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Abstract
In this paper, a super-twisting disturbance observer (STDO)-based adaptive reinforcement learning control scheme
is proposed for the straight air compound missile system with aerodynamic uncertainties and unmodeled dynamics.
Firstly, neural network (NN)-based adaptive reinforcement learning control scheme with actor-critic design is inves-
tigated to deal with the tracking problems for the straight gas compound system. The actor NN and the critic NN are
utilised to cope with the unmodeled dynamics and approximate the cost function that are related to control input and
tracking error, respectively. In other words, the actor NN is used to perform the tracking control behaviours, and the
critic NN aims to evaluate the tracking performance and give feedback to actor NN. Moreover, with the aid of the
STDO disturbance observer, the problem of the control signal fluctuation caused by the mismatched disturbance
can be solved well. Based on the proposed adaptive law and the Lyapunov direct method, the eventually consis-
tent boundedness of the straight gas compound system is proved. Finally, numerical simulations are carried out to
demonstrate the feasibility and superiority of the proposed reinforcement learning-based STDO control algorithm.

Nomenclature

α, β attack angle and slide angle
ωz, ωy angle velocities
Jz, Jy rotational inertia
δz, δy output signals of the elevator and rudder
m mass of the missile
V velocity of the missile
S reference area of the missile
L reference length of the missile
C(·)

(·) coefficients of the aerodynamic forces
m(·)

(·) coefficients of the aerodynamic moments
di

(
i = ωz, ωy

)
unknown disturbances

χi(i = z, y) uncertainties caused by the unmodeled dynamics
η(t) unmodeled dynamics
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yd(t) desired tracking signal
x2c(t) inner loop virtual signal
e1(t), e2(t) tracking errors
k0, k1, k2 positive control gains
r(t) dynamic auxiliary signal
�f system unknown nonlinear term
Wa, Wc weights of actor NN and critic NN
	a(Za), 	c(Zc) activation functions of actor NN and critic NN
εWa , εWc estimation errors of actor NN and critic NN
εv unknown upper bound of the total disturbance D(t)
u(t) designed controller
J(t) integral penalty function
ec(t) error variable of critic NN
Ec(t) error objective function of critic NN
·̂ estimation value of ·
·̃ estimation error of · and ·̃ = ·̂ − ·

1.0 Introduction
The missiles are a class of weapons that are equipped with guidance and control equipment to achieve
precision flight and strike missions. The typical features of long range, high accuracy, great power, and
strong defense penetration capabilities make the missiles an important research area. Recently, the high-
precision control problem of missiles has become a relatively important research topic and has been
extensively studied by scholars at home and abroad. In order to tackle this problem, several approaches
have been proposed [1]. For example, a robust control scheme based on the quaternion feedback is pro-
posed for the attitude control problem of the missile [2]. In Ref. [3], the robust control method based
on disturbance observer is proposed, which not only ensures the robustness of the nonlinear system, but
also solves the problem of mismatched disturbance by using the observer, and has been successfully
applied to the nonlinear missile systems with various uncertain relations and external disturbances. In
addition to the robust control method, sliding mode control is also favoured by scholars because of its
unique advantages. Considering the condition that the attitude of the missile is affected by the rapid
and large parameter variations and the partial instability in the boost phase, a multi-sliding surface atti-
tude controller based on high-order sliding mode and traditional sliding mode is proposed to control
the attitude of the missile [4]. Although sliding mode control theory has many advantages, it is prone
to chattering during the design process, which will cause harm to the system. In light of this situation,
two novel smooth sliding mode control methods were proposed, and successfully achieved the fast finite
time convergence of the system [5]. Backstepping decomposes a complex nonlinear system into several
subsystems, which has the ability to deal with mismatching uncertainties. Introducing the backstep-
ping method into the missile control system makes the system more flexible and robust. By utilising the
backstepping method, the guidance and control law is divided into a guidance loop and a control loop
for design, and the state observer is used for online estimation and compensation of the aerodynamic
parameter changes in the model [6]. The above-mentioned literatures adopt the single control method,
compared with this, the compound control method can more effectively improve the performance of the
system. Therefore, by a combination of backstepping and sliding mode control methods, the attitude con-
troller is devised for a rotating missile with two moving masses inside [7]. Moreover, in order to depress
the peaking phenomenon and chasing of backstepping sliding mode controller, filtering technology is
introduced [8].

