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Abstract

Weeds compete with crops for soil moisture, along with other resources, which can impact the
germination, growth, and seed production of weeds; however, this impact has not been system-
atically recorded and synthesized across diverse studies. To address this knowledge gap, a global
meta-analysis was conducted using 1,196 paired observations from 86 published articles
assessing the effect of water stress on weed germination, growth characteristics, and seed
production. These studies were conducted and published during 1970 through 2020 across four
continents (Asia, Australia, Europe, and North America). Imposed water stress was expressed
as solution osmotic potential (ψsolution), soil water potential (ψsoil), or soil moisture as percent
field capacity. Meta-analysis revealed that water stress inhibits weed germination, growth, and
seed production, and the quantitative response intensified with increasing water stress.
A ψsolution greater than −0.8 MPa completely inhibits germination of both grass and broadleaf
weeds. A ψsolution from −0.09 to −0.32 MPa reduces weed germination by 50% compared with
the unstressed condition. Moderate soil water stress, equivalent to 30% to 60% field capacity,
inhibits growth characteristics (branches or tillers per plant, leaf area, leaves per plant, plant
height, root, and shoot biomass) by 33% and weed seed production by 50%. Severe soil water
stress, below 30% field capacity, inhibits weed growth by 51% and seed production by 88%.
Although water stress inhibits weed growth, it does not entirely suppress the ability to germi-
nate, grow, and produce seeds, resulting in weed seedbank accumulation. This creates manage-
ment challenges for producers, because weed seeds can survive in the soil for many years,
depending on weed species and environmental conditions. Quantitative information compiled
in this meta-analysis can be instrumental to model the weeds’ multidimensional responses to
water stress and designing integrated weed management strategies for reducing the weed
seedbank.

Introduction

Widespread precipitation deficits, as well as increased evaporative demands, have been recorded
in the past, which resulted in drought conditions (i.e., soil moisture deficits), with further deficits
projected for the future. According to the Intergovernmental Panel on Climate Change (IPCC
2021), the frequency and intensity of agricultural droughts will increase drastically over the 21st
century. For example, in a future scenario of a 2 C increase in temperature, a once-in-a-decade
drought event will occur twice in a decade (IPCC 2021). While irrigation is a common practice
to alleviate crop water stress in water-limited agricultural regions (Kukal and Irmak 2019, 2020;
Li and Troy 2018; Troy et al. 2015), benefits from irrigation are uncertain due to exacerbating
freshwater limitations (Elliott et al. 2014) and the negative environmental and ecological
impacts of irrigation (McDermid et al. 2021).

The resulting water-stress conditions negatively affect seed germination, plant growth and
development, and seed production. For example, water stress can impede or delay germination
by constraining water needed for seed hydration and/or during progressive germination and
emergence phases (Koller and Hadas 1982). Similarly, water stress impacts plant growth and
development, primarily by limiting photosynthetic capacity via stomatal closure (Chaves
1991; Chaves et al. 2009) and by reducing photosynthate assimilation via limited expansion
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of leaves (Boyer and McPherson 1975). Water limitation also
induces numerous biochemical, molecular, and physiological
changes that interfere with normal plant functions, growth, and
development (Bhattacharjee and Saha 2014). Therefore, it is
critical to synthesize existing information on how plants respond
to water stress and provide evidence-based management recom-
mendations for growers and land managers.

The effect of water stress on plant growth, photosynthesis, physi-
ology, and survival has been studied extensively (Chaves et al. 2002;
Pugnaire et al. 1999). Significant work has elucidated complex
physiological and molecular mechanisms underlying plant adaptive
responses to tolerate and/or avoid water stress (Osakabe et al. 2014;
Shinozaki et al. 1998). Sun et al. (2020) used a meta-analysis
approach to synthesize studies investigating plant morphology,
physiology, and functionalities under water stress and found that
stress significantly decreased plant growth and photosynthesis.
Moreover, plants adjust their morphology and physiological
responses as adaptation strategies for water stress over time. In
managed cropping systems, water-stress conditions are more severe
due to crop–weed competition for soil moisture among other
resources. Weeds deplete soil moisture and reduce soil water avail-
ability in the crop root zone. Therefore, water stress in agricultural
systems depends on crop–weed interactions and the degree to which
crops and weeds extract soil water under water-stressed conditions.

Weeds have numerous similarities with crops, and sometimes
even share a common origin and taxonomic classification (Harlan
1975; Holm et al. 1977). However, weeds have several competitive
advantages over crops, in that they are phenotypically more plastic
and can undergo morphological and physiological changes in
response to environmental variations (Duke 2018). These short-
and long-term adaptive mechanisms allow greater survival and
fitness compared with crops in tolerating and/or avoiding environ-
mental limitations such as water stress (Duke 2018). Owing to their
extensive root systems, rapid root development, better drought
tolerance, and water-use efficiencies, weeds can potentially extract
a comparable or even greater amount of water from deeper soil
layers than crops (Geddes et al. 1979; Patterson and Flint 1982;
Stuart et al. 1984). Hence, weeds can be more competitive than
crops under water-stressed conditions (Griffin et al. 1989;
Orwick and Schreiber 1979). Some weeds are even characterized
as “water wasters” as they transpire more water andmaintain lower
stomatal resistance compared with crops they compete with, and
thus induce water stress for crops (Geddes et al. 1979; Patterson
1995; Scott and Geddes 1979).

Because of their multiple adaptive mechanisms, weeds have
been found to tolerate moderate levels of water stress without
significant effects on germination, survival, or seed production
and thus manage to considerably increase the weed seedbank
(Chahal et al. 2018). However, responses under crop–weed inter-
actions are differential, unstable, and subject to change depending
on the water-stress level, duration, and intensity; crop versus
weed competitiveness; weed density; management practices; and
other factors (Banks et al. 1986; Mortensen and Coble 1989).
Moreover, weeds’ response to water stress varies by species because
of their innate/distinct characteristics, photosynthetic pathways,
water acquisition and transport capacities, and favorable places
of occurrence (Patterson 1995; Rodenburg et al. 2010; Wiese
and Vandiver 1970). For example, weeds from humid regions, such
as barnyardgrass [Echinochloa crus-galli (L.) P. Beauv.], crabgrass
[Digitaria sanguinalis (L.) Scop.], and cocklebur (Xanthium
strumarium L.), are more competitive in well-watered conditions,
while weeds from semiarid or arid regions, such as buffalo bur

(Solanum rostratum Dunal), kochia [Bassia scoparia (L.) A. J.
Scott], and Russian thistle (Salsola tragus L.), are more competitive
under drought conditions (Wiese and Vandiver 1970). The grass
weeds have been reported to have less tolerance to water stress
compared with broadleaf weeds within given agroecological
regions (Mackie et al. 2019). Such differential responses of indi-
vidual species to water stress can shift global weed distribution
patterns by favoring deep-rooted over shallow-rooted species
(Stratonovitch et al. 2012) and C4 over C3 weed species in regions
with expected periods of long drought (Rodenburg et al. 2010).
With these characteristics of competitive advantage and superior
drought tolerance of weeds under drought conditions, it is vital
to gather and synthesize information on the multidimensional
responses of weed species to water stress.

Numerous studies have evaluated the response of individual
weed species to water stress, and an abundance of quantitative
information exists on these responses (Chahal et al. 2018; Kaur
et al. 2016; Sarangi et al. 2016); however, no effort has been made
to compile, integrate, and analyze results from these studies to infer
how water stress impacts weed germination, growth characteris-
tics, and seed production. The objectives of this global meta-
analysis were to (1) determine the effects of water stress on weed
germination, growth characteristics (radicle/root length, plant
height, leaf area, branches/tillers per plant, leaves per plant, total
biomass, root biomass, shoot biomass, and root:shoot ratio), and
seed production (inflorescences per plant and seeds per plant);
(2) determine how water-stress intensity impacts physiological
responses; and (3) characterize differential responses of grass
versus broadleaf weeds to water stress.

