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ABSTRACT. Magnetic reconnection is a fundamental process in astrophysics which plays 
many different roles on the Sun. The classical theory of fast steady reconnection due to 
Sweet, Parker, Petschek and Sonnerup has been unified in a theory which possesses many 
new regimes that depend on the boundary conditions at large distances. For example, the 
flux pile-up regime possesses diverging flows, a long central diffusion region and a 
reconnection rate that is much larger than the Petschek value. Recent numerical 
experiments however, often possess three features that are not present in the earlier 
theoretical models, namely highly curved inflow field lines, separatrix jets and reversed 
current spikes, and so an attempt is described to include these features in a new theoretical 
model. 

Several solar phenomena where reconnection is believed to be operating are described. 
Cancelling magnetic features in photospheric magnetograms are probably evidence of 
reconnection submergence. Most prominences are of inverse polarity and have upflows 
driven by reconnection below them. Coronal heating may well be due to reconnection in 
many small current sheets. In solar flares reconnection may be driven below an eruptiing 
active-region prominence and hence power the high-temperature flare loops and 
chromospheric ribbons. 

1. Introduction 

It was realised 30 years ago that the energy for a flare can only come from the coronal 
magnetic field and that it is being released very fast - at a significant fraction of the Alfven 
speed - and so this was the stimulus for the discovery of fast reconnection mechanisms by 
Sweet, Parker and Petschek. The emphasis was on steady mechanisms because the overall 
energy release continues for many thousands of Alfven times, although of course it is 
modulated in a time-dependent manner. 

In a vacuum, reconnection is a trivial process, but, in a plasma atmosphere such as the 
Suns, normally the plasma is attrached very effectively to the magnetic field. It is only 
where the magnetic gradients are, say, a million times stronger than normal that the 
magnetic field can slip through the plasma and reconnect (Figure 1). There are three 
important effects of such a process. Firstly, the global topology of the magnetic field may 
be changed since the connectivity of the field lines may be altered. For example, initially in 
Figure 1 the point A is joined to point B and finally it is connected to point C. This may 
affect the behaviour of particles and heat which tend to travel along the field lines. 
Secondly, inflowing stored magnetic energy is converted into heat, bulk kinetic energy and 
fast particle energy. Thirdly, reconnection creates large electric currents, electric fields, 
shock waves, filamentation, each of which may be involved in the acceleration of fast 
particles. 
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Figure 1. The breaking and reconnecting of field lines in a region (shaded) of very strong 
magnetic gradient 

Now reconnection is realised to be important in a wide range of solar phenomena, such 
as coronal heating, coronal mass ejections, magnetoconvection, dynamo generation, 
prominences, and bright points, as well as the many types of solar flare. We have seen in 
the talks by Heyvaerts, Hollweg and Van Ballegooijen how reconnection in many current 
sheets may provide the heating of the solar corona. Thus all 

NIXT x-ray 11 Sep I S 

Figure 2. X-ray picture of the solar corona (courtesy L Golub) 
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of the beautiful 3/4 arcsec structure in the spectacular X-ray picture from Golub's Normal 
Incidence X-ray Telescope on the Sept 11 (1989) rocket flight may be a direct consequence 
of reconnection. The X-ray bright points that are often present in coronal X-ray pictures, 
although strangely not in Figure 2, are now thought to be produced by magnetic 
reconnection, though not always by emerging flux. Reconnection also takes place below 
most prominences and releases the energy in a solar flare, creating both the Ha ribbons and 
the hot flare loops after an active-region prominence has erupted. Ahead of an erupting 
prominence one sees a coronal mass ejection (Figure 3), a huge magnetic bubble which is 
sometimes observed to disconnect from the Sun. 

