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IMMERSIONS AND EMBEDDINGS UP TO COBORDISM

RICHARD L., W. BROWN

In 1944 Whitney proved that any differentiable #-manifold (z = 2) can
be (differentiably) immersed in R?"~1 [15] and embedded in R?* [14]. Whitney’s
results are best possible when # = 27. (One uses a simple argument involving
the dual Stiefel-Whitney classes of real projective space P". See [9, pp. 14, 15].)
However, there is a widely known conjecture that any #-manifold (n = 2)
immerses in R?¢® and embeds in R2*—a®+1 Here, a(n) denotes the number
of ones in the binary expansion of #. We prove (Theorem 5.1) that every
compact manifold is cobordant to a manifold that immerses in (22 — a(n))-
space and embeds in (2» — a(n) + 1)-space. (See § 1 for the definition of
cobordant manifolds.) It is well known that if the conjecture were true it
would be the best possible result. (See Proposition 5.2.) We show that, for
n # 3, our result is also best possible. If conditions involving the vanishing
of certain Stiefel-Whitney numbers are placed on the manifold, then it is
possible to improve the dimensions of Theorem 5.1. These results are given
in § 6. An announcement of our theorems has appeared in [1].

The method of proof is to construct enough manifolds, each satisfying the
required immersion and embedding condition, to generate all of the cobordism
ring. This is carried out in §§ 2, 3, and 4, with proofs of some technical results
postponed to § 7.

1. The cobordism ring. By an #-manifold we mean a compact, not neces-
sarily connected, differentiable #n-manifold. We denote the boundary of 7 by
dV and say that Vis closed if 0V = ¢. Two closed #-manifolds A+* and M,"
are said to be cobordant if there is an (# 4+ 1)-manifold V such that 9V is
diffeomorphic to the disjoint union M"\U My". A comprehensive reference
on cobordism is Stong’s notes [12]. The relation of cobordism is an equivalence
relation on the class of closed #z-manifolds, and M" = 9V, for some V, if and
only if M™ is cobordant to the n-sphere S™. In this case, M"\U ¢ = 9V and
we allow the empty manifold as a representative of the cobordism class of .S”.
We denote the set of cobordism classes of #-manifolds by 9,. Disjoint union
induces an addition in N,, [¢] = [S"] serves as the zero element, and, because
M\J M= 90(M X [0,1]), every element is its own inverse. Hence, N, is a
vector space over the field with two elements, Z,. Cartesian product induces
a multiplication N, @ Ny, — Nyt which makes N+ = @2 N; into a graded
Zy-algebra. Thom [13, Théoréme IV.12, p. 79] proved that 9+ is a polynomial
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algebra over Z, with one generator in each dimension, not of the form 2! — 1.
Thus, Nx = Zs[xs, x4, x5, X6, Xs, . . .] and, for example, a basis for N¢ is {xs, X204} .

To determine the cobordism class of a given manifold one uses Stiefel-
Whitney numbers. We denote the tangent bundle of M™ by 7M". This bundle
is classified by a map 7: M* — BO (#), where BO () is the classifying space for
vector bundles of fibre dimension #. The cohomology ring H* (BO(z)) is the
polynomial algebra Zy[wy, . . ., w,], where w, € H'(BO (n)). (All our homology
will have Z, coefficients.) The Stiefel-Whitney classes of }M™ are defined by
w;(M") = 7*(w;), and we let w(M"*) =1+ w,(M"*) + ...+ w,(A"). The
dual Stiefel-Whitney classes are defined by @ (M) - w(M) = 1 and @(M) =
1+ a,(M)+ ...+ @,(M). Given a polynomial of dimension # in the
Stiefel-Whitney classes of M™, we can evaluate the polynomial on the funda-
mental homology class to get an element of Z, called a Stiefel-Whitney number.
The Stiefel-Whitney numbers form a complete set of invariants of the cobord-
ism class of M". We say that a manifold is indecomposable if its cobordism
class is not in the span of the image of the multiplication map Nx @ Nx — N.
Thom [13, p. 79] showed that M" is indecomposable if and only if a certain
Stiefel-Whitney number is nonzero: consider w;(M") as the ¢th elementary
symmetric function on one dimensional variables ¢, ..., t,, express the
symmetric function 374 ¢ as a polynomial s¢,y (M") in the w,’s, and evaluate
Sy (M™) on the fundamental homology class. (See also [3, pp. 32 and 33;
9, Corolary 4, p. 93; 12, pp. 71 and 96].) Thom showed that real projective
spaces of even dimension are indecomposable and Dold [3] constructed
indecomposable manifolds of all dimensions not of the form 2! — 1. We will
show how to construct such a complete set of generators of 9+ with the
property that each indecomposable manifold embeds and immerses nicely.
The main theorems follow easily once this is done.