However, traditional aerodynamically controlled missiles have the problem of long overload response
time. At present, by increasing the direct lateral force to form the aerodynamic/reaction-jet compound
control system, the dynamic performance of the missile control system can be improved. In Ref. [9],
a robust controller of the aerodynamic/reaction-jet compound control missile is designed, and in order
to ensure the robustness when the jet factor changes, the parameter space method is used to design
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the equivalent steering gear system. Moreover, by a combination of robust trail tracking control and
dynamic inverse control, a blended robust control method is devised to deal with the blended attitude
control with lateral thrust and aerodynamic force [10]. To realise the coordinated use of direct force
and aerodynamic force and fast and accurate tracking of overload, a compound control strategy based
on fixed time convergence sliding mode control theory and dynamic control allocation technology is
proposed [11]. For the case of parameter perturbation and large external disturbances, a nonsingular fast
terminal sliding mode control method is proposed, which improves the convergence speed of the system
[12]. In Refs. [13, 14], backstepping method is used to design virtual control law to complete the control
problem of compound missile.

Above controllers are designed based on modern control theory, nevertheless, pure modern control
theory cannot solve many problems of missile engineering application. With the development of artifi-
cial intelligence technology, many scholars try to combine artificial intelligence and control theory to
solve the problem of missile control. The fuzzy control theory is introduced into the control design of
compound missile, and the overload command is tracked by designing fuzzy controller [15]. Moreover,
the combination of artificial intelligence integral controller and fuzzy controller is helpful to improve
the stability of missile guidance system [16]. In Ref. [17], variable universe fuzzy control is introduced
to solve the influence of aerodynamic parameters on missile control system. The typical features of par-
allel processing, distributed storage, high fault tolerance and nonlinear operation make artificial neural
network particularly popular. The neural network reference model method is used to design the equiv-
alent steering gear of composite missile [18]. Genetic algorithm has great advantages in optimising the
control system. For instance, in Ref. [19], the gain matrix of missile controller is optimised by genetic
algorithm, and simulation results show that the optimisation effect of this method cannot be achieved by
traditional optimisation methods. With the rapid development of computer technology, adaptive tech-
nology has attracted more and more attention from scholars. The combination of adaptive control and
intelligent control algorithm is an important direction of missile control research. In Ref. [20], fuzzy
adaptive proportional–integral–derivative (PID) control is designed to solve the problem that PID con-
troller cannot adjust parameters. Based on the robust adaptive controller, a fuzzy adaptive disturbance
observer is used to compensate the disturbances in the linear velocity and angular velocity dynamics
of the missile [21]. The control performance of hypersonic missile in cruise phase is improved by the
combination of fuzzy control and adaptive sliding mode control [22]. In Ref. [23], a robust adaptive neu-
ral network state feedback control based on backstepping is proposed for missile systems with unknown
parameters and unknown delay inputs, and an approximator based on neural network is used to compen-
sate the uncertainty caused by unknown delay. For the missile with random disturbances and non-affine
aerodynamic characteristics, the neural network is used to deal with the non-affine aerodynamic charac-
teristics in the system, and the adaptive term is used to solve the problem of unknown target manoeuver
[24]. An improved adaptive genetic algorithm is proposed to solve the nonlinear integer programming
model of large-scale missile firepower allocation. Compared with the traditional genetic algorithm, the
crossover probability and mutation probability automatically adjusted by the adaptive rule significantly
improve the search ability of the algorithm, so as to improve the accuracy of the model [25]. In view
of the large jet interference of missile with lateral jets and aerodynamic surfaces, the control allocation
algorithm is designed by using adaptive genetic algorithm to meet the real-time requirements of the
algorithm; then the variable universe adaptive fuzzy control is used to design the ignition algorithm of
attitude control engine, which overcomes the influence of jet interference and solves the problem of low
precision of conventional fuzzy control [26].

Motivated by the above discussions, a STDO-based adaptive reinforcement learning control method
is proposed for the straight air compound missile system with aerodynamic uncertainties and unmodeled
dynamics. The main contributions of this paper can be summarised as follows.

• To deal with the tracking problems for the straight gas compound system, adaptive control with
actor-critic design is investigated in this paper: the critic part is used to obtain the cost function to
evaluate the tracking performance, and the actor part generates the control policy of the actuator
according to the results from the critic part.
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• To improve the control performance, reinforcement learning and neural networks are adopted
in the actor-critic design: the critic neural network and the actor neural network are utilised to
approximate the cost function and cope with the unmodeled dynamics, respectively.

• Considering that the negative impacts of the control signal fluctuation caused by the distur-
bances of the straight gas compound system, the STDO disturbance observer is used to solve
the problem.