For the meta-analysis, studies with water stress expressed as
solution osmotic potential (ψsolution), soil water potential (ψsoil),
or percent field capacity are included. Studies that report stress
imposition using ψsolution achieve these conditions using poly-
ethylene glycol (PEG) or D-mannitol to adjust the water-stress
levels of the solution (Ahmed et al. 2015; Chachalis et al. 2008;
Evetts and Burnside 1972; Wilson and McCarty 1984). When soil
is used as a test medium, water stress is induced and reported as
either ψsoil (Gealy et al. 1994) or soil moisture as percent field
capacity (Bajwa et al. 2016; Khan et al. 2021). A major difference
between two metrics is that while ψsoil remains unchanged irre-
spective of what soil it is measured in, soil water content or soil
moisture is a function of soil properties. Thus, from a transfer-
ability standpoint, reporting on aψsoil basis is preferable, especially
when soil properties are not appropriately measured or reported.
ψsoil and soil moisture are related to each other via soil water reten-
tion or soil water characteristic curves, which are carefully
measured soil-specific and nonlinear mathematical functions.

Materials and Methods

Literature Search and Data Extraction

The literature included in the meta-analysis was identified
by searching specific terms in Google Scholar and three weed
science journals of Weed Science Society of America (WSSA)
(Weed Technology, Weed Science, and Invasive Plant Science and
Management) published before April 2021. The search term
included “weed” or the common and scientific names of the top
10 most common and troublesome weeds among all broadleaf
crops, fruits, and vegetable crops based on the 2019 WSSA
NationalWeed Survey Dataset (Wychen 2019) and the top 10most
common and troublesome weeds among all grass crops, pasture,
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and turf from the 2020 WSSA National Weed Survey Dataset
(Wychen 2020) in the title of the publication in conjunction with
(“AND”) the search phrase (“water stress” OR “moisture stress”
OR “moisture” OR “drought” OR “water reduction”) in separate
queries yielding 2,384 total search hits. We included the most
common and troublesome weeds in our search terms, because they
are the most extensively studied weeds and their inclusion was
intended to broaden the search criteria. A multistep screening
protocol was adopted to identify relevant literature for this
meta-analysis (Page and McKenzie 2021; Figure 1). For the liter-
ature to be included, it had to meet the following criteria: (1) water-
stressed and comparative control (i.e., well-watered) treatments
were investigated under the same experimental conditions;
(2) water stress was quantitatively expressed using one of three
metrics: solution osmotic potential (ψsolution), soil moisture in terms
of soil water potential (ψsoil), or percent field capacity (studies using
vague terms such as “drought” to denotewater stress were excluded);
(3)means for at least 1 of the 12 response variables were reported for
both water-stress and control treatments, and these response varia-
bles include indices related to weed germination (germination/
emergence), weed growth characteristics (radicle/root length, plant
height, leaf area, branches/tillers per plant, leaves per plant, total
biomass, root biomass, shoot biomass, and root:shoot ratio), and
seed production (inflorescences per plant and seeds per plant);
(4) the weed was grown individually (i.e., in monoculture) and
not in competition with the crop; and (5) water stress was main-
tained throughout the duration of the experiment.

A total of 86 relevant published papers were identified. From each
selected paper, we extracted the following information (Table 1):

• Weed-related information: common name, scientific name,
family name, and population/biotype.

• Experiment-related information: study location, study year,
and number of replications.

• Water stress–related information: water-stress metrics
(ψsolution, ψsoil, and percent field capacity) and their levels
and test medium used (PEG or D-mannitol solutions, soil
in pot studies).

• Weed response–related information: response indices (indices
related to weed germination, growth characteristics, and seed
production) and mean water-stress effects on corresponding
indices for water-stress and control treatments.

When ψsolution or ψsoil was reported in different units, units
were standardized into a common unit of “MPa.” Depending on
the test medium and metrics used to express water stress across
studies, a solution with ψsolution of “0 MPa” and soil with ψsoil

of ~ “−0.03 MPa” or “100% field capacity” were considered as
comparative control treatments. If the information for given
indices were reported over time, data were extracted from the last
recorded observation. From each study, responses of different
weed species (including distinct populations, biotypes, sex types,
environmental occurrence, and seed sources) and at different
water-stress levels were included as distinct observations in the
database. The final data set had 1,196 observations from 86 articles
published during 1970 through 2020 and spanned four continents
(Asia, Australia, Europe, and North America).

Meta-analysis: Overall Water-Stress Effects

We used the natural logarithm of response ratios as effect sizes to
calculate the overall effects of water stress on weed germination,

growth characteristics, and seed production (Hedges et al.
1999).

ln RRð Þ ¼ lnðX̄WS=X̄CÞ ¼ ln X̄WSð Þ � ln X̄Cð Þ [1]

where ln(RR) is the natural log of response ratios, X̄WS and X̄C are
mean values of indices related to weed germination (germination/
emergence), weed growth characteristics (radicle/root length, plant
height, leaf area, branches/tillers per plant, leaves per plant, total
biomass, root biomass, shoot biomass, and root:shoot ratio), and
seed production (inflorescences per plant and seeds per plant)
for water-stressed and control treatments, respectively. Under
severe water-stress conditions, weeds did not germinate or died.
In such cases, values for given indices were reported as zero.
Because ln RRð Þ cannot be calculated when any of the treatment
mean values are zero, we substituted zero with the minimum
possible values (for example, 0.1% germination for 0% germina-
tion, 0.1 for other growth variables such as plant height, leaf area,
total biomass, etc.) (Thapa et al. 2018a).

The bulk of the studies included in the meta-analysis did not
report information that denotes within-study variabilities such
as standard deviation (SD), standard error (SE), or the coefficient
of variation (CV). Individual effect sizes could not be weighted by
sampling variances as suggested by Hedges and Olkin (1985).
Therefore, we weighted individual effect sizes based on experi-
mental replications using the following equation (Adams et al.
1997):

wi ¼ NWS � NCð Þ= NWS þ NCð Þ [2]

where wi is the weight for ith effect size, NWS and NC are the
number of replications for water-stressed and control treatments,
respectively.

More than one effect size was calculated from studies that
reported results from multiyear experiments, and that tested
multiple weed populations/biotypes and multiple water-stress
intensities. This could lead to dependencies among effect sizes.
Therefore, we modeled various sources of dependencies in effect
sizes within and across studies by creating a multilevel mixed-
effects meta-analytic model in the R nlme package (Pinheiro
and Bates 2022; Thapa et al. 2018a, 2018b; Van den Noortgate
et al. 2013). In this model, effect sizes were considered as a fixed
effect, study/year/weed biotype/common controls were nested as
random effects, and wi values were included as weighting factors.
Due to lack of actual measures of sampling variances, a cluster-
based robust variance estimator was used to estimate robust SEs
for mean effect sizes using the clubSandwich package in R (Puste-
jovsky 2022). Robust SEs were used to calculate 95% confidence
intervals (CIs) for weighted mean effect sizes, that is, the natural
log of response ratios ln RRð Þ½ �. The overall water-stress effect on
various indices related to weed germination, growth characteris-
tics, and seed production was considered significant when the
95% CIs did not overlap zero (P < 0.05). For ease of interpretation,
themean effect sizes and their associated 95%CIs are exponentially
back-transformed to the percentage change in responses using the
following equation:

% change in response ¼ eln RRð Þ � 1
h i

� 100 [3]

where ln RRð Þ is the mean effect size for each index.
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Moderator or Subgroup Analysis: Effect of Weed Types,
Families, and Water-Stress Intensity

A moderator analysis was conducted to determine whether
or not the overall mean water-stress effects determined in
this study were influenced by potential covariates. Covariates that
were investigated included weed types (broadleaf vs. grass), fami-
lies (Amaranthaceae, Asteraceae, Convolvulaceae, Fabaceae,
Rubiaceae, and Poaceae), and the level of water stress. For this
particular analysis on weed germination and seedling radicle
length, we used studies in which water stress was expressed as
csolution, that is, studies conducted using PEG or D-mannitol solu-
tions. Pot studies using soil as a test mediumwere not included due
to a small number of pair-wise comparisons. For weed germina-
tion, ψsolution is categorized into seven subgroups ranging from
low to severe water stress: 0 to −0.2, −0.2 to −0.4, −0.4 to −0.6,
−0.6 to−0.8, −0.8 to −1.0, −1.0 to −1.4, and <−1.4 MPa. Shrestha
et al. (2018) used exorbitantly greater levels of ψsolution (i.e., up to
−5.56 MPa); therefore, it was excluded from the moderator
analysis on weed germination. For seedling radicle length, ψsolution

is categorized into five subgroups: 0 to −0.2, −0.2 to −0.4, −0.4 to
−0.6, −0.6 to −1.0, and<−1.0 MPa. To investigate the moderating
effect of water-stress intensity on indices related to weed growth
characteristics and seed production, we only used pot studies that
used soil as a test medium and expressed water stress in terms of
“percent field capacity.” We categorized effect sizes into three
subgroups based on water stress: severe water stress (<30% field

capacity), moderate water stress (30% to 60% field capacity),
and low water stress (>60% field capacity). Due to small number
of pair-wise comparisons, we did not use any studies that expressed
water stress in terms ofψsoil in any of themoderator analyses. Simi-
larly, the germination response of broadleaf versus grass weeds to
water stress was assessed.