2. Embedding and immersing products. An immersion of M" in R*+*
is a differentiable function f: M® — R™* such that at each x € M" the map
df: T, M" — T ;»R™* is injective. An embedding is a 1 — 1 immersion. It is
a result of Whitney [14; 15] that any M" embeds in R?" and immerses in
R2-1, Also, any two immersions of M" in R?*! are homotopic through
immersions. (See [5, Theorem 8.4, p. 275].) Given an immersion of M™ in R*
and an immersion of N* in R? there is the product immersion of M™ X N" in
Rstt, If s <2m —a(m) and ¢t =< 2n — a(n), then s+ ¢t =< 2(m + n) —
a(m + n) because a(m + n) < a(m) + a(n). We could also take the product
embedding of two embeddings, but this will usually not suffice. Hence, we
need the following simple result. (See [11, p. 319].)

LeEmMA 2.1. If M™ immerses in R®, N* embeds in R and s + t = 2m + 1,
then M™ X N" embeds in R%t*,

Proof. We can immerse M™ in R*+* and the normal bundle will have ¢
linearly independent sections. Because s + ¢ = 2m + 1, this immersion is
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homotopic through immersions to an embedding. The embedding has the
same normal bundle which can be realized in R*t? as a tubular neighbourhood.
Because of the ¢ sections, the tubular neighbourhood contains M™ X R¢,
and hence M™ X N®. This proves the lemma. (For example, the standard
embedding of St in R? gives a product embedding of the torus S* X S!in R4
But actually S X R embeds in R2?, so S! X R2 D S X S' embeds in
Rz X R = R3))

An immersion of M™ in R2* is said to have efficiency k.

COROLLARY 2.2. T'he cartesian product of k manifolds (not all of dimension one)
immerses with efficiency at least k and embeds with efficiency at least & — 1.

Proof. For k = 1, the result is just Whitney’s theorems. Assume that it is
true for & — 1 and consider a product of manifolds of dimensions
mi < my =< ... = my, where m; =1 and m; > 1. We can immerse the
product of the last ¥ — 1 factors with efficiency £ — 1 and embed it with
efficiency & — 2. If m, > 1, we can immerse the first manifold with efficiency
one, then take the product immersion or apply Lemma 2.1 to complete the
proof. If m; = 1, the first manifold is S*. Let my + ... 4+ m; = m. We can
embed S X Rin R?and hence we can embed S! X R2"—(*-D jn R2+em—(-D-1 =
R2m+D—=% Because the product of the last 2 — 1 factors can be immersed in
R2m=*+1" the complete product can be immersed with efficiency k. The argu-
ment for the embedding of efficiency £ — 1 is similar.

3. Even dimensional generators. Our even dimensional generators of
N« will be submanifolds of products of projective spaces similar to manifolds
constructed by Milnor. (See [12, pp. 80, 81].) Let # be a positive even integer.
If a(r) =1, let V* = P" where P"* denotes real projective n-space. If
a(n) > 1, let w = r; + ...+ 7, be the expansion of # as a sum of distinct
powers of 2. Let

k
K™ = P,
1

where s; =75, for 1 £j =k — 1, and s = r; + 1. The cohomology ring of
P is Zy[a]/ (@™t1), where o € H'(P"). Hence,

H*(K"“) = Zsloy, ..., ak]/(a1“+1, .

There is a submanifold V* C K" dual to the cohomology class
o = a1 4+ ...+ a By this we mean that the inclusion 7: V* — K1 sends the
fundamental homology class (V") € H,(V") to the Poincaré dual of o. (See
[13, p. 55; 12, pp. 78-81].)

.oy ak3k+1).

ProrcsitioN 3.1. V* immerses tn R 2™ and embeds in R¥—am+1,

Proof. If a(n) = 1, this is a special case of the Whitney theorems. If
a(n) > 1, it is sufficient to prove the statement for K"*!. Sanderson [10,
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Theorem 4.1, p. 146, and Theorem 5.3, p. 150] has proved that P” immerses in
R2=3 if  is odd, » = 5. Applying this to P, and immersing the other factors
with efficiency one, gives an immersion of K™ in R2(+D—(k-1+3) = R2—a(®)
For the embedding, first use Lemma 2.1 to embed the product of the first
k — 1 factors with efficiency 2 — 2. Then apply Lemma 2.1 again using the
efficiency three immersion of P to embed K"t1in R#"—e™+1 (The first & — 1
factors need at least 4-space, so Lemma 2.1 does apply.)

