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Standing acoustic waves have been known to generate Eulerian time-mean ‘streaming’
flows at least since the seminal investigation of Lord Rayleigh in the 1880s. Nevertheless,
a recent body of numerical and experimental evidence has shown that inhomogeneities in
the ambient density distribution lead to much faster flows than arise in classical Rayleigh
streaming. The emergence of these unusually strong flows creates new opportunities
to enhance heat transfer in systems in which convective cooling cannot otherwise be
easily achieved. To assess this possibility, a theoretical study of acoustic streaming in
an ideal gas confined in a rectangular channel with top and bottom walls maintained
at fixed but differing temperatures is performed. A two time scale system of equations
is utilized to efficiently capture the coupling between the fast acoustic waves and the
slowly evolving streaming flow, enabling strongly nonlinear regimes to be accessed.
A large suite of numerical simulations is carried out to probe the streaming dynamics,
to highlight the critical role played by baroclinically generated wave vorticity and to
quantify the additional heat flux induced by the standing acoustic wave. Proper treatment
of the two-way coupling between the waves and mean flow is found to be essential for
convergence to a self-consistent steady state, and the variation of the resulting acoustically
enhanced steady-state heat flux with both the amplitude of the acoustic wave and the O(1)

aspect ratio of the channel is documented. For certain parameters, heat fluxes almost two
orders of magnitude larger than those realizable by conduction alone can be attained.
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1. Introduction

Standing acoustic waves in homogeneous fluids have long been known to generate Eulerian
mean flows. In the 19th century, the observation of air flows in a Kundt’s tube by Dvorák
(1876) was one of the three phenomena that led Rayleigh (1884) to develop his pioneering
analysis of acoustic streaming. A general framework, reviewed by Riley (2001), has
since been achieved: the Reynolds stress divergence induced by a standing acoustic wave
generates a streaming flow provided this stress divergence cannot be balanced by a mean
pressure gradient; that is, provided the acoustic wave has non-zero vorticity. If acoustic
wave attenuation takes place over a much longer time scale than the acoustic period,
fluctuating vorticity is localized in thin oscillatory boundary layers, and the characteristic
streaming velocity scale Us∗ = U2∗/a∗, with U∗ the maximum acoustic-wave velocity
and a∗ the speed of sound. This streaming velocity remains modest and limits practical
applications to microfluidics, where acoustic forcing is used to mix dilute chemicals along
the direction transverse to the microchannel (Bengtsson & Laurell 2004). Recently, it has
been shown that larger streaming velocities can be achieved if the solid boundaries include
sharp edges having radii of curvature smaller than the thickness of the oscillating boundary
layer, a promising finding albeit one that is difficult to realize experimentally (Huang et al.
2013; Zhang et al. 2019).

Standing acoustic waves in inhomogeneous fluids drive streaming flows with radically
different features. This essential outcome of the last two decades stems from experimental
evidence presented by Loh et al. (2002), Hyun, Lee & Loh (2005) and Stockwald,
Kaestle & Ernst (2014), who reported streaming velocities in stratified gases two
orders of magnitude larger than the estimate U2∗/a∗ and streaming patterns qualitatively
different from that predicted by Rayleigh’s theory (Dreeben & Chini 2011). This
change of phenomenology is also apparent in direct numerical simulations (DNS) of
the compressible Navier–Stokes equations (Lin & Farouk 2008; Aktas & Ozgumus
2010). Based on these results, Chini, Malecha & Dreeben (2014) derived a new set of
wave–mean-flow interaction equations that are able to capture the dynamics of streaming
flows in an inhomogeneous gas. These authors demonstrated that the physical origin of the
enhanced streaming flows is the baroclinic production of fluctuating vorticity, as is evident
by taking the curl of the linearized Euler equation, viz.

∇ ×
(

ρ0
∂u′

∂t
= −∇p′

)
⇒ ∂(∇ × u′)

∂t
= (∇ρ0) × (∇p′)

ρ2
0

, (1.1)

where ρ0 is the non-uniform background density, u′ is the acoustic wave velocity, p′ is
the acoustic wave pressure, ∇ is the spatial gradient operator and t is the time variable.
Whereas the fluctuating vorticity required to drive streaming flows in homogeneous fluids
results from viscous torques and is confined to thin Stokes boundary layers, in (stably)
density stratified fluids wave vorticity can readily fill the entire domain owing to its
generation via an inviscid process. Accounting for this fundamental change leads to a
characteristic streaming velocity Us∗ = U∗ in strongly inhomogeneous fluids. Given that
the acoustic Mach number U∗/a∗ typically is very small compared with unity, this result
provides a rationale for the large-amplitude streaming flows previously reported. Karlsen,
Augustsson & Bruus (2016) extended this procedure to inhomogeneities in compressibility
(negligible in gases) and demonstrated that, in an inhomogeneous gas, the wave-induced
Reynolds stress divergence (i.e. the acoustic force density f ac) can be expressed as

f ac = −1
2 |u′|2 ∇ρ0, (1.2)
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Heat transport by baroclinic acoustic streaming

where the overbar indicates a time average. This concise representation confirms that the
forcing is inviscid and associated with baroclinicity (also proportional to ∇ρ0, as shown
in (1.1)). Moreover, this expression correctly suggests that two-way coupling between the
fast acoustic waves and the slowly evolving streaming flow can be realized. Specifically, in
the framework of Chini et al. (2014) and Karlsen et al. (2016), the waves drive a streaming
flow that advects inhomogeneities in density that, in turn, feed back on the wave velocity
field u′. Furthermore, given that the velocity field of the standing acoustic wave depends
on the background density distribution over the entire domain, this two-way coupling is
spatially non-local.