Figure 3. A coronal mass ejection (courtesy A Hundhausen) 

In magnetohydrodynamics the plasma velocity (v) and magnetic field (B) are primary 
variables, with the electric current 

j = V x B / u , « B / ( u L ) (1.1) 

and electric field 

E = - v x B + j / a (1.2) 

deducible from them if required. (This is quite different from laboratory electromagnetism, 
where E and j are primary.) The flow and field are determined by the equation of motion 

P ^ = - Vp + ( V x B ) x B 4 i , (1.3) 

and the induction equation 

SB 
— = V x ( V X B ) + TIV2B (1.4) 
3t 
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where T] = is the magnetic diffusivity. Equation (1.4) implies that the magnetic field 
changes in time due to two effects. The first term on the right represents the advection of 
magnetic field lines with the plasma. The second represents diffusion through the plasma 

and at the same time magnetic energy is converted to heat ohmically at a rate j 2 / a , where j is 
given by (1.1). 

The time-scale for magnetic dissipation is given by equating the first and third terms in 
(1.4), namely 

T d = ^ « 10-9 L 2 T3/2, (1.5) 

which is enormously long ( 1 0 1 4 seconds) for a typical global coronal length-scale (L = 
10 7m) and coronal temperature (T = K^K). Thus, in order to release magnetic energy, one 
needs to create extremely small length-scales in sheets or filaments and therefore very large 
magnetic gradients and electric currents (Eqn 1.1). This may be done in three ways: as 
propagating sheets in shock waves; as stationary sheets in magnetic equilibria near X-
points or separatrices; and as a result of instabilities such as the tearing mode or the 
coalescence instability. 

2. Theory of Fast Magnetic Reconnection 

2.1 CLASSICAL THEORY 

A region of oppositely directed or sheared magnetic field may be linearly unstable to the 
breaking and reconnection of field lines by the tearing mode instability. When the tearing 
mode develops nonlinearly or when a current sheet forms dynamically or when magnetic 
sources are driven together, then a quasi-steady state of fast nonlinear reconnection may be 
reached. The classical models are sketched in Figure 4. The Sweet-Parker (1958) model is 
a simple diffusion region. In the Petschek mechanism (1964) the diffusion region occupies 
only a small central location, while most of the energy conversion occurs at standing slow-
mode shock waves that accelerate and heat the plasma to form two hot fast outflowing 
streams. In Sonnerup's (1970) model an extra set of discontinuities is standing in the flow 
ahead of the slow shocks, but Vasyliunas (1975) pointed out that these are slow-mode 
expansion waves which need to be generated externally at discrete points in the flow which 
would not be present in astrophysical applications. 

Sonnerup and Priest (1975) discovered an exact solution of the nonlinear MHD 
equations in which an incompressible stagnation point flow 

v x - - a , v y - a 

satisfying V-v = 0 carries in oppositely directed (but straight) magnetic field lines. The 
equation of motion (1.3) for steady flow determines the pressure 

p = const - 5 p v 2 - B2/(2ji) 

and for a field B(x)y Ohm's Law becomes 
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Figure 4. The classical energy conversion mechanisms of (a) Sweet-Parker, (b) Petschek, 
(c) Sonnerup and (d) Sonnerup and Priest. 

E o - > = „ f (2.1) 

where the electric field (Eo) and flow scale (Vo) are constant. The solution of (2.1) at large 
distances has the field (B) increasing like x"1 as it is carried in, but eventually at a distance 
of order Oia/vo) 1 / 2 the diffusion term on the right becomes important and causes B to 
decrease to zero at the origin. This solution has been generalised to three-dimensions and 
also, by Gratton et al (1988) to include viscous flows. 
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In the Sweet-Parker diffusion region of length 2L and width 2i one simply writes down 
order of magnitude relations between the inflow speed (vi) and the outflow speed (vAi), 
which is the AlfV6n speed based on the inflow magnetic field (Bi). Thus for a steady state 
the plasma flows in at the speed 

(2.2) 

at which the magnetic field is trying to diffuse outwards. Also the conservation of mass 
into and out of the region gives 

Thus eliminating i between (2.3) and (2.4) gives in dimensionless form the inflow AlfV&i 
Mach number (i.e. the reconnection rate) as 

where M = V/VA and R m = LV A / T | is the magnetic Reynolds number. In practice R m is 
typically lO^-lO 1 2 and so the reconnection is very slow (Mi ~ 10~ 3-10~ 6), which was why 
Petschek sought a faster mechanism to explain energy release in a flare. 