ProposITION 3.2. [ V"] is an indecomposable element of Nx.

Proof. If a(n) =1, V"= P". Now, w(P") = (1 + a)", s0 sumP") =
(n + 1)a™. Hence, (s¢(P"), (P*)) = n + 1. Here, n is even so this Stiefel-
Whitney number is nonzero, and [ V"] is indecomposable.

Leta(n) > 1. (Compare [12, pp. 79, 80].) Let » be the normal line bundle of
V* in K%t Then w(») =*(1 4+ ¢). Now, LK*!=7V"®», so
w(V")*(1 + o) = Fw((K™!), and w(V") = *(1 4+ o) w(K™*!). The total
Stiefel-Whitney class of K"! is the product of the total Stiefel-Whitney
classes of its factors. Hence,

k
w(V" =1 +6) 7 [ A+ a)¥th
j=1
If 27 > n + 1, then
A4+ t=Q04+e")0+o)t=1+0)7",

so the above formula expresses w;(V") as the jth elementary symmetric
function of 1-dimensional elements. In forming 37 ¢/, recall thata” = 0
because # > s, Hence,

(S (V™), (V7))

Il

1

@*(@2" = D", (V7))

= <Unv 1*(Vn)>

= (" 7 (™))

= (o1, (KmH)),
The relations satisfied by the a; imply that

o™l = (a1 + ... F o)™ = {51,000, Sl oL atE,
where {sj, ..., sy} denotes the multinomial coefficient
(14 oo F s/ (1) o oo (se)).

To prove V" is indecomposable, it is sufficient to prove that {si, ..., sx} is
nonzero modulo 2. This is an immediate consequence of the following result.

LEMMA 3.3. {#1,...,n;} = 1 (mod 2) if and only if the binary expansions
of n1, . ..,ny intermesh in the sense that no two of them have a 1 in the same
place. (Equivalently, a(ny + ...+ ny) = a(n1) + ... + a(ng).)
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Proof. For any prime p, there is a well known formula for binomial coeffi-

cients:
()=11() @

where a = Y ioapl, b = Y im0 bip’. Thus,

<Z> =1 (mod 2)

if and only if b; = 1 implies that a; = 1, for all <. Now,

- (1)

and the lemma follows easily for 2 = 2. The general case follows by induction
from the formula

{'}’Iq, [N ,nk} = {n1 + e + MNr—1, n,c}{nl, [P ,?Lk_1}.

4. Odd dimensional generators. Dold [3] constructed odd dimensional
generators of N, as follows. Let P(m, ) be the (m 4+ 2xn)-manifold formed
from the product S™ X P"(C) of the m-sphere with complex projective
n-space by identifying (u, 2) with (—u, £). If # is odd and not of the form
2F — 1, we can write uniquely z = 27(2s + 1) — 1 (r > 0, s > 0), and Dold
proved that P(2" — 1, 2%s) is indecomposable. We make a similar con-
struction.

For a space X and a positive integer m let P(m, X) be formed from
S™ X X X X by identifying (u, x, y) with (—u,y, x). If X is an #-manifold,
then P (m, X) isan (m 4+ 2n)-manifold. In § 7, we will show that [P (m, P*)] =
[P (m, n)]. However, we will need a more general choice of X, and in § 7 we
will prove the following result.

ProrositioN 4.1. [P (m, M*)] is indecomposable in Nx if and only if [M™] is
1ndecomposable in N« and the binomial coefficient {m — 1, n} is nonzero modulo 2.

Let » be odd and not of the form 28 — 1. Let # =2"(2s + 1) — 1
(r>0,s>0),andleta =2"— 1,0 = 27s.

COROLLARY 4.2. I* = P(a, V’) determines an indecomposable element in x.

Proof. Because b is even, 1* has been defined and [V?] is indecomposable by
Proposition 3.2. Also, {2" — 1, 2%s} is nonzero modulo 2 by Lemma 3.3.
Hence, [ "] is indecomposable by Proposition 4.1.

To find embeddings and immersions of the manifolds P(a, V), we can
make use of our embeddings and immersions of the manifolds V°. An immer-
sion (embedding) of V? in R® induces an immersion (embedding) of P (a, V?)
in P(a, R*).
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ProrosiTiON 4.3. P(m, R¥) is the total space of the bundle kv, ® ke where
Ym, € are, respectively, the canonical line bundle and trivial line bundle over P™.

Proof. Define g:S™ X R¥ X R¥ — 5™ X R¥ X R¥ by
glu,%,9) = (u,x — y,x + ).

