suggest two 

approaches to mitigate these limitations: first, relative radiometric calibration 

(Carbonneau and others, 2006; Pahlevan and others, 2014) can be used to eliminate 
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spectral inconsistence caused by different atmospheric conditions and illumination angles. 

Second, ice surface can be classified into different representative zones (e.g., bare ice zone, 

dry snow zone, and wet snow zone) based on satellite albedo products (Nolin and Payne, 

2007; Shimada and others, 2016), and subsequently variable reflectance-depth empirical 

formulas can be built for different zones. 

 

5.2 Applicability of the radiative transfer method (RTM) 

The performance of the green-band and red-band RTMs for estimating shallow and deep 

lake depths is demonstrated, respectively. The red band with longer wavelength attenuates 

more rapidly in water, resulting in higher accuracy for estimating shallow (max depth < 5 

m) lake depth (owing to more distinguishable reflectance variations) but significantly 

underestimating deep lake depth (owing to stronger attenuation of deep water), whereas 

the green band with shorter wavelength performs better in estimating deep (max depth > 

5 m) lake depth but significantly overestimating shallow lake depth (Figs. 2, 3; Table S2). 

These results are consistent with previous findings (Moussavi and others, 2016; Pope and 

others, 2016; Melling and others, 2024) but are more illustrative because lakes are 

explicitly classified as shallow and deep lakes and the corresponding quantitative over-

/under- estimations are provided.  

The variability of the spectral attenuation coefficient (g) limits the spatiotemporal 

extrapolation of the RTM. Melling and others (2024) recommended m = 2.75 (derived 

empirically as the average of the commonly used 2-3.5Kd range), whereas we recommend a 
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different value, g = 3Kd for green band RTM in deep lakes and g = 2Kd for red band RTM in 

shallow lakes (Fig. 7). Spatiotemporal variation of g value (Kirk, 1989; Melling and others, 

2024) may be induced by the non-negligible impurities (e.g., ice algae, snow algae, and 

light-absorbing impurities) at the bottom of the supraglacial lakes (Wang and others, 2018; 

Tedstone and others, 2020; Halbach and others, 2022), causing higher attenuation of the 

radiation. To handle the variability of g, an empirical reflectance threshold can be 

determined based on the red band to classify lake areas into shallow and deep areas. For 

example, based on our 35 study lakes, this threshold is ~0.08 (the average red band 

reflectance of points deeper than 5 m). As such, in shallow lake areas (red band 

reflectance > 0.08), the red band RTM with g = 2Kd is recommended, while in deep lake 

areas (< 0.08), the green band RTM with g = 3Kd is recommended. 

Like EFM, in previous studies, the green-band and red-band RTMs are widely used to 

estimate supraglacial lake depth over long time periods (Georgiou and others, 2009; 

Langley and others, 2016) and large study areas (Banwell and others, 2014; Williamson and 

others, 2017). We urge caution for using RTMs in this way because large spatiotemporal 

variations of GrIS supraglacial lake depths (McMillan and others, 2007; Sundal and others, 

2009; Zhang and others, 2023) can greatly hinder the appropriate use of either the green-

band or red-band RTM. Combining the RTM depth estimates from different bands may 

mitigate this problem, as suggested by Pope and others (2016), which used the arithmetic 

average of the red and the panchromatic band RTMs. However, we suggest that the 

improvement of band combinations is limited. If we combine green and red band RTMs, 
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the overall RMSE values only slightly increase from 2.74–2.79 m to 1.86 m, whereas the 

improvement is not significant (Fig. S2). Alternatively, field-measured or ICESat-2-derived 

lake depth can be used to calibrate RTM’s parameters, as per Moussavi and others (2016), 

but this will make RTM dependent on depth sample data as the EFM, thereby reducing the 

universality of the RTM. Instead, we suggest building a prior knowledge base of GrIS 

supraglacial lake depths based on the lake area, which positively correlates with lake depth 

(Sundal and others, 2009; Williamson and others, 2018a), or using the depression 

area/depth (Yang and others, 2019), which can directly reflect the possible maximum lake 

depth, and then selecting the green-band or red-band RTMs accordingly to calculate the 

depth of deep and shallow lakes, respectively. 

 

5.3 Applicability of the depression topography method (DTM) 

In our comparison, the DTM yields the second-highest accuracy, indicating that it is a 

practical approach for estimating supraglacial lake depth, consistent with previous studies 

(Moussavi and others, 2016; Pope and others, 2016; Yang and others, 2019). However, we 

find the DTM systematically underestimates lake depth (Fig. 3; Table 2). For our 35 study 

lakes, the underestimation ratio (UR) is 14 ± 10%. This underestimation may be induced 

during the ArcticDEM product generation. The weak ice/snow texture in stereo satellite 

imagery may induce insufficient matching points and thereby considerable elevation bias, 

and the georeferenced matches between ArcticDEM and optical satellite imagery may also 

contain bias (Noh and Howat, 2015; Noh and Howat, 2017; Dai and others, 2024). These 
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two factors may explain the height uncertainties (0.2-1.6 m) of the lake shoreline (Fig. 2). 