In addition to manifesting more complex dynamics, this new regime of streaming
is practically important. In high-intensity discharge lamps, a temperature difference of
several thousand degrees exists between the arc and the tube wall, enabling baroclinic
acoustic streaming to be used to improve the efficiency of these lamps dramatically
(Dreeben & Chini 2011; Chini et al. 2014). Similarly, streaming flows in thermoacoustic
devices strongly depend on the inhomogeneous temperature distribution (Daru et al.
2021a, b). In microfluidics, properly accounting for inhomogeneities in both density and
compressibility is crucial for obtaining accurate predictions of the acoustically driven
mixing of different fluids (Karlsen et al. 2018; Pothuri, Azharudeen & Subramani 2019;
Qiu et al. 2021). Acoustic wave forcing also has been proposed as an experimental means
to mimic and tune gravity in regions where ∇(|u′|2) is spatially uniform, f ac then being
locally similar to gravity in the Boussinesq approximation up to a gradient term (Koulakis
& Putterman 2021; Koulakis et al. 2023), although we stress that this connection no longer
holds once two-way coupling sets in. Perhaps the most promising application involves the
use of acoustics to enhance the rate of heat transfer from heated objects immersed in
a cooler fluid medium, especially in scenarios in which forced convection is difficult to
establish or natural convection does not occur (e.g. as for cooling electronic components
aboard spacecraft).

Acoustic streaming in a straight channel with a temperature differential imposed
between the top and bottom boundaries is a simple yet practical configuration in which
to study the effects of inhomogeneity. Many prior studies have focused on the use of
liquids as the working fluid, for which variations in compressibility also contribute to the
acoustic force density (Karlsen et al. 2016). These studies include the large set of numerical
simulations performed by Kumar et al. (2021) and Rajendran, Solomon & Subramani
(2022) in which the effects of two-way coupling were neglected. Their results demonstrate
that acoustics can either enhance or reduce the heat flux associated with natural convection
depending on whether the acoustic wave displacements are, respectively, predominantly
parallel or perpendicular to the channel walls. Here, we consider the second class of
fluids, i.e. gases, typically air in experiments, approximated as an ideal gas in theoretical
analyses. The experiments of Nabavi, Siddiqui & Dargahi (2008) clearly demonstrate that
the streaming pattern derived in the homogeneous limit by Rayleigh (1884) is modified
for temperature differences as low as a fraction of a degree. Results from DNS of
the compressible Navier–Stokes equations for larger temperature differentials have been
reported in Lin & Farouk (2008), Aktas & Ozgumus (2010) and Baran et al. (2022).
The modest acoustic amplitudes considered in these simulations resulted in only minor
modifications of the background density profile, allowing Michel & Chini (2019) to obtain
an explicit expression for these baroclinic streaming flows by neglecting the two-way
coupling. Larger acoustic amplitudes lead to two-way coupling, as analysed theoretically
by Chini et al. (2014), Karlsen et al. (2018) and Michel & Chini (2019) and realized
experimentally by Michel & Gissinger (2021).
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Dimensional variable or parameter Definition

ũ = (ũ, ṽ) Gas velocity
ρ̃ Gas density
p̃ Gas pressure
T̃ Gas temperature
(x̃, ỹ) Horizontal, vertical (wall-normal) coordinate
t̃ Time variable
H∗ Channel height
2π/k∗ Horizontal wavelength of acoustic wave
μ∗ Dynamic viscosity
κ∗ Thermal conductivity
R∗ Specific gas constant
(cv∗ , cp∗ ) Constant volume, pressure specific heat coefficient
a∗ = √

(cp∗/cv∗ )R∗T∗ Background sound speed
p∗ Background pressure

Table 1. Dimensional variables and parameters.

In the present study, the dynamics of an ideal gas undergoing standing acoustic-wave
oscillations in a differentially heated channel is investigated using an extension of the
wave–mean-flow interaction equations derived in Michel & Chini (2019). Our main
objective is to characterize the strongly nonlinear regimes attained at large acoustic
amplitudes that manifest two-way coupling. More specifically, we quantify the dependence
of the acoustically enhanced heat flux on the geometry of the flow, i.e. on the aspect
ratio δ = k∗H∗, where k∗ is the acoustic-wave wavenumber and H∗ the height of the
channel. Previous theoretical investigations have shown that the heat-transfer enhancement
becomes negligible in the limit δ → 0 (Michel & Chini 2019), while recent DNS
performed for modest acoustic amplitudes suggest that maximum enhancement is reached
for δ = O(1), although these simulations did not achieve strong two-way coupling
(Malecha 2023). Moreover, the scaling of the heat flux with the wave amplitude is
largely undocumented in this regime. Presuming the background temperature field is
homogenized in the interior of the domain as a result of the streaming-induced mixing,
baroclinicity (and, hence, the acoustic force density) will localize near the walls. The
consequence of this qualitative change in behaviour on the generation of steady mechanical
and thermal boundary layers and on the overall heat transfer rate is also addressed in the
present investigation.

The remainder of this article is organized as follows. The two time scale
wave–mean-flow system governing the two-way coupled dynamics for arbitrary (but
fixed) values of δ is introduced in § 2. The numerical algorithm for simulating the
wave–mean-flow interaction equations is described in § 3, where detailed results are also
presented. A summary of our key findings and their potential implications is given in § 4.

2. Problem formulation

2.1. Flow configuration
The flow configuration is similar to that investigated by Michel & Chini (2019).
Dimensional variables are denoted with tildes and dimensional parameters with asterisks.
These variables and parameters and their definitions are summarized in table 1.
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Heat transport by baroclinic acoustic streaming

ỹ

T̃ = T∗

T̃ = T∗ + �Θ∗

x̃

H∗

Streaming flow:

Acoustic wave:

0 2π/k∗

Figure 1. Schematic of the 2-D system configuration, similar to Michel & Chini (2019). An ideal gas is
confined between two horizontal, no-slip and impermeable walls separated by a distance H∗. The temperatures
of the lower and upper walls are fixed at T∗ and T∗ + �Θ∗, respectively (but note that gravity is not included).
A standing acoustic wave of horizontal wavenumber k∗ generates a counter-rotating cellular streaming flow
spanning the channel that enhances the initially diffusive heat flux.