If, in the domain of g, we identify (%, x, y) with (—u, y, x) and, in the range
of g, we identify (u, x, y) with (—u, —x, v), then g induces a homeomorphism
between these quotient spaces. But the first is P (m, R*) and the second is the
total space of ky,, @ ke.

In order to apply Proposition 4.3, we must be able to immerse and embed
sums of line bundles over real projective spaces. We will use the following
result of Mahowald and Milgram [8, Theorem 4.1, p. 418].

TaeEorREM 4.4 (Mahowald and Milgram). Let p and ¢ be odd and let
m = p + q + 1. Then the total space of (p + 1)v, immerses in Euclidean space
of dimension 2q + p + 1 —a(m) + a(p + 1) — k(p, m).

Here, k(p, m) = min(k(p), k(m)) and k(¢) depends on the congruence
class of ¢ modulo 8 as follows: k(¢) = 0if t = 1(8), k() = 1ift =3 or 5 (8),
k(@) =4if t = 7(8).

ProrosiTioN 4.5. V* = P(a, V°) immerses in R ™ and embeds in
R2r—a(m+1,

Proof. We will show the existence of the embedding stated above. The
immersion is obtained by a similar but somewhat easier argument.

By Proposition 3.1, V?® embeds in R2*~«®+1 Thus, by Proposition 4.3,
P(a, V?) embeds in the total space of the bundle (20 — a(b) + 1) (ya @ ¢).
We first apply Theorem 4.4 to 2by, with2b = p + 1,9 = a¢,andm = a + 2b =
2" — 1 4 2715, Hence, a(m) — a(p + 1) = r, and, certainly, k(p, m) = 0.
We therefore obtain an immersion of 2by, in R2*+2°=7  We can consider this
as an immersion of P? in R2%+2°=7 with normal bundle containing 2bvy, as a
sub-bundle. Because 2a 4+ 20 — 7 = 2¢ + 1, this immersion is homotopic
through immersions to an embedding, and a tubular neighbourhood of the
embedding contains the total space of 2bvy,. Now we can take the product with
R20-e®+1  to obtain an embedding of 20y, ® (20 — a(b) 4+ 1)e in
R2e+40—a®=r+1 Because 20 = 20 — «a(b) + 1, this bundle contains

(20 —a(®@) + 1)(v. @ ¢).
Also, 2a +4b — (r + a(®)) + 1 = 2n — a(n) + 1, so we have found the
required embedding of P(a, V?). ‘
5. The main theorem. We are now ready to prove our main result.

THEOREM 5.1. Any M™ is cobordant to a manifold that immerses with efficiency
a(n) and embeds with efficiency a(n) — 1.
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Proof. The manifolds V" constructed in §§ 3 and 4 generate the cobordism
ring M« Thus, any M™ is cobordant to a disjoint union of products of the V*.
As noted at the beginning of § 2, we can take the product of the immersions
given by Propositions 3.1 and 4.5 to obtain an immersion of each product in
R2—e™  Similarly, we can apply Lemma 2.1 to embed each product in
R2—em+1 (In Lemma 2.1, if m < #» then s + ¢t = 2m + 1. Thus, we can
embed the factor of largest dimension and then immerse the other factors
and apply Lemma 2.1 repeatedly.) Finally, we can take the disjoint union
of our immersions or embeddings in an obvious way. This completes the proof
of Theorem 5.1.

We will now show that for # # 3, Theorem 1 is the best possible result.
Let n = 71 4+ ...+ 7, be the dyadic expansion of # as a sum of distinct
powers of 2 and let

k
4* =[] P
i=1
PROPOSITION 5.2. The manifold A" does not immerse 1n R¥™=1 gud does

not embed 1n R¥™ M, If n is even, no manifold cobordant to A™ tmmerses in
R2—eM~1 or embeds in R¥—a™,

Proof. A necessary condition for M" to immerse in R2**-1 or embed in
R2* is that @;(M"*) = 0, for ¢ = n — k. (See [9, Theorem 4, p. 13, Theorem
14, p. 44].) Now,

k

[T a+ay™?

=1

@(4"™)

.
|

Il
=~

(1 + at”)_l(l + Oli)‘l

T
-

Il
-

(1 + ai)n_ly

-
il
-

because 7; is a power of 2 and a;* = 0, for s > ;. Hence,

k
wn—a(n)(An) = I_Il ai”_l
=

# 0.

This proves the first assertion of the proposition.