Moreover, the denoising process of ArcticDEM generation(Noh and Howat, 2017; Noh and 

Howat, 2019) may over-smooth the bottoms of topographic depressions, thereby 

systematically underestimating lake depths (Fig. 3). Furthermore, numerous supraglacial 

lakes do not exhibit dry-period 2 m ArcticDEM strips to date, although the future release of 

new ArcticDEM data may partially address this limitation. 

Therefore, we currently need to rely on the simple underestimation ratio for the 

better use of the DTM. We acknowledge that the possible transferability of this ratio over 

space and time is limited, so we recommend using it only for quantifying the DTM 

uncertainty (e.g., 1.14*DDTM) rather than rectifying the original DTM estimates. For 

example, Yang and others (2019) used DTM to estimate the depth and volume of two 

supraglacial lakes and discovered that the regional climate models overestimated the 

meltwater runoff on the GrIS by 106–123% (40–55% after early July) in the melt season, 

while the overestimation decreases to 80-95% (23-36% after early July) if applying our 

underestimation ratio. In the future, DTM can be combined with the ICESat-2 data to 

create a dataset of dry depression topography on the GrIS and determine the 

corresponding underestimation ratios for DTM-based depth estimation.  

 

5.4 Impact of optical satellite resolutions on depth estimation 

The optical satellite imagery resolution also influences the performance of EFM, RTM, and 

DTM. One 10 m resolution Sentinel-2 pixel covers ~14-20 ICESat-2 ATL03 points (~0.7 m 
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along-track resolution), with the specific number depending on the interaction angle 

between Sentinel-2 pixels and ICESat-2 tracks. As such, the obtained reflectance-depth 

relationship may struggle in capturing small depth variations. Very high resolution (VHR) 

multispectral imagery (e.g., 2.44 m QuickBird, 1.64 m GeoEye-1, and 1.24-2.40 m 

WorldView-2/3/4) is potential for building more detailed and accurate reflectance-depth 

relationships. Moreover, for the DTM, VHR imagery may delineate more precise lake 

shorelines and thereby significantly reduce lake shoreline uncertainties. However, narrow 

swath (~10-20 km) VHR imagery often does not cover ocean regions, and thereby faces 

challenges to estimate deep ocean reflectance required for the RTM. In contrast, coarse 

resolution, wide swath imagery (e.g., 250 m MODIS, 500 m VIIRS, and 300 m Sentinel-3) 

may introduce large lake depth estimation uncertainty due to mixed pixel effects and 

imprecise shorelines. 

 

6 CONCLUSION 

In this study, we compare the performance of three remote sensing methods, namely the 

empirical formula method (EFM), radiative transfer method (RTM), and depression 

topography method (DTM), to estimate supraglacial lake depth on the GrIS, with the 

ICESat-2-derived depth as validation data. Based on the comparison results, we 

recommend optimizing the use of these three methods. When field-measured depth or 

near-simultaneous ICESat-2 data are available, the green-band EFM is preferred, while we 

urge caution for the instability of empirical formulas and recommend using the EFM in 
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small areas within the depth range of the training data used to construct the EFM. If no 

lake depth sample data are available, the DTM is recommended, yet an underestimation 

ratio should be considered to quantify the DTM uncertainties. For the RTM, we 

recommend setting the spectral attenuation coefficient g = 3Kd for the green band in deep 

lakes and g = 2Kd for the red band in shallow lakes, and caution against the large-area use 

of the green-band or red-band RTMs. Viewing collectively, our method comparison may 

contribute to improving our understanding of GrIS surface meltwater storage and 

hydrological processes. 
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LIST OF FIGURE CAPTIONS 

Fig. 1. Thirty-five study supraglacial lakes on the Greenland Ice Sheet are used to compare 

three remote sensing depth estimation methods. Sentinel-2 images (R: NIR band, G: red 

band, B: green band) of these lakes are depicted in the subplots, with the red lines indicating 

the ICESat-2 track. The subplot in the left corner shows the locations of these supraglacial 

lakes on the GrIS marked with red dots. 

Fig. 2. Depth profiles of 35 study supraglacial lakes estimated using various methods, with 

ICESat-2-derived lake bottoms in black and the lake bottom elevation after refraction 

correction in blue, depths estimated by the empirical formula method (EFM) in cyan, the 

green-band radiative transfer method (RTM) in green, the red-band RTM in red, and the 

depression topography method (DTM) in orange. The range around each profile represents 

the uncertainty of the method. 