As illustrated in figure 1, we investigate the two-dimensional (2-D) dynamics of an ideal
gas in an infinitely long channel of height H∗. No-slip and zero normal-flow boundary
conditions on the velocity along with Dirichlet conditions on the temperature are imposed
along each horizontal wall, with the temperature set to T∗ at ỹ = 0 and to T∗ + �Θ∗ at
ỹ = H∗. This environment is assumed to be gravity-free and, thus, the imposed temperature
differential �Θ∗ > 0 neither generates natural convection nor restoring forces. In the
absence of acoustic forcing, a linear temperature profile is established owing to the strictly
diffusive heat flux across the channel. An unspecified external agency then drives a
standing acoustic wave of angular frequency ω∗ and wavenumber k∗ along the horizontal
(x̃) direction to generate a streaming flow that enhances this heat flux. The horizontal
(spatial) periodicity 2π/k∗ of the acoustic wave is presumed constant, being fixed in
laboratory experiments, for example, by the finite horizontal length of the channel (or,
more properly, cavity). Consequently, the angular frequency ω∗ may vary with time as the
temperature field slowly evolves. Moreover, the spatial phase of the acoustic wave is fixed
by setting to zero the horizontal velocity component at x̃ = 0, i.e. ũ(x̃ = 0, ỹ, t̃) = 0, where
(x̃, ỹ) are the horizontal and vertical coordinates and t̃ is the time variable.

The flow is governed by the compressible Navier–Stokes equations, supplemented by
the energy equation and the ideal gas equation of state,

ρ̃
[
∂t̃ũ + (ũ · ∇̃)ũ

]
= −∇̃p̃ + μ∗

[
∇̃2ũ + 1

3∇̃(∇̃ · ũ)
]
, (2.1)

∂t̃ρ̃ + ∇̃ · (ρ̃ũ) = 0, (2.2)

ρ̃cv∗

[
∂t̃ T̃ + (ũ · ∇̃)T̃

]
= −p̃

(
∇̃ · ũ

)
+ κ∗∇̃2T̃, (2.3)

p̃ = ρ̃R∗T̃, (2.4)

where ρ̃, p̃, T̃ and ũ = (ũ, ṽ) denote the density, pressure, temperature and velocity fields,
respectively, and ∇̃ = (∂x̃, ∂ỹ). As discussed in Michel & Chini (2019), bulk viscosity and
viscous heating are neglected and the variation of dynamic viscosity with temperature is
ignored in (2.1)–(2.4).
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Variable Scale Parameter Definition Scaling

x k−1∗ Acoustic Mach number ε U∗/a∗ ε � 1
y H∗ Aspect ratio δ k∗H∗ δ = O(1)

t (a∗k∗)−1 Temperature gradient Γ �Θ∗/T∗ Γ = O(1)

u a∗ Reynolds number Re ρ∗U∗/(k∗μ∗) Re = O(1)

v (k∗H∗)a∗ Péclet number Pe ρ∗cp∗ U∗/(k∗κ∗) Pe = O(1)

ρ ρ∗ ≡ p∗/(R∗T∗) Specific heat ratio γ cp∗/cv∗ γ = O(1)

Θ T∗ — — —
P p∗ — — —

Table 2. Dimensionless variables and parameters, as in the previous analyses of Chini et al. (2014) and Michel
& Chini (2019) except for the aspect ratio, the Reynolds number and the Péclet number, which in the present
work are O(1) quantities (asymptotically).

2.2. Scaling and non-dimensionalization
Dimensionless variables and parameters are introduced using the scalings given in table 2.
The small parameter subsequently used in the asymptotic analysis is the acoustic Mach
number ε = U∗/a∗, also referred to as the inverse Strouhal number of the oscillating flow.
The dimensionless temperature differential Γ = �Θ∗/T∗ is taken to be fixed and order
unity as ε → 0 to characterize a stratified gas in which baroclinicity plays a crucial role.
This distinguished limit is similar to that adopted in Chini et al. (2014) and Michel &
Chini (2019). In contrast with these previous investigations, which focused on long thin
channels for which δ = O(

√
ε), in this work we consider acoustic waves with horizontal

wavelengths comparable to the height of the channel, i.e. δ = O(1). Note that the Reynolds
and Péclet numbers based on the acoustic-wave oscillatory velocity and wavelength also
characterize the streaming flow, which has typical velocities of order US∗ = U∗ and
develops structures having a spatial periodicity comparable to that of the waves. (In Chini
et al. (2014) and Michel & Chini (2019), cross-channel, i.e. vertical, diffusion is enhanced
owing to the thinness of the channel, resulting in a disparity between the acoustic and
streaming Reynolds numbers.)

It is instructive to compare these scalings with typical experimental values. Using the
definitions given in table 2, the acoustic cavity considered by Michel & Gissinger (2021),
for instance, would be characterized by the following parameter values: ε = 1.8 × 10−4,
δ = 1.5, Γ ∈ [0.1, 0.3], Re = 134, Pe = 86 and A ∈ [0.2, 2] (where the wave amplitude
A = O(1) is introduced in § 2.4). Thus, the scaling requirements ε � 1, δ = O(1),
Γ = O(1), Re = O(1) and Pe = O(1) encompass this set-up.

2.3. Asymptotic analysis
A multiple time scale analysis of the governing equations is performed (i) to disentangle
the dynamics of the fast acoustic waves from the comparatively slowly evolving
streaming flow and (ii) to consistently suppress negligible terms to simplify the numerical
implementation and facilitate appropriate physical interpretation. To this end, we expand
the various fields in powers of the small dimensionless parameter ε:

(u, v) = ε(u1, v1) + O(ε2), (2.5)

P = 1 + επ1 + ε2π2 + O(ε3), (2.6)
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Heat transport by baroclinic acoustic streaming

Θ = 1 + Γ y + Θ0 + εΘ1 + O(ε2), (2.7)

ρ = ρ0 + ερ1 + O(ε2). (2.8)

Note that the dimensionless temperature T̃/T∗ is denoted by Θ , cf. (2.7), rather than by T ,
the latter notation being reserved for the ‘slow’ time variable (see below).