2.0 Problem formulation and preliminaries
2.1 Problem statement
Ignoring the roll channel, the attitude dynamic model of a direct force and aerodynamic force compound
missile can be modeled as

α̇ = ωz − QS
(
Cα

y α + Cδz
y δz

)
mV

− Fy

mV

β̇ = ωy +
QS
(

Cβ
z β + C

δy
z δy

)
mV

+ Fz

mV

ω̇z = QSL

Jz

(
mα

z α + mδz
z δz + mω̄z

z ω̄z

)+ lz

Jz

Fy + dωz + χz(ωz, η)

ω̇y = QSL

Jz

(
mβ

y β + m
δy
y δy + m

ω̄y
y ω̄y

)
+ ly

Jy

Fz + dωy + χy

(
ωy, η

)
(1)

where α is the angle-of-attack, β is the slide angle, ωz, ωy are the angle velocities. Jz, Jy denote the
rotational inertia. V and m are the velocity and the mass of the missile, respectively. S and L represent
the reference area and length. δz, δy are the output signals of the elevator and rudder. C(·)

(·) denote the
coefficients of the aerodynamic forces, while m(·)

(·) represent the coefficients of the aerodynamic moments.
di

(
i = ωz, ωy

)
are the unknown disturbances. η is the unmodeled dynamics, and χi(i = z, y) represents

the uncertainties caused by the unmodeled dynamics.
Then, by defining

x1(t) = [
α β

]T
, x2(t) = [

ωz ωy

]T
,

d1(t) =

⎡
⎢⎢⎢⎢⎣

−QS
(
Cα

y α + Cδz
y δz

)
mV

− Fy

mV

QS
(

Cβ
z β + C

δy
z δy

)
mV

+ Fz

mV

⎤
⎥⎥⎥⎥⎦ , d2(t) =

⎡
⎢⎢⎣

QSL

Jz

(
mα

z α+mω̄z
z ω̄z

)+ dωz

QSL

Jz

(
mβ

y β+m
ω̄y
y ω̄y

)
+ dωy

⎤
⎥⎥⎦

B =

⎡
⎢⎢⎣

QSL

Jz

mδz
z 0

lz

Jz

0

0
QSL

Jz

m
δy
y 0

ly

Jy

⎤
⎥⎥⎦ , u(t) = [

δz δy Fy Fz

]T

(2)

the equivalent model of Equation (1) can be given as
ẋ1(t) = x2(t) + d1(t)

ẋ2(t) = Bu(t) + d2(t) + χ(x2(t) , η(t))
(3)

Thus, the design objective is to develop a reinforcement learning-based STDO control scheme
to maintain the desired trajectory tracking for the straight air compound missile system given in
Equation (3) subjected to aerodynamic uncertainties and unmodeled dynamics.
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Figure 1. The structure of the proposed reinforcement learning-based STDO control algorithm.

2.2 Assumptions and lemmas
The following assumptions and lemmas are necessary.

Assumption 1. The disturbance moments caused by structural uncertainty are bounded, that is, there
exists the constants d̄1, d̄2 such that ‖d1(t) ‖ ≤ d̄1, ‖d2(t) ‖ ≤ d̄2.

Assumption 2. The desired tracking signal of the system yd(t) is smooth and twice differentiable.

Lemma 1. For any constant ε > 0 and vector ξ ∈ Rn, we have

‖ξ‖ <
ξ Tξ√

ξ Tξ + ε2
+ ε (4)

Lemma 2. [27] Given any constant ε > 0 and any variable z ∈ R, the following inequality holds

0 ≤|z| − z tanh
( z

ε

)
≤ κε (5)

where κ is a constant satisfying κ = e−(κ+1), i.e. κ = 0.2785.

3.0 Stdo-based adaptive reinforcement learning control
In this section, as shown in Fig. 1, a STDO-based adaptive reinforcement learning control method is
proposed.

Defining the control expected output signal as yd(t) and the inner loop virtual signal as x2c(t), then
the tracking errors of x1(t) and x2(t) can be expressed as

e1(t) = x1(t) − yd(t)

e2(t) = x2(t) − x2c(t)
(6)

Combining with Equation (3), one has

ė1(t) = x2c(t) + e2(t) + d1(t) − ẏd(t)

ė2(t) = Bu(t) + d2(t) + χ(x2(t) , η(t)) − ẋ2c(t)
(7)

Then, we can design the inner loop virtual signal as

x2c(t) = −k0

∫ t

0

e1(τ ) dτ − k1e1(t) − d̂1(t) + ẏd(t) (8)

where d̂1(t) is the adaptive estimate of d1(t), k0 and k1 are the control gains.
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In order to compensate and suppress the influence of the unknown mismatched disturbance d1(t), a
second-order STDO is designed as follows

˙̂d1(t) = −Kd1

(
d̂1(t) − P1

)

P1 = −KP1

x̂1 − x1∥∥x̂1 − x1

∥∥ 1
2

+ P2

Ṗ2 = −KP2

x̂1 − x1∥∥x̂1 − x1

∥∥
˙̂x1(t) = x2(t) + d̂1(t)

(9)