Fig. 3. Comparison of the empirical formula method (EFM), the green-band and red-band 

radiative transfer method (RTM), and the depression topography method (DTM) with 

average (a) R2, (b) bias, (c) RMSE, and (d) RRMSE (with the error bars showing the standard 

deviation) calculated for 12 shallow lakes (Lakes 1-12, in green), 23 deep lakes (Lakes 13-35, 

in red), and all 35 lakes (in orange). 

Fig. 4. The R2 and RMSE of the empirical formula method (EFM) calculated for each paired 

combination of blue, green, and red bands. (a) and (b) are for all 35 study supraglacial lakes, 

(c) and (d) for 12 shallow lakes, and (e) and (f) for 23 deep lakes. 

Fig. 5. (a) Relationship between green band reflectance and ICESat-2-derived depth for the 

training data of 35 study lakes. The red solid line represents the overall fitted empirical 

formula, and the black dashed lines represent the 35 fitted empirical formulas. (b) 

Comparison of the overall EFM estimated lake depths and the ICESat-2-derived lake depths 

for the validation data of 35 study lakes. 

Fig. 6. Temporal validation of the EFM using ICESat-2 tracks on different days. (a) Sentinel-2 

images (R: NIR band, G: red band, B: green band) of six supraglacial lakes with two different 
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ICESat-2 tracks on different days. The green and red lines represent the ICESat-2 tracks for 

early and late days, respectively. (b) Relationship between early-day green band reflectance 

and ICESat-2-derived depth for the six study lakes, and the dashed lines indicate the six 

fitted empirical formulas. (c) Comparison of late-day ICESat-2-derived depth and late-day 

lake depth estimated by applying the six early-day empirical formulas (i.e., late-day EFM). 

(d) bias, (e) R2, (f) RMSE, and (g) RRMSE (with the error bar showing the standard deviation) 

are calculated for the original EFM, RTM, DTM, and late-day EFM. 

Fig. 7. Sensitivity analysis of the m values in (a) green-band and (b) red-band radiative 

transfer methods (RTMs) based on 35 supraglacial lakes (max depth ~2.3-12.3 m, depth 

range ~10 m). 

Fig. 8. (a) Comparison of depth profiles estimated by depression topography method (DTM) 

using multi-period ArcticDEMs, with the maximum uncertainty range (in orange) induced by 

the height differences of lake shoreline pixels, and (b) and (c) show the corresponding depth 

bias and RMSE for multi-period DTM (the error bars show the standard deviation) and other 

comparison methods. 
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Fig. 1. Thirty-five study supraglacial lakes on the Greenland Ice Sheet are used to compare 

three remote sensing depth estimation methods. Sentinel-2 images (R: NIR band, G: red 

band, B: green band) of these lakes are depicted in the subplots, with the red lines indicating 

the ICESat-2 track. The subplot in the left corner shows the locations of these supraglacial 

lakes on the GrIS marked with red dots.  
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Fig. 2. Depth profiles of 35 study supraglacial lakes estimated using various methods, with 

ICESat-2-derived lake bottoms in black and the lake bottom elevation after refraction 

correction in blue, depths estimated by the empirical formula method (EFM) in cyan, the 

green-band radiative transfer method (RTM) in green, the red-band RTM in red, and the 

depression topography method (DTM) in orange. The range around each profile represents 

the uncertainty of the method.  
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Fig. 3. Comparison of the empirical formula method (EFM), the green-band and red-band 

radiative transfer method (RTM), and the depression topography method (DTM) with 

average (a) R2, (b) bias, (c) RMSE, and (d) RRMSE (with the error bars showing the standard 

deviation) calculated for 12 shallow lakes (Lakes 1-12, in green), 23 deep lakes (Lakes 13-35, 

in red), and all 35 lakes (in orange).  
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Fig. 4. The R2 and RMSE of the empirical formula method (EFM) calculated for each paired 

combination of blue, green, and red bands. (a) and (b) are for all 35 study supraglacial lakes, 

(c) and (d) for 12 shallow lakes, and (e) and (f) for 23 deep lakes.   
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Fig. 5. (a) Relationship between green band reflectance and ICESat-2-derived depth for the 

training data of 35 study lakes. The red solid line represents the overall fitted empirical 

formula, and the black dashed lines represent the 35 fitted empirical formulas. (b) 

Comparison of the overall EFM estimated lake depths and the ICESat-2-derived lake depths 

for the validation data of 35 study lakes.   
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Fig. 6. Temporal validation of the EFM using ICESat-2 tracks on different days. (a) Sentinel-2 

images (R: NIR band, G: red band, B: green band) of six supraglacial lakes with two different 

ICESat-2 tracks on different days. The green and red lines represent the ICESat-2 tracks for 

early and late days, respectively. (b) Relationship between early-day green band reflectance 

and ICESat-2-derived depth for the six study lakes, and the dashed lines indicate the six 

fitted empirical formulas. (c) Comparison of late-day ICESat-2-derived depth and late-day 

lake depth estimated by applying the six early-day empirical formulas (i.e., late-day EFM). 