In the absence of acoustic waves, u = v = 0 and, in steady state, the temperature
profile reduces to the conduction profile, Θ = 1 + Γ y, with the pressure being uniform
since gravity is neglected. When excited, the leading-order acoustic velocity is O(ε),
by definition since U∗ = εa∗, and similarly small perturbations in the pressure and
temperature fields are generated. The O(1) temperature disturbance Θ0 arises from the
reorganization of temperature inhomogeneities by the strong streaming flow, as shall be
made explicit in the wave–mean-flow interaction equations given subsequently.

The distinction between the waves and the streaming flow can be made based on
a separation of time scales. While the acoustic wave fields exhibit fast oscillations
with zero mean value, the streaming flow effectively remains constant over this time
scale, evolving instead on a slow time T ≡ εt. The formal separation is captured via a
Wentzel–Kramers–Brillouin–Jeffreys approximation through the introduction of a rapidly
varying phase φ(t) = Φ(T)/ε. In this framework, any field f (x, y, t) is expressed as
f (x, y, φ, T), where φ and T are taken to be independent variables, and thus can be
decomposed as

f (x, y, φ, T) = f̄ (x, y, T) + f ′(x, y, φ; T). (2.9)

Here, the streaming flow component is represented by

f̄ (x, y, T) = 1
2πn

∫ φ+2nπ

φ

f (x, y, s, T) ds (2.10)

for sufficiently large positive integer n (and arbitrary φ). In contrast, f ′(x, y, φ; T) describes
the acoustic wave of zero mean value (f ′(x, y, φ; T) = 0). Finally, the instantaneous
angular frequency ω(T) satisfies

ω(T) = dφ

dt
= dΦ

dT
= ω0(T) + O(ε). (2.11)

2.4. Leading-order multiscale wave–mean-flow interaction equations
This multiscale analytical approach has been used by Chini et al. (2014) to derive a closed
set of equations describing the coupled dynamics of the acoustic wave and the streaming
flow. The present formulation differs only in the scaling of the aspect ratio and diffusive
terms, which can be easily traced in the derivation. Here, we simply state the resulting
leading-order equations.

The dynamics of the streaming flow is governed by the following mean-flow system:

ρ̄0
(
∂T ū1 + ū1∂xū1 + v̄1∂yū1

) = −∂xπ̄2

γ
−

[
∂x

(
ρ̄0u′2

1

)
+ ∂y

(
ρ̄0u′

1v
′
1

)]

+ 1
Re

[
∂xxū1 + 1

δ2 ∂yyū1 + 1
3

(
∂xxū1 + ∂xyv̄1

)]
, (2.12)
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ρ̄0
(
∂T v̄1 + ū1∂xv̄1 + v̄1∂yv̄1

) = −∂yπ̄2

γ δ2 −
[
∂x

(
ρ̄0u′

1v
′
1

)
+ ∂y

(
ρ̄0v

′2
1

)]

+ 1
Re

[
∂xxv̄1 + 1

δ2 ∂yyv̄1 + 1
3δ2

(
∂xyū1 + ∂yyv̄1

)]
, (2.13)

∂T ρ̄0 + ∂x (ρ̄0ū1) + ∂y (ρ̄0v̄1) = 0, (2.14)

ρ̄0
[
∂TΘ̄0 + ū1∂xΘ̄0 + v̄1

(
Γ + ∂yΘ̄0

)] = (1 − γ )
(
∂xū1 + ∂yv̄1

)

+ γ

Pe

(
∂xxΘ̄0 + 1

δ2 ∂yyΘ̄0

)
, (2.15)

ρ̄0 = 1
1 + Γ y + Θ̄0

. (2.16)

This system describes the wave-averaged motion of a compressible ideal gas driven by
an acoustic force density f ac = −∇ · (ρ̄0u′

1u′
1) that, for an ideal gas, can be reduced to

−(1/2)|u′
1|2∇ρ̄0 (up to a pressure gradient), as reported in (1.2) (Karlsen et al. 2016). If

the acoustic force density is fixed, the problem reduces to that of forced convection.
In baroclinic acoustic streaming, however, the situation is considerably more subtle, as

the slowly evolving temperature disturbance Θ̄0, and hence the density field ρ̄0, feeds back
on the acoustic wave. This coupling is clearly evident in the corresponding equations for
the waves, viz.

ω0ρ̄0∂φu′
1 + 1

γ
∂xπ

′
1 = 0, (2.17)

ω0ρ̄0∂φv′
1 + 1

γ δ2 ∂yπ
′
1 = 0, (2.18)

ω0∂φρ′
1 + ∂x

(
ρ̄0u′

1
) + ∂y

(
ρ̄0v

′
1
) = 0, (2.19)

ω0∂φΘ ′
1 + u′

1∂xΘ̄0 + v′
1
(
Γ + ∂yΘ̄0

) + γ − 1
ρ̄0

(
∂xu′

1 + ∂yv
′
1
) = 0, (2.20)

π′
1 = ρ′

1
ρ̄0

+ ρ̄0Θ
′
1. (2.21)

On the fast time scale, the dynamics of the acoustic waves is governed by a linear
homogeneous system, the solution of which consists of a sum of modes of various
amplitudes and angular frequencies. Here, however, we assume that only one acoustic
mode is externally forced, i.e. only one wave has finite amplitude. This acoustic mode has
dimensional horizontal wavenumber k∗ and is the solution of the eigenvalue problem for
the wave associated with the lowest eigenvalue (i.e. the smallest angular frequency) that
also has a non-uniform horizontal structure. Thus, any oscillatory field f ′

1, representing
(u′

1, v
′
1, π

′
1, Θ

′
1, ρ

′
1), can be expressed as

f ′
1(x, y, φ; T) = A(T)

2

[
f̂1(x, y; T)eiφ + c.c.