Petschek's analysis was disarmingly simple. The magnetic field decreases substantially 
from a uniform value (B e ) at large distances to a value Bi at the entrance to the diffusion 
region, while the flow speed increases from v e to vi. The object is to determine for a given 
B e the maximum value of v e (in dimensionless form Me = Ve/vAe)- The effect of the shocks 
is to provide a normal field component B N which essentially produces the distortion in the 
inflow field from the uniform value B e at large distances. Thus, if the inflow field is 
potential, the distortion may be regarded as being produced by a series of monopole 
sources along the x-axis between Ixl = L and Ixl = L e , say. The result is that, as the 
diffusion region is approached the field strength falls to 

Lvi = *VAi, (2.3) 

(2.4) 

Le 

or 

Bi = B ( 

71 ^ 
(2.5) 

At the shock waves the condition that they be standing is 

https://doi.org/10.1017/S0074180900088124 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900088124


277 

and Petschek estimates the maximum reconnection rate (Me*) by putting Bi = ^ B e in (2.5) 

to be 

* n 
M e = 8 log R m e • 

In practice this is typically 0.01, much greater than the Sweet-Parker rate. 

2.2 UNIFIED THEORY OF FAST STEADY ALMOST-UNIFORM RECONNECTION 

Vasyliunas (1975) clarified the physics of Petschek's mechanism by pointing out that the 
inflow region has the character of a fast-mode expansion with the pressure and field 
strength decreasing and the flow converging as the magnetic field is carried in. A fast-
mode disturbance has the plasma and magnetic pressure increasing or decreasing together, 
while a slow-mode disturbance has the plasma pressure changing in the opposite sense to 
the magnetic pressure. An expansion makes the pressure decrease while a compression 
makes it increases, even in the incompressible limit. Sonnerup's model possesses slow-
mode expansions that are unlikely because they are discrete. Vasyliunas suggested that a 
Sonnerup-like solution may be possible with a diffuse slow-mode expansion spread 
throughout the inflow region, making the field strength increase, the pressure decrease and 
the flow diverge as the field lines are carried in, although he was unable to find such a 
solution. 

I wanted to understand Vasyliunas's distinction mathematically and was also puzzled at 
many strange features of some of the numerical reconnection experiments such as much 
longer diffusion regions than Petschek, diverging flows and large pressure gradients. Also 
what is the relation to the stagnation point flow solution? Can a Sonnerup-like solution be 
found without the extra discontinuities? And can a model in a finite region be produced, 
like the numerical experiments? 

y 

Figure 5. Notation and boundary conditions. 
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' = f(x) = { B i v : , 
y 1 2 B N L < x < L e 

i s 

A l " ' I ( n S ) ; C ° ^ n + ^ * C ° S h [ ^ + " ( 2 1 0 ) 

where 

During one summer Terry Forbes and I (Priest and Forbes, 1986) tried to answer such 
questions by seeking fast, steady almost-uniform reconnection solutions to the equations 
for two- dimensional, incompressible flow, namely 

p ( v V ) v = - Vp + (V x B) x B/n (2.6) 

E + v x B = 0 (2.7) 

V v = V B = 0. (2.8) 

The solutions are almost-uniform in the same sense as Petschek's, namely that one 
performs a linear expansion about a uniform field 

B = B 0 x + B i + ... 

v = vi + ... . 

Neglecting the pressure gradient (2.6) then reduces to a potential field 

V2Ai = 0 (2.9) 

where 

dy y dx 

The solution to (2.9) subject to the boundary conditions that 

B i x = 0 on y = L 

^±y_ = 0 on x = L 
3x 

B i y = 0 on x = 0 

' 2 B N x/L 0 < x < L 
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4 B N s i n [ ( n + j ) 7 d V L e ] 

a ° L/Le(n + ^ ^ ^ c o s h [ + ^ ) T C ] 

This represents a Petschek-type solution with a weak fast-mode expansion. From (2.7) the 

first-order flow (vi = (E/Bn)y is uniform but the second-order flow is converging. By 
calculating Bi one can deduce a relation between and Mi, which shows that, as Petschek 
had expected, M e does indeed possess a maximum value which is close to Petschek's 
estimate. 