The dynamic signal r(t) is introduced, which is defined by

ṙ(t) = −γ0r(t) + ρ(x1(t) , x2(t)) , r(0) = r0 (10)

where γ0 ∈ (0, γ1).
The coupling uncertainty is assumed to satisfy the following inequality

eT
2 χ(x2(t) , η(t)) ≤∥∥eT

2 (t)
∥∥(ϕ1(x2(t)) + ϕ2(η(t))) (11)

According to Lemma 1 and Young’s inequality, Equation (11) can be rewritten as∥∥eT
2 (t)

∥∥ ϕ1(x2(t)) ≤ eT
2 (t) ϕ̄1(e2(t) , x2(t)) + ε1

∥∥eT
2 (t)

∥∥ ϕ2(η(t)) ≤ eT
2 (t) ϕ̄2(e2(t) , r(t)) + ε2 + 1

4
eT

2 (t) e2(t) + ε3

(12)

where ε1, ε2 > 0 are arbitrary constants,

ϕ̄1(e2(t) , x2(t)) = ϕ1(x2(t)) eT
2 (t) ϕ1(x2(t))√[

eT
2 (t) ϕ1(x2(t))

]2 + ε2
1

ϕ̄2(e2(t) , r(t)) = ϕ2 ◦ α−1
1 (2r(t)) eT

2 (t) ϕ2 ◦ α−1
1 (2r(t))√[

eT
2 (t) ϕ2 ◦ α−1

1 (2r(t))
]2 + ε2

2

ε3 = [
ϕ2 ◦ α−1

1 (2εr)
]2

(13)

Next, we define

�f = ϕ̄1(e2(t) , x2(t)) + ϕ̄2(e2(t) , r(t)) (14)

Since ϕ̄1(e2(t) , x2(t)) and ϕ̄2(e2(t) , r(t)) are the functions that change irregularly in the control
dynamic process, the actor NNs are introduced to approximate the unknown nonlinear term �f , the
actor NN structures of the optimal control �f and the actual control �f̂ are designed as follows

�f = WT
a 	a(Za) + εWa

�f̂ = ŴT
a 	a(Za)

(15)

where Wa, Ŵa ∈ Rp1×n, 	a(Za) ∈ Rp1×1, 	a(Za) = e−(Za−μ)2

2σ2 , Za = [e2(t) , x2(t) , r(t)]T , and there exists an
upper bound of the estimation error such that ‖εWa‖ ≤ ε̄Wa . Thus, we can obtain that

eT
2 (t) χ(x2(t) , η(t)) ≤ eT

2 WT
a 	a(Za) + eT

2 εWa + 1

4
eT

2 (t) e2(t) +
3∑

i=1

εi (16)

Then, the matched disturbance d2(t) and actor NN estimation error εWa of the controlled system
need to be considered and compensated. Firstly, the total disturbance D(t) can be constructed in the
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following form:

D(t) = d2(t) + εWa (17)

Thanks to Assumption 1, the following inequality is satisfied

|D(t)| = ∣∣d2(t) + εWa

∣∣≤ εv (18)

where εv is an unknow positive constant. According to Lemma 2, we can easily obtain

eT
2 (t) D(t) ≤|e2(t)| εv ≤ εve

T
2 (t) tanh

(
e2(t)

α

)
+ καεv (19)

Based on the above analysis, the outer loop controller can be designed as

u(t) = B−1

⎛
⎜⎝−k2e2(t) − e1(t) − ϕρ(t, e2(t)) − ε̂v tanh

(
e2(t)

α

)
−ŴT

a 	a(Za) − 1

4
e2(t) + ẋ2c(t)

⎞
⎟⎠ (20)

where k2 is the control gain.
The critic NN which can be used to appraise control performance and make feedback to the actor

NN will be introduced in detail. Firstly, we define the integral penalty function of the controlled system
as follows

J(t) =
∫ ∞

0

[
eT

1 (τ ) Qe1(τ ) + uT(τ ) Ru(τ )
]

dτ (21)

Then, we approximate the penalty function J(t) by designing the critic NN

Ĵ(t) = ŴT
c 	c(Zc) (22)

where Ŵc ∈ Rp2×n, 	c(Zc) ∈ Rp2×1, 	c(Zc) = e−(Zc−μ)2

2σ2 , Zc = e1(t).
Constructing the residual mean square error function of the critic NN structure, one has

ec(t) = eT
1 (t) Qe1(t) + uT(t) Ru(t) + ŴT

c ∇	c ẋ1(t)

Ec(t) = 1

2
eT

c (t) ec(t)
(23)

where ∇	c = ∂	c(x1) /∂x1 and ∇	c ∈ Rp2×n. The update goal of the weight of the critic NN is to min-
imise Ec(t), thus the update rate of the critic network weight is obtained according to the gradient descent
method

