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Abstract
Clinical observations and subjective judgements have traditionally been used to evaluate patients with muscular and
neurological disorders. As a result, identifying and analyzing functional improvements are difficult, especially in the
absence of expertise. Quantitative assessment, which serves as the motivation for this study, is an essential prerequi-
site to forecast the task of the rehabilitation device in order to develop rehabilitation training. This work provides a
quantitative assessment tool for muscle weakness in the human upper limbs for robotic-assisted rehabilitation. The
goal is to map the assessment metrics to the recommended rehabilitation exercises. Measurable interaction forces
and muscle correlation factors are the selected parameters to design a framework for muscular nerve cell condition
detection and appropriate limb trajectory selection. In this work, a data collection setup is intended for extracting
muscle intervention and assessment using MyoMeter, Goniometer and surface electromyography data for upper
limbs. Force signals and human physiological response data are evaluated and categorized to infer the relevant
progress. Based upon the most influencing muscles, curve fitting is performed. Trajectory-based data points are
collected through a scaled geometric Open-Sim musculoskeletal model that fits the subject’s anthropometric data.
These data are found to be most suitable to prescribe relevant exercise and to design customized robotic assistance.
Case studies demonstrate the approach’s efficacy, including optimally synthesized automated configuration for the
desired trajectory.

1. Introduction
Robotic treatment is becoming increasingly popular among patients suffering from neurological and
musculoskeletal problems. Rehabilitation devices are used to help patients restore lost motor abilities.
Manual or mechanical treatment is usually the only option for such patients to regain their motor abil-
ities. Since there is repetition in specified exercises, manual assistance is difficult, time-consuming,
and uncomfortable for the physiotherapist. Robotic rehabilitation is, therefore, a viable option [1, 2,
3]. It can deliver high doses of motor instruction at a reasonable cost. Nonetheless, training is depen-
dent on one-on-one interaction between a therapist and a patient in the historical setting; as a result,
rehabilitation is expensive and time-consuming. In addition, the dosage is usually insufficient for ade-
quate recovery. Previous research has focused on building robotic rehabilitation systems for patients
with muscular and neurological disorders, but their practical application in clinics and homes has been
limited. Robotic training is considered less effective than dose-matched motor training, provided by
therapists [4].

Task-oriented training is a research paradigm for upper extremity rehabilitation that includes three
design concepts: skill development for functional activities, active participation training, and customized
adaptive training. Recognizing a patient’s weakness and assigning appropriate tasks is challeng-
ing [5, 6]. To understand a patient’s functioning capability is essential to give appropriate therapy
[7, 8]. Constructive muscular engagement suited to the patients’ needs would help manage and adjust
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their activities-of-daily-living. The most common techniques for measuring a patient’s motor function
are clinical scales and kinematic analysis. The Fugl–Meyer assessment, Oxford scale, Kendall scale,
Ashworth scale, and a variety of other clinical measures are often used to assess upper limb functions
[9, 10]. Since these clinical measurements are semi-quantitative techniques [8, 11], it is difficult to dis-
tinguish the significant influence on muscle function and motor coordination during the rehabilitation
process. As a result, detecting substantial changes in the patient’s motor movement using clinical mea-
sures is challenging. On the other side, due to the lack of quantifiable data on intervention effects and
efficacy of various training protocols, the utility is limited across institutes and therapists [12, 13].

The surface electromyography (sEMG) and kinetic measures are essential tools in the study of move-
ment because these can provide an electrophysiological perspective of motion. Researchers look at the
effect of diminished dexterity on muscle activation post-injury [14]. The relationship between the post-
stroke upper limb muscle weakness, co-contraction and clinical assessments of upper limb motor deficits
and a physical handicap is examined by recording sEMG activity of paretic and non-paretic wrist flexors
during isometric wrist flexion and extension [15]. Several studies have been conducted on mathematical
and black box models to predict joint torque based on forces generated by muscle contraction. The Hill-
based muscle model is a three-element model of mechanical muscle response used to convert sEMG
signals to joint torque to maintain arm posture [16]. Callavaro et al. converted sEMG data using poly-
nomial equations for joint torque prediction [17]. Using genetic algorithm (GA), researchers on sEMG
have performed detection, analysis, feature extraction, and joint torque estimate [18]. Regression anal-
ysis is utilized to estimate joint torque based on the best-fit mathematical model [19]. According to
several recent studies, the optimum way to deduce a mathematical model for predicting joint torque is
exponential equations [20, 21].