Separate mean effect sizes and robust SEs were calculated for
each subgroup using each one as a sole covariate in the original
multilevel mixed-effects meta-analytic model described earlier.
To safeguard against experiment-wise type I errors, 99% CIs were
calculated for the subgroup analysis. The mean water-stress effect
for each subgroup was considered significant (P< 0.01) if their
99% CIs leave out zero and significantly different if their 99%
CIs did not overlap with one another. A four-parameter logistic
model was fit to determine the quantitative relationship between
water stress (expressed as ψsolution) and mean water stress effect
on moderating variables such as germination and seedling radicle
length for grass versus broadleaf weeds:

ln RRð Þ ¼ cþ d � c
1þ exp b � csolution � csolution:50ð Þ½ � [4]

where ln RRð Þ is the mean effect size for each subgroup, c is the
lower asymptote, d is the higher asymptote, b is the slope at the
inflection point, ψsolution is the solution osmotic potential, and

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses; Page and McKenzie 2021) flow diagram highlighting the selection procedure of 86
scientific published papers included in the meta-analysis.
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Table 1. Summary of 86 published articles included in the meta-analysis.

Reference Scientific names of weeds Common names of weeds Family Country Year
Weed
typea

Water-
stress
metricb

Medium for
water stressc

Ahmed et al. 2015 Murdannia nudiflora (L.) Brenan doveweed Commelinaceae Philippines 2014 B ψsolution PEG
Altom and Murray
1996

Eclipta prostrata (L.) L. eclipta Asteraceae United
States

1992 B ψsolution PEG

Asgarpour et al.
2015

Chamaesyce oncaten (L.) Small spotted spurge Euphorbiaceae Iran 2011 B ψsolution PEG

Bai et al. 1995 Artemisia frigida Willd. fringed sage Asteraceae Canada 1987,90-
91

B ψsolution PEG

Baird and Dickens
1991

Diodia virginiana L. Virginia buttonweed Rubiaceae United
States

1985 B ψsolution PEG

Bajwa et al. 2016 Parthenium hysterophorus L. ragweed parthenium Asteraceae Australia 2015 B % field
capacity

Soil

Bajwa et al. 2018 Parthenium hysterophorus L. ragweed parthenium Asteraceae Australia 2016 B ψsolution PEG
Blackshaw et al.
1981

Setaria viridis (L.) P. Beauv. green foxtail Poaceae Canada 1980 G ψsolution PEG (with soil)

Blackshaw et al.
2002

Lamium amplexicaule L. henbit Lamiaceae Canada 2001 B ψsoil Soil

Bolfrey-Arku et al.
2011

Rottboellia cochinchinensis (Lour.) W.D. Clayton itchgrass Poaceae Philippines 2010 G ψsolution PEG

Boydston 1989 Cenchrus longispinus (Hack.) Fernald longspine sandbur Poaceae United
States

1986 G ψsolution PEG

Brecke 1995 Euphorbia heterophylla L. wild poinsettia Euphorbiaceae United
States

1994 B ψsolution PEG

Brooks et al. 2018 Clidemia hirta (L.) D. Don
Miconia calvescens DC. Miconia nervosa (Sm.) Triana

Koster’s curse
miconia
melastome weed

Melastomataceae Australia 2017 B ψsolution PEG

Burke et al. 2003a Dactyloctenium aegyptium (L.) Willd. crowfootgrass Poaceae United
States

2001 G ψsolution PEG

Burke et al. 2003b Brachiaria platyphylla (Munro ex C. Wright) Nash; syn.:
Urochloa platyphylla (Munro ex C. Wright) R.D. Webster

broadleaf signalgrass Poaceae United
States

2000 G ψsolution PEG

Chachalis et al.
2008

Hibiscus trionum L. Venice mallow Malvaceae Greece 2005 B ψsolution PEG

Chadha et al. 2019 Lactuca serriola L. prickly lettuce Asteraceae Australia 2018 B % field
capacity

Soil

Chahal et al. 2018 Amaranthus palmeri S. Watson Palmer amaranth Amaranthaceae United
States

2017 B % field
capacity

Soil

Chauhan 2013 Rottboellia cochinchinensis (Lour.) W.D. Clayton itchgrass Poaceae Philippines 2011 G % field
capacity

Soil

Chauhan and
Abugho 2012

Ipomoea triloba L. threelobe morningglory Convolvulaceae Philippines 2011 B ψsolution PEG

Chauhan and De
Leon 2014

Macroptilium lathyroides (L.) Urb. wild bushbean Fabaceae Philippines 2013 B ψsolution PEG

Chauhan et al.
2006a

Sisymbrium orientale L. oriental mustard Brassicaceae Australia 2006 B ψsolution PEG

Chauhan et al.
2006b

Galium tricornutum Dandy threehorn bedstraw Rubiaceae Australia 2005 B ψsolution PEG

Chauhan and
Johnson 2008a

Leptochloa chinensis (L.) Nees Chinese sprangletop Poaceae Philippines 2007 G ψsolution PEG

(Continued)
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Table 1. (Continued )

Reference Scientific names of weeds Common names of weeds Family Country Year
Weed
typea

Water-
stress
metricb

Medium for
water stressc

Chauhan and
Johnson 2008b

Eleusine indica (L.) Gaertn. goosegrass Poaceae Philippines 2007 G ψsolution PEG

Chauhan and
Johnson 2008c

Digitaria ciliaris (Retz.) Koeler
Digitaria longiflora (Retz.) Pers.

southern crabgrass
India crabgrass

Poaceae Philippines 2007 G ψsolution PEG

Chauhan and
Johnson 2008d

Chromolaena odorata (L.) R. M. King & H. Rob.
Tridax procumbens L.

siam weed
coat buttons

Asteraceae Philippines 2007 B ψsolution PEG

Chauhan and
Johnson 2008e

Mimosa diplotricha C. Wright; syn.: Mimosa invisa Mart., non
Mart. Ex Colla

giant sensitiveplant Fabaceae Philippines 2007 B ψsolution PEG

Chauhan and
Johnson 2008f

Corchorus olitorius L.
Melochia oncatenate L.

nalta jute
redweed

Tiliaceae
Sterculiaceae

Philippines 2007 B ψsolution PEG

Chauhan and
Johnson 2008g

Borreria ocymoides (Burm. F.) DC. Heliotropium indicum L. purple-leaf button weed
Indian heliotrope

Rubiaceae
Boraginaceae

Philippines 2007 B ψsolution PEG

Chauhan and
Johnson 2009a

Amaranthus spinosus L.
Amaranthus viridis L.

spiny amaranth
slender amaranth

Amaranthaceae Philippines 2007 B ψsolution PEG

Chauhan and
Johnson 2009b

Synedrella nodiflora (L.) Gaertn. synedrella Asteraceae Philippines 2007 B ψsolution PEG

Chauhan and
Johnson 2009c

Echinochloa colona (L.) Link junglerice Poaceae Philippines 2007 G ψsolution PEG

Chauhan and
Johnson 2010

Echinochloa colona (L.) Link junglerice Poaceae Philippines 2007 G % field
capacity