Note that if # is odd, the first factor in 4® is P! = S! which is a boundary.
Hence, 4" is a boundary if # is odd. Assume that # is even. Then Wy, (M") =
ai - . ..oy plus other terms, where the other terms are each of degree greater
than one in some «,. Hence,

k
wa(n)wn—a(n) (Mn) = I_Il ai“
=

# 0,
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and the corresponding Stiefel-Whitney number is nonzero. Thus, every
manifold cobordant to A" has @, oy # 0, and the second assertion is proved.

Now let # be odd, #» > 3. Let the dyadic expansion of z be

n=14+nrn+...4+ 7.
(Thus, a(n) = k + 1.) For each 7 (1 <7 = k) such that », 2, define a

manifold B = P(1, P*) X A, where s = %_ri and t=n— (r;+1). In §7
we study the Stiefel-Whitney classes of P (m, M") and prove the following

result.

ProrositioN 5.3. No manifold cobordant to B/ immerses in R¥—eM=1 oy
embeds in R¥—a®,

6. Vanishing Stiefel-Whitney numbers. A necessary condition for M"
to be cobordant to a manifold that immerses in R2**-1 or embeds in R2**
is that all Stiefel-Whitney numbers involving @,_;, for 0 < 7 < &, should
vanish. We will now show that this condition is sometimes also sufficient.

First, we will define some new generators W” of N« If # is odd (and
n#% 2% — 1), let W" = V", as defined in § 4. If # is even and a(n) = 3, let
n =71+ ...+ r;, be the dyadic expansion of #, and define

k—1

Kn+1 — H Ps.'

i=1

where s;, =r,(1 =<1 =k —3), sp.a =1r2+ 1, and s,_1 = 7,1 + 7, and
let W C K™ be a submanifold dual toa; + ...+ ax_1. (See § 3.) If a(n) < 2,
let W* = Pn,

ProrosiTiON 6.1. [W"] is indecomposable in Nx.

Proof. If n is odd, then Corollary 4.2 applies. If # is even and a(n) = 2,
Wr = P" and [P"] is indecomposable whenever # is even. (Because w(P*) =
1+ @)™, sy (P*) = (m + 1)a™ # 0.) Finally, if # is even and a(n) = 3,
we use the proof of Proposition 3.2 including Lemma 3.3.

It is clear that when # is odd, " immerses in R =™ and embeds in
Rev—am+1,

PROPOSITION 6.2. If n is even and a(n) = 2, then W™ immerses in R2—em™—1
and (for n # 6) embeds in R¥—=™,

Proof. 1f a(n) =2, W" = P* Suppose that n = 2"+ 2 (r = 2). Then
Sanderson [10, Theorem 4.1, p. 146 and Theorem 5.3, p. 150] gives the required
immersion, and Handel [4, Theorem 4.1, p. 129] the required embedding. If
n=2"+4 2% (r>s>1), then n = 4, where ¢ is not a power of 2 and
Mahowald [7, Theorem 7.2.2, p. 346] gives an embedding of P” in R¥*~3,

If a(n) = 3, sy—1 = 4¢, where ¢ is not a power of 2. Thus, we can embed
the last factor in K™*+1 with efficiency 3. Using Sanderson’s result [10, Theorems
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4.1, 5.3], we can immerse the second last factor with efficiency 3 unless
Sy = 3; however, in the latter case we can immerse P? X R in R*. If now
we apply Lemma 2.1 repeatedly, we can embed K™*+! in R¥—e®—1,

TuEorREM 6.3. Let n be even. If the Stiefel-Whitney number of M™ corresponding
10 Watn)yWn—aw vamishes, then M™ is cobordant to a manifold that immerses in
R2m—e®=1 qud (for n #% 6) embeds in R¥"—=™,

Proof. The classes [IW¥] generate I+ so M™ is cobordant to a disjoint union
of products of the W¥ One product which may or may not appear is A"
(See § 5.) We claim that every other product immerses in R#—e®-1 and (for
n % 6) embeds in R#—=®_ Clearly, this is true for W?; for, either a(z) = 1,
in which case W" = A", or a(n) = 2, in which case Proposition 6.2 applies.
Any other product can be written in the form U® X U’ where a(s + £) <
a(s) + «(t), and this strict inequality implies the product immersion or
embedding using Lemma 2.1 gives the required result.

The Stiefel-Whitney number corresponding t0 @Wa)Wy—awm 1S zero on all
products except A”. Hence, the hypothesis of Theorem 6.3 implies that A4”
does not appear. This completes the proof of Theorem 6.3.