The research goal of the current study is to develop a quantitative statistical technique for weakness
estimation and is capable of deciding the recommended exercise. When a person is connected to a
robotic system, muscle weakness evaluation is essential to forecast the task for the rehabilitation device
to create rehabilitation training. Figure 1 briefly explains the technique used in the present work for bio-
mechanical–based joint motion reconstruction. The study used sEMG signals and force sensors to assess
impairment and muscle engagement during elbow flexion/extension movement. A comparative analysis
is used to identify the dominant muscle during elbow flexion motion, with the results confirmed using
the Open-Sim software. Using a mathematical model, the force interaction is connected to the sEMG
signals corresponding to the dominant upper arm muscle. The Pearson product correlation moment is
computed to verify the efficient and successful rehabilitation training attempts. Anthropometric subject
data are used to extract the necessary trajectory data points. Two realistic case studies are included to
demonstrate the proposed algorithm framework as a tool for mapping weakness to robotic task planning.

2. Experimental setup and methodology
This section details the method for predicting a patient’s weakness to identify the task for the rehabilita-
tion device in establishing rehabilitation training. The subjects’ elbow moment signals, sEMG signals,
contact force signals, and natural human motion data are gathered for the study. Butterworth Low-Pass
filter and crucial damping low-pass filtering are used to pre-process sensors data. This section has five
stages: experiment setup and data acquisition, identification of dominant muscles by signal processing,
correlation analysis, quantitative model estimation, and rehabilitation task planning.

2.1. Experimental setup and dataset acquisition
An experimental setup for elbow flexion/extension movement has been developed. The experimental
setup consists of a MyoMeter sensor (M-550), wireless Goniometer (W-series) sensor, and LE-230
DataLite wireless sEMG sensors. These sensors have been purchased from the United Kingdom-based
firm Biometrics Ltd to test muscle intervention and assessment. During the process, individuals are
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Figure 1. Mapping of task planning to task-based robotic synthesis through automatic muscle weakness
assessment tool.

Figure 2. Data acquisition and signal processing.

instructed to utilize their right hand; an extra harness system is primarily employed to keep the subject’s
hand secure and to limit wrist mobility to a substantial degree. The body positions are demonstrated in
Fig. 2(a), with the upper arms flexed to 0◦ and forearms flexed to 90◦. The sensors’ reaction is explicitly
tested for the biceps brachii and triceps brachii muscles during elbow flexion movement. The expected
contact force is measured in real time using a wireless wrist-mounted Myometry sensor. Muscle activity
is monitored using wireless sEMG sensors placed on the two aforementioned muscles during the elbow
flexion. Wireless Goniometer sensors are used to track movement during exercise.

https://doi.org/10.1017/S0263574722000844 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722000844


836 Sakshi Gupta et al.

Table I. Details of subjects demographic and health information.
Here, SD represents standard deviation.

Characteristics Values
Gender Female 02

Male 08
Age (in years) Mean ± SD 42.5 ± 17.5

Range 25–60
Height (m/feet) Mean ± SD 1,73 ± 0.04
Weight (kg) Mean ± SD 67.5 ± 8
Dominant arm Right

Upper arm (m) Mean ± SD 0.31 ± 0.03
Right arm Lower arm (m) Mean ± SD 0.27 ± 0.02

The data set contains motion data from 10 healthy subjects, 8 men and 2 women, ranging in age from
25 to 60 years old and weighing 50 to 75.5 kg, with their consent. The subject name protocol provides
letters to distinguish male and female participants, as well as the subject’s serial number. For example,
F001 denotes a female candidate with a serial number of one. Table I displays the demographics and
health information of the individuals.