˙̂Wc = −�WcλWc ec − �WcλWc Ŵc

= −�Wc

[
λWc

(
λT

Wc
Ŵc + eT

1 (t) Qe1(t) + uT(t) Ru(t)
)]

− �WcλWc Ŵc (24)

where λWc = ∇	cẋ(t) , �Wc , λWc > 0.
Finally, the adaptive laws of ˙̂Wa,

˙̂Wc, ˙̂εv are listed as follows
˙̂Wa = �Wa	a(Za)

(
eT

2 (t) + Ĵ�T
)

− �WaλWa Ŵa

˙̂Wc = −�Wc

[
λWc (λ

T
Wc

Ŵc + eT
1 Qe1 + uTRu)

]
− �WcλWc Ŵc

˙̂εv = eT
2 (t) tanh

(
e2(t)

α

)
− λεε̂v (25)

For the sake of analysis, we define ∗̃ = ∗̂ − ∗ to represent the estimation error of the unknown
variable ∗.
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4.0 Stability analysis
Defining e0(t) = ∫ t

0
e1(s) ds and combining Equations (7), (8) and (20), then the closed relation can be

obtained
ė0(t) = e1(t)

ė1(t) = −k0e0(t) − k1e1(t) + e2(t) − d̃1(t)

ė2(t) = −k2e2(t) − e1(t) + d2(t) + χ(x2(t) , η(t))

− ŴT
a 	a(Za) − ε̂v tanh

(
e2(t)

α

)
− 1

4
e2(t) − ϕρ(t, e2(t))

(26)

The purpose of this paper is to construct an efficient controller to ensure the stability of the closed
relation described in Equation (26). The stability of the straight air compound missile system with the
proposed control scheme can be revealed by the following theorem.

Theorem 1. Consider the straight air compound missile system described in Equation (3). Suppose
Assumption 1 and Assumption 2 can be satisfied. If the inner loop control law and the outer loop control
law are given by Equations (8) and (20), the STDO is designed as Equation (9), the adaptive laws are
designed as Equation (25), then the closed-loop control system in the existence of unmoldeled dynamics
is stable and all the signals are upper bounded.

Proof . The Lyapunov function V is selected as
V = V1 + V2

V1 = 1

2
eT

0 (t) e0(t) + 1

2
eT

1 (t) e1(t) (27)

V2 = 1

2
eT

2 (t) e2(t) + 1

2
Tr
(
W̃T

a �−1
Wa

W̃a

)+ 1

2
Tr
(
W̃T

c �−1
Wc

W̃c

)+ 1

2
ε̃T

v ε̃v + r(t)

�r

+J∗(x1)

Taking the derivative of both sides of the Equation (27), we can get that
V̇ = V̇1 + V̇2

V̇1 = eT
0 (t) ė0(t) + eT

1 (t) ė1(t) (28)

V̇2 = eT
2 (t) ė2(t) + Tr

(
W̃T

a �−1
Wa

˙̃Wa

)
+ Tr

(
W̃T

c �−1
Wc

˙̃Wc

)
+ ε̃T

v
˙̃εv − γ0

�r

r(t) +ρ(t)

�r

+J∗T
x ẋ1

Substituting Equation (26) into V̇1 term of Equation (28), one has
V̇1 = eT

0 (t) e1(t) − k0eT
1 (t) e0(t) − k1eT

1 (t) e1(t) + eT
1 (t) e2(t) − eT

1 (t) d̃1(t) (29)

Defining ē1 = [
eT

0 (t) , eT
1 (t)

]T and utilising the following inequality

eT
1 (t) d̃1(t) ≤ 1

2
eT

1 (t) e1(t) + 1

2
d̃T

1 (t) d̃1(t)

≤ 1

2
eT

1 (t) e1(t) + 1

2
ε2

d (30)

Equation (29) can be rewritten as

V̇1 ≤ −ēT
1 (t) Aē1(t) + eT

1 (t) e2(t) + 1

2
ε2

d

A =
⎡
⎣ 0 −1

k0 −1

2
+ k1

⎤
⎦ (31)

where we assume that ‖d̃1(t) ‖ ≤ εd holds and εd is a positive constant.
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Thanks to Equation (16) and ė2(t) term of Equation (26), we can get the following inequality

eT
2 (t) ė2(t) ≤ −k2eT

2 (t) e2(t) − eT
2 (t) e1(t) − eT

2 (t) ϕρ(t, e2(t)) − eT
2 (t) ε̂v tanh

(
e2(t)

α

)

− eT
2 (t) W̃T

a 	a(Za) + eT
2 (t)

(
d2(t) + εWa

)+
3∑

i=1

εi

(32)

where

eT
2 (t)

(
d2(t) + εWa

)− eT
2 (t) ε̂v tanh

(
e2(t)

α

)