Note that if # is odd, the argument fails. If # is odd, # = 27" + 1, we can
immerse W” in R¥*-«®-1 and embed W" in R¥*+®_  (Indeed we need only
consider k(p, m) more carefully in the proof of Proposition 4.5.) However,
the difficulty is that there may be more than one product B/ (See § 5.) The
hypothesis of Theorem 6.3 implies only that the number of products B
occurring in the expansion of [M"] is even.

THEOREM 6.4. Letn = 270r 2" + 1, and let 0 < s £ 3. Then M" is cobordant
to a manifold that immerses in R¥=*=1 and embeds in R** if and only if the
Stiefel-Whitney numbers of M™ corresponding to @;W,—; vanish, for 0 < 1 < s.

Proof. We can represent the cobordism class of M" by a disjoint union of

products of the form
k

11 w

i=1
Terms with 3% ;a(#;) = 4 immerse and embed with efficiencies 4 and 3,

respectively. If >/ a(n;) < 3, then & < 3. Also, a(n;) £ 2 because 1 = 27
or 2" 4+ 1. The only terms satisfying these conditions are given by:

) n=2"4+1, n =mn,
i) n=2"4+1, n =2"141, ny = 2™,
(iii) n = 27, n = n,
(lV) n = 27, ny = 27_1, Ne = 2r—1’
V) n =27, ny = 271 ny = 272 py = 272 (r > 2),
(vi) n = 27, ny =214 272y, = 272 (r > 2),
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It is easy to check that the first five terms are all detected by the Stiefel-
Whitney numbers of Theorem 6.4. We claim that the sixth embeds with
efficiency 3 and immerses with efficiency 4. If » > 3, we use Mahowald’s
result [7, Theorem 7.2.2, p. 346] to embed the first factor with efficiency 3,
and if » = 3, the first factor is P%, which immerses with efficiency 4. (See
[10, Theorem 4.1].) Theorem 6.4 is now proved.

7. P(m, X). We will begin by computing the modulo 2 cohomology ring
of P(m, X).

The projection of S™ X X2 on S™ induces a bundle map of P (m, X) on P™
with fibre X2. If we choose x € X, we can define a section of this bundle by
setting s(u) = (u, x, x). It follows that the cohomology ring H*(P™) is a
direct summand of H*(P(m, X)). We denote the generator of this summand
by ¢ € H' (P (m, X)). Then ¢™! = 0 and 7*¢ = 0, where m:5™ X X2 — P (m, X)
is the identification projection.

Let 7:5™ X X2 — S™ X X? be defined by 7'(%,x,y) = (—u,y,x). Then
70T =m, 50 (1 + 7% oxr* =0, and the image of 7* is contained in the
kernel of 1 4+ T*. Let £:X2— X? be the interchange ¢(x,y) = (v,x). Let
N C H*(X?) = H*(X) ® H*(X) be the image of 1 + ¢* and let D C H*(X?)
be the set of diagonal elements of the form ¥ ® x. Then the kernel of 1 + #*
is D 4+ N. (Note that D is not closed under addition but that D 4+ N is closed
under addition because, for example,* @ x + y @ ¥y = (x + 3) ® (x + y) +
1+ *)(x ® y).) Let g,, generate H™(S™). Then the kernel of 1 4 T* is
D+ N+ g,® (D+ N). (Here, we are writing D+ N instead of
1® (D+ N).)

THEOREM 7.1. The cohomology ring H* (P (m, X)) s isomorphic to
(Zs[e)/ (') ® D) + N + gn @ N,

where ¢® @ D = D, and multiplication is determined by the multiplication in
D+ N+ gn ® N and the relation ¢ @ N = 0. Also, 7* is the identity on
D+ N+ g, ®N.

Proof. We will use the exact sequence of the pair (P(m, X), P(m — 1, X))
to prove the theorem by induction on m. We will use = to denote the identifica-
tion maps for both spaces and for the pair of spaces. Recall that m = 1.

Let S™ ! X I be a band around the equator of S™ with upper and lower
boundaries S,™ ! and S_™1. Let D,™ and D_™ be the top and bottom caps of
S™ with boundaries S,;™ ! and S_™"!, respectively. The inclusion

(D4, Sym=1) U (D7, Sm1)) X X2 — (57, 5™ X ) X X*

is an excision. There is an induced excision after identification, and, because =
identifies the two pieces on the left, we obtain an isomorphism

H*(P(m, X), P(m — 1, X)) = H*((D™, S™1) X X?).
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We will denote the generator of H™((D™, S™1)) by g, again. The long exact
sequence of the pair now becomes
3

ok >k 5
L H@m X)) S B P — 1,X) 2 g @ HFx L

LEMMA 7.2. Let £:5™ 1 X X2 — S™ X X2 be the inclusion and let § be the
coboundarv in the sequence of the pair (D™, S™ 1) X X2, Then t*c = ¢, j*g, = ¢™,
™ =, (@ ®@r ®Y) =g, ® (x®y+y ®x), and § = ¥'r*.