2.2. Dominant muscle identification using signal processing framework
The task is performed on the participants’ dominant arms. The angular displacements of the elbow joint
are measured using a wireless Goniometer sensor. Sensors’ data are captured as analog signals, then
smoothed and rectified using a digital low-pass filter. The sEMG signals from biceps brachii and triceps
brachii are acquired from two selected muscles. Figure 2(b) depicts the analysis of the sEMG signals.
The signal is recorded in differential mode, measuring the voltage difference between two electrodes.
Before being digitized, the raw signal is subjected to analog filtering, most often band pass. Low and
high frequencies are removed from the signal via band-pass filtering. The low-frequency cut-off is taken
between 5 and 20 Hz, and the high frequency is taken as 200 Hz – 1 kHz [22]. The sampling rate is
adjusted to at least twice the analog low-pass filter’s cut-off frequency. A digital high-pass filter to the
stream is applied to eliminate movement and other artifacts. The 6th order, 20 Hz high-pass filter, is
employed to rectify and digitize the low-pass filter in the next step, where the signal’s absolute value is
taken. The instances are identified to estimate on and off periods when the signal’s envelope (derived by
removing mean value, rectifying, and applying a digital low-pass filter to the signal) exceeds a threshold.
The threshold can be established by several factors, including:

Threshold = μ + 3 ∗ σ , (1)

where, μ and σ denote mean and standard deviation, respectively.
Algorithm 1 illustrates the procedure for extracting a linear envelope of signals. Figures 3 and 4 shows

the raw data and processed data to extract linear envelope for a sample of biceps brachii and triceps
brachii sEMG signals, respectively. Consequently, the sensors data have been analyzed for depicting all
individuals’ sEMG sensors data for the biceps brachii and triceps brachii and for identifying substantial
influences on upper arm movement.

2.3. Correlation analysis
Understanding the relationship between the muscles and the applied force is essential for task and inter-
action force control. To assess the relationship between the contact forces and the muscle responses, the
Pearson product–moment correlation criteria (see Eq. (2)) are utilized. The correlation factor between
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Algorithm 1 Computation of linear envelope for a signal
1: Initialize low pass filter frequency (F).
2: Initialize sampling rate n.
3: Load sEMG raw data x.
4: Compute Nyquist frequency (n/2).
5: Estimate full wave rectification (abs(x - mean(x))).
6: Specifies the intended frequency of the final cutoff 20 Hz.
7: Apply 2nd order Butterworth low pass filter (25% adjustment factor).
8: Determine signals’ envelope.
9: Determine threshold value = μ + 3 ∗ σ .
10: Plot the data vs time: raw data in blue, rectified data in green, and linear envelope in red.

Figure 3. A sample subject’s biceps brachii muscle responses while undergoing elbow flexion/extension
exercise with three trials: (a) Pictorial representation of raw sEMG responses and (b) Processed sEMG
responses to extract linear envelope.

Figure 4. A sample subject’s triceps brachii muscle responses while undergoing elbow flexion/extension
exercise with three trials: (a) Pictorial representation of raw sEMG responses and (b) Processed sEMG
responses to extract linear envelope.

the sensor data is used to reveal the redundant inputs and outputs and feature reduction and selection
procedures—given the fact that the more linked the system is, the higher the correlation factor.

r =
∑

(xi − x̄)((yi − ȳ)√
(xi − x̄)2((yi − ȳ)2

(2)

https://doi.org/10.1017/S0263574722000844 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722000844


838 Sakshi Gupta et al.

Here, r = correlation coefficient, xi= value of muscle responses, x̄ = mean of the value of the muscle
response, yi = value of contact forces, and ȳ = mean of the value of the contact forces.

2.4. Quantitative model and estimation
A mathematical model is required to convert sEMG signals of dominant muscle into muscle force esti-
mation. The study utilizes the curve-fitting approach to identify the best fit mathematical model. An
optimization problem is formulated using the Levenberg–Marquardt technique to minimize the error
between the estimated and the actual forces (represented in Eq. (3)).

