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Abstract

This paper solves the rational noncommutative analogue of Hilbert’s 17th problem: if a noncommutative rational
function is positive semidefinite on all tuples of Hermitian matrices in its domain, then it is a sum of Hermitian
squares of noncommutative rational functions. This result is a generalisation and culmination of earlier positivity
certificates for noncommutative polynomials or rational functions without Hermitian singularities. More generally, a
rational Positivstellensatz for free spectrahedra is given: a noncommutative rational function is positive semidefinite
or undefined at every matricial solution of a linear matrix inequality ! � 0 if and only if it belongs to the rational
quadratic module generated by L. The essential intermediate step toward this Positivstellensatz for functions with
singularities is an extension theorem for invertible evaluations of linear matrix pencils.
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2 Jurij Volčič

1. Introduction

In his famous problem list of 1900, Hilbert asked whether every positive rational function can be written
as a sum of squares of rational functions. The affirmative answer by Artin in 1927 laid the ground for the
rise of real algebraic geometry [BCR98]. Several other sum-of-squares certificates (Positivstellensätze)
for positivity on semialgebraic sets followed; since the detection of sums of squares became viable with
the emergence of semidefinite programming [WSV00], these certificates play a fundamental role in
polynomial optimisation [Las01, BPT13].

Positivstellensätze are also essential in the study of polynomial and rational inequalities in matrix
variables, which splits into two directions. The first one deals with inequalities where the size of the
matrix arguments is fixed [PS76, KŠV18]. The second direction attempts to answer questions about the
positivity of noncommutative polynomials and rational functions when matrix arguments of all finite
sizes are considered. Such questions naturally arise in control systems [dOHMP09], operator algebras
[Oza16] and quantum information theory [DLTW08, P-KRR+19]. This (dimension-)free real algebraic
geometry started with the seminal work of Helton [Hel02] and McCullough [McC01], who proved that
a noncommutative polynomial is positive semidefinite on all tuples of Hermitian matrices precisely
when it is a sum of Hermitian squares of noncommutative polynomials. The purpose of this paper is to
extend this result to noncommutative rational functions.

Let G = (G1, . . . , G3) be freely noncommuting variables. The free algebra C<G> of noncommu-
tative polynomials admits a universal skew field of fractions C (<G )>, also called the free skew field
[Coh95, CR99], whose elements are noncommutative rational functions. We endow C (<G )> with the
unique involution ∗ that fixes the variables and conjugates the scalars. One can consider positivity of
noncommutative rational functions on tuples of Hermitian matrices. For example, let

r = G2
3 + G

2
4 − (G3G1 + G4G2)

(
G2

1 + G
2
2

)−1
(G1G3 + G2G4) ∈ C (<G )>.

It turns out r(-) is a positive semidefinite matrix for every tuple of Hermitian matrices - =

(-1, -2, -3, -4) belonging to the domain of r (meaning ker -1 ∩ ker -2 = {0} in this particular case).
One way to certify this is by observing that r = r1r

∗
1 + r2r

∗
2, where

r1 =

(
G4 − G3G

−1
1 G2

)
G2

(
G2

1 + G
2
2

)−1
G1, r2 =

(
G4 − G3G

−1
1 G2

) (
1 + G2G

−2
1 G2

)−1
.

The solution of Hilbert’s 17th problem in the free skew field presented in this paper (Corollary 5.4)
states that every r ∈ C (<G )>, positive semidefinite on its Hermitian domain, is a sum of Hermitian
squares in C (<G )>. This statement was proved in [KPV17] for noncommutative rational functions r that
are regular, meaning that r(-) is well-defined for every tuple of Hermitian matrices. As with most
noncommutative Positivstellensätze, at the heart of this result is a variation of the Gelfand–Naimark–
Segal (GNS) construction. Namely, if r ∈ C (<G )> is not a sum of Hermitian squares, one can construct a
tuple of finite-dimensional Hermitian operators Y that is a sensible candidate for witnessing nonpositive-
definiteness of r. However, the construction itself does not guarantee that Y actually belongs to the
domain of r. This is not a problem if one assumes that r is regular, as it was done in [KPV17]. However,
it is worth mentioning that deciding the regularity of a noncommutative rational function is a challenge
on its own, as observed there. In the present paper, the domain issue is resolved with an extension
result: the tuple Y obtained from the GNS construction can be extended to a tuple of finite-dimensional
Hermitian operators in the domain of r without losing the desired features of Y.