]
, (2.22)

where c.c. denotes the complex conjugate, A(T) is the amplitude of the mode and f̂1 is a
complex function that characterizes its spatial structure. For A(T) to be uniquely specified,
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a normalization condition must be imposed; we opt to require the eigenmodes to satisfy

max
x∈[0,2π],y∈[0,1]

∣∣π̂1(x, y, T)
∣∣ = 1. (2.23)

In practice, this amplitude A can be readily inferred experimentally from the (dimensional)
steady-state amplitude of the pressure oscillations measured by a sensor at (xs, ys), which
yields εA|π̂(xs, ys)|p∗. In the limit of very narrow channels (Michel & Chini 2019), the
eigenvalue problem for the lowest mode can be reduced to a one-dimensional problem
(in x) that can be solved analytically for a linear temperature profile. Moreover, in
that limit, the multiple scale analysis can be carried out to next order to obtain an
equation governing the temporal evolution of the modal amplitude A(T). Unfortunately,
the corresponding higher-order analysis cannot be easily executed for the fully 2-D
eigenvalue problem obtained here. The amplitude of the acoustic mode therefore will
be assumed to be constant, i.e. an external control parameter, in this investigation for
simplicity. Experimentally, this specification could be achieved via slowly varying acoustic
forcing mechanisms controlled by the feedback of a pressure sensor.

3. Numerical simulations of the wave–mean-flow equations

3.1. Methods
The two time scale quasilinear wave–mean-flow interaction system obtained in § 2.4
is integrated numerically over the slow time variable T . Specifically, we solve the
initial-value problem (2.12)–(2.16) governing the slow evolution of the streaming
fields using a third-order four-stage Runge–Kutta scheme implemented in the spectral
computational framework Dedalus (Burns et al. 2020). Equations (2.14) and (2.15) are
reformulated to yield a divergence condition on the streaming velocity field and a modified
energy equation, viz.

∂xū1 + ∂yv̄1 = 1
Pe

(
∂xxΘ̄0 + 1

δ2 ∂yyΘ̄0

)
, (3.1)

ρ̄0
[
∂TΘ̄0 + ū1∂xΘ̄0 + v̄1

(
Γ + ∂yΘ̄0

)] = 1
Pe

(
∂xxΘ̄0 + 1

δ2 ∂yyΘ̄0

)
. (3.2)

At each (slow) time step, the acoustic fields û1 and v̂1 are required to evaluate the
wave-induced Reynolds stress divergence. Accordingly, the set of equations (2.17)–(2.21)
governing the fast wave dynamics is consolidated to form an eigenvalue problem for the
fluctuating pressure field:

∂x

[
1
ρ̄0

∂xπ
′
1

]
+ δ−2∂y

[
1
ρ̄0

∂yπ
′
1

]
= ω2

0 ∂φφπ′
1. (3.3)

We solve, at each time step, the 2-D eigenvalue problem (3.3) in MATLAB using a
Fourier–Chebyshev collocation discretization (Trefethen 2000; Driscoll, Hale & Trefethen
2014). In both the Dedalus and MATLAB codes, Fourier series in the periodic x-direction
and Chebyshev polynomials in the wall-normal y-direction are used to represent all field
variables. The number of modes is chosen to correspond to a 122 × 122 spatial grid
resolution, and the time step �T = 0.01. Numerical convergence in space and time has
been verified.

To model a physical experiment in which a specific acoustic mode is forced for time
T � 0, the steady basic conduction state (Θ̄0 = v̄0 = ū0 = 0) is taken as the initial
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condition. The solution of the eigenvalue problem targets the horizontal standing wave of
smallest non-zero eigenvalue. For particular values of δ, standing waves along the vertical
direction may share the same angular frequency as the horizontal mode of interest, but
in practice the nature of the forcing (e.g. oscillating horizontal or vertical walls) would
ensure that only one of these modes is excited. Both the resulting eigenfunction and
eigenfrequency can vary with T . The results discussed in this section are obtained for
various acoustic wave amplitudes A and aspect ratios δ, keeping the following parameters
fixed:

Γ = 0.3, γ = 1.4, Re = 2500, Pe = 1775. (3.4a–d)

This set of parameters corresponds to using air as the working fluid, for which γ = 1.4 and
the Prandtl number Pe/Re = 0.71, inside an acoustic cavity similar to the one employed by
Michel & Gissinger (2021) but with larger Reynolds and Péclet numbers to clearly reveal
strongly nonlinear dynamical behaviour. We monitor the top- and bottom-wall Nusselt
numbers, defined as the ratio of the respective heat fluxes at the upper and lower channel
walls to the strictly conductive heat flux and evaluated as

Nut(T) = 1 + 1
2πΓ

∫ 2π

0
∂yΘ̄0(x, 1, T) dx, Nub(T) = 1 + 1

2πΓ

∫ 2π

0
∂yΘ̄0(x, 0, T) dx,

(3.5a,b)
where the subscripts ‘t’ and ‘b’ denote ‘top’ and ‘bottom’. In a steady state, integrating
(3.1) over the entire domain yields the expected equality Nut(∞) = Nub(∞) ≡ Nu.

This numerical approach, in which an eigenvalue problem is solved at each time
step to account for the slow evolution of the acoustic mode, has been introduced in
Karlsen et al. (2018) and Michel & Chini (2019) and is necessary to consistently capture
the acoustic force density −(1/2)|u′

1|2∇ρ̄0, since u′
1 depends non-locally on the entire

background density field ρ̄0(x, y, T). Nevertheless, the relevance of regularly updating the
acoustic wave fields remains insufficiently documented, leading to its arbitrary omission
in most subsequent investigations. To quantitatively assess the importance of two-way
coupling, we therefore also performed a set of numerical simulations, referred to as
‘one-way coupled’, in which the temporal integration is carried out without solving the
eigenvalue problem at each time step. Instead, f ac(x, y, T) is set to −(1/2)|u′

1|2∇ρ̄0
evaluated at the initial time T = 0. We acknowledge that several alternative ‘one-way
coupled’ approximations can be proposed, such as (i) only fixing |u′

1|2 in time and
evaluating f ac using the actual density gradient ∇ρ̄0 or (ii) setting the fluctuating pressure
π′(x, y, T, φ) = A cos(x) cos(φ) (i.e. a single Fourier mode in x that is independent of y)
and evaluating the acoustic force density with the fluctuating acoustic velocity obtained
from (2.17) and the current density gradient. The latter option may be appropriate for
well-mixed steady states realized at large dimensionless amplitude A (see § 3.4).