The fitness value is calculated by averaging the error percentages from all the data points.

Error =
n∑

i=1

(fest)i − (fact)i

Ni

. (3)

Here, fest denotes estimated force and fact denotes actual force. N denotes data set size, and n denotes
sample rate. The coefficients A0, A1, B1, and W play a crucial role in determining the simulated muscles
strength based on sEMG signals.

The sum-of-squared errors (SSE), root mean square error (RMSE), and coefficient of determination
(R-square) are the parameters used to evaluate the most appropriate model. SSE is calculated as the sum
of the squared differences between the observed value and the predicted value, and a smaller value is
preferable. The RMSE is defined as the standard deviation of the residuals (prediction errors) and must
be less than one. The R-square is defined as the proportion of variation predicted by the independent
variable in the dependent variable, and its value ranges from 0.1 to 1. A model with a greater value is
preferred.

2.5. Rehabilitation task planning
This section maps the collected muscle activity information to the rehabilitation task planning by
integrating recommended exercises. This provides the tasks to the customized robotic system designers.

2.5.1. Task identification
Task-oriented rehabilitation retrains human movements by providing standard physical tools in differ-
ent spatial locations, allowing users to execute assigned activities. Moreover, the joint range-of-motion
(ROM) and muscular flexibility must be sufficient to enable correct functional excursions of the mus-
cles and bio-mechanical alignment [23, 24]. The research exclusively collects natural human motion
data utilizing joint flexibility exercises (i.e. ROM exercises) to strengthen weak muscles. To establish
the concept, the workouts assumes to be planar, and the focus is on elbows flexion/extension joint motion
range. Figure 5(a) shows elbow flexion/extension joint motion range (sagittal plane) when the shoulder
flexion angle is fixed at 0 ◦. A similar procedure can be implemented to other recommended exercises.

2.5.2. Trajectory generations
To indicate the location and orientation of a robotic link about adjacent links, the Denavit–Hartenberg
(D–H) convention is utilized. It is crucial to select a specific motion trajectory to plan a robot’s mobility
by providing initial values for joint variables. The experimental setup, depicted in Fig. 5(b), is intended
to collect natural human motion data to follow the therapeutically required motion trajectory. Here,
task space locations (TSLs) are a set of coordinates that indicate the wrist positions of the participants.
Trajectories are traced out to get realistic human motion trajectories corresponding to recommended
rehabilitation exercises.
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Figure 5. (a) Joint ROM exercise for muscular flexibility performing elbow flexion/extension when
shoulder flexion angle is at 0◦ (parallel to sagittal plane), Courtesy: Indian Spinal Injury Centre, New
Delhi, India. (b) Experimental setup for human motion data collection.

Algorithm 2 Scaling musculoskeletal model
1: Initialize D-H parameters for static pose (link length, joint offset, twist angle, joint angle)
2: Define D-H parameter in Robo-Analyzer software
3: Set time duration and number of steps (t,n)
4: Compute forward kinematics
5: Extract data points for static pose
6: Import in Open-Sim as a markers data for static pose
7: Compute scale factor using Open-Sim GUI
8: Run the simulation

Both marker-based and marker-less data collection techniques for human mobility have been used in
the past. The investigation has included simulations of dynamic movement, and neuromuscular coordi-
nation and physical performance have been examined. Additionally, simulators provide a scientific basis
for therapy planning by identifying the source of abnormal activity. Towards this, the study has collected
previously revealed participants’ natural human motion data sets, created utilizing scaled Open-Sim
upper extremity musculoskeletal models. It aims that Open-Sim could simulate movement quickly and
accurately. To begin with, the programme anticipates natural motion coordinate data by using motor
control models, such as kinematic adaptations of human gestures at various phases. A tool named Robo-
Analyzer is used to accelerate the kinematic model framework. It may also inspect each D–H parameter
by selecting an individual joint and then the kind of D–H parameter. The appropriate D–H parameter
is highlighted in the D–H parameters input table when a transformation frame is applied to the robot
model.