The first main theorem of this paper pertains to linear matrix pencils and is key for the extension
already mentioned. It might also be of independent interest in the study of quiver representations and
semi-invariants [Kin94, DM17]. Let ⊗ denote the Kronecker product of matrices.
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Theorem A. Let Λ ∈ M4 (C)
3 be such that Λ1 ⊗ -1 + · · · +Λ3 ⊗ -3 is invertible for some - ∈ M: (C)

3 .

If . ∈ Mℓ (C)
3 , . ′ ∈ M<×ℓ (C)

3 and . ′′ ∈ Mℓ×<(C)
3 are such that

Λ1 ⊗

(
.1

. ′
1

)
+ · · · + Λ3 ⊗

(
.3
. ′
3

)
and Λ1 ⊗

(
.1 .

′′
1

)
+ · · · + Λ3 ⊗

(
.3 .

′′
3

)

have full rank, then there exists / ∈ M= (C)
3 for some = ≥ < such that

Λ1 ⊗
©­«
.1 .

′′
1 0

. ′
1
0

/1

ª®¬
+ · · · + Λ3 ⊗

©­«
.3 .

′′
3

0
. ′
3

0
/3

ª®¬
is invertible.

See Theorem 3.3 for the proof. Together with a truncated rational imitation of the GNS construction,
Theorem A leads to a rational Positivstellensatz on free spectrahedra. Given a monic Hermitian pencil
! = � + �1G1 + · · · + �3G3 , the associated free spectrahedron D(!) is the set of Hermitian tuples X

satisfying the linear matrix inequality !(-) � 0. Since every convex solution set of a noncommutative
polynomial is a free spectrahedron [HM12], the following statement is called a rational convex Posi-
tivstellensatz, and it generalises its analogues in the polynomial context [HKM12] and regular rational
context [Pas18].

Theorem B. Let L be a Hermitian monic pencil and set r ∈ C (<G )>. Then r � 0 on D(!) ∩ dom r if and

only if r belongs to the rational quadratic module generated by L:

r = r
∗
1r1 + · · · + r

∗
<r< + v

∗
1!v1 + · · · + v

∗
=!v=

where r8 ∈ C (<G )> and v 9 are vectors over C (<G )>.

A more precise quantitative version is given in Theorem 5.2 and has several consequences. The
solution of Hilbert’s 17th problem in C (<G )> is obtained by taking ! = 1 in Corollary 5.4. Versions of
Theorem B for invariant (Corollary 5.7) and real (Corollary 5.8) noncommutative rational functions
are also given. Furthermore, it is shown that the rational Positivstellensatz also holds for a family of
quadratic polynomials describing nonconvex sets (Subsection 5.4). As a contribution to optimisation,
Theorem B implies that the eigenvalue optimum of a noncommutative rational function on a free
spectrahedron can be obtained by solving a single semidefinite program (Subsection 5.5), much like in
the noncommutative polynomial case [BPT13, BKP16] (but not in the classical commutative setting).

Finally, Section 6 contains complementary results about domains of noncommutative rational func-
tions. It is shown that every r ∈ C (<G )> can be represented by a formal rational expression that is well
defined at every Hermitian tuple in the domain of r (Proposition 2.1); this statement fails in general
if arbitrary matrix tuples are considered. On the other hand, a Nullstellensatz for cancellation of non-
Hermitian singularities is given in Proposition 6.3.

2. Preliminaries

In this section we establish terminology, notation and preliminary results on noncommutative rational
functions that are used throughout the paper. Let M<×= (C) denote the space of complex <×=matrices,
and M= (C) = M=×= (C). Let H= (C) denote the real space of Hermitian = × = matrices. For - =

(-1, . . . , -3) ∈ M<×= (C)
3 , � ∈ M?×<(C) and � ∈ M=×@ (C), we write

�-� = (�-1�, . . . , �-3�) ∈ M?×@ (C)
3 , -∗

=
(
-∗

1 , . . . , -
∗
3

)
∈ M=×< (C)

3 .
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4 Jurij Volčič

2.1. Free skew field

We define noncommutative rational functions using formal rational expressions and their matrix eval-
uations as in [K-VV12]. Formal rational expressions are syntactically valid combinations of scalars,
freely noncommuting variables G = (G1, . . . , G3), rational operations and parentheses. More precisely,
a formal rational expression is an ordered (from left to right) rooted tree whose leaves have labels from
C ∪ {G1, . . . , G3}, and every other node either is labelled + or × and has two children or is labelled −1

and has one child. For example, ((2 + G1)
−1G2)G

−1
1 is a formal rational expression corresponding to the

following ordered tree:

2 1

+

−1 2

×

x

x

x

−1

1

×

A subexpression of a formal rational expression r is any formal rational expression which appears in
the construction of r (i.e., as a subtree). For example, all subexpressions of

(
(2 + G1)

−1G2
)
G−1

1 are

2, G1, 2 + G1, (2 + G1)
−1, G2, (2 + G1)

−1G2, G
−1
1 ,

(
(2 + G1)

−1G2

)
G−1

1 .