(b) R m e = 5 0 0 

Figure 6. Inflow Alfven Mach number Me as a function of Mi for several values of b. 

As well as putting Petschek's analysis on a firmer basis, one can, however, generalise 
the theory by including a first-order pressure gradient, which simply changes (2.9) to 

1 B o dy 

and the solution (2.10) to 

A l = • 1 ( n f l > " C ° S [ ( n + * * E + 0 * ( 1 - 9 1 } 

When b = 1, the inflow field on the y-axis is uniform and we have found the Sonnerup-like 
solution with a slow-mode expansion across the whole inflow region. However, there are 
many other solutions for the other values of the parameter b, which is determined by the 
nature of the flow on the inflow boundary, since the horizontal flow speed at the corner 

(x,y) = (L e ,L e ) is proportional to (b - 21%). As b increases so the inflow turns from being 
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(o) Slow Compression (b,< 0) 

(•) Sonmrup (b,«l) 

(d) Hybrid Expansion (2 /»<t ,< l ) 

(f ) Flux Pft*-«4> ( b , > l ) 

Figure 7. Magnetic field lines and streamlines for several members of the unified theory. 

converging (and therefore producing slow-mode compressions) to being diverging (with 
strong slow-mode expansions). The latter comprise a flux pile-up regime with long 
diffusion regions. The way that the reconnection rate (Me) varies with Mi and b is shown 
in Figure 6, where it is seen to be faster than the Petschek rate for regimes with b > 0. 

The main results from the above analysis are that the type of reconnection regime and the 
rate of reconnection depend sensitively on the inflow boundary conditions, with the 
Petschek (b=0) and Sonnerup-like (b=l) solutions being particular members of a much 
wider class. Jardine and Priest (1988) have recently extended the theory to include higher 
orders, compressibility and energetics. Also, it has been compared with a variety of 
numerical experiments (Forbes and Priest, 1987). 

2.3 NONUNIFORM RECONNECTION WITH SEPARATRIX JETS 

Numerical experiments such as that shown in Figure 7 reveal four puzzling features that are 
not present in the classical models of reconnection: 

(i) different types of inflow; 
(ii) separatrixjets; 
(iii) reversed current spikes; 
(iv) highly curved field lines in the inflow region. 

The first feature is the one which Priest and Forbes (1986) attempted to model with their 
unified almost-uniform theory. The other three features have been tackled in a new 
nonuniform theory by Priest and Lee (1990). 
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o) b) C ) 

Figure 7. Numerical experiment on reconnection (Biskamp, 1986) 

y 

Figure 8. The notation for reconnection with a highly curved inflow. 

Feature (iii), the reversed current spikes at the ends of the diffusion region, slow down 
the streams of plasma that are emerging from the diffusion region and partially divert them 
along the separatrix jets. This is a consequence of imposing boundary conditions at the 
outflow boundary that give a mismatch with the outflow from the diffusion region. 

By contrast, feature (iv), the highly curved inflow field lines and the associated wide 
shock angle, are a direct result of the form of the inflow boundary conditions. In general 
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the number of such conditions that can be imposed equals the number of MHD 
characteristics that are propagating information into the region. For our case of two-
dimensional, sub-Alfvenic, incompressible, essentially ideal flow, there are three imposed 
conditions. For instance, if one prescribes 

v x = 0, v y = constant, p = constant (2.11) 

on the inflow boundary (AD), then the MHD equations (2.6)-(2.8) imply that 

B x = constant, B y = 0, 

so that the straight field lines are carried in by a uniform flow without curving and 
reconnection is impossible. If, on the other hand, boundary conditions only slightly 
different from (2.11) are imposed, then reconnection with weakly curved inflow field lines 
may be produced. Thus it is entirely reasonable to expect that conditions greatly different 
from (2.11) could produce a highly curved inflow. 

Now equations (2.8) may be satisfied identically by writing v and B in terms of a stream 

function Q¥) and flux function (A), namely 

_3*F 3*F 3A 3A 
V x — , Vy — " , B X — , By — - . 

3y 3x 3y 3x 

Magnetic 

L = 0.05 L. 