= eT
2 (t)(D(t)) − eT

2 (t) ε̂v tanh

(
e2(t)

α

)
(33)

≤ eT
2 (t) εv tanh

(
e2(t)

α

)
+ καεv − eT

2 (t) ε̂v tanh

(
e2(t)

α

)

= −eT
2 (t) ε̃v tanh

(
e2(t)

α

)
+ καεv

Thus, the following inequality can be readily obtained

eT
2 (t) ė2(t) ≤ −k2eT

2 (t) e2(t) − eT
2 (t) e1(t) − eT

2 (t) ϕρ(t, e2(t))

− eT
2 (t) ε̃v tanh

(
e2(t)

α

)
− eT

2 (t) W̃T
a 	a(Za) +

3∑
i=1

εi + καεv (34)

Substituting Equation (34) into V̇2 term of Equation (28), one has

V̇2 ≤ −k2eT
2 (t) e2(t) − eT

2 (t) e1(t) − eT
2 (t) ϕρ(t, e2(t)) − eT

2 (t) ε̃v tanh

(
e2(t)

α

)
− eT

2 (t) W̃T
a 	a(Za)

+ Tr
(

W̃T
a �−1

Wa

˙̃Wa

)
+ Tr

(
W̃T

c �−1
Wc

˙̃Wc

)
+ ε̃T

v
˙̃εv − γ0

�r

r(t) +ρ(t)

�r

+ J∗T
x ẋ1 +

3∑
i=1

εi + καεv (35)

For any vector ξ ∈ Rn, we define

Tanh(ξ(t)) = [tanh ξ1(t) , tanh ξ2(t) , · · · , tanh ξn(t)]
T (36)

Therefore, the following formula holds

ρ(t)

�r

= ρ(t)

�r

(
1 − 16TanhT

(
e2(t)

ερ

)
Tanh

(
e2(t)

ερ

))
+ eT

2 (t) ϕρ(t, e2(t))

ϕρ(t, e2(t)) = 16e2(t) ρ(t)

�reT
2 (t) e2(t)

TanhT

(
e2(t)

ερ

)
Tanh

(
e2(t)

ερ

)
(37)

Then, combining Equations (31), (35)–(37), we have

V̇ = V̇1 + V̇2

≤ −ēT
1 (t) Aē1(t) − k2eT

2 (t) e2(t) − eT
2 (t) ε̃v tanh

(
e2(t)

α

)
− eT

2 W̃T
a 	a(Za)
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+ Tr
(

W̃T
a �−1

Wa

˙̃Wa

)
+ Tr

(
W̃T

c �−1
Wc

˙̃Wc

)
+ ε̃T

v
˙̃εv − γ0

�r

r(t) + J∗T
x ẋ1 (38)

+ρ(t)

(
1 − 16TanhT

(
e2(t)

ερ

)
Tanh

(
e2(t)

ερ

))/
�r + 1

2
ε2

d +
3∑

i=1

εi + καεv

By using the adaptive laws in Equation (25) and considering the following inequalities

−ε̃T
v ε̂v ≤ −1

2
ε̃2

v + 1

2
ε2

v (39)

then, it can be concluded that

V̇ ≤ −ēT
1 (t) Aē1(t) − k2eT

2 (t) e2(t) − λε

2
ε̃2

v + Tr
(

W̃T
a

(
	aĴ�T − λWa Ŵa

))

+ Tr
(

W̃T
c

(
−λWc (λ

T
Wc

Ŵc + εc) − λWc Ŵc

))
+ J∗T

x ẋ1 − γ0

�r

r(t) + 1

2
ε2

d (40)

+
3∑

i=1

εi + λε

2
ε2

v + ρ(t)

(
1 − 16TanhT

(
e2(t)

ερ

)
Tanh

(
e2(t)

ερ

))/
�r

Considering Tr
(

W̃T
a

(
	aĴ�T − λWa Ŵa

))
term of Equation (40), we can obtain that

Tr
(

W̃T
a

(
	aĴ�T − λWa Ŵa

))

= Tr
(
W̃T

a 	aW̃
T
c 	c�

T
)+ Tr

(
W̃T

a 	aW
T
c 	c�

T
)− Tr

(
W̃T

a λWa Ŵa

)

= W̃T
c 	c�

TW̃T
a 	a + Wc

T	c�
TW̃T

a 	a − λWaTr
(

W̃T
a Ŵa

)

≤ ρ1W̃T
c W̃c + λmax

(
	c�

T�	T
c

)
	̄2

a

4ρ1

Tr
(
W̃T

a W̃a

)
(41)