Given a formal rational expression r and - ∈ M= (C)
3 , the evaluation A (-) is defined in the natural

way if all inverses appearing in r exist at X. The set of all - ∈ M= (C)
3 such that r is defined at X is

denoted dom= A . The (matricial) domain of r is

dom A =
⋃
=∈N

dom= A.

Note that dom= A is a Zariski open set in M= (C)
3 for every = ∈ N. A formal rational expression r is

nondegenerate if dom A ≠ ∅; let ℜC(G) denote the set of all nondegenerate formal rational expressions.
On ℜC(G) we define an equivalence relation A1 ∼ A2 if and only if A1 (-) = A2(-) for all - ∈
dom A1 ∩ dom A2. Equivalence classes with respect to this relation are called noncommutative rational

functions. By [K-VV12, Proposition 2.2] they form a skew field denoted C (<G )>, which is the universal
skew field of fractions of the free algebra C<G> by [Coh95, Section 4.5]. The equivalence class of
A ∈ ℜC (G) is denoted r ∈ C (<G )>; we also write A ∈ r and say that r is a representative of the
noncommutative rational function r.

There is a unique involution ∗ on C (<G )> that is determined by U∗ = U for U ∈ C and G∗9 = G 9 for
9 = 1, . . . , 3. Furthermore, this involution lifts to an involutive map ∗ on the set ℜC (G): in terms of
ordered trees, ∗ transposes a tree from left to right and conjugates the scalar labels. Note that - ∈ dom A

implies -∗ ∈ dom A∗ for A ∈ ℜC(G).

2.2. Hermitian domain

For A ∈ ℜC(G), let hdom= A = dom= A ∩ H= (C)3 . Then

hdom A =
⋃
=∈N

hdom= A
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is the Hermitian domain of r. Note that hdom= A is Zariski dense in dom= A , because H= (C) is Zariski
dense in M= (C) and dom= A is Zariski open in M= (C)

3 . Finally, we define the (Hermitian) domain of a
noncommutative rational function: for r ∈ C (<G )>, let

dom r =

⋃
A ∈r

dom A, hdom r =

⋃
A ∈r

hdom A.

By the definition of the equivalence relation on nondegenerate expressions, r has a well-defined eval-
uation at - ∈ dom r, written as r(-), which equals A (-) for any representative r of r that has X in
its domain. The following proposition is a generalisation of [KPV17, Proposition 3.3] and is proved in
Subsection 6.1:

Proposition 2.1. For every r ∈ C (<G )> there exists A ∈ r such that hdom r = hdom A .

Remark 2.2. There are noncommutative rational functions such that dom r ≠ dom A for every A ∈ r;
see Example 6.2 or [Vol17, Example 3.13].

2.3. Linear representation of a formal rational expression

A fundamental tool for handling noncommutative rational functions is linear representations (also
linearisations or realisations) [CR99, Coh95, HMS18]. Set A ∈ ℜC(G). By [HMS18, Theorem 4.2 and
Algorithm 4.3] there exist 4 ∈ N, vectors D, E ∈ C4 and an affine matrix pencil " = "0 + "1G1 + · · · +
"3G3 , with " 9 ∈ M4 (C), satisfying the following. For every unital C-algebra A and 0 ∈ A

3 ,

(i) if r can be evaluated at a, then " (0) ∈ GL4 (A) and A (0) = D∗" (0)−1E;
(ii) if " (0) ∈ GL4 (A) and A = M= (C) for some = ∈ N, then r can be evaluated at a.

We say that the triple (D, ", E) is a linear representation of r of size e. Usually, linear representations
are defined for noncommutative rational functions and with less emphasis on domains; however, the
definition here is more convenient for the purpose of this paper.

Remark 2.3. In the definition of a linear representation, (ii) is valid not only for M= (C) but more
broadly for stably finite algebras [HMS18, Lemma 5.2]. However, it may fail in general–for example,
for the algebra of all bounded operators on an infinite-dimensional Hilbert space.

We will also require the following proposition on pencils that is a combination of various existing
results:

Proposition 2.4. ([Coh95, K-VV12, DM17]). Let M be an affine pencil of size e. The following are

equivalent:

(i) " ∈ GL4 (C (<G )>).
(ii) There are = ∈ N and - ∈ M= (C)

3 such that det" (-) ≠ 0.

(iii) For every = ≥ 4 − 1, there exists - ∈ M= (C)
3 such that det" (-) ≠ 0.