Lines (with Shock) 

L = 0.21. 

0 x/L, 1 

L = 0.61, 

Figure 8. Field lines for one quadrant of nonuniform reconnection. 
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Then the problem of nonuniform reconnection with an imposed inflow (v e ) and field 
strength (B e ) on the inflow boundary producing a diffusion region (OY) of half-length L 
with a separatrix YS and slow shock YH may be tackled in three steps. 

First of all, in the upstream region ahead of YH suppose for simplicity that both the 
plasma speed (v) and sound speed are much smaller than the Alfv6n speed (VA). Then 
(2.6) implies that j = 0 and so for a potential field with a current sheet we may use complex 
variable theory to pick 

B y + i B x = Bi(g- I)1* (2-12) 

where z = x+iy and there is a cut (a current sheet) from z = -L to z = L. Then (2.7) implies 
that the flow velocity may be deduced from 

^ = VeB e Jf (2.13) 

where the integral is along a field line. 
The second step is to calculate the position of the shock from the characteristic curve 

*F + A = constant 

that passes through the end point (Y) of the diffusion region. Then the shock relations are 
applied to deduce the conditions just downstream of YH. Finally, one needs to solve the 
MHD equations in the downstream region subject to the appropriate boundary conditions at 
the shock and at the outflow boundary CH. In general these equations may be written 

v V A = - v e B e (2.14) 

v-V co = B-V j (2.15) 

where co = - V 2 x F is the vorticity. 

For example, the results of assuming v » VA and so taking co = 0 or 

V * F = 0 

with *F imposed along the boundary YHC and *¥ = constant on YC are shown in Figures 8 
and 9. The shock (strictly speaking an Alfvenic discontinuity of slow-mode compression^ 
type in this incompressible model) is shown dashed but is rather weak and has little effect 
on the magnetic field. The effect of the reversed current spike downstream of the diffusion 
region shows up in the field lines of abnormal curvature and in the spreading of the 
streamlines. Also the separatrix jet is prominent and makes streamlines follow the 
separatrix as they pass through it. As the current sheet decreases in length, so the inflow 
speed increases up to a value that depends on the inflow Alfv6n Mach number. Results 
have also been obtained by solving the full equations (2.14) and (2.15). 
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Figure 10. Cancelling magnetic features Figure 11. Reconnection submergence as 
shown by rectangles in a set of photospheric an explanation for the cancellation of 
videomagnetograms (Martin et al, 1985) magnetic fragments. 
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3. The Role of Reconnection on the Sun 

3.1 CORONAL HEATING IN CURRENT SHEETS 

There may well be several mechanisms at work in heating different parts of the corona. 
Almost certainly X-ray bright points, for example, are caused by reconnection, though not 
always, as was believed until recently, by emerging flux. They certainly occur above pairs 
of oppositely directed magnetic fragments, but Martin (1986) has demonstrated with a 
videomagnetograph that such fragments are often cancelling rather than emerging (Figure 
10). It is my view that, as such fragments come together, their magnetic field lines 
reconnect in the atmosphere above, creating one loop which moves out while another 
submerges - such a process may be called reconnection submergence (Priest, 1987). Such 
an explanation has natural theoretical grounds and would in a natural manner create the X-
ray bright points, subflares, macrospicules and minifilaments that are often observed to be 
associated with cancelling magnetic features. 

Reconnection could also be responsible for energy release in current sheets created if 
smooth magnetic equilibria do not always exist when photospheric footpoint motions are 
complex (Parker, 1972). Mikic et al (1988) have recently performed a 3D ideal MHD 
numerical experiment to show how such current sheets could be created. They assume the 

pressure is zero, the flows are much slower than the Alfven speed, and they adopt a 64 x 

64 x 64 point mesh. The footpoints of an initially straight uniform magnetic field are 

Figure 12. Field lines at intervals of 40TA (Mikic et al, 1988) 

braided with random footpoint motions. A series of smooth equilibria are produced but 
there is a transfer to small scales with filamentary electric currents that grow like 

exp(0.01t/T A ). 
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3.2 PROMINENCES AND GLOBAL FLUX BALANCE 