+ ρ2W
T
c Wc + λmax

(
	c�

T�	T
c

)
	̄2

a

4ρ2

Tr
(
W̃T

a W̃a

)− λWa

2
W̃T

a W̃a + λWa

2
WT

a Wa

Then, considering Tr
(

W̃T
c

(
−λWc

(
λT

Wc
Ŵc + εc

)
−λWc Ŵc

))
term of Equations (40), the following

inequality holds

Tr
(

W̃T
c

(
−λWc (λ

T
Wc

Ŵc + εc) − λWc Ŵc

))

= Tr
(
−W̃T

c λWcλ
T
Wc

W̃c − W̃T
c λWcεc − W̃T

c λWc Ŵc

)
= −W̃T

c λWcλ
T
Wc

W̃c − W̃T
c λWcεc − W̃T

c λWc Ŵc (42)

≤
(

ρ3 + λmax

(
λ̄Wc

)
4ρ3

)
W̃T

c W̃c + ρ4λmax

(
λWcλ

T
Wc

)
W̃T

c W̃c + 1

4ρ4

ε2
c − λc

2
W̃T

c W̃c + λc

2
WT

c Wc

Moreover, the J∗T
x ẋ1 term of Equations (28) satisfies

J∗T
x ẋ1 ≤ −λmin{Q}||e1||2 − λmin{R}||u||2 (43)
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Substituting Equations (41)–(43) into Equation (40), we can get that

V̇ ≤ −ēT
1 (t) Aē1(t) − k2eT

2 (t) e2(t) − λε

2
ε̃2

v − γ0

�r

r(t) + ρ(t)

(
1 − 16TanhT

(
e2(t)

ερ

)
Tanh

(
e2(t)

ερ

))/
�r

−
(

λWa

2
− λmax

(
	c�

T�	T
c

)
	̄2

a

4ρ1

− λmax

(
	c�

T�	T
c

)
	̄2

a

4ρ2

)
Tr
(
W̃T

a W̃a

)

−
(

λWc

2
− ρ1 − ρ3 − λmax

(
λ̄Wc

)
4ρ3

− ρ4λmax

(
λWcλ

T
Wc

))
W̃T

c W̃c − λmin{Q}||e1||2 − λmin{R}||u||2 (44)

+ λε

2
ε2

v + 1

2
ε2

d +
3∑

i=1

εi + λWa

2
WT

a Wa + 2ρ2 + λWc

2
WT

c Wc + 1

4ρ4

ε2
c

Defining

γ = min

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2λmin(A) , 2k2, 2λmin(Q) , 2λmin(R) , λε,

λWa

2
− λmax

(
	c�

T�	T
c

)
	̄2

a

4ρ1

− λmax

(
	c�

T�	T
c

)
	̄2

a

4ρ2

,

λc

2
− ρ1 − ρ3 − λmax

(
λ̄Wc

)
4ρ3

− ρ4λmax

(
λWcλ

T
Wc

)
,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

εf = − γ0

�r

r(t) + λε

2
ε2

v + 1

2
ε2

d +
3∑

i=1

εi + λWa

2
WT

a Wa + 2ρ2 + λWc

2
WT

c Wc + 1

4ρ4

ε2
c (45)

Thanks to Equation (45), we can obtain that

V̇ ≤ −γ V + εf +ρ(t)

(
1 − 16TanhT

(
e2(t)

ερ

)
Tanh

(
e2(t)

ερ

))/
�r (46)

According to Equation (46), it can be seen that signals
[
e0(t) , e1(t) , e2(t) , ε̃v(t) , W̃a(t) , W̃c(t)

]
are

all stable and bounded. Therefore, the stability of the closed-loop system and the boundedness of all
signals can be verified. The proof is complete.

5.0 Simulation study
In this section, some numerical simulations are performed to demonstrate the effectiveness and perfor-
mance of the proposed STDO-based adaptive reinforcement learning (ARL) control method. To show
the advantages of the proposed STDO-ARL method, the STDO-ARL without STDO and the STDO-
ARL without reinforcement learning (RL) are also considered for comparison, as shown in Figs. 2 and 3.
On the other hand, the robustness of the proposed STDO-ARL method is reflected by several external
disturbances d1(t) and uncertainties χ(t) of different degrees imposed on the system as listed in Table 1,
and the results are shown in Figs. 7 and 8.

The initial values of the system for simulation are listed as follows: x1 = [
0.0675 −0.5738

]T
, x2 =[

0 0
]T ; the weights of the actor network and the critic network are respectively set as: Ŵa =

zeros(22, 1) , Ŵc = zeros(11, 1); the mismatched disturbance of the system is d̂1 = [
0 0

]T ; what’s
more, P2 = [

0 0
]T and x̂2 = [

0 0
]T .