(iv) If* ∈ M4′×4 (C) and + ∈ M4×4′′ (C) satisfy*"+ = 0, then rk* + rk+ ≤ 4.

Proof. (i)⇔(ii) follows by the construction of the free skew field via matrix evaluations (compare
[K-VV12, Proposition 2.1]). (iii)⇒(ii) is trivial, and (ii)⇒(iii) holds by [DM17, Theorem 1.8]. (iv)⇔(i)
follows from [Coh95, Corollaries 4.5.9 and 6.3.6], because the free algebra C<G> is a free ideal ring
[Coh95, Theorem 5.4.1]. �

An affine matrix pencil is full [Coh95, Section 1.4] if it satisfies the (equivalent) properties in
Proposition 2.4.

Remark 2.5. If A ∈ ℜC (G) admits a linear representation of size e, then hdom= A ≠ ∅ for = ≥ 4 − 1, by
Proposition 2.4 and the Zariski denseness of hdom= A in dom= A .
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6 Jurij Volčič

3. An extension theorem

An affine matrix pencil M of size e is irreducible if *"+ = 0 for nonzero matrices * ∈ M4′×4 (C) and
+ ∈ M4×4′′ (C) implies rk* + rk+ ≤ 4−1. In other words, a pencil is not irreducible if it can be put into
a 2× 2 block upper-triangular form with square diagonal blocks

(
★ ★
0 ★

)
by a left and a right basis change.

Every irreducible pencil is full. On the other hand, every full pencil is, up to a left and a right basis change,
equal to a block upper-triangular pencil whose diagonal blocks are irreducible pencils. In terms of quiver
representations [Kin94], " = "0 +

∑3
9=1 " 9G 9 is full/irreducible if and only if the (4, 4)-dimensional

representation ("0, "1, . . . , "3) of the (3 + 1)-Kronecker quiver is (1,−1)-semistable/stable.
For the purpose of this section we extend evaluations of linear matrix pencils to tuples of rectangular

matrices. If Λ =
∑3
9=1 Λ 9G 9 is of size e and - ∈ Mℓ×<(C)

3 , then

Λ(-) =

3∑
9=1

Λ 9 ⊗ - 9 ∈ M4ℓ×4<(C).

The following lemma and proposition rely on an ampliation trick in a free algebra to demonstrate
the existence of specific invertible evaluations of full pencils (see [HKV20, Section 2.1] for another
argument involving such ampliations):

Lemma 3.1. Let Λ =
∑3
9=1 Λ 9G 9 be a homogeneous irreducible pencil of size e. Set ℓ ≤ < and denote

= = (<− ℓ) (4−1). Given� ∈ M<4×ℓ4 (C), consider the pencil Λ̃ of size (< +=)4 in 3 (< +=) (=+<− ℓ)
variables I 9 ?@:

Λ̃ =

(
� 0
0 0

)
+

3∑
9=1

=+<−ℓ∑
@=1

©­«
<∑
?=1

(
0 �̂?,@ ⊗ Λ 9

0 0

)
I 9 ?@ +

<+=∑
?=<+1

(
0 0
0 q�?−<,@ ⊗ Λ 9

)
I 9 ?@

ª®¬
,

where �̂?,@ ∈ M<×(=+<−ℓ) (C) and q�?−<,@ ∈ M=×(=+<−ℓ) (C) are the standard matrix units. If C has

full rank, then the pencil Λ̃ is full.

Proof. Suppose U and V are constant matrices with 4(< + =) columns and 4(< + =) rows, respectively,
that satisfy*Λ̃+ = 0. There is nothing to prove if* = 0, so let* ≠ 0. Write

* =
(
*1 · · · *<+=

)
, + =

©­­­­«

+0

+1
...

+=+<−ℓ

ª®®®®¬
,

where each *? has e columns, +0 has ℓ4 rows and each +@ with @ > 0 has e rows. Also let *0 =(
*1 · · · *<

)
. Then*Λ̃+ = 0 implies

*0�+0 = 0, (3.1)

*?Λ+@ = 0, 1 ≤ ? ≤ < + =, 1 ≤ @ ≤ = + < − ℓ. (3.2)

Since C has full rank, equation (3.1) implies rk*0 + rk+0 ≤ <4. Note that *?′ ≠ 0 for some 1 ≤
?′ ≤ < + =, because * ≠ 0. Since Λ is irreducible and *?′ ≠ 0 for some ?′, equation (3.2) implies
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rk+@ ≤ 4 − 1 and rk*? + rk+@ ≤ 4 − 1 for all ?, @ > 0. Then

rk* + rk+ ≤ rk*0 + rk+0 +

<+=∑
?=<+1

rk*? +
=+<−ℓ∑
@=1

rk+@

≤ <4 + =(4 − 1) + (< − ℓ) (4 − 1)

