THE DISTINCT ZEROS OF THE PRODUCT OF A POLYNOMIAL AND ITS SUCCESSIVE DERIVATIVES

BY
Q. I. RAHMAN

It has been conjectured that if $p(z)$ is a polynomial of degree n then the product $P(z)=p(z) p^{\prime}(z) p^{\prime \prime}(z) \ldots p^{(n-1)}(z)$ has at least $n+1$ distinct zeros unless $p(z)=c(z-a)^{n}$. Professor P. Erdös who mentioned this problem in a lecture at the University of Montreal attributed it to Tiberiu Popoviciu.

In the present paper we consider the special case where $p(z)$ has only real zeros.
Let the statement " $f(z)$ is a constant multiple of $g(z)$ " be abbreviated " $f(z)$ $\approx g(z)$ ".

We prove the following
Theorem. If $p(z)$ is a polynomial of degree n with real zeros then the product $P(z)=p(z) p^{\prime}(z) \ldots p^{(n-1)}(z)$ has
(i) 1 distinct zero if $p(z) \approx(z-a)^{n}$;
(ii) $n+1$ distinct zeros if $p(z) \approx(z-a)(z-b)^{n-1}$ or $p(z) \approx(z-a)^{2}(z-b)^{2}$ or $p(z) \approx(z-a)^{3}(z-b)^{3}$;
(iii) at least $n+2$ distinct zeros, in any other case.

If $n=3$ then $p(z)=z\left(z^{2}-1\right)$ is a polynomial with only real zeros for which $P(z)$ has exactly $5(=n+2)$ distinct zeros. Again, if $n=5$ then $z\left(z^{2}-1\right)^{2}$ may be taken as a polynomial $p(z)$ with only real zeros for which $P(z)$ has exactly $7(=n+2)$ distinct zeros. However, we do not assert that for each n there is a polynomial $p(z)$ of degree n with only real zeros such that $P(z)$ has exactly $n+2$ distinct zeros.

If $n=1$ the product $P(z)$ has only one zero.
If $n=2$ the product $P(z)$ has 1 distinct zero or $3(=n+1)$ distinct zeros according as the two zeros of $p(z)$ are coincident or distinct.

Now let $n \geq 3$ and suppose that $p(z)$ has at least 3 distinct zeros. If $[a, b]$ is the smallest interval containing all the zeros then both a and b are zeros of $p(z)$. Let the multiplicity of the zero at a be κ and that of the zero at b be l. Then $\kappa+l \leq n-1$, $\max (\kappa, l) \leq n-2$. Without loss of generality we may suppose that $\kappa \leq l$. With the aid of Rolle's theorem it can be reasoned that for $\kappa \leq j \leq n-2$ the smallest zero $a^{(j)}$ of $p^{(j)}(z)$ is simple and

$$
a<a^{(x)}<a^{(x+1)}<\cdots<a^{(n-2)}
$$

Besides, for $l \leq j \leq n-2$ the largest zero $b^{(j)}$ of $p^{(j)}(z)$ is simple and

$$
b>b^{(l)}>b^{(l+1)}>\cdots>b^{(n-2)}>a^{(n-2)}
$$

Thus the product $P(z)=p(z) p^{\prime}(z) \ldots p^{(n-2)}(z)$ has at least $2 n-\kappa-l$ distinct zeros, namely, $a, a^{(k)}, a^{(x+1)}, \ldots, a^{(n-2)}, b^{(n-2)}, b^{(n-3)}, \ldots, b^{(l)}, b$. Including the zero $\frac{1}{2}\left(a^{(n-2)}+b^{(n-2)}\right)$ of $p^{(n-1)}(z)$ the product $P(z)$ has at least $n+2$ distinct zeros.

Finally, let $n \geq 3$ and suppose that $p(z)$ has 2 distinct zeros, i.e. $p(z) \approx(z-\alpha)^{\kappa}(z-\beta)^{l}$ where $\kappa+l=n$. There is no loss of generality in supposing that $\alpha=-1, \beta=1$, and $\kappa \leq l$.
(i) If $p(z) \approx(z+1)(z-1)^{n-1}$ then for $j=1,2, \ldots, n-2$ the j th derivative $p^{(s)}(z)$ has a zero of multiplicity $n-1-j$ at 1 and a simple zero at $-1+2 j / n$. Hence along with the zero $(n-2) / n$ of $p^{(n-1)}(z)$ the product $p(z) p^{\prime}(z) \ldots p^{(n-1)}(z)$ has precisely $n+1$ distinct zeros.
(ii) If $p(z) \approx(z+1)^{2}(z-1)^{2}$ or $p(z) \approx(z+1)^{3}(z-1)^{3}$ then elementary direct calculation shows that $P(z)$ has $5(=n+1)$ and $7(=n+1)$ distinct zeros respectively.

We prove that in every other case the product $P(z)$ has at least $n+2$ distinct zeros.