We choose the unmodeled dynamics as η = 1 and the dynamic auxiliary signal as r = 2. The
mismatched disturbance d1(t) in the simulation are set as two different trapezoidal waves: d1(t) =[

D(t, 5, 3)

D(t, 5, 1)

]
. The uncertainties that are affected by the unmodeled dynamics are supposed to
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Figure 2. Comparison chart of the tracking performance of α under different methods.
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Figure 3. Comparison chart of the tracking performance of β under different methods.

be χ(t) = 0.5x1(t) sin(t) + ηx2(t). In this control method, the system matrix is selected as B =[
1 0 1 0

0 1 0 1

]
and other control constants are set as �r = 120, ερ = 0.1. The control gains are

designed as k0 = 3, k1 = k2 = 6. The control parameters of STDO disturbance observer are designed
as Kd1 = 5, KP1 = 2, KP2 = 0.1. And the adaptive control parameters of reinforcement learning
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Table 1. Model parameter values in different cases

d1(t) χ(t)

Case1_method d1(t) =
[

D(t, 5, 3)

D(t, 5, 1)

]
0.5x1sin(t) + ηx2(t)

Case2_other_disturbance1 d1(t) =
[

sin(0.5t + 2)

sin(t − 8) + cos(2t)

]
0.5x1sin(t) + ηx2(t)

Case3_other_disturbance2 d1(t) =
[

2square(0.2t, 50)

3square(0.4t, 50)

]
0.5x1sin(t) + ηx2(t)

Case4_other_uncertainty d1(t) =
[

D(t, 5, 3)

D(t, 5, 1)

]
0.5x1sin(t) + ηx2(t)
−0.5x2(t) sin(2t)

0 5 10 15 20 25 30 35 40 45 50

0

0.5

1

1.5

2

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

Figure 4. The trajectories of the adaptive parameters of the proposed STDO-ARL scheme.

actor network and critic network are set as �Wa = 0.2, λWa = 2.5, � = [
2 1

]T
, �Wc = 0.2, λWc =

2.5, Q = diag([1, 1]) , R = diag([2, 1, 0, 1]). According to the above simulation parameters, the fol-
lowing simulations are carried out: the comparison simulation of different methods and different cases.

5.1 Simulation comparison under different methods
This part is a comparative simulation under different methods. According to Figs. 2 and 3, it is obvious
that for the time-varying desired signal, the proposed STDO-ARL control scheme can achieve satis-
factory results for the tracking control problems of the straight air compound missile with external
disturbances and unmodeled dynamics. While the tracking performance of the proposed method without
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Figure 5. Disturbance estimation effect of d̂1 (t) based on STDO.
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Figure 6. Variation diagram of the weight norm of the reinforcement learning actor NN
∥∥∥Ŵa

∥∥∥ and the

critic NN
∥∥∥Ŵc

∥∥∥.
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Figure 7. Comparison chart of the tracking performance of α under different cases.
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Figure 8. Comparison chart of the tracking performance of β under different cases.

STDO and the proposed method without RL is not ideal, it may produce undesired tracking errors and
cannot ensure the tracking accuracy.

Moreover, according to Figs. 4, 5 and 6, all signals in the closed-loop control system are bounded
during the whole control process by using the proposed STDO-ARL method. In summary, the proposed
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STDO-ARL control method under unmodeled dynamics and disturbances can achieve satisfactory
control performance.

5.2 Simulation comparison under different cases
This part is a comparative simulation for the proposed STDO-ARL control scheme under different
cases, as shown in Figs. 7 and 8. From the analysis of the simulation results, the proposed STDO-
ARL method has the characteristics of high anti-disturbance in dealing with trapezoidal signals and
sine-cosine combined signals. However, there will be slight fluctuations when dealing with square-wave
signal disturbance. Moreover, for various complex uncertainty conditions, the reinforcement learning
structure can be used to fit them effectively. To sum up, the proposed STDO-ARL method has strong
robustness and anti-disturbance ability under different cases.

6.0 Conclusion
In this paper, an STDO-based adaptive reinforcement learning control scheme is proposed for the straight
air compound missile system with unknown aerodynamic uncertainties and unmodeled dynamics. To
deal with the tracking problems for the straight gas compound system, adaptive control with actor-critic
design has been investigated in this paper. Considering that the negative impacts of the control sig-
nal fluctuation caused by the mismatched disturbance of the straight gas compound system, the STDO
disturbance observer has been used to solve the problem well. To improve the control performance,
reinforcement learning and neural networks have been adopted in the actor-critic design. The simula-
tion results show that the proposed STDO-ARL controller can guarantee the stability of the straight air
compound missile system with unknown aerodynamic uncertainties and unmodeled dynamics. What’s
more, the effectiveness and robustness of the proposed approach have been illustrated by simulation
results. In the future, we will continue to follow up on this problem and consider the reinforcement
learning-based anti-coupling control for the straight gas compound system.
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