= (< + =)4

by the choice of n. Therefore Λ̃ is full. �

Proposition 3.2. Let Λ be a homogeneous full pencil of size e, and let - ∈ M<×ℓ (C)
3 with ℓ ≤ < be

such that Λ(-) has full rank. Then there exist -̂ ∈ M<×(=+<−ℓ) (C)
3 and q- ∈ M=×(=+<−ℓ) (C)

3 for

some = ∈ N such that

detΛ

(
- -̂

0 q-

)
≠ 0. (3.3)

Proof. A full pencil is, up to a left-right basis change, equal to a block upper-triangular pencil with
irreducible diagonal blocks. Suppose that the lemma holds for irreducible pencils; since the set of pairs(
-̂, q-

)
∈ M<×(=+<−ℓ) (C)

3×M=×(=+<−ℓ) (C)
3 satisfying equation (3.3) is Zariski open, the lemma then

also holds for full pencils. Thus we can without loss of generality assume that Λ is irreducible.
Let =1 = (< − ℓ) (4 − 1) and 41 = (< + =1)4. By Lemma 3.1 applied to � =

∑3
9=1 - 9 ⊗ Λ 9 and

Proposition 2.4, there exists / ∈ M41−1(C)
3 (<+=1) (=1+<−ℓ) such that Λ̃(/) is invertible. Therefore the

matrix

3∑
9=1

Λ 9 ⊗
©­«
(
� ⊗- 9 0

0 0

)
+

=1+<−ℓ∑
@=1

©­«
=1∑
?=1

(
0 / 9 ?@⊗�̂?,@

0 0

)
+

<+=1∑
?=<+1

(
0 0
0 / 9 ?@⊗ q�?−<,@

)ª®¬
ª®¬

is invertible since it is similar to Λ̃(/) (via a permutation matrix). Thus there are -̂ ∈ M<×(=+<−ℓ) (C)
3

and q- ∈ M=×(=+<−ℓ) (C)
3 such that

detΛ

(
- -̂

0 q-

)
≠ 0,

where = = (41 − 2)< + =1(41 − 1). �

We are ready to prove the first main result of the paper.

Theorem 3.3. LetΛ be a full pencil of size e, and let. ∈ Mℓ (C)
3 ,. ′ ∈ M<×ℓ (C)

3 and. ′′ ∈ Mℓ×<(C)
3

be such that

Λ

(
.

. ′

)
, Λ

(
. . ′′

)
(3.4)

have full rank. Then there are = ≥ < and / ∈ M= (C)
3 such that

detΛ
©­«
. . ′′ 0
. ′

0
/

ª®¬
≠ 0.
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8 Jurij Volčič

Proof. By Proposition 3.2 and its transpose analogue, there exist : ∈ N and

�′ ∈ Mℓ×(:+<−ℓ) (C)
3 , �′ ∈ M<×(:+<−ℓ) (C)

3 , � ′ ∈ M:×(:+<−ℓ) (C)
3 ,

�′′ ∈ M(:+<−ℓ)×ℓ (C)
3 , �′′ ∈ M(:+<−ℓ)×<(C)

3 , � ′′ ∈ M(:+<−ℓ)×: (C)
3 ,

such that the matrices

Λ
©­«
. �′

. ′ �′

0 � ′

ª®¬
, Λ

(
. . ′′ 0
�′′ �′′ � ′′

)

are invertible. Consequently there exists Y ∈ C \ {0} such that

©­­­­­«

Λ(. ) 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

ª®®®®®¬
+ Y

©­­­­­«

(
0 0
0 0

)
Λ

(
. . ′′ 0
�′′ �′′ � ′′

)

Λ
©­«
. �′

. ′ �′

0 � ′

ª®¬
©­«
0 0 0
0 0 0
0 0 0

ª®¬

ª®®®®®¬
is invertible; this matrix is similar to

Λ

©­­­­­«

. 0 Y. Y. ′′ 0
0 0 Y�′′ Y�′′ Y� ′′

Y. Y�′ 0 0 0
Y. ′ Y�′ 0 0 0
0 Y� ′ 0 0 0

ª®®®®®¬
. (3.5)

Thus the matrix (3.5) is invertible; its block structure and the linearity of Λ imply that matrix (3.5)
is invertible for every Y ≠ 0, so we can choose Y = 1. After performing elementary row and column
operations on matrix (3.5), we conclude that

Λ

©­­­­­«

. . ′′ 0 0 0
. ′ 0 −. ′ �′ 0
0 −. ′′ −. �′ 0
0 �′′ �′′ 0 � ′′

0 0 0 � ′ 0

ª®®®®®¬
(3.6)

is invertible. So the lemma holds for = = 2(< + :). �

Remark 3.4. It follows from the proofs of Proposition 3.2 and Theorem 3.3 that one can choose

= = 2
(
43<2 + 4<(24ℓ − 1) + ℓ(4ℓ − 2)

)

in Theorem 3.3. However, this is unlikely to be the minimal choice for n.

