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Software methods for  post-acquisition  alignment  of  projection  data  in  micro-  and nano-  computed-
tomography (CT) have been applied successfully in recent years, in most cases eliminating the need for
precise  geometric  alignment  of  instrument  components.  One  strategy  is  to  search  for  alignment
parameter  values  that  maximize  the  sharpness  in  a  filtered  back-projection  reconstruction  [1].  A
potentially much faster and more robust alternative is based on the projection differences in opposing
rays along PI-lines. This has been applied to both circular and helical scanning trajectories with mixed
results [2]. Here we consider their use with double-helix [3] as well as space-filling trajectories [4].
We assume a lens-less fine-focus geometry  where magnification is  achieved through the expanding
spherical wave-front of X-rays emitted from a micro(nano)-focus X-ray source (S) that is a distance Sl

from the rotation axis.  A flat-panel detector (D) is located a distance Dl from the rotation axis (in the
opposite direction).  The relative orientation of the system S-D with respect to the specimen coordinate
system is specified by an elevation  z and a horizontal angle  θ. A generalized helical trajectory in this
setting is then any sequence (θi, zi) = (i∙Δθ, i∙Δz), i = 1,…,Ω, where Ω is the total number of projections,
Δθ giving the angular translation between source points, and Δz giving the vertical translation.

A  double-helix  trajectory  uses  less  radiographs  per  revolution  than  a  helix,  but  incorporates  an
additional set of helical data with all angles offset by half a revolution. For details on the definition,
properties and advantages of the DHT, we refer to [3]. A space-filling trajectory can be defined simply
as a low-pitch helix with a large stride, in which the horizontally scaled pairs  (i∙Sl∙Δθ, i∙Δz) form an
approximately hexagonal pattern. For details on the definition, properties and advantages of the SFT, we
refer to [4].

The center position of the source and detector at the i-th radiographic measurement are found as si = (-
Sl∙cos(θi), -Sl∙sin(θi), zi) and di = (Dl∙cos(θi), Dl∙sin(θi), zi), respectively.  It is straightforward to compute
the straight line (known as a PI-line) between si and sj for any index pair i,j, and thus obtain the detector
value ri,j (if it exists) corresponding to the ray from si going through sj for the i-th radiograph. Pairs of
source/detector positions that are too close in θ or too far in z lead to PI-lines that do not intersect the
detector, in which case the associated value ri,j will be undefined.

We define two matrices,  M = (mi,j) and  A = (ai,j) for  i,j = 1,…,Ω. Set  mi,j = 1 if both  ri,j and  rj,i are
defined, mi,j = 0 otherwise. Elements of A are then found as ai,j = mi,j∙ri,j. The accumulated ray difference
along PI-lines is computed as  e = |A - AT| / |M| for an appropriate matrix norm |.| (e.g. the L2 norm).
Repeating  the computation  based on a  hypothetical  misalignment  of  the system  S-D,  we derive  an
analogous value e(p) for p an appropriate parameter vector describing misalignment. Our task is to find
a vector  p out of the set  P of potential misalignments that minimizes  e; it is assumed that  pmin best
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describes the current system geometry. Note that e can be computed in time O(Ω2). Here we optimized e
via a series of constant-step 1-parameter scans followed by an application of Powell’s method.

Figure  1  shows  the  uncorrected  and  corrected  reconstructions  for  a set  of  1950  radiographs  with
simulated misalignments on a space-filling trajectory, generated from a digital phantom of size 512 x
512 x 1024 voxels with a voxel size of 3.2μm. The geometry was such that  Sl = 1.6384mm and Dl =
80.2816mm, corresponding to a magnification factor of 50 and a detector pixel size of 0.16mm.  The
simulated detector  size was 592 pixels along each axis,  resulting in a cone angle of 60°.  The total
vertical  extent was 5.4012mm, with  Δz = 2.771μm and  Δθ = 6.36°. The estimated misalignments
matched the known values within fractions of an optimal unit (OU) [1].

Figure 2 shows the uncorrected and corrected reconstructions for a cylindrical sample of white beech
wood, 3mm in diameter, acquired with a double-helix trajectory using a total of 14136 projections (7068
per helix). The data was taken with Sl = 3mm and Dl = 312.5mm, Δz = 1.344μm and  Δθ = 0.125°. A
3040 x 3040 pixel detector with a pixel size of 0.139mm was used. The effective cone angle was again
60°, and the magnification factor was 105.2. The estimated misalignments using the PI-line difference
and the sharpness metric differed by less than an OU in all parameters, in most cases only by a fraction
of  an  OU.  We note  that  the  PI-line  difference  metric  was  significantly  more  sensitive  to  intensity
fluctuations in this case than sharpness, so that a successful alignment required an additional effort in
correcting these.

We conclude that the PI-line difference metric is an equally robust and significantly faster alternative  to
sharpness when used on SFT data, and typically robust enough for DHT data with a potential need for
additional preprocessing [5].
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Figure 1. Reconstructions of an SFT dataset from
a digital phantom with simulated misalignments.
Left: uncorrected. Right: corrected for estimated
misalignments using the PI-line difference metric.

Figure 2. Reconstructions of a white beech DHT 
dataset. Left: uncorrected. Right: corrected for 
estimated misalignments using the PI-line 
difference metric.
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