Algorithm 2 shows the step-by-step procedure to obtain the subject-specific scaled musculoskeletal
model. A large data set of joint coordinate trajectories is obtained using the simulations. The article does
not provide a detailed analysis of the design of a trajectory-based rehabilitation device.

3. Results and discussion
Muscle involvement has been widely studied to identify substantial influences on upper arm movement.
Consequently, the sensor’s data have been analyzed. Figure 6 depicts all individuals’ sEMG sensors
data for the biceps brachii and triceps brachii. As expected, the considered activity is best suited for
biceps brachii, whereas triceps brachii necessitates a different action. As a result, the biceps brachii,
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Figure 6. A chart presenting a graphical depiction of the processed sEMG signal responses of the biceps
brachii and triceps brachii muscles during elbow flexion/extension exercise for all ten participants.

Figure 7. Open-Sim software validating results for dominant muscle identification by simulating mus-
culoskeletal model: (a) posture of upper extremity musculoskeletal model and (b) muscles involvement
during task completion.

regardless of human anatomy, has a considerably more significant influence on the outcome of the chosen
activity.

Open-Sim simulation software is utilized to verify the outcomes of the study, as shown in Fig. 7.
Open-Sim musculoskeletal models support the findings. When the same exercise is conducted using
Open-Sim software, the biceps brachii sEMG signals exert a more substantial influence than the other
muscles. This reduces dimensionality by eliminating parameters with high dominance. Based upon this,
dominant muscle analysis identifies critical, independent aspects that aid in developing a mathematical
model with fewer parameters.

The correlation of sEMG signals collected from the biceps brachii and triceps brachii muscle groups
is investigated to determine the importance of interdependent muscle responses. The only correlation
between sEMG signals obtained from biceps brachii and contact force received from the MyoMeter
sensor is more significant than 0.9 (highlighted with a red square), which is significantly greater than
the others. In contrast, the pattern and diversity of contact force and muscle activation correlations
appear to be subjective for different persons, and averaged values are used. Figure 8 depicts the overall
data. In almost all instances, the correlation between biceps brachii and interaction forces is significant
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Figure 8. Correlation factor for combined data (all 10 participants).

Figure 9. Curve fitting of the estimated force to the actual force in graphical form (one of the
participant).

enough, which is preferable based on previous dominant muscle outcomes throughout the activity. This
calculation can analyze a more robust and practical training and related rehabilitation progress.

Following that, as described in Section 2.4, standard Fourier series1 is obtained as a suitable math-
ematical model for determining the quantitative and statistical value of the biceps brachii’s muscular
force. Figure 9 shows an example of a curve fitting match to the anticipated force to the actual force for
an individual participant.

The comparative findings of the proposed model and Kim et al. [21] model for all 10 participants
while executing the prescribed work, that is the elbow flexion motion, are displayed in Table II. The
SSE, RMSE, and R-square for the proposed model have all been shown to be acceptable. Figure 10(a)
represents comparison of the proposed model to actual data, and Kim et al. [21] model for one of the
participant. The graph of the simulated model is found to be pretty close to the actual data. Additionally,
the data from the Open-Sim musculoskeletal model are utilized to validate the proposed model, as seen

1The mathematical expression for Fourier series is fest = A0 + A1 ∗ cos(X ∗ W) + B1 ∗ sin(X ∗ W), Where, fest stands for
muscular estimated force (in N), X signifies sEMG signals (in μV) and A0, A1, B1, and W are the muscle coefficients.

https://doi.org/10.1017/S0263574722000844 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722000844


842 Sakshi Gupta et al.

Table II. Comparative results of proposed model and kim et al. [21] model for all 10 healthy
participants in completing the assigned task, that is elbow flexion movement.