Let M∞(C) be the algebra of N × N matrices over C that have only finitely many nonzero entries
in each column; that is, elements of M∞ (C) can be viewed as operators on ⊕NC. Given A ∈ ℜC(G),
let dom∞ A be the set of tuples - ∈ M∞ (C)3 such that A (-) is well defined. If (D, ", E) is a linear
representation of r of size e, then " (-) ∈ M4 (M∞ (C)) is invertible for every - ∈ dom∞ A by the
definition of a linear representation adopted in this paper.
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Proposition 3.5. Set A ∈ ℜC(G). If - ∈ Hℓ (C)3 and . ∈ M<×ℓ (C)
3 are such that

©­«
- . ∗ 0
.

0
,

ª®¬
∈ dom∞ A

for some, ∈ M∞(C)3 , then there exist = ≥ <, � ∈ M= (C) and / ∈ H= (C)3 such that

©­«
-

(
. ∗ 0

)
�∗

�

(
.

0

)
/

ª®¬
∈ hdom A.

Proof. Let (D, ", E) be a linear representation of r of size e. By assumption,

"
©­«
- . ∗ 0
.

0
,

ª®¬
is an invertible matrix over M∞ (C). If " = "0 + "1G1 + · · · + "3G3 , then the matrices

"0 ⊗

(
�

0

)
+

3∑
9=1

"0 ⊗

(
- 9
. 9

)
, "0 ⊗

(
� 0

)
+

3∑
9=1

"0 ⊗
(
- 9 .

∗
9

)
,

have full rank. Let = ∈ N be as in Theorem 3.3. Then there is / ′ ∈ M= (C)
1+3 such that

det
©­«
"0 ⊗

©­«
� 0 0
0
0

/ ′
0

ª®¬
+

3∑
9=1

"0 ⊗
©­«
- 9 .

∗
9 0

. 9
0

/ ′
9

ª®¬
ª®¬
≠ 0 (3.7)

is invertible. The set of all / ′ ∈ M= (C)
1+3 satisfying equation (3.7) is thus a nonempty Zariski open

set in M= (C)
1+3 . Since the set of positive definite = × = matrices is Zariski dense in M= (C), there

exists / ′ ∈ H= (C)1+3 with / ′
0 ≻ 0 such that equation (3.7) holds. If / ′

0 = �−1�−∗, let / 9 = �/ ′
9�

∗ for
1 ≤ 9 ≤ 3. Then

"
©­«

-
(
. ∗ 0

)
�∗

�

(
.

0

)
/

ª®¬
is invertible, so

©­«
-

(
. ∗ 0

)
�∗

�

(
.

0

)
/

ª®¬
∈ hdom A

by the definition of a linear representation. �

We also record a non-Hermitian version of Proposition 3.5:

Proposition 3.6. Set A ∈ ℜC(G). If - ∈ M<×ℓ (C)
3 with ℓ ≤ < is such that

(
-

0
,

)
∈ dom∞ A
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for some, ∈ M∞(C)3 , then there exist = ≥ < and / ∈ M=×(=−ℓ) (C)
3 such that(

-

0
/

)
∈ dom A.

Proof. We apply a similar reasoning as in the proof of Proposition 3.5, only this time with Proposition 3.2
instead of Theorem 3.3, and without Hermitian considerations. �

4. Multiplication operators attached to a formal rational expression

In this section we assign a tuple of operators X on a vector space of countable dimension to each formal
rational expression r, so that r is well defined at X and the finite-dimensional restrictions of X partially
retain a certain multiplicative property.

Fix an expression A ∈ ℜC(G). Without loss of generality, we assume that all the variables in x appear
as subexpressions in r (otherwise we replace x by a suitable subtuple). Let

' = {1} ∪ {@ ∈ ℜC(G) \ C : @ is a subexpression of A or A∗} ⊂ ℜC (G).

Note that R is finite, hdom @ ⊇ hdom A for @ ∈ ', and @ ∈ ' implies @∗ ∈ '. Let R ⊂ C (<G )> be the set
of noncommutative rational functions represented by R. For ℓ ∈ N we define finite-dimensional vector
subspaces

+ℓ = spanC

ℓ︷   ︸︸   ︷
R · · ·R ⊂ C (<G )>.

