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Analytical electron microscopy is becoming increasingly limited by our ability to interpret the data
obtained, rather than our ability to obtain the data. Aberration correctors enable images with such
fine spatial resolution that minuscule structural features and variations are distinguishable. Similar
technological breakthroughs are on the horizon for the energy resolution of EELS, opening
possibilities of vibrational spectroscopy and further enhancing the value of fine-structure studies.
Despite these instrumental improvements, features of interest such as point defects remain difficult
to locate and characterize systematically.

Multivariate statistical analysis (MSA) is a promising development that has been increasingly
applied to revealing subtle details in analytical data. By comparing correlated variations across
several images or spectra, latent patterns can be extracted. Ideally, these latent patterns would
directly represent physical features of interest. However, traditional methods for MSA, such as
principal component analysis (PCA), have historically failed to yield patterns that are easily
recognizable as any physical phenomenon [1]. In both imaging and EELS, this failure arises from
the so-called orthogonality requirement among purely statistical components. As a result, MSA is
more commonly applied only for denoising data and rather than exploration or interpretation of
image or spectral features.

Novel methods presented here are a combination of both statistical methods and
preprocessing of the data using computer vision techniques. With regards to the former, great
advances in the isolation of physically realistic component EEL spectra have been realized using by
relaxing the requirement of orthogonality (Independent Component Analysis, ICA) and by assuming
the components must always have positive intensity (Non-negative Matrix Factorization, NMF) [2,
3]. In this work, these novel methods are compared to traditional MSA methods and to more
common multiple-least squares fitting analysis methods. The unique ability to separate chemical
species without any pre-determined model is shown to be particularly useful where edges from
several chemical species overlap (Figs 1 and 2).

By preprocessing image data to extract peak characteristics, the statistical analysis is
decoupled from image noise. Furthermore, interpretation is enhanced because the results are in the
form of peak characteristics. The input data to MSA have thus far always been image intensities.
As such, the output data of MSA are also intensities. These intensities can be recognizable as
changes in a particular region of an image, but the quantification of those changes still requires a
great deal of thought and further analysis [4]. By formulating the input to the MSA as peak
characteristics (Figs 3 and 4), the output of MSA is also in the form of peak characteristics, and the
relationships between changes in atomic column intensities, shapes and positions become clear
without requiring comparison to average images or other components for context [5].
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FIG. 1. PCA of a spinodally decomposed FIG. 2. ICA of the same data set. Components
Ti0,/SnO, sample. Components are not are readily interpreted.
identifiable as physical spectra.
10 X (A) Y (A) Height | Orient. | Ecc.
5.847639 | 0.482833 126 | -0.407 | 0.000
8 0.751073 | 0.536481 110 0.307 | 0.000
3.648069 | 0.536481 211 | -0.129 | 0.002
9 9.281116 | 1.341202 173 0.731 | -0.005
§ . 2.414163 | 1.448498 227 | -0.753 | -0.008
;‘; 4.077253 | 1.502146 158 | -0.597 | 0.000
. 7.725322 | 3.487124 211 | -0.111 | 0.008
0.697425 | 3.540773 128 | -0.625 | -0.001
z 2.521459 | 3.540773 216 | -0.093 | 0.010

1

1

1 1 1 i} 1

450 500 550 600 650 700 750

Energy loss (eV)

1 1

Sn My

1 1

450 500 550 600 650 700 750
Energy loss (eV)

FIG. 4. Analysis of generic peak characteristics
such as height, orientation and eccentricity
simplifies interpretation of MSA results —
characteristics in, characteristics out without any
complicated interpretation of intensities.

Angstroms
FIG. 3. Automated peak identification allows for
rapid characterization. Peaks are indicated by
white circles superimposed on the image.
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