Proposed model Kim et al. model [21]

Subject SSE (n) R-square RMSE (N) SSE (N) R-square RMSE (N)
M003 228.1 0.97 0.87 228.0 0.97 0.87
M004 337 0.99 0.28 329.6 0.99 0.27
M005 328.3 0.99 0.35 579.8 0.99 0.46
M006 328.3 0.99 0.35 579.8 0.99 0.46
M007 3710 0.98 0.77 – – –
M008 219.7 0.99 0.38 – – –
M009 117.4 0.98 0.73 – – –
M010 252.2 0.99 0.21 – – –
F001 109.6 0.98 0.28 749.9 0.98 0.23
F002 175.3 0.98 0.22 – – –

Figure 10. (a) Comparison of an individual participant’s actual data to Kim et al.’s model and
proposed model data, (b) Comparison of proposed model to Open-Sim musculoskeletal model data.

in Fig. 10(b) where SSE 7.89 N, R-square 0.99, and RMSE 0.28 N are obtained. Hence, the proposed
mathematical model based on the most influential muscle is demonstrated to be the best to predict the
afflicted limb’s quantitative weakening value (force).

Through trajectory generation, a large data set of therapeutically desired natural human motion tra-
jectory is gathered, and for the sake of simplicity, just a few numbers are displayed in Table III for one
of the participant. Here, the modified joint coordinates are shown to be following the shoulder joint as
the reference frame.

3.1. Case Study 1: patient of quadriplegia (less than 3 months): demonstration
Medical and rehabilitation robots use human motion data to create various innovative recreational assis-
tance devices that mimic the human body’s natural motion. When it comes to identifying muscular
weakness-based task locations of therapeutically needed trajectory for each patient, the recommended
technique will play a satisfying role. This case involves a 30-year-old man who has quadriplegia. Both
of his upper limbs have shown limited elbow flexion movement during movement. The proposed algo-
rithm’s framework is used to choose an experimental setting for evaluating weak muscle and tracking its
recovery in a way that mimics the joint biological trajectory. Data have been collected from Spinal Injury
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Table III. Using Open-Sim software, transformed human
motion data of the wrist with respect to the shoulder as a
reference frame (one of the participants).

TSLs Xwrist(m) Ywrist(m)
P1 0 −0.52
P2 0.05 −0.51
P3 0.12 −0.48
P4 0.18 −0.44
P5 0.22 −0.39
P6 0.25 −0.28
P7 0.22 −0.15

Figure 11. Case Study 1: Some clicks of sensors integration with Patient of Quadriplegia (injury less
than 3 months), Courtesy: Indian Spinal Injury Center (ISIC).

Center, where the subject is a regular patient of Out-Patient Department (OPD). Disability is identified
by sensors integration and data assessment. Figure 11 depicts the experimental setup, which consists
of sensors integrated with human limb and can able to recognize muscle intervention and engagement,
allowing for the mapping of weakness evaluation to task planning. Processed sensor data are utilized
to determine Pearson product–moment correlation, and observed biceps brachii muscles have a higher
correlation factor of 0.82 for weaker limb and 0.88 for weak limb. The Pearson product–moment cor-
relation for the weaker limb is depicted in Fig. 12, with the higher correlation component highlighted
in red.

The mathematical model is obtained with the measures SSE 328 N, R-square 0.95, and RMSE 0.28
N for weak limb and SSE 1572 N, R-square 0.77 and RMSE 6.46 N for weaker limb. As demonstrated in
Fig. 13, the model has estimated the quantitative weakening value of the affected limbs as nearly 40 N for
weaker limb and 70 N for weak limb. Motion data is collected via an Open-Sim scaled musculoskeletal
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Figure 12. Case Study 1: Illustration of Pearson Product Moment Correlation for the weaker limb.

Figure 13. Case Study 1: Comparison of disability between both upper extremity.

model, which corresponds to anthropometric subject data and is obtained as displayed in Table IV. The
corresponding clinically desired trajectory is shown in Fig. 14.