Note that +ℓ ⊆ +ℓ+1, since 1 ∈ '. Furthermore, let + =
⋃
ℓ∈N+ℓ . Then V is a finitely generated ∗-

subalgebra of C (<G )>. For 9 = 1, . . . , 3, we define operators

X 9 : + → +, X 9s = G 9s.

Lemma 4.1. There is a linear functional q : + → C such that q(s∗) = q(s) and q(ss∗) > 0 for all

s ∈ + \ {0}.

Proof. For some - ∈ hdom A , let < = max@∈' ‖@(-)‖. Set ℓ ∈ N. Since +ℓ is finite-dimensional, there
exist =ℓ ∈ N and - (ℓ) ∈ hdom=ℓ A such that

max
@∈'




@ (- (ℓ)
)


 ≤ < + 1 and s

(
- (ℓ)

)
≠ 0 for all s ∈ +ℓ \ {0}, (4.1)

by the local-global linear dependence principle for noncommutative rational functions (see [Vol18,
Theorem 6.5] or [BPT13, Corollary 8.87]). Define

q : + → C, q(s) =

∞∑
ℓ=1

1

ℓ! · =ℓ
tr
(
s

(
- (ℓ)

))
.

Since V is a C-algebra generated by R, routine estimates show that q is well defined. It is also clear that
q has the desired properties. �

For the rest of the paper, fix a functional q as in Lemma 4.1. Then

(s1, s2) = q
(
s
∗
2s1

)
(4.2)

is an inner product on V. With respect to this inner product, we can inductively build an ordered
orthogonal basis B of V with the property that B ∩+ℓ is a basis of +ℓ for every ℓ ∈ N.
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Lemma 4.2. With respect to the inner product (4.2) and the ordered basis B as before, operators

X1, . . . ,X3 are represented by Hermitian matrices in M∞ (C), and X ∈ dom∞ A .

Proof. Since

(
X 9s1, s2

)
= q

(
s
∗
2G 9s1

)
=
(
s1,X 9s2

)
for all s1, s2 ∈ + and X 9 (+ℓ) ⊆ +ℓ+1 for all ℓ ∈ N, it follows that the matrix representation of X 9 with
respect to B is Hermitian and has only finitely many nonzero entries in each column and row. The rest
follows inductively on the construction of r, since X 9 are the left multiplication operators on V. �

Next we define a complexity-measuring function g : ℜC(G) → N ∪ {0} as in [KPV17, Section 4]:

(i) g(U) = 0 for U ∈ C;
(ii) g

(
G 9
)
= 1 for 1 ≤ 9 ≤ 3;

(iii) g(B1 + B2) = max{g(B1), g(B2)} for B1, B2 ∈ ℜC(G);
(iv) g(B1B2) = g(B1) + g(B2) for B1, B2 ∈ ℜC (G);
(v) g

(
B−1

)
= 2g(B) for B, B−1 ∈ ℜC(G).

Note that g(B∗) = g(B) for all B ∈ ℜC(G).

Proposition 4.3. Let the notation be as before, and let U be a finite-dimensional Hilbert space containing

+ℓ+1. If X is a d-tuple of Hermitian operators on U such that - ∈ hdom A and

- 9 |+ℓ = X 9 |+ℓ

for 9 = 1, . . . , 3, then - ∈ hdom @ and

@(-)s = qs (4.3)

for every @ ∈ ' and B ∈

ℓ︷  ︸︸  ︷
' · · · ' satisfying 2g(@) + g(B) ≤ ℓ + 2.

Proof. First note that for every B ∈ ' · · · ',

g(B) ≤ : ⇒ B ∈

:︷  ︸︸  ︷
' · · · ', (4.4)

since g−1(0) = C and ' ∩ C = {1}. We prove equation (4.3) by induction on the construction of q.
If @ = 1, then equation (4.3) trivially holds, and if @ = G 9 , then g(B) ≤ ℓ, so equation (4.3) holds by
formula (4.4). Next, if equation (4.3) holds for @1, @2 ∈ ' such that @1 + @2 ∈ ' or @1@2 ∈ ', then it also
holds for the latter by the definition of g and formula (4.4). Finally, suppose that equation (4.3) holds
for @ ∈ ' \ {1} and assume @−1 ∈ '. If 2g

(
@−1

)
+ g(B) ≤ ℓ + 2, then 2g(@) +

(
g
(
@−1

)
+ g(B)

)
≤ ℓ + 2.

In particular, g
(
@−1B

)
≤ ℓ, and so

@−1B ∈

ℓ︷  ︸︸  ︷
' · · · '

by formula (4.4). Therefore,

@(-)q−1
s = qq

−1
s = s

by the induction hypothesis, and hence @−1 (-)s = q
−1
s, since - ∈ hdom @−1. Thus equation (4.3)

holds for @−1. �
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5. Positive noncommutative rational functions

In this section we prove various positivity statements for noncommutative rational functions. Let L be
a Hermitian monic pencil of size e; that is, ! = � + �1G1 + · · · + �3G3 , with � 9 ∈ H4 (C). Then

D(!) =
⋃
=∈N

D= (!), where D= (!) =
{
- ∈ H= (C)

3 : !(-) � 0
}
,

is a free spectrahedron. The main result of the paper is Theorem 5.2, which describes noncommutative
rational functions that are positive semidefinite or undefined at each tuple in a given free spectrahedron
D(!). In particular, Theorem 5.2 generalises [Pas18, Theorem 3.1] to noncommutative rational functions
with singularities in D(!).

5.1. Rational convex Positivstellensatz

Let L be a Hermitian monic pencil of size e. To A ∈ ℜC(G) we assign the finite set R, vector spaces +ℓ
and operators X 9 as in Section 4. For ℓ ∈ N, we also define

(ℓ = {s ∈ +ℓ : s = s
∗},

&ℓ =

{∑
8

s
∗
8 s8 +

∑
9

v
∗
9!v 9 : s8 ∈ +ℓ ,v 9 ∈ +

4
ℓ

}
⊂ (2ℓ+1.

Then (ℓ is a real vector space and&ℓ is a convex cone. The proof of the following proposition is a rational
modification of a common argument in free real algebraic geometry (compare [HKM12, Proposition
3.1] and [KPV17, Proposition 4.1]). A convex cone is salient if it does not contain a line.

Proposition 5.1. The cone &ℓ is salient and closed in (2ℓ+1 with the Euclidean topology.

Proof. As in the proof of Lemma 4.1, there exists - ∈ hdom A such that

s(-) ≠ 0 for all s ∈ +2ℓ+1 \ {0}.

Furthermore, we can choose X close enough to 0, so that !(-) � 1
2 �. Then clearly s(-) � 0 for every

s ∈ &ℓ , so &ℓ ∩ −&ℓ = {0} and thus &ℓ is salient. Note that ‖s‖• = ‖s(-)‖ is a norm on +2ℓ+1.
Also, the finite-dimensionality of (2ℓ+1 implies that every element of &ℓ can be written as a sum of
# = 1 + dim (2ℓ+1 elements of the form

s
∗
s and v

∗!v for s ∈ +ℓ , v ∈ +4ℓ ,

by Carathéodory’s theorem [Bar02, Theorem I.2.3]. Assume that a sequence {r=}= ⊂ &ℓ converges to
s ∈ (2ℓ+1. After restricting to a subsequence, we can assume that there is 0 ≤ " ≤ # such that

r= =

"∑
8=1

s
∗
=,8s=,8 +

#∑
9="+1

v
∗
=, 9!v=, 9

for all = ∈ N. The definition of the norm ‖·‖• implies



s=8

2
•
≤ ‖r=‖• and max

1≤8≤4




(v= 9

)
8




2

•
≤ 2‖r=‖•.

In particular, the sequences
{
s=,8

}
=
⊂ +ℓ for 1 ≤ 8 ≤ " and

{
v=, 9

}
=
⊂ +4

ℓ
for 1 ≤ 9 ≤ # are bounded.

Hence, after restricting to subsequences, we may assume that they are convergent: s8 = lim= s=,8 for
1 ≤ 8 ≤ " and v 9 = lim= v=, 9 for 1 ≤ 9 ≤ # . Consequently, we have

s = lim
=

r= =

"∑
8=1

s
∗
8 s8 +

#∑
9="+1

v
∗
9!v 9 ∈ &ℓ . �
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We are now ready to prove the main result of this paper by combining a truncated GNS construction
with extending matrix tuples into the domain of a rational expression as in Proposition 3.5.

Theorem 5.2 (Rational convex Positivstellensatz). Let L be a Hermitian monic pencil and set A ∈ ℜC (G).
If &2g (A )+1 is as before, then A (-) � 0 for every - ∈ hdom A ∩D(!) if and only if r ∈ &2g (A )+1.

Proof. Only the forward implication is nontrivial. Let ℓ = 2g(A) − 2. If r ≠ r
∗, then there exists

- ∈ hdom A such that r(-) ≠ r(-)∗. Thus we assume r = r
∗. Suppose that r ∉ &ℓ+3. Since &ℓ+3 is a

salient closed convex cone in (2ℓ