Soil

Chejara et al. 2008 Hyparrhenia hirta (L.) Stapf coolatai grass Poaceae Australia 2006 G ψsolution PEG
Clewis et al. 2007 Oenothera laciniata Hill cutleaf evening-primrose Onagraceae United

States
2004 B ψsolution PEG

Crowley and
Buchanan 1980

Ipomoea hederacea Jacq.
Ipomoea hederacea var. intergruiscula A. Gray
Ipomoea lacunosa L.
Ipomoea purpurea (L.) Roth
Jacquemontia tamnifolia (L.) Griseb.

ivyleaf morningglory
entireleaf morningglory
pitted morningglory
tall morningglory
smallflower morningglory

Convolvulaceae United
States

1974 B ψsolution PEG

Eslami 2011 Chenopodium album L. common lambsquarters Chenopodiaceae Iran 2008 B ψsolution PEG
Evetts and
Burnside 1972

Cynanchum leave (Michx.) Pers.; syn.: Ampelamus albidus
(Nutt.) Britton
Apocynum cannabinum L.
Asclepias syriaca L. Bassia scoparia (L.) A.J. Scott

honeyvine milkweed
hemp dogbane
common milkweed
kochia

Asclepiadaceae
Apocynaceae
Asclepiadaceae
Chenopodiaceae

United
States

1970 B ψsolution D-mannitol

Fernando et al.
2016

Chloris virgata Sw. feather fingergrass Poaceae Australia 2015 G ψsolution PEG

Florentine et al.
2018

Echium plantagineum L. Paterson’s curse/vipers
bugloss

Boraginaceae Australia 2016 B ψsolution PEG

Gealy et al. 1994 Anthemis cotula L. mayweed chamomile Asteraceae United
States

1993 B ψsoil Soil

Ghorbani et al.
1999

Amaranthus retroflexus L. redroot pigweed Amaranthaceae United
Kingdom

1998 B ψsolution PEG

Griffin et al. 1989 Desmodium tortuosum (Sw.) DC. Florida beggarweed Fabaceae United
States

1988 B ψsoil Soil

Horak and Wax
1991

Ipomoea pandurata (L.) G. Mey. bigroot morningglory Convolvulaceae United
States

1988 B ψsolution PEG
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Table 1. (Continued )

Hoveland and
Buchanan 1973

Crotalaria spectabilis Roth
Dactyloctenium aegyptium (L.) Willd.
Datura stramonium L.
Helenium amarum (Raf.) H. Rock
Ipomoea hederacea Jacq.
Ipomoea lacunosa L.
Rumex crispus L.
Senna obtusifolia (L.) H.S. Irwin & Barneby
Sesbania herbacea (Mill.) McVaugh
Sida spinosa L.
Taraxacum officinale F.H. Wigg.

showy crotalaria
crowfootgrass
jimsonweed
bitter sneezeweed
ivyleaf morningglory
pitted morningglory
curly dock
sicklepod
hemp sesbania
prickly sida
dandelion

Fabaceae
Poaceae
Solanaceae
Asteraceae
Convolvulaceae
Convolvulaceae
Polygonaceae
Fabaceae
Fabaceae
Malvaceae
Asteraceae

United
States

1972 B & G ψsolution PEG

Iqbal et al. 2019 Sesbania herbacea (Mill.) McVaugh hemp sesbania Fabaceae Australia 2016 B ψsolution PEG
Johnston et al.
1979a

Cardiospermum halicacabum L. balloonvine Sapindaceae United
States

1978 B ψsolution PEG

Johnston et al.
1979b

Sesbania herbacea (Mill.) McVaugh hemp sesbania Fabaceae United
States

1978 B ψsolution PEG

Khan et al. 2021 Amaranthus retroflexus L.
Amaranthus viridis L.

redroot pigweed
slender amaranth

Amaranthaceae Australia 2018 B % field
capacity

Soil

Kiemnec and
Larson 1991

Cardaria draba (L.) Desv.
Centaurea diffusa Lam.

hoary cress
diffuse knapweed

Brassicaceae
Asteraceae

United
States

1990 B ψsolution PEG

Li et al. 2015 Bromus arvensis L. syn. Bromus japonicus Houtt. Japanese brome Poaceae China 2014 G ψsolution PEG
Loura et al. 2020 Conyza bonariensis (L.) Cronquist hairy fleabane Asteraceae Australia 2018 B ψsolution PEG
Lu et al. 2006 Ageratina adenophora (Spreng) R.M. King & H. Rob.; syn.:

Eupatorium adenophorum Spreng.
crofton weed Asteraceae China 2005 B ψsolution PEG

Macdonald et al.
1992

Eupatorium capillifolium (Lam.) Small
Eupatorium compositifolium Walter

dogfennel
yankeeweed

Asteraceae United
States

1989 B ψsolution PEG

Mahajan et al.
2018

Sisymbrium thellungii O.E. Schulz African turnipweed Brassicaceae Australia 2017 B % field
capacity

Soil

Mahajan et al.
2019

Echinochloa colona (L.) Link junglerice Poaceae Australia 2017 G % field
capacity

Soil

Mahmood et al.
2016

Galenia pubescens (Eckl. & Zeyh.) Druce green galenia Aizoaceae Australia 2015 B ψsolution PEG

Mann et al. 1981 Sicyos angulatus L. Burcucumber Cucurbitaceae United
States

1979 B ψsolution PEG

Maurice 1985 Setaria glauca (L.) P. Beauv.
Setaria viridis (L.) P. Beauv.

yellow foxtail
green foxtail

Poaceae Canada 1984 G ψsoil Soil

Mayeux 1982 Xylothamia palmeri (A. Gray) G.L. Newsom; syn.: Ericameria
austrotexana M. C. Johnst.

false broomweed Asteraceae United
States

1980 B ψsolution PEG

Mobli et al. 2020 Sonchus oleraceus L. annual sowthistle Asteraceae Australia 2018 B % field
capacity

Soil

Momayyezi and
Upadhyaya 2017

Cynoglossum officinale L. houndstongue Boraginaceae Canada 2016 B % field
capacity

Soil

Nandula et al.
2006

Conyza canadensis (L.) Cronquist horseweed Asteraceae United
States

2002 B ψsolution PEG

Nosratti et al.
2018

Sophora alopecuroides L. foxtail sophora Fabaceae Iran 2016 B ψsolution PEG

Nosratti et al.
2019

Picnomon acarna (L.) Cass. soldier thistle Asteraceae Iran 2017 B ψsolution PEG

Reddy and Singh
1992

Bidens pilosa L. hairy beggarticks Asteraceae United
States

1990 B ψsolution PEG

Roberts et al. 2021 Eragrostis curvula (Schrad.) Nees African/weeping lovegrass Poaceae Australia 2020 G ψsolution PEG
Scherner et al.
2017

Apera spica-venti (L.) Beauv.
Poa annua L.
Vulpia myuros (L.) C.C. Gmel.

silky windgrass
annual bluegrass
rattail fescue

Poaceae Denmark 2015 G ψsolution PEG
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Table 1. (Continued )

Reference Scientific names of weeds Common names of weeds Family Country Year
Weed
typea

Water-
stress
metricb

Medium for
water stressc

Shrestha et al.
2018

Echinochloa colona (L.) Link junglerice Poaceae United
States

2015 G ψsolution PEG

Singh et al. 2012 Ipomoea purpurea (L.) Roth tall morningglory Convolvulaceae United
States

2011 B ψsolution PEG

Singh et al. 2021 Brassica tournefortii Gouan African mustard Brassicaceae Australia 2019 B ψsolution PEG
Stanton et al.
2012

Solanum elaeagnifolium Cav. silverleaf nightshade Solanaceae Australia 2008 B ψsolution PEG

Susko et al. 1999 Pueraria lobata (Willd.) Ohwi kudzu Fabaceae United
States

1999 B ψsolution PEG

Teuton et al. 2004 Urochloa subquadripara (Trin.) R.D. Webster tropical signalgrass/
smallflowered
alexandergrass