3.2. Case Study 2: patient of hemiplegia (less than 3 month): trajectory-based robotic assistance
This case study briefs the methodology for utilizing the proposed framework in robot-assisted reha-
bilitation. Figure 15 showcases the connectivity chart where the weakness information is extracted in
the first step by sensors integration with the human limb. The proposed quantitative measures, namely
muscle intervention and muscle engagement, are used in the previous case. In the second step, the task
is planned according to these outcomes of muscles intervention and the automatically recommended
therapy. This task information, such as task type and task space locations’, is depicted in the third phase
of Fig. 15. It is used to build a model that optimizes the dimensional parameters of a data-driven mecha-
nism. The evolutionary algorithm is utilized to optimize the synthesis problem. The final step in Fig. 15
exposes the designer’s sorting criteria, such as kinematic performance index and reachability, to choose
the best performing mechanism. The example concludes by demonstrating how the proposed algorith-
mic technique would give a general framework for task-based robotic-assisted dimensional synthesis
from automated therapy selection and data collection.

This case involves a 50-year-old female patient with hemiplegia. The patient has limited elbow
flexibility in her right upper limb. Correlation coefficients are calculated to measure the present rela-
tionship strength between sensor data, indicating the action’s dependability for the targeted muscles.
As demonstrated in Fig. 16, the significant relationship between the biceps brachii sEMG signals and
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Table IV. Case Study 1: Collecting natural human motion
data using a scaled Open-Sim musculoskeletal model that
corresponds to the participant’s anthropometric data for
the weaker limb.

TSLs Xwrist(m) Ywrist(m)
P1 0 −0.70
P2 0.06 −0.70
P3 0.14 −0.67
P4 0.27 −0.56
P5 0.33 −0.44
P6 0.33 −0.32
P7 0.29 −0.20

Figure 14. Case Study 1: Graphical depiction of the therapeutically desirable natural human motion
trajectory.

Figure 15. Steps being taken in the development of trajectory-oriented robotic assistance systems.
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Figure 16. Case Study 2: Illustration of Pearson Product Moment Correlation for the effected limb.

the MyoMeter is less than 0.9 and higher than others. A better correlation between Biceps Brachhii and
MyoMeter sensor indicates the accuracy of training attempts directed at the targeted muscle. The devel-
oped model provides a SSE 87.68 N, R-square 0.99, and RMSE 0.16 N. The model has estimated the
quantitative weakness value of the affected limb is less than 5 N. Consequently, it is suggested to repeat
the exercise to acquire the quantitative connection between biceps brachii motor functions similar to
healthy ones. Therefore, the quantitative model for force prediction would aid healthcare in comparative
analysis. Subject anthropometric data are utilized to create an Open-Sim scaled musculoskeletal model.
The results of the data analysis of muscle weakness assessment to task planning, which turned the co-
ordinate measurements of the shoulder and wrist position, with the shoulder as the local co-ordinate
frame (reference frame). TSLs show the trajectory data points generated from the Open-Sim scaled
musculoskeletal model. Table V represents the upper limb recommended trajectory.

Case study 2 is expanded further to showcase the remaining two phases. This is achieved by determin-
ing the optimal dimensions for a four bar with a single bar configuration. The objective of the synthesis
problem is to achieve a trajectory while optimizing kinematic performance and maintaining a high level
of positional accuracy. The selection of configuration is not part of the paper. Jacobean conditioning
index and reachability are being used to evaluate the best. The former ensures the mechanism’s kine-
matic performance at given places, while the latter provides the correctness of the end-positional point at
defined trajectory points. The anthropometric data from the human upper-limb is being used to calculate
link length variations and joint-angle ranges of the selected configuration. The multi-model problem is
tackled using the GA, an evolutionary technique. For each candidate, link lengths (L) and joint angles
(θ ) are utilized to derive the objective functions and constraints of the specified issue (solution).