Quiescent prominences may well lie at the boundaries of giant cells and most have Inverse 
Polarity, so that the magnetic field threads through the prominence in the opposite direction 
from what one would expect on the basis of the observed photospheric line of sight 
components. The observed upflows of plasma in prominences on the disc have therefore 

Figure 13. A prominence of Inverse Polarity with flux cancellation 

been suggested to be created by magnetic reconnection below the prominence in response 
to converging motions of the photospheric footpoints (Malherbe and Priest, 1983; Priest, 
1987). In addition such a process of flux cancellation below a prominence would be 
consistent with Sara Martin's observations and would build up helical structure in the 
prominence magnetic field (Van Ballegooijen and Martens, 1989) and so create the 
structure that forms the basis of the new Twisted Flux Tube Model of prominences (Priest 
etal 1989) 

An important question is how the global magnetic flux balance in the corona is 
maintained. Magnetic buoyancy brings flux to the surface over a wide range of scales, but 
then what happens to it? On a large scale flux is lost in coronal mass ejections at a rate of 
about 0.5 per day carrying a flux of 10 2 1 Mx. When the field in a coronal mass ejection 
becomes stretched out, a disconnection is needed eventually to prevent an indefinite build-
up of flux in the interplanetary medium although it is rarely observed, perhaps because it 
usually occurs after the mass ejection fades from view. On a small scale we have seen that 
cancelling magnetic features often create X-ray bright points and perhaps small plasmoids 
(and HRTS jets) are associated with such events. The plumes that overlie bright points in 
coronal holes (Ahmad and Webb, 1978; Holt and Mullan, 1986) may have an outflow of 
100 km s"1, which would be enough to supply the high-speed solar wind. Furthermore, a 
flux escape of 1 0 2 1 M x per day would provide the heat required for the active-region 
corona, while 10 2 0 Mx per day would be enough for a quiet region. 
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3.3 RECONNECTION IN SOLAR FLARES 

Reconnection plays several roles in solar flares. Small flares may be created by the 
interaction of neighbouring flux systems, either when new flux emerges or when existing 
bipolar flux moves laterally or when separate magnetic elements cancel by reconnection 
submergence. Large flares involve three phases: the slow preflare rise of a prominence; 
the flare onset and impulsive phase when reconnection begins at many points below the 
prominence; the main phase when quasi-steady reconnection continues and creates hot 
coronal loops and bright chromospheric ribbons as the opened-out field closes back down. 
The role of reconnection in a large (two-ribbon) flare is therefore to release the energy in 
the impulsive and main phases and, in some cases, to trigger the initial eruption by 
emerging flux. 

Forbes (1989) has conducted a numerical experiment on emerging flux in which new 
bipolar flux is injected from below into a uniform horizontal field. Flux pile-up 
reconnection occurs with two streams of plasma produced by the reconnection and slowed 
down by termination shocks. The new flux rises and pinches off, forming a plasmoid and 
eventually approaching a potential field of lowest energy. The power output shows a slow 
increase in a driven phase, followed by an impulsive bursty release of energy and a slow 
decline, similar to what is observed in flares. 

Some numerical experiments of the creation of hot flare loops have focussed on the 
close-down process by beginning with a line-tied open vertical field and watching it 
reconnect (Forbes and Priest, 1982; Forbes et al, 1989). Recent results show: an 
impulsive bursty regime which explains sudden jumps in loop height; a fast shock which 
slows the downflowing stream, increases the density and triggers a condensation; a 
reversed deflection current which deflects the downflow around a stagnation region; the 
splitting of the slow shock into a conduction front and an isothermal subshock; and the 
presence of evaporation in the hot loops to produce the observed density and temperature. 
Other numerical experiments (Mikic et al, 1988; Biskamp and Welter, 1989; Forbes, these 
proceedings) have modelled the global eruption followed by reconnection. 

4 . Conclusion 

We have seen that reconnection may play many different roles on the Sun in a wide variety 
of phenomena from dynamo action to solar flares. At the present time new theoretical 
advances are being stimulated by surprises in numerical experiments, whose understanding 
is in turn being deepened by such theories. In future a better understanding is hoped both 
for the coupling to microscopic processes such as particle acceleration, for three-
dimensional and time-dependent features and also for a closer comparison with 
observations. 
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DISCUSSION 

MOGILEVSKIJ: (i) The time of reconnection is usually short but in some flares the 
proton acceleration continues for longer than 5000 sec. 
(ii) Can you give experimental arguments that the energy for the solar flare will be only by 
the reconnection of magnetic fields in the corona? 

PRIEST: (i) Impulsive bursty reconnection in the impulsive phase may accelerate particles 
rapidly over short times, but then the quasi-steady reconnection in the main phase may 
continue to accelerate the particles over longer periods. 
(ii) One cannot prove the existence of reconnection in a flare, since we shall not this 
century be able to resolve the reconnection region or map the field lines observationally with 
high precision. However, there are many indirect observations which are consistent with 
our theoretical understanding and with numerical experiments, and so reconnection is highly 
likely, especially since there is no other way of releasing the required energy from the 
magnetic field. 

WEISS: As you know, the latest numerical experiments by Biskamp show complicated 
dynamical behaviour with self-similar structure associated with resistive instabilities. 
Biskamp asserts that reconnection has little resemblance to your models. Do you have any 
comments on this? 

PRIEST: Biskamp's experiments are excellent but their interpretation is a matter of lively 
debate. Numerical and theoretical approaches complement one another and each has 
advantages and limitations. For example, the numerical experiments apply to a small range 
of magnetic Reynolds number and for specific boundary conditions. My view is that the 
theory does indeed enable us to understand the experiments better and, in particular, isolates 

https://doi.org/10.1017/S0074180900088124 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900088124


289 

the effect of a wide range of different boundary conditions. In particular, Forbes and Priest 
(1987, Rev. Geophys 25,1583) have indeed been able to interpret the results of Biskamp in 
terms of their models. I would expect new reconnection experiments in future with a more 
comprehensive treatment of the boundary conditions to show Biskamp's results to be part of 
a wider class of solutions. In particular, we have shown how the type of reconnection 
depends crucially on the details of both inflow and outflow boundary conditions. 

SMITH: (i) D. Biskamp is of the opinion that for 2-D steady reconnection you cannot 
exceed the Sweet-Parker rate. 
(ii) Also your classification depends on a small parameter which the numerical experiments 
show is not small. 

PRIEST: (i) What we have shown conclusively is that you can indeed exceed the Sweet-
Parker rate provided you have the appropriate boundary conditions. Indeed you can obtain 
regimes similar to the Petschek regime or much faster regimes. It is not surprising that 
Biskamp did not find Petschek-like reconnection when you see what boundary conditions 
he has imposed. However, what I have presented here are, in a way, generalisations to the 
Petschek analysis to include extra effects that one finds in the experiments of Biskamp and 
others. 
(ii) I agree that the Priest-Forbes theory does rely on assuming a small deviation from a 
uniform magnetic field. However, the resulting physical understanding in terms of slow-
and fast-mode expansions is more general. The new Priest-Lee models are an attempt to 
drop the assumption of a nearly uniform field and we plan to try and generalise them even 
further. 

FORBES: I have myself looked at Biskamp's numerical experiments in detail, and I 
believe they do show that you can get reconnection rates faster than the Sweet-Parker rate 
and the Petschek rate. Biskamp's definition of the reconnection rate is not the same as the 
standard one we use. When I re-evaluated his reconnection rate using the standard 
definition (Forbes and Priest, Rev. Geophys92S,l5S3 1987) I found that he does indeed 
have reconnection rates in excess of both the Sweet-Parker and Petschek rates in some of 
his cases. 

LANG: (i) What is the driving force that makes magnetic fields come together? 
(ii) Why does reconnection occur rarely? 
(iii) Does reconnection happen in the photosphere, or in the corona? 
(iv) Is there any observational evidence for magnetic fields actually coming together? 

PRIEST: (i) It depends on the application. For example, in X-ray bright points the 
driver is the motion of photospheric magnetic footpoints, whereas in a two-ribbon flare I 
suggest that the eruption of a prominence drives reconnection below i t 
(ii) I suspect that it actually occurs quite often, continually relaxing the field, reducing its 
complexity and energy and heating the corona. 
(iii) In both. Photospheric magnetic fields tend to be dominated by plasma motions, which 
may drive the fields together, as in cancelling magnetic fields. Coronal magnetic fields tend 
to dominate the plasma and so reconnection can occur there either spontaneously by, say, 
the tearing mode instability or in response to footpoint motions. 
(iv) Yes, for example in cancelling magnetic features and also there are cases where 
opposite polarity regions approach one another in active regions before flares. 
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KUNDU: I can cite several examples of evidence for magnetic field reconnection in solar 
flares, from VLA observations. The preflare region is generally heated (up to 10 7K) prior 
to flare onset; however, unless there is a newly emerging flux with appropriate polarity, 
the region does not flare. Here the new flux interacts with a pre-existing flux to produce a 
current sheet, which reconnects and produces a flare. Similarly, impulsive release of 
energy takes place in a gradual burst source when new flux emerges, produces a current 
sheet and leads to an impulsive burst via reconnection. These evidences are primarily 
dependent upon obtaining a spatial resolution of 1 arcsec. 

UBEROI: There is a considerable literature on time-dependent magnetic reconnection in 
magnetospheric physics. Have these theories been applied to solar physics? 

PRIEST: Yes, certainly. I have limited myself to steady reconnection but nonsteady 
effects have been considered analytically and numerically. The numerical studies of 
reconnection resulting from tearing or from an eruptive instability are strongly time-
dependent. For regimes in which die central current sheet is small enough one tends to 
produce a quasi-steady reconnection, but when the central sheet is too large it goes unstable 
to secondary tearing (Forbes and Priest, 1987), in which case one has an impulsive bursty 
modulation of the basic quasi-steady reconnection. 

GOKHALE: (i) To what extent is the reconnection rate enhanced in your model? 
(ii) If there are radiative losses from the reconnection region, will it not enhance the 
reconnection rate further? 

PRIEST: (i) In a driven situation the reconnection may be slow or fast, depending on the 
speed of the driver, but for the almost-uniform models when b < 0 the maximum rate 
exceeds the Petschek value. For the nonuniform Priest-Lee models, for a given outflow 
speed the reconnection rate (i.e. inflow speed at large idistances) is a maximum at the 
smallest values of the central sheet length and it is typically a half of the outflow speed, 
(ii) The energy balance will determine the plasma temperature in the central current sheet 
and so the magnetic diffusivity, but in a driven or freely reconnecting situation the main 
effect is to determine the size of the sheet rather than the rate of reconnection. 

MONTGOMERY: We did a few preliminary 3D computations (incompressible MHD, 
periodic boundary conditions, initial-value problems) in order to watch the development of 
3D perturbations of 2D current sheets. We saw very little that we could recognize from the 
well-studied 2D problem. (This involved no stabilizing, externally-applied, dc magnetic 
field.) The time-scales were fast, and the current sheets and field-surface perspective plots 
soon began to look like Swiss cheeses. What features of the 2D "X-point problem" do you 
expect to be able to recognize in 3D? 

PRIEST: I agree very much that we need to go to 3D with numerical experiments and these 
will certainly give some surprises, just as the 2D experiments have done. Also, it is 
important to have a good interplay between numerical experiments and analytical models, 
using the former as a guide to constructing the latter if possible. However, the 2D 
calculations are still of great value since one can go to much higher magnetic Reynolds 
number and higher resolution and so they complement the 3D experiments. I would expect 
that locally near current sheets the 2D results may be valid in many cases. In some 
applications, such as coronal heating, the 3D aspects should be crucial, but in others such as 
two-ribbon solar flares with straight Ha ribbons and arcades the process is essentially 2D 
with a slow 3D modulation. 
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DRYER: Will reconnection occur only when an external forcing function or configuration 
is present? 

PRIEST: No. In a sheared magnetic field or a current sheet, reconnection can be driven 
locally by a resistive instability. Indeed, the special feature of the Petschek regime is that it 
is, in a sense, "free" reconnection because it is the only regime where all the MHD 
characteristics are propagating information from the reconnection region. 
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