Proof. The first two statements follow by comparison with the exact
sequence of the pair (P™, P™1). The other statements follow from the com-
mutative diagram below:

S—l X X2_>Dm X X2 — (Dm, Sm——l) X X2

2 | I
'2 e1 <D+m1 S+m_l) X X2

Sl X X2— 5™ X X2 — (S, S™ 1) X X2 v
(D_m’ S_m—l) X X2

L |

Plm — 1, X) — P(m, X) > (P(m, X), P(m — 1, X)) = (D", S"1) X X*

In this diagram, e; and e, are excisions, «f is the identity, and j* = j*e,* L

Now we are ready to prove the theorem for m = 1. Because P (0, X) = X2,
we have an exact sequence.

.. it HYP(1, X)) i*> HYX? 2, g1 ® HY(X?) ]_*, H*(P(1, X)) ii ..
in which 6(x®y) =¢m™*x Q) =21 ® *x®y+ vy ® «x). Thus,
H*(P(1, X))/image (j*) = kernel(§) = D + N.
Because kernel(j*) = image(5) = g1 ® N, it follows that
F@®x®y) =@ ®y Qx)

and that 7*/* (1 @ ¥ ®y) =21 Q@ (x @y + y ® x) in H*(S' X X2). Thus,

the image of #* is exactly D + N + g; ® N. Also, j* is injective on g; ® D,

and 7%*(zg1 ® D) = 0. We can denote j*(g1 ® D) by ¢ ® D. For, if

w € H¥*(P(1,X)) with 7*4 = x @ x € D, then h*r*u = x ® x and, because

nf is the identity and H*(Y, 4) is a module over H*(Y), g1 ® (x ® x) =

g1 ® u in H*((DY, S° X X?). Thus, (@1 ®xQx) =*(@) Qu =c ® u.
Similarly, if 7™*2z = x ® ¥y + ¥ ® «x, then

cQu=7g)Qu=7@® *®y+yQ®x)) =@ @x®y) =0.
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Thus, c ® N = 0.

This completes the proof for m = 1.

Assume now that the theorem is proved for m — 1. By Lemma 7.2, §(¢) = 0,
6D+ N) =0, and 4(gn—1 ® N) = g, ® N. Thus, j* maps g, ® D injec-
tively to ¢ ® D. Also, 7*(gn @ x @ ¥) = (g, ® y ® x) and

T gn @ QY) =gn® (x ®y + 3 @ x).
Hence, the image of 7* is¢™ ® D + g, ® N. The rest of H*(P(m, X)) is
isomorphic to image(i*) = kernel(§) = {¢*® D + N,0 =7 < m — 1}. This

completes the inductive proof of the theorem.

Recall that a map f:X — V induces a map P(m,f) from P(m,X) to
P(m, V) defined by P(m, f)(u, x,y) = (u, f(x), f(v)). The next result is
immediate from Theorem 7.1.

COROLLARY 7.3. If f:X — Y is such that the induced map in cohomology is
injective, them the cohomology map of P(m, f):P(m,X)— P(m,Y) 1s also
mnjective.

Given x, v € H¥(X), we denote x @ x € H*(P(m, X)) by d(x) and
xQ@y+yQxc H*(P(m X)) byelx @ y).Lete(x) = e(x ® 1) = e(1 ® x).

If v is a vector bundle over X with fibre R", total space E (v), and projection
p:E(y) — X, then P(m, p):P(m, E(y)) > P(m, X) is the projection of a
vector bundle (denoted by P (m, v)) over P (m, X) with fibre R?*. It is straight-
forward to verify that P(m,v ® v') = P(m,vy) @ P(m,v').

ProPOSITION 7.4. If v s a line bundle over X with total Stiefel-Whitney class
w(y) = 1+ a, then wP(m,v)) =1+ ¢+ el@) + d(a).

Proof. The pullback of P(m, v) to.S™ X X?is just vy X v. Hence,
*wPmv)=14Fa®14+1Qa+a® a.

If s:P™ — P(m, X) is a section, then the pullback of P(m, y) to P™ is just
the sum of the canonical line bundle and the trivial line bundle. Hence,
s*w(P(m,v)) = 1+ c. It follows that w(P (m, v)) must be as stated.

COROLLARY 7.5. P (m, P*) is cobordant to the Dold manifold P(m,n).