Poaceae United
States

2003 G ψsolution PEG

Thill et al. 1979 Bromus tectorum L. downy brome Poaceae United
States

1976-77 G ψsoil Soil

Thompson et al.
2021

Lolium rigidum Gaudin rigid ryegrass Poaceae Australia 2019 G ψsolution PEG

Wang et al. 2016 Galium aparine L. catchweed bedstraw Rubiaceae China 2015 B ψsolution PEG
Wei et al. 2009 Solanum rostratum Dunal buffalo bur Solanaceae China 2008 B ψsolution PEG
Weller et al. 2021 Amaranthus retroflexus L. redroot pigweed Amaranthaceae Australia 2020 B % field

capacity
Soil

Williams 1980 Sesbania herbacea (Mill.) McVaugh hemp sesbania Fabaceae United
States

1976 B ψsolution PEG

Wilson 1979 Cirsium arvense (L.) Scop. Canada thistle Asteraceae United
States

1976 B ψsolution;
ψsoil

D-mannitol; soil

Wilson and
McCarty 1984

Cirsium flodmanii (Rydb.) Arthur Flodman thistle Asteraceae United
States

1979 B ψsolution D-mannitol

Yuan and Wen
2018

Ageratum conyzoides L.
Conyza canadensis (L.) Cronquist
Crassocephalum crepidioides (Benth.) S. Moore

billygoat weed
horseweed
redflower ragweed

Asteraceae China 2017 B ψsolution PEG

Yue et al. 2021 Achnatherum inebrians (Hance) Keng drunken horse grass Poaceae China 2018 G ψsolution PEG
Zollinger and Kells
1991

Sonchus arvensis L. perennial sowthistle Asteraceae United
States

1986 B ψsoil Soil

aB, broadleaf weed; G, grass weed.
bψsolution: solution osmotic potential; ψsoil: soil water potential; % field capacity: soil moisture as percent field capacity.
cPEG, polyethylene glycol.
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ψsolution.50 is the solution osmotic potential at the inflection point
(i.e., ψsolution that produces a response midway between c and d).

Publication Bias and Sensitivity Analysis

As mentioned earlier, many studies included in this meta-analysis
did not report sampling variances to create meaningful funnel
plots. Therefore, publication bias was investigated indirectly by
visualizing the distribution of individual effect sizes for each of
the indices using density plots (Basche and DeLonge 2017;
Thapa et al. 2018a). To create these density plots, we excluded
the imputed effect sizes, that is, effect sizes in which weed response
under water-stressed conditions was zero and was replaced with
the minimum possible value. We also performed sensitivity
analysis to identify studies that may have influenced results and
hence, test the robustness of the overall effect size estimates
obtained in this meta-analysis (Philibert et al. 2012). Overall effect
sizes and their corresponding CIs for each of the indices were
repeatedly calculated using the Jackknife sensitivity analysis
procedure. Our approach involves rerunning the same multilevel
mixed-effects multi-analytic model as described earlier, with each
individual study excluded from the data set every time.

Results and Discussion

Database Description

The 86 studies included in the meta-analysis were conducted
during the previous five decades (1970 through 2020) in nine
countries across four continents: Asia (China, Iran, and the
Philippines), Australia (Australia), Europe (Denmark, Greece,
and the United Kingdom), and North America (Canada and the
United States). More than one-third of the studies (79%; n= 68)
were conducted in three countries: the United States (36%; n= 31),
Australia (24%; n= 21), and the Philippines (19%; n= 16). China,
Canada, and Iran had six, five, and four studies, respectively,
whereas each European country (Denmark, Greece, and the
United Kingdom) had one study.

Across all studies, a total of 102 weed species belonging to
24 families were investigated for their response to water stress
(Supplementary Table S1). Most of the studies investigated
water-stress effects on broadleaf weeds (n= 62) followed by
grass weeds (n= 23). Only one study by Hoveland and
Buchanan (1973) investigated both broadleaf and grass weed
species (Supplementary Table S1). Most of the broadleaf weed
species belonged to Asteraceae (n= 22), followed by Fabaceae
(n= 9), Convolvulaceae (n= 5), Amaranthaceae (n= 4), and
Rubiaceae (n= 4). Similarly, the investigated grass weed species
belonged to the family Poaceae (n= 24). Among weed species,
hemp sesbania [Sesbania herbacea (Mill.) McVaugh] was the most
frequently investigated species in four studies, followed by
junglerice [Echinochloa colona (L.) Link] and redroot pigweed
(Amaranthus retroflexus L.), both of which were investigated three
times. All other weed species were investigated once, except
eight weed species that were investigated twice: crowfootgrass
[Dactyloctenium aegyptium (L.) Willd.], green foxtail [Setaria
viridis (L.) P. Beauv.], itchgrass [Rottboellia cochinchinensis
(Lour.) W.D. Clayton], ivyleaf morningglory (Ipomoea hederacea
Jacq.), pitted morningglory (Ipomoea lacunosa L.), ragweed
parthenium (Parthenium hysterophorus L.), slender amaranth
(Amaranthus viridis L.), and tall morningglory [Ipomoea purpurea
(L.) Roth].

Effect of Water Stress on Weed Germination

Averaged across pair-wise observations, water stress reduced weed
seed germination/emergence by 90% (95% CI = −92% to −86%;
Figure 2). This effect of water stress on weed germination/
emergence is likely because more than one-third of the observa-
tions (i.e., n= 276 out of 759) were exposed to severe water
stress (ψsolution >−0.6 MPa), resulting in >97% germination
inhibition. Seed imbibition is required for germination, and hydra-
tion levels vary by plant species (Hegarty 1978), although under-
standing of these levels in weeds is limited (Pérez-Fernández et al.
2000). We observed 86% to 95% inhibition in the germination of
Amaranthaceae, Asteraceae, Convolvulaceae, Fabaceae, Rubiaceae,
and Poaceae weed families (Figure 3). Although differences were
nonsignificant, Asteraceae was the least responsive family with
86% (99% CI = −93% to −72%) germination inhibition, while
Amaranthaceae was the most responsive family with 95% (99%
CI = −99% to –65%) germination inhibition due to water stress.

Plant functional groups respond differently to moisture avail-
ability (Emanuel et al. 2007; Manzoni et al. 2011), as evidenced
by greater negative responses of grasses than broadleaves to water
stress (Emanuel et al. 2007). Overall, germination of grass weeds
was inhibited by 93% (99% CI = −97% to −83%) compared with
90% (99% CI = −93% to −84%) for broadleaf weeds (Figure 3).
Mackie et al. (2019) also noted a greater impact of summer drought
on grasses than forbs in their experiments across eight sites.
Similarly, we observed a general trend of grass weeds being more
negatively affected than broadleaf weeds across water-stress levels
(Figure 4). However, water-stress effects between broadleaf and

Figure 2. Overall water-stress effects on weed germination/emergence, growth char-
acteristics, and seed production. The vertical black dashed line represents zero effect.
The black dots are overall mean effect sizes, and the black lines are 95% confidence
intervals (CIs). The values in parentheses are the number of observations followed by
the number of studies for each pair-wise comparison. The mean effect sizes were
considered significantly different when their 95% CIs did not include zero.
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grass weeds were not significantly different due to their overlap-
ping 99% CIs across ψsolution subgroups.

At low water stress (i.e., ψsolution >−0.2 MPa), the mean water-
stress effect on germination of broadleaf weeds was nonsignificant
(mean = −18%, 99% CI = −41% to 14%), whereas grass weeds
showed a negative effect (mean = −51%, 99% CI = −76% to
−0.3%). At moderate water stress, the germination of broadleaves
significantly decreased by 53% (99% CI = −69% to −29%) at
ψsolution between −0.2 to −0.4 MPa and by 84% (99% CI =
−92% to −70%) at ψsolution between −0.4 to −0.6 MPa.
Similarly, the germination of grass weeds decreased by 73%
(99% CI = −88% to −39%) at ψsolution between −0.2 to −0.4
MPa and by 92% (99% CI = −98% to −67%) at ψsolution between
−0.4 to −0.6 MPa. At severe water stress, germination of
broadleaf and grass weeds decreased by 97% (99% CI = −99%
to −93%) and 98% (99% CI = −100% to −87%), respectively, at
ψsolution between −0.6 to −0.8 MPa. With further decrease in
ψsolution above −0.8 MPa, germination of both broadleaves and
grasses was completely inhibited (i.e., >99% inhibition). We
further modeled the effect of water stress on weed germination
by fitting a four-parameter logistic model between mean effect
sizes and mean ψsolution for each subgroup (Figure 4). The fitted
model coefficients are presented in Table 2. For both broadleaf
and grass weed types, weed germination decreased with a decrease
in ψsolution (Figure 4). This indicates that the adverse effects of
water stress on weed germination increased with increasing
water stress.