3.2. Convergence to a steady state
For small and intermediate acoustic wave amplitudes A, our numerical simulations reveal
that the system converges to parameter-dependent steady states. A typical run for δ = 4
and A = 4 shows that a few hundred slow time units are required to reach this steady
state; see figure 2 and the animation included in the supplemental material available at
https://doi.org/10.1017/jfm.2024.744. This requirement highlights the importance of using
a multiple-scale algorithm, since a single time unit corresponds in practice to hundreds
or thousands of acoustic cycles (cf. ε ≈ 10−4 for the set-up of Michel & Gissinger (2021)
discussed in § 2.2). During the transient regime, the top and bottom heat fluxes evolve
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Figure 2. Time series for A = 4 and δ = 4 of (a) the top and bottom Nusselt numbers (Nut, Nub) and (b)
of the acoustic-wave angular frequency ω0. The total steady-state temperature field 1 + Γ y + Θ̄0 shown in
(c) exhibits strong variations in x associated with localized jets at x = {0, π/2, π, 3π/2, 2π} and boundary
layers in y close to both walls.

non-monotonically, ultimately converging to a common value significantly larger than the
conductive heat flux. The variation of Nu with the amplitude of the wave A and with the
aspect ratio δ will be discussed in § 3.4.

This steady state exhibits both thermal boundary layers and vertical jets. Low-amplitude
waves (A � 1) generate smooth cellular structures (not shown here, for brevity), similar
to the ones computed theoretically and numerically in Michel & Chini (2019) for δ � 1
and in the DNS of Lin & Farouk (2008), Aktas & Ozgumus (2010), Baran et al. (2022)
and Malecha (2023).

To gain a more detailed understanding of these steady states, we further analyse the
Reynolds stress divergence, also referred to as the acoustic force density f ac, resulting
from the acoustic wave. This force density, corresponding to the second terms on the
right-hand sides of (2.12)–(2.13), is balanced by mean inertia, mean viscous forces and
the mean pressure gradient. Crucially, the part of this wave forcing that actually sustains
the streaming flow, i.e. the part that is not balanced by a mean pressure gradient, is given by
the curl ∇ × f ac. In figure 3, we plot this (scalar) field at the initial time, when the mean
temperature distribution corresponds to the linear conduction profile, and in the steady
state. The striking difference confirms the two-way coupling between the waves and the
streaming flow in this system, in contrast to the usual forced convection configuration.
A streaming flow generated by the curl of the acoustic force modifies the mean density
distribution and, hence, the properties of the acoustic waves and therefore also ∇ × f ac.

As noted in § 1, the generation of fluctuating vorticity in a gas is key to understanding
streaming flows. In a homogeneous gas, a non-zero acoustic-wave vorticity implies that
the acoustic force density

f ac ≡ −∇ ·
(
ρ̄0 u′

1u′
1

)
= −ρ̄0 ∇ ·

(
u′

1u′
1

)
= gradient term − ρ̄0

(∇ × u′
1
) × u′

1 (3.6)

generically cannot be balanced by a gradient term and, thus, may drive a streaming
flow. Acoustic-wave vorticity in that case is usually generated by viscous and/or thermal
diffusion in thin oscillatory boundary layers. In an inhomogeneous and inviscid gas, the

997 A7-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

74
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.744


J.A. Massih, R. Mushthaq, G. Michel and G.P. Chini

1

0 2π
–0.13

0.13

–7

(∇
 ×

 f a
c)

 .  
e z

7

x 0 2πx

y

(b)(a)

Figure 3. Evolution for A = 4 and δ = 4 of the curl of the acoustic force density ∇ × f ac: the initial
condition (a) and the steady state (b). Here ez ≡ ex × ey, where ex and ey are unit vectors in the x and y
directions, respectively. The feedback from the evolving streaming density field ρ0 leads to the localization of
∇ × f ac near the upper and lower walls.

1 1
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1

0
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π′
1

ρ–0

y
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Figure 4. Comparison for A = 4 and δ = 4 of the normalized steady-state amplitudes of (a) the curl of
the Reynolds stress divergence ∇ × f ac and (b) the acoustic-wave vorticity ∇ × u′

1: (a) |∇ × f ac|/|∇×
f ac|max; (b) |∇ × u′

1|/|∇ × u′
1|max. Since a horizontal standing acoustic mode is considered, the fluctuating

isobars (isovalues of p′) are essentially vertical – see inset in (b) – and acoustic vorticity is therefore localized
where vertical gradients of density exist (see (1.1)), i.e. in the top and bottom boundary layers.

acoustic force density instead reduces to (Karlsen et al. 2016)

f ac ≡ −∇ ·
(
ρ̄0 u′

1u′
1

)
= gradient term − 1

2

∣∣u′
1

∣∣2 ∇ρ̄0 (3.7)

= gradient term − 1
2

(
ρ̄0

(∇ × u′
1
) × u′

1 + (u′
1 · ∇ρ0)u′

1

)
, (3.8)

where (3.8) can be derived directly from (3.7) and the leading-order fluctuating equations.
In the absence of acoustic-wave vorticity, i.e. in the absence of fluctuating baroclinicity
∇ρ0 × ∇π′