Proof. 1f v, is the canonical line bundle and e the trivial line bundle over P”,
then7(P") @ ¢ = (1 + 1)7v,. (See [9, p- 11].) Hence, P(m, 7 (P*)) @ P(m, ) =
(n 4+ 1)P(m, v,). Now in general, 7(P(m, M")) = 7(P™) @ P(m, +(M")).
Observe also that P(m, €) = v, @ e. Hence,

w(P(m, P*))(1 +c¢) = (1 + )" (1 + ¢ + e(a) + d(a))" .

According to [3, Satz 1, p. 29 and Satz 2, p. 30] the formula for the total
Stiefel-Whitney class of P(m, n) is

w(P(m,n)) = 1+ )"+ ¢+ a)y*,
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where ¢ =0, dt' =0, ¢ € H'(P(m,n)), d € H2(P(m,n)). Because
ce(e) = 0, P(m, P*) and P (m, n) will have the same Stiefel-Whitney numbers
and hence be cobordant.

Remark 7.6. There is another way of proving Corollary 7.5 which depends
on fixed point sets of involutions. Define an involution s on S™ by

S(xﬂy se ey xM) = (—xOr X1y oo - yxm)'

Extend to S™ X M® X M" by setting s(u, x,v) = (s(u), x,y). There is an
induced involution (again denoted by s) on P (m, M") and the fixed point set
Fof sis F = P(m — 1, M*) \U A, where A is the diagonal of M™ X M". If »
is the normal bundle of F in P(m, M"), then P(m, M™) is cobordant to the
real projective bundle of v @ ¢, [P(m, M™)] = [RP(» @ €)]. (See [2, Theorem
24.2].) Over P(m — 1, M™), this bundle has fibre P! = S! and hence is a
boundary. (It bounds a bundle with fibre D2.) The normal bundle to A is
me @ 7(M"). Hence, [P(m, M")] = [RP(+(M") ® (m + 1)¢)]. This result
offers an alternative method for proving Proposition 4.1. Now, if we define
s on P(m,n) by s(u,z) = (s(u), z), then a similar argument shows that
[P(m,n)] = [RP(x(P") ® (m + 1)e)]. Hence, [P(m,n)] = [P (m, P*)].
Proof of Proposition 5.3. It is slightly more convenient to work with P(1, s)
rather than with P (1, P®). Recall that s is a power of 2 and that s = 2. Hence,

w(P(l,s)) = A+ ) A+ ¢+ d)~*?
=14+ c+d)

because ¢ = 0. Thus, w;(P(1,s)) =0, for 7 = 2s, and w1 (P(1,s)) =
cd® 1 % 0. Also, w:(P(1,s)) = d, so Wews,_1(P(1,s5)) = ¢d® % 0. This covers
the case t = 0 of Proposition 5.3. The general case is a straightforward conse-
quence of these calculations and the calculations given in Proposition 5.2.

Proof of Proposition 4.1. Let f:X — M" be a splitting map for 7(M"). (See
[6, Proposition 5.1, p. 235].) That is, the pullback f —1r(M") is a direct sum of
line bundles, and the cohomology map f * is injective. Suppose that

f*w(M™) = w(f~'rM") = t[l 1 4+ ).

Then the pullback of P(m, rM") to P(m,X) under the map P(m,f) is a
direct sum of R2-bundles and

P(m, f)*w(P (m, TM")) = LII 1+ ¢+ e(a;) +d(ay)).
Because 7P (m, M") = 7P™ @ P (m, vr]M"), we obtain the relation
P(m, f)*w(P(m, M")) = (1 4 )" 1__11 (1 + ¢+ elas) +d(ay)).
Let 1 4+ ¢+ elas) +dlas) = (1 + u,)(1 + v;) so that u; + vs = ¢ + eos)

and #v; = d(a;). Because P (m, f )* is injective, [P (m, M")] is indecomposable
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if and only if the polynomial in ¢ + e(a;) and d(a;) corresponding to the
- symmetric function
n
s(m+2n) — (m + l)cm+2n + Z (uim+2n + vim+2n)
i=1
is nonzero. But ¢™+* = 0 and

™ oM = k= L} e+ v) ).
k+2j=m+2n

If we now substitute and use the relations ¢™+! =0, ce(e;) = 0, and
e(a:)*d(a;)! = 0, if & 4+ 27 > 2n, we obtain the result

Sm+2m) = {m - lyn}cm Z d(ai)n
=1

{m — l,n}cmd<2 ai") .

=1
This is nonzero if and only if {m — 1,#} =1 (mod 2) and Y iza/ % 0;
the latter condition holds if and only if [M™"] is indecomposable.
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