In fact, the polynomial $p^{\prime}(z)$ has a zero of multiplicity $\kappa-1$ at -1 , a zero of multiplicity $l-1$ at +1 and a zero $\gamma_{1}=-(l-\kappa) /(\kappa+l)$ in the open interval $(-1,1)$. Thus the product $p(z) p^{\prime}(z)$ has 3 distinct zeros. The second derivative $p^{\prime \prime}(z)$ has a zero of multiplicity $\kappa-2$ at -1 , a zero of multiplicity $l-2$ at 1 , a simple zero $\gamma_{2,1}$ in the open interval $\left(-1, \gamma_{1}\right)$ and a simple zero $\gamma_{2,2}$ in the open interval $\left(\gamma_{1}, 1\right)$. The product $p(z) p^{\prime}(z) p^{\prime \prime}(z)$ has therefore 5 distinct zeros. As long as $p^{(j)}(z)$ has a zero at -1 the smallest zero $\gamma_{j+1,1}$ of $p^{(j+1)}(z)$ lying in the open interval $(-1,1)$ cannot be a zero of any of the polynomials $p(z), p^{\prime}(z), \ldots, p^{(j)}(z)$. Similarly, as long as $p^{(j)}(z)$ has a zero at 1 the largest zero $\gamma_{j+1,2}$ of $p^{(j+1)}(z)$ lying in the open interval $(-1,1)$ cannot be a zero of any of the polynomials $p(z), p^{\prime}(z), \ldots, p^{(j)}(z)$. Thus the product $p(z) p^{\prime}(z) \ldots p^{(n-1)}(z)$ vanishes at least at the $n+1$ points $-1,+1$, $\gamma_{1}, \gamma_{2,1}, \ldots, \gamma_{k, 1}, \gamma_{2,2}, \ldots, \gamma_{l, 2}$ where

$$
-1<\gamma_{x, 1}<\gamma_{k-1,1}<\cdots<\gamma_{2,1}<\gamma_{1}<\gamma_{2,2}<\cdots<\gamma_{l, 2}<1 .
$$

According to Rolle's theorem the polynomial $p^{\prime \prime \prime}(z)$ has a zero $\gamma_{3,0}$ between $\gamma_{2,1}$ and $\gamma_{2,2}$ which we have not counted since it may possibly coincide with γ_{1}. But according as $\kappa=2$ or $\kappa>2, p^{\prime \prime \prime}(z)$ is proportional to

$$
(z-1)^{n-5}\left\{n(n-1) z^{2}+2(n-1)(n-6) z+(n-4)(n-9)\right\}
$$

or to

$$
\begin{aligned}
(z+1)^{\kappa-3}(z-1)^{l-3}\left\{\kappa(\kappa-1)(\kappa-2)(z-1)^{3}\right. & +3 \kappa l(\kappa-1)(z-1)^{2}(z+1) \\
& \left.+3 \kappa l(l-1)(z-1)(z+1)^{2}+l(l-1)(l-2)(z+1)^{3}\right\}
\end{aligned}
$$

Hence $p^{\prime \prime \prime}\left(\gamma_{1}\right)=p^{\prime \prime \prime}[-(l-\kappa) /(\kappa+l)] \neq 0$ unless $k=l$. It follows that if $\kappa \neq l$ then $\gamma_{3,0} \neq \gamma_{1}$ and the product $P(z)$ has at least $n+2$ distinct zeros.

Since the case $\kappa=l=2$ and $\kappa=l=3$ have already been considered let $\kappa=l$ and $n \geq 8$. In our preceding discussion of the case $p(z) \approx(z+1)^{\kappa}(z-1)^{l}$ where $\kappa+l=n$ we have ignored the fact that the polynomial $p^{\text {(iv) }}(z)$ has a simple zero $\gamma_{4,-0}$ in
the open interval ($\gamma_{3,1}, \gamma_{3,0}$) and another simple zero $\gamma_{4,+0}$ in the open interval $\left(\gamma_{3,0}, \gamma_{3,2}\right)$. We did so in order to allow the possibility that $\gamma_{4,-0}, \gamma_{4,+0}$ may respectively be equal to $\gamma_{2,1}, \gamma_{2,2}$. However, if $p(z) \approx\left(1-z^{2}\right)^{x}$ then

$$
\gamma_{2,1}=-\frac{1}{\sqrt{2 \kappa-1}}, \quad \gamma_{2,2}=\frac{1}{\sqrt{2 \kappa-1}},
$$

and

$$
p^{(\mathrm{iv})}(z) \approx\left(1-z^{2}\right)^{\kappa-4}\left\{(2 \kappa-1)(2 \kappa-3) z^{4}-6(2 \kappa-3) z^{2}+3\right\} .
$$

Hence neither $p^{(\mathrm{iv})}\left(\gamma_{2,1}\right)=0$ nor $p^{(\mathrm{iv})}\left(\gamma_{2,2}\right)=0$, i.e. $\gamma_{4,-0} \neq \gamma_{2,1}$ and $\gamma_{4,+0} \neq \gamma_{2,2}$. It follows that the product $P(z)$ has at least $n+3$ distinct zeros.

Université de Montréal, Montréal, Québec