1 = 0, the steady-state contribution to ∇ × f ac from the term (u′
1 · ∇ρ̄0)u′

1
in (3.8) is negligible. Thus, even in inhomogeneous gases, acoustic-wave vorticity plays
a crucial role in driving streaming flows. Physical insights follow from and qualitative
predictions can be made based on this understanding. First, it accounts for the localization
of ∇ × f ac close to the walls, as evident in figure 3. As shown in figure 4, ∇ × f ac is
significant only in regions where acoustic-wave vorticity also is large in magnitude; and
wave vorticity is confined to thermal boundary layers, since the fluctuating isobars and
the mean isopycnals are almost orthogonal there (see (1.1)). Second, this understanding
explains why the orientation of the standing acoustic wave is crucial in such systems.
Consider, for example, a configuration in which the initial conduction state of the
present set-up is perturbed with a standing wave oscillating along the vertical rather
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Figure 5. (a) Steady-state Nusselt number Nu (minus one) as a function of the acoustic wave amplitude
A for δ = 4, along with the asymptotic prediction Nu − 1 ∝ A4 that can be derived in the limit A � 1.
(b) Steady-state Nusselt number Nu as a function of the aspect ratio δ for both A = 4 and A = 0.01. The one-way
coupled simulations, in which the evolution of the acoustic waves is neglected, provide accurate results only in
the small amplitude limit A � 1. The inset (b.1) shows Nu − 1 (rather than Nu) versus δ.

than horizontal direction: the fluctuating isobars and the mean isopycnals would then be
approximately aligned, resulting in zero acoustic vorticity and, consequently, negligible
baroclinic acoustic streaming (see also Kumar et al. (2021)).

3.3. Dependence on wave amplitude
The influence of the acoustic wave amplitude A is investigated through a suite of numerical
simulations performed for the same fixed aspect ratio δ = 4 but for various values of
A ∈ [2 × 10−3, 4]. All simulations converge to steady states, with the Nusselt number
Nu plotted in figure 5(a). The results are compared with one-way coupled simulations
(defined in § 3.1) that also converge to steady states for A ∈ [2 × 10−3, 0.2]. In the range
A ∈ [1, 4], the one-way coupled dynamics evolves to statistically stationary states, and the
corresponding Nusselt numbers are obtained by time-averaging over more than 103 slow
time units.

In the limit of small acoustic-wave amplitude A � 1, the acoustic force density f ac ∝
A2 generates weak streaming flows and correspondingly small changes in the background
temperature fields. Although of limited practical interest since the resulting Nusselt
numbers are close to unity, this regime can be easily analysed theoretically by neglecting
the evolution of the acoustic wave properties, i.e. by assuming that the one-way coupled
dynamics provides an accurate approximation. Similarly to the analysis of Michel & Chini
(2019), which assumes δ � 1, we obtain for δ = O(1) that

Nu − 1 =
A�1

A4Re2Pe2γ −4F(δ, Γ ), (3.9)

with F(δ, Γ ) a function that has to be computed numerically; in the limit δ � 1,
F(δ, Γ ) = δ8G(Γ ) for some function G(Γ ), as predicted by Michel & Chini (2019).
The results of the numerical simulations reported in figure 5 support the A4 scaling
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for A � 0.02, a range for which one-way and two-way coupled simulations yield nearly
indistinguishable results.

Figure 5 also reveals that the one-way coupled numerical simulations and resulting
theoretical prediction (3.9) fail to capture the two-way coupling that emerges for A � 0.1.
In this regime, Nu is significantly larger than unity, and accurate results can be obtained
only by using the full machinery of the multiple-scale numerical algorithm implemented
in our numerical simulations.

3.4. Dependence on aspect ratio
The impact of varying the aspect ratio δ = k∗H∗ is investigated with a set of numerical
simulations performed for fixed A = 0.01 or 4 and varying δ ∈ [0.25, 10]. This variation
can be interpreted as being achieved, for example, by adjusting the channel height H∗,
since δ is the only parameter involving H∗ (see table 2).

The Nusselt numbers reported in figure 5(b) for small acoustic amplitude A = 0.01
reach a maximum for δ � 3. Since the acoustic amplitude A � 1, the evolution of the
acoustic wave properties can be neglected, and the one-way coupled simulations accurately
describe this regime. The Nusselt number is found to converge to unity as δ → 0, following
the asymptotic scaling law Nu − 1 ∝ δ8 derived in Michel & Chini (2019), which evidently
here holds for δ � 1 (see the inset in figure 5b). For A = 4, the feedback on the acoustic
waves is essential, and two-way coupled simulations are required to reach a consistent
steady state. In this case, the Nusselt number still exhibits significant variation with the
aspect ratio, with a maximum value of Nu = 56.4 at δ = 7. In this two-way coupled
regime, the aspect ratio that maximizes the Nusselt number is expected to depend on
all other parameters (Γ, Re, Pe, γ ) in a complicated fashion. Given that, in practice, the
height of the acoustic cavity is not easily modified once an experimental apparatus is built,
these simulations are particularly valuable for identifying optimal parameters beforehand.

The evolution of the streaming fields with δ is depicted in figures 6 and 7. For the
smallest value of δ (=0.25), diffusion in the wall-normal (y) direction prevails over inertia
(see the factor 1/δ2 in (2.12) and (2.13)) and smooth cellular structures are observed,
similar to the ones reported in Lin & Farouk (2008), Aktas & Ozgumus (2010), Baran
et al. (2022) and Malecha (2023). For larger values of δ, top and bottom boundary
layers accompanied by vertical jet-like structures are generated. For such flows, the
x-averaged temperature 1 + Γ y + 〈Θ̄0(x, y)〉x, where 〈(·)〉x denotes an x-average, does not
monotonically vary from 1 at y = 0 to 1 + Γ at y = 1, but instead displays thin regions
of reversed temperature gradient. The same feature is observed in quasilinear models
of buoyancy-driven convection (Herring 1968; O’Connor, Lecoanet & Anders 2021). In
these reduced models, convection is driven by the interaction between hydrodynamic
modes, assumed to be linearized solutions that evolve on a fast time scale determined
by an eigenvalue problem in which the more slowly evolving temperature arises as a
non-constant coefficient, and the slowly evolving temperature field itself, which is forced
by flux divergences analogous to a wave-induced Reynolds stress divergence. Note that
these emerging viscous and thermal boundary layers have a thickness that remains large
compared with that of the oscillatory Stokes layers, induced by the no-slip condition
at each wall, exhibited by the acoustic velocity field. These Stokes layers, which are
passive in our analysis – only generating a higher-order (i.e. weaker) streaming flow
– and, thus, self-consistently not resolved in our model, are of dimensional thickness
δ∗