The obtained optimal link lengths for the four bar with a single-bar mechanism have been determined
using dimensional synthesis as L1 = 0.07 m, L2 = 0.23 m, L3 = 0.006 m, L4 = 0.27 m, and L5 = 0.29
m. The base link has an angle of θ3 = 180◦. The reachability error is determined to be 0.001 m, which
falls within the tolerance level. As demonstrated in Fig. 17, the results for reachability at each TSL
are provided for this four-bar structure connected with single bar. The conditioning index varies from
0.1 to 0.84 for the specified collection of TSLs. The best postures are observed from P3 onwards. The
contours are plotted for active angles θ1 from 0◦ to 360◦ and θ5 from 0◦ to 360◦, respectively, as shown
in Fig. 18(a). Corresponding manipulability plot is shown in Fig. 18(b) and workspace region is shown
in Fig. 18(c). Table VI shows optimal synthesis findings for the configuration at all TSLs data points,
together with active joint angles, conditioning index, and manipulability.

Anthropometric subject data is being utilized to determine the amount of assistive torque required as
the link weight is assumed to be negligible [25]. As a percentage of total body weight, upper arm segment
weight is 2.9% for women and 3.25% for men, while the lower arm segment weight is 1.57% for women
and 1.87% for males [26]. The healthy limb’s gravitational factor is determined to be 25.11 N to move the
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Table V. Case Study 2: Natural human motion data collection
utilizing a scaled model of Open-Sim software that corresponded
to the anthropometric data of the participant.

TSLs Xwrist(m) Ywrist(m)
P1 0 −0.56
P2 0.09 −0.54
P3 0.19 −0.48
P4 0.23 −0.43
P5 0.25 −0.38
P6 0.26 −0.31
P7 0.26 −0.23

Figure 17. Case Study 2: Optimal synthesized results based upon clinical trajectory.

Figure 18. Case Study 2: Results of workspace computation and singularity analysis for selected four
bar with single-bar configuration: (a) Contours for conditioning index, (b) Contours for manipulability,
and (c) Workspace analysis.
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Table VI. Case Study 2: Optimal synthesised results for the
configurations for their corresponding active joint angles and
conditioning index and manipulability at each TSLs data points.

TSLs θ 1 θ 5 1/c M
P1 310.59 276.82 0.10 146.76
P2 313.48 293.38 0.24 341.11
P3 314.82 315.39 0.44 552.58
P4 316.05 327.53 0.55 636.99
P5 315.36 337.37 0.67 698.22
P6 314.27 351.58 0.84 741.00
P7 312.64 7.23 0.77 729.13

Table VII. Case Study 2: Torque requirement for elbow flexion/extension.

TSLs P1 P2 P3 P4 P5 P6 P7
τactuator1(Nm) −4.56 −4.75 −4.84 −4.94 −4.89 −4.80 −4.66
τactuator2(Nm) −6.52 −7.71 −8.29 −8.095 −7.65 −6.66 −5.08

forearm in the sagittal plane, and the torque for the healthy upper limb during elbow flexion/extension is
estimated to be 3.5 Nm. In contrast, the torque for the afflicted (weak) limb is 0.68 Nm. The exoskeleton
would be designed to provide 2.82 Nm of robotic assistance as a solution. Table VII takes into account
the rated torque values required for both active actuators of the mechanism, which are determined to be
between 4.56 and 4.94 Nm for actuator-1, that is almost constant, and 5.08 to 8.29 Nm for actuator-2.
Here, a negative toque indicates clockwise rotation.

4. Conclusions
This paper proposed a methodology for quantifying the relationship between the metric for assess-
ing muscle weakness and the therapeutically recommended exercise that serves as the task for the
rehabilitation device. Measurable contact force and muscle correlation factors are chosen parameters
for establishing a framework for detecting muscular nerve cell state and recommended appropriate
limb trajectories. The study investigates a strong connection between biceps brachii sEMG signals and
MyoMeter in healthy patients. The inter-correlation between biceps brachii and contact force is high
enough to reduce them to a single representative variable. The Fourier curve-fitting method is used to
estimate limb weakness quantitatively, and the corresponding exercise can be recommended. This tar-
geted trajectory is extracted from a subject-specific scaled geometric Open-Sim musculoskeletal model
and can be utilized for synthesizing customized robotic assistance. Two case studies are included to
demonstrate how the algorithmic steps are implemented to map weakness to the task planning in the
rehabilitation area.
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