(d) bias, (e) R2, (f) RMSE, and (g) RRMSE (with the error bar showing the standard deviation) 

are calculated for the original EFM, RTM, DTM, and late-day EFM. 
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Fig. 7. Sensitivity analysis of the m values in (a) green-band and (b) red-band radiative 

transfer methods (RTMs) based on 35 supraglacial lakes (max depth ~2.3-12.3 m, depth 

range ~10 m).  
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Fig. 8. (a) Comparison of depth profiles estimated by depression topography method (DTM) 

using multi-period ArcticDEMs, with the maximum uncertainty range (in orange) induced by 

the height differences of lake shoreline pixels, and (b) and (c) show the corresponding depth 

bias and RMSE for multi-period DTM (the error bars show the standard deviation) and other 

comparison methods.  
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Table 1. Summary of supraglacial lake depth estimation studies, including field 

measurements, ICESat-2-derived algorithms, empirical formula method (EFM), radiative 

transfer method (RTM), and depression topography method (DTM). 
Method Source Data source 

Field 
measurements 

Box and Ski (2007) GPS, sonar 
Tedesco and Steiner (2011) GPS, sonar 
Legleiter and others (2014) GPS, sonar 
Fitzpatrick and others (2014) GPS, sonar 
Lutz and others (2024) GPS, sonar  

ICESat-2 

Neuenschwander and Pitts 
(2019) 

ATL03 

Jasinski and others (2023) ATL03 
Fair and others (2020) ATL03, ATL06 
Fricker and others (2021) ATL03 
Datta and Wouters (2021) ATL03, ATL06 
Xiao and others (2023) ATL03 
Arndt and Fricker (2024) ATL03 

Empirical 
formula method 
(EFM) 

Box and Ski (2007) MODIS (red band) 
Fitzpatrick and others (2014) MODIS (red band) 

Legleiter and others (2014) 
Landsat-7, MOSID, ASTER, WorldView-2 (visible and 
near-infrared bands) 

Moussavi and others (2016) 
Landsat-7, WorldView-2 (visible, red edge, and near-
infrared bands) 

Pope and others (2016) 
Landsat-7, Landsat-8 (coastal, blue, green, red, and 
panchromatic bands) 

Williamson and others (2018a) Sentinel-2 (red, green, and blue bands) 

Datta and Wouters (2021) 
Landsat-8, Sentinel-2, SkySat, Planet (red and green 
bands) 

Lutz and others (2024) Sentinel-2 (blue, green, and red bands) 

Fan and others (2025) 
Landsat-7, Landsat-8 (coastal, blue, green, NIR, and 
panchromatic bands) 

Zhou and others (2025) Landsat-8, Sentinel-2 (coastal, blue, and green bands) 

Radiative 
transfer method 
(RTM) 

Sneed and Hamilton (2007) ASTER (green band) 
Georgiou and others (2009) ASTER (green band) 
Sneed and Hamilton (2011) ASTER, Landsat-7 (green band) 
Morriss and others (2013) Landsat-7, MODIS (red band) 
Johansson and Brown (2013) MODIS (green band) 
Banwell and others (2014) Landsat-7 (green band) 
Langley and others (2016) Landsat-7, ASTER (red band) 
Ignéczi and others (2016) MODIS (red band) 
Moussavi and others (2016) Landsat-7, WorldView-2 (red, green, and blue bands) 
Pope and others (2016) Landsat-7, Landsat-8 (red and panchromatic bands) 
Williamson and others (2017) MODIS, Landsat-8 (red and green bands) 
Moussavi and others (2020) Landsat-8 (red and panchromatic bands) 

Arthur and others (2020) 
Sentinel-2, Landsat-7, Landsat-8 (red and panchromatic 
bands) 

Zhu and others (2022) Landsat-8 (red and panchromatic bands) 
Melling and others (2024) Sentinel-2 (red and green bands) 
Lutz and others (2024) Sentinel-2 (green band) 
Rowley and others (2024) Landsat-8 (red and panchromatic bands) 
Fan and others (2025) Landsat-7, Landsat-8 (red and panchromatic bands) 
Zhou and others (2025) Landsat-8, Sentinel-2 (red and green bands) 

Depression 
topography 
method  
(DTM) 

Moussavi and others (2016) WorldView-2 DEM 
Pope and others (2016) WorldView-2 DEM 
Yang and others (2019) ArcticDEM 
Melling and others (2024) ArcticDEM 
Lutz and others (2024) TanDEM-X 
Rowley and others (2024) ArcticDEM 
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