BL = √
μ∗/(ρ∗a∗k∗). The corresponding dimensionless expression is δ∗

BL/H∗ =
δ−1√ε/Re.
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Figure 6. Steady-state streaming velocity fields for A = 4 and various aspect ratios δ. The white lines are
isovalues of the mass current potential φρ , defined such that ρ̄0ū1 = ∇φρ , and the colours correspond to the
normalized velocity magnitude (|ū1|/|ū1|max). The ratio of the height to width of each panel is set to the
respective value of δ to facilitate qualitative comparison.
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Figure 7. Wall-normal profiles of steady-state streaming temperature and horizontal velocity for A = 4 and
various aspect ratios δ. (a) The total streaming temperature averaged over the horizontal x direction, 1 + Γ y +
〈Θ̄0(x, y)〉x. (b) The streaming x-velocity component at a fixed location x = π/4, i.e. ū1(x = π/4, y). The
smooth profiles observed for δ = 0.25 develop viscous and thermal boundary layers as δ increases.

4. Conclusion

The interaction between a thermally stratified gas and a standing acoustic wave has been
investigated in a channel with top and bottom walls of fixed but differing temperatures.
As shown in Chini et al. (2014), Karlsen et al. (2016), Karlsen et al. (2018) and Michel
& Chini (2019), a two-way coupling develops in such inhomogeneous systems between
the streaming flow, which is forced by the standing acoustic wave, and the wave, whose
properties are modified by the varying background temperature. The present study extends
the work of Michel & Chini (2019) to characterize the resulting heat fluxes in channels
having heights comparable to the acoustic-wave wavelength. Moreover, the numerical
simulations reported here highlight several features of baroclinic streaming that are not
clearly apparent in the literature.
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For the given geometry, the evolution of the Nusselt number Nu, i.e. the heat flux
normalized by that realized in the absence of the acoustic wave, is of primary interest.
In contrast with scaling laws derived in the limit of small acoustic amplitudes, see (3.9),
and with previous investigations in narrow channels (Michel & Chini 2019), we report
values of Nu significantly larger than unity. This finding supports the practical potential
of acoustics to enhance heat transfer in situations where forced convection is difficult
to establish. The numerical algorithm that has been developed, coupling an initial value
problem to an eigenvalue problem, can be used to determine the geometry that maximizes
the Nusselt number for given acoustic amplitudes and gas properties, as shown for two
specific sets of dimensionless parameters in figure 5(b). Moreover, the results reported
here constitute a reference case for future investigations seeking to further increase Nu by
tuning the boundary conditions (e.g. enforcing a constant heat flux instead of a constant
temperature along the upper boundary to better model a heat source, or allowing for a
non-zero wall-normal velocity to model a porous substrate).

We also document several features of baroclinic streaming that are expected to be
generic and to apply, for instance, to the interaction of a standing acoustic wave with
air surrounding a hot (or cold) cylinder or sphere or filling a half-plane above a warmer
horizontal wall. In each scenario, these features can be traced to the baroclinic generation
of acoustic-wave vorticity. In strongly stratified gases, streaming flows are forced where
the curl of the acoustic force density is non-zero; this only occurs where the acoustic-wave
vorticity does not vanish, i.e. where the fluctuating isobars and mean isopycnals are
approximately orthogonal. The following sequence of events therefore can be anticipated
for an inhomogeneous gas suddenly forced by a standing acoustic wave. (i) Given a
smooth initial distribution of the thermal inhomogeneity, acoustic-wave vorticity will
spread throughout the domain and drive a streaming flow (figure 3a). (ii) The streaming
flow will mix the interior of the fluid, causing inhomogeneities in temperature to largely be
confined to thin boundary layers (figures 2c and 7a). (iii) This evolution in the temperature
field will modify the characteristics of the acoustic wave; in particular, acoustic vorticity,
and hence the component of the acoustic force density effectively driving the streaming
flow, also will localize in these boundary layers (figure 4). (iv) The streaming flow will
develop viscous boundary layers close to the hot (or cold) solid boundary (figure 7b)
that results in jets sustaining the mixing in the interior of the domain (figure 6b–e). We
conjecture that a transition to turbulence also may be expected to occur as the acoustic
amplitude or Reynolds number is further increased.

This dynamical picture highlights the two-way coupling between the acoustic wave
and streaming flow. To stress this point, we carried out one-way coupled simulations in
which the acoustic wave fields are not updated as the streaming temperature field evolves.
The resulting statistically stationary state is no longer strictly steady and the associated
heat flux is not accurately estimated; see figure 5. Holding the acoustic velocities fixed
in the evaluation of the acoustic force density (1.2), either to simplify the numerical
algorithm by not regularly solving an eigenvalue problem or to draw an analogy with an
effective gravitational field (Koulakis & Putterman 2021; Koulakis et al. 2023), therefore
restricts the validity of the approach to waves of vanishing amplitude that do not drive any
significant streaming flow and for which the advection of temperature inhomogeneities
can be neglected. Indeed, figure 8, which shows the acoustic wave kinetic energy for both
one-way (figure 8a) and properly two-way (figure 8b) coupled simulations, confirms that
merely updating the mean density distribution in the acoustic force density (1.2) is not
sufficient for reliable and robust simulation of these flows. Multiple scale analysis is the
appropriate approach to treat such disparate time scale coupling. Finally, this multiscale
analysis can be extended to identify the scaling of the temperature differential across the
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Figure 8. Evolution for A = 4 and δ = 4 of the acoustic-wave kinetic energy 1
2 |u′

1|2: the initial condition
(a) and the steady state (b). The evolution of the acoustic-wave kinetic energy, in addition to the streaming
density field, also results in significant modifications to the acoustic force density (1.2).

domain Γ = �Θ∗/T∗ for which the feedback of the streaming flow on the wave must
be included, i.e. to identify the crossover between pure Rayleigh streaming (Γ = 0) and
baroclinic streaming (Γ = O(1)).

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2024.744.
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