Effect of Water Stress on Weed Growth Characteristics

Averaged across pair-wise comparisons, water stress negatively
affected belowground weed growth characteristics (Figure 2).
Water stress, on average, decreased seedling radicle/root length
by 77% (95% CI = −89% to −54%) and root biomass by 44%
(95% CI = −63% to −13%). A more intense effect of water stress
on seedling radicle/root length was likely due to the use of PEG or
D-mannitol solutions, with 35% of the observations (n= 19 out of
54) being exposed to severe water-stress (i.e., ψsolution >−0.6 MPa)
conditions exhibiting > 97% inhibition (Figure 4). As ψsolution

decreases, water stress increases, causing seedling radicle length
to decrease progressively. At low to moderate water stress of
ψsolution between 0 to −0.4 MPa, the mean decrease in seedling
radicle length was not significantly different from zero.
However, further decrease in ψsolution below −0.4 MPa resulted
in a reduction in seedling radicle length compared with a no water
stress condition. For instance, seedling radicle length decreased by
65% (99% CI = −82% to −31%) at ψsolution between −0.4 to −0.6
MPa, by 97% (99% CI = −99% to −84%) at ψsolution between −0.6
to −1.0 MPa, and by 99% (99% CI = −100% to −86%) at ψsolution

below −1.0 MPa. Although the mean water-stress effects for each
subgroup were not significantly different from zero, root biomass
decreased from a mean positive effect of 2% (99% CI = −28% to
44%) at low (i.e., soil moisture >60% field capacity) to a mean
negative effect of 39% (99% CI = −77% to 60%) and 69% (99%
CI = −92% to 15%) at moderate (i.e., soil moisture at 30% to
60% field capacity) and severe (i.e., soil moisture <30% field
capacity) water stress, respectively (Figure 5). The results suggest
that belowground weed growth characteristics were negatively
impacted by water stress, and the magnitude of the effect intensi-
fied with increasing water stress.

Water stress reduced most aboveground weed growth charac-
teristics (Figure 2). Averaged across pair-wise comparisons, water
stress decreased plant height by 36% (95% CI = −54% to −11%),
leaf area by 45% (95% CI = −66% to −10%), leaves per plant by
28% (95% CI = −39% to −16%), and shoot biomass by 45%
(95% CI = −58% to −29%). Although not statistically different,
water stress decreased branches/tillers per plant by 27% (95%
CI = −49% to 4%). Results were consistent with the findings from
a recent meta-analysis by Sun et al. (2020), who reported a decrease
in plant growth characteristics under water stress: for instance,
they observed an overall decrease in plant dry biomass by 29%
due to water stress.

Results from the moderator analysis indicated that the negative
effects of water stress on aboveground weed growth characteristics
intensified with increasing water stress (Figure 5). As soil moisture,
expressed as percent field capacity, became more deficit, we
observed a progressive reduction in themean effect sizes for indices
related to aboveground weed growth characteristics. For example,
the mean effect on weed shoot biomass decreased from a nonsig-
nificant effect of −15% (99% CI = −40% to 21%) at low (i.e., soil
moisture > 60% field capacity) to a significant effect of−39% (99%
CI=−56% to−14%) at moderate (i.e., soil moisture at 30% to 60%
field capacity) and −61% (99% CI =-73% to −43%) at severe (i.e.,
soil moisture < 30% field capacity) water stress. Similarly, we
found a nonsignificant effect of low water stress on other above-
ground weed growth characteristics, including plant height, leaf
area, leaves per plant, and branches/tillers per plant. Growth
indices were reduced at moderate and severe water stress: plant
height by −24% (99% CI = −34% to −12%) and −37% (99%
CI = −46% to −26%), leaf area by −43% (99% CI = −60% to

Figure 3. Overall water-stress effects on germination/emergence of grass and broad-
leaf weeds (top) and six weed families—Asteraceae, Fabaceae, Convolvulaceae,
Amaranthaceae, Rubiaceae, and Poaceae (bottom). The vertical black dashed line
represents zero effect. The black dots are overall mean effect sizes, and the black lines
are 99% confidence intervals (CIs). The values in parentheses are the number of obser-
vations followed by the number of studies for each pair-wise comparison. The mean
effect sizes were considered significantly different when their 99% CIs did not include
zero.
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−18%) and −44% (99% CI = −57% to −26%), leaves per plant by
−30% (99% CI = −48% to −5%) and −47% (99% CI = −60% to
−29%), and branches/tillers per plant by−23% (99%CI=−38% to
−4%) and −52% (99% CI = −85% to 52%), respectively. Taken
altogether, the adverse effects of soil moisture limitations on weed
growth intensified with increasing water stress, as reported in a
recent meta-analysis (Sun et al. 2020). Growth reduction is not
only a direct effect of water stress but also an important adaptive
mechanism (Skirycz and Inzé 2010). Plants rapidly inhibit their
growth at the onset of water stress before gradually recovering
and adapting to stressed conditions (Skirycz and Inzé 2010).
Additionally, plants have similar multiple adaptive responses, such
as generating antioxidants (Nayyar and Gupta 2006), regulating
hormones (Peleg and Blumwald 2011), inducing stress proteins
(Poolman et al. 2002), and improving water-use efficiency by
increasing root ducts (Lee et al. 2016). Hence, although water stress
will reduce weed growth, timely established weeds that can utilize
soil moisture from the early onset of precipitation or soil water
storage can be more competitive owing to lower resource compe-
tition (Hanson 2015).

Averaged across pair-wise comparisons, water stress reduced
total weed biomass by 61% (95% CI = −77% to −35%;
Figure 2). Although not significantly different from zero, root:
shoot ratio was the only index that increased under water stress
(mean= 19%; 95% CI = −13% to 63%; Figure 2). A moderator
analysis further indicated that the positive effect on root:shoot ratio

was mostly observed when soil moisture was maintained above 60%
field capacity, that is, at low water stress (mean= 27%, 99% CI =
−0.2% to 61%; Figure 5). Even under moderate and severe water
stress, that is, when soil moisture was below 60% field capacity,
the root:shoot ratio of weeds remained unaffected. These results
indicate root growth is generally less sensitive to water stress relative
to shoot growth (Sharp and Davies 1989). Plants allocate a greater
portion of assimilated dry matter to roots under water stress (Delfin
et al. 2021; Xu et al. 2015), and the resultant increase in rooting depth
allows for water extraction from deeper layers, maintaining a higher
root water influx for longer durations (Chaves et al. 2002). Osmotic
adjustment (Saab et al. 1992), higher soluble sugars and dry matter
in roots (Xu et al. 2015), increased cell wall loosening ability (Hsiao
and Xu 2000), and water stress–induced abscisic acid and ethylene
(Sharp and LeNoble 2002; Spollen et al. 2000) are the primarymech-
anisms assuring greater root resilience under water stress relative to
shoots. Considering plant adaptive mechanisms and the abilities of
weeds to extract more water and tolerate water stress, weeds are thus
expected to further intensify water-stressed conditions for crops
(Griffin et al. 1989; Patterson and Flint 1982; Stuart et al. 1984).

Effect of Water Stress on Weed Seed Production

Water stress decreased weed seed production or fecundity.
Averaged across pair-wise comparisons, water stress decreased
inflorescences per plant by 48% (95% CI = −49% to −46%) and

Figure 4. The log response ratio for germination and seedling radicle length of broadleaf (green dots/line) and grass (red dots/line) weed species as a function of water-stress
intensity. Water stress increased as solution osmotic potential (ψsolution) decreased and vice versa. The subgroups for germination are 0 to−0.2, −0.2 to−0.4, −0.4 to −0.6, −0.6 to
−0.8, −0.8 to −1.0, −1.0 to −1.4, and<−1.4 MPa, while the subgroups for radicle length are 0 to −0.2, −0.2 to −0.4, −0.4 to −0.6, −0.6 to −1.0, and <−1.0 MPa. Only ψsolution-based
studies were used in this analysis. For each subgroup, the solid dots and lines represent mean effect sizes and their corresponding 99% confidence intervals (CIs). The mean effect
sizes were considered significantly different when their 99% CIs did not include zero. Similarly, the water-stress effects were significantly different for each subgroup and among
weed types only when their 99% CIs did not overlap with one another. The fitted lines represent a four-parameter logistic regression model, and the coefficients of the models are
presented in Table 2.

Table 2. Parameter estimates and SEs from a four-parameter logistic model fit to effect sizes for germination and seedling radicle length of broadleaf and grass weed
species under water-stress gradients.a

Response variable Weed type

b c d csolution:50

R2Estimate SE Estimate SE Estimate SE Estimate SE

Germination Broadleaf −3.568 1.193 −7.170 0.694 0.758 0.988 −0.737 0.073 0.991
Germination Grass −4.910 1.083 −6.909 0.347 −0.439 0.483 −0.742 0.050 0.991
Radicle length Broadleaf −6.239 0.432 −4.507 0.086 0.085 0.074 −0.758 0.015 1.000

aThe model is fit to solution osmotic potential–based (ψsolution) studies only. c is the lower asymptote, d is the higher asymptote, b is the slope at the inflection point, ψsolution is the solution
osmotic potential, and ψsolution.50 is the solution osmotic potential at the inflection point (i.e., the ψsolution that produces a response midway between c and d).
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seeds per plant by 64% (95% CI = −73% to −52%) relative to the
unstressed condition (Figure 2). A moderator analysis indicates
that both inflorescences and seeds per plant decreased with
increasing water stress (Figure 5). The inflorescences per plant
decreased by 76% (99% CI = −81% to−71%) at severe water stress
of <30% field capacity to 34% (99% CI = −53% to −8%) at
moderate water stress of 30% to 60% field capacity, and 20%
(99% CI = −38% to 2.5%) at low water stress of >30% field
capacity. Similarly, the seeds per plant decreased by 88% (99%
CI = −95% to −70%) at severe water stress of <30% field capacity
to 50% (99% CI = −65% to−31%) at moderate water stress of 30%
to 60% field capacity, and 27% (99% CI = −43% to −7%) at low
water stress of >30% field capacity. These results suggest that
weeds can continue to produce flowers and seeds to some extent
under water-stressed conditions. When water is limited, plants
often shorten their vegetative growth and accelerate to rapid
flowering and seed production to attain senescence (Bernal et al.
2011; Franks et al. 2007; Sherrard and Maherali 2006).

Publication Bias and Sensitivity Analysis

The distribution of individual effect sizes for various indices related
to weed germination, growth characteristics, and seed production
is shown as density plots in Figure 6. All indices had narrow

distributions and slightly offset from zero, indicating a negative
effect, except root:shoot ratio, which showed a slightly positive
effect of water stress. Nonetheless, density plots for all indices show
nearly symmetrical distribution, indicating no publication bias for
any of the indices considered in the meta-analysis (Light and
Pillemer 1984; Sterne and Harbord 2004).

Sensitivity analysis identified a few influential studies for some
of the indices investigated (Figures 7 and 8). For example, an exclu-
sion of Zollinger and Kells (1991) from the data set increased
overall effect size estimates from −36% (95% CI = −54% to
−11%) to −23% (95% CI = −29% to −15%) for plant height
and from −45% (95% CI = −66% to −10%) to −33% (95% CI
= −46% to −17%) for leaf area. Similarly, with the exclusion of
Chauhan (2013), the magnitude of overall effect size estimates
increased from −27% (95% CI = −49% to 4%) to −15% (95%
CI = −28% to −0.2%) for branches/tillers per plant and from
−28% (95% CI = −39% to −16%) to −15% (95% CI = −28% to
−0.2%) for leaves per plant. This was likely because these studies
reported drastic impacts of water stress on weed growth character-
istics; for example, Chauhan (2013) observed a 56% reduction in
leaf area at 12.5% field capacity compared with the control (i.e.,
100% field capacity). Therefore, the exclusion of these studies
caused a deviation in the overall effect size estimates. In contrast,
the exclusion of Chadha et al. (2019) decreased the magnitude of

Figure 5. The log response ratio for weed growth characteristics (plant height, leaf area, branches/tillers per plant, leaves per plant, root biomass, shoot biomass, and root:shoot
ratio) and seed production (inflorescences per plant and seeds per plant) as a function of water-stress intensity. Water stress increased as soil moisture (% field capacity)
decreased and vice versa. The green and red dots represent broadleaf and grass weed species, respectively. The solid black points and the lines represent mean effect sizes
and their 99% confidence intervals (CIs) for low (>60%), moderate (30%–60%), and severe (<30% field capacity) water-stress subgroups. The mean effect sizes were considered
significantly different when their 99% CIs did not include zero. Similarly, the water-stress effects were significantly different for each subgroup and among weed types only when
their 99% CIs did not overlap with one another.
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the overall effect size estimates for weed total biomass by 9% from
−61% (95% CI = −77% to −35%) to −70% (95% CI = −72% to
−68%). However, we determined that the main conclusions of this
meta-analysis are robust, because (1) overall effect sizes for all
other indices (germination/emergence, radicle/root length, inflo-
rescences per plant, seeds per plant, root biomass, shoot biomass,
and root:shoot ratio) were not sensitive to any given study,
(2) overall effect sizes estimated using the Jackknife procedure after
excluding influential studies fall within 95% CI of their original
overall effect size estimates, and (3) drastic effects of severe water
stress on plants are not uncommon, and these effects have caused
the resultant change in magnitude of the aforementioned overall
effect sizes.

Lessons Learned, Evidence Gaps, and Future Research
Considerations

The meta-analysis based on 1,196 observations from 86 studies
accomplished in this study is the first to assess the integral and
quantitative response of 102 weed species to water stress. This is
also the first study to evaluate the holistic effect of water stress
on 12 response variables associated with germination, growth,
and seed production of weeds, and concurrently differentiate
germination response of grasses and broadleaf weeds. We found
a generally negative response of weeds to water stress, and our find-
ings underscore and strengthen the previously held notion that
water stress inhibits plant growth and performance. The

germination of grass weeds might be slightly more sensitive to
water stress compared with broadleaf weeds. Moreover, weed
germination is completely inhibited at ψsolution below −0.8
MPa, and a minimum of −0.09 MPa for grass weeds and
−0.32 MPa for broadleaf weeds is required to inhibit their germi-
nation by half. Similarly, a minimum of −0.50 MPa is required to
reduce seedling radicle length of broadleaf weeds by half. Plant
height demonstrates inhibition by about one-fourth, inflores-
cences per plant by one-third, and seeds per plant by one-half
under moderate water stress of 30% to 60% field capacity. In
general, weed fecundity was found to be suppressed to a larger
degree than growth morphology under water stress. For instance,
weed root biomass and shoot biomass were inhibited by 61% to
69%, whereas fecundity (inflorescences per plant and seeds per
plant) was inhibited by 76% to 88% under severe water stress
of <30% field capacity relative to unstressed (i.e., 100% field
capacity) conditions. Our findings that weeds will germinate,
survive, grow, and reproduce and will continue to be competitive
and problematic in managed agronomic systems, even under
intense drought or water-stressed conditions, cannot be ignored.
As cropping systems continue to experience extreme weather
events more than at any time in the past, future studies should
investigate, evaluate, and promote the adoption of multiple
diverse strategies aimed at effectively managing weeds under
water-limited conditions as an integral component of integrated
weed management programs. This study identifies distinctive,
adaptive behavior (i.e., ability to compete for water) of weeds that

Figure 6. Density plots depicting the distribution of the individual effect sizes for all 12 response variables considered in this meta-analysis: (A) weed seed germination/emer-
gence; (B) radicle/root length, plant height, and leaf area; (C) branches/tillers per plant, leaves per plant, inflorescences per plant, and seeds per plant; and (D) total biomass, root
biomass, shoot biomass, and root:shoot ratio.
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can inform predictions of emergence, survival rate, and possible
shifts in weed communities in water-limited regions and periods.
Finally, quantitative information gathered in this meta-analysis
will be helpful in modeling and/or predicting multidimensional
responses of weeds to water stress.

This current meta-analysis identified critical gaps in the existing
evidence base and provides directions for reporting data standards
and future research avenues:

• Numerous studies included in the meta-analysis lack infor-
mation on variability within sampling populations such as
SD, SE, CV, or LSD. Within-treatment uncertainty statistics
are critical for the robust characterization of confidence in
reported effect size estimates. Therefore, we ask researchers
to report these statistics along with replication size and treat-
ment means in each study. Such a practice will allow reason-
able quantitative analysis and information integration.

Figure 7. Results from the sensitivity analysis depicting variations in the overall effect size estimates (mean ± 95% confidence intervals [CIs]) of water-stress effects on (A) weed
germination/emergence, (B) seedling radicle/root length, (C) plant height, and (D) leaf area when a particular study is omitted from the analysis. The vertical black solid and
dashed lines represent overall effect sizes (mean ± 95% CIs) with all studies included.
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• Meta-analyses require independence, and quantitative results
from the same group of researchers/programs/collaborator
networks are treated as a possible source of dependence
(Stevens and Taylor 2009). Certain authors/research groups
might be more likely to find certain results due to their use/
preference of specific methodological elements (protocols,
populations, experimental environments, instrumentation,
etc.) or bias in performing the experiment, analyzing data,

or reporting results (Danchev et al. 2019). This can violate
the assumption of independence between effect sizes, poten-
tially distorting the results of the meta-analysis (Moulin and
Amaral 2020). In the present study, we found that two inves-
tigators conducted 69% (n= 11 out of 16) of studies in the
Philippines, and one of those investigators was involved in
75% (n= 3 out of 4) and 81% (n= 17 out of 21) of studies
in Iran and Australia, respectively. In total, one investigator

Figure 8. Results from the sensitivity analysis depicting variations in the overall effect size estimates (mean ± 95% confidence intervals [CIs]) of water-stress effects on
(A) branches/tillers per plant, (B) leaves per plant, (C) inflorescences per plant, (D) seeds per plant, (E) total biomass, (F) root biomass, (G) shoot biomass, and (H) root:shoot
ratio, when a particular study is omitted from the analysis. The vertical black solid and dashed lines represent overall effect sizes (mean ± 95% CIs) with all studies included.
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authored or coauthored 41% (n= 36 out of 86) of the studies
included. Therefore, there might be a potential source of
systemic dependence due to the heavy contribution by a
single research group in the meta-analysis. Authorship
dependence has been reported to impact effect sizes
(Abou-Setta et al. 2019; Moulin and Amaral 2020; Singh
et al. 2013). We therefore encourage the global community
of weed scientists to assess water stress effects on weeds
(using local water availability regimes, soil types, cropping
systems, etc.). This will ultimately help to develop a more
diverse, robust, reliable, and conclusive understanding of
weeds’ performance, population dynamics, and potential
weed shift patterns in an altered climate.

• Water-stress effects on weed seed germination and seedling
radicle length were mostly studied using PEG or D-mannitol
solutions of varying osmotic potential in petri dishes.
However, such solutions may not realistically represent
soil–water–seed interactions occurring in fields. As a result,
the observed effects on weed seed germination and seedling
radicle length with PEG or D-mannitol solutions may not
necessarily translate in field conditions. Thus, field-sampled
soils are more suitable as test media compared with potting
mix or solutions, in the interest of transferability. Supporting
this hypothesis, Camacho et al. (2021) observed varying
responses of seed germination of multiple weed and crop
species between PEG versus soil test media as well as among
different soil textural groups under the same water potentials.
They further indicated that total seed germination is better
characterized as a function of soil hydraulic conductivity
rather than soil water potential. Therefore, if the goal is to test
field seed germination with regard to soil moisture avail-
ability rather than determining the relative susceptibility of
multiple weed or crop species to drought stress, future
research should use soils of varying textures as test media.

• A systematic search of studies for meta-analysis identified
most of the evidence base toward water-stress effects on weed
seed germination/emergence. In total, water-stress effects on
weed germination/emergence were investigated in 84% of the
studies (i.e., n= 73 out of 86) accounting for 60% of the total
observations (i.e., n= 759 out of 1,196) included in this meta-
analysis. We only found a few studies that investigated water-
stress effects onweed growth characteristics and seed produc-
tion, thereby limiting detailed quantitative synthesis. For
example, data were insufficient to elucidate how water-stress
intensity expressed as soil water potential (ψsoil) will impact
weed seed germination, growth morphology, and fecundity
under field conditions. We only found four csoil-based
water-stress studies that resulted in 77 observations for 12
weed indices. Out of 1,196 total observations, 62 studied root
and shoot, and 77 studied inflorescence and weed seed
production. Roots and shoots are important in assessing
the impacts of water stress on plant functioning and seed
production is important to assess the ability to reproduce;
hence, we suggest conducting more csoil-based water-stress
studies (Singh et al. 2022) for investigating weed growth
and especially seed production. Such studies will essentially
unveil the relative fitness and adaptability of weeds to water
stress compared with crops and will predict weed seedbank
size and infestation in water-limited field conditions.

• Seed size and depth of occurrence in soil (burial depth) are
the other important factors that influence the relative effect
of water stress on weed germination/emergence (Cordeau

et al. 2018; Tanveer et al. 2013). Larger seeds can have a
greater advantage over smaller seeds, as they have higher food
reserves, leading to greater emergence, rooting depth, and
survival under increasingly dry conditions (Harrison et al.
2007; Leishman and Westoby 1994; Tanveer et al. 2013).
Likewise, weed seeds that are buried deeper can exhibit a
considerably greater emergence rate than seeds closer to or
on the surface during dry soil conditions (Cordeau et al.
2018). Althoughwe did not quantitatively address these factors
in our meta-analysis due to limited consideration given to
these factors in the included studies, exploring the role of cova-
riates such as the average seed size of weed species and their
burial depth could be a promising avenue for future research
that supplements existing lessons from this meta-analysis.

• Plant functional characteristics such as leaf/root/seed traits
govern their differential response to water stress across plant
functional groups (Lopez-Iglesias et al. 2014). Leaf traits such
as lower specific leaf area (Pérez-Ramos et al. 2013), and seed
traits such as heavy and rapidly germinating seeds (Merino-
Martín et al. 2017) favor drought survival. Similarly, the
response of root traits to drought varies among plant func-
tional groups, for example, grass weeds can increase their root
diameter and specific root surface area and decrease root
tissue density to produce thicker roots for better nutrient
and water acquisition, while herbs can decrease their specific
root surface area and root length to increase root carbon allo-
cation and water uptake (Lozano et al. 2019). Essentially,
droughts canmodify plant communities, species distribution,
diversity, and richness (Evans et al. 2011; Garssen et al. 2014;
Olivares et al. 2015), and the magnitude of response to
drought is determined by the distribution and composition
of plant species and functional groups (Kuiper et al. 2014;
Zweifel et al. 2009). It is therefore important to highlight,
acknowledge, and understand the role of plant functional
traits and their intraspecific as well as interspecific variations
in mediating drought response. The existing literature has
limited data on water-stress response of broadleaf versus
grass weeds to their below- and aboveground growth charac-
teristics as well as seed production. Future studies in weed
science research communities should prioritize under-
standing the differential response of these general weed types
to water-stress gradients. This is needed for the accurate and
robust characterization of the shift patterns among weed
species/functional groups in water-limited environments,
thereby enabling us to design effective weed management
programs for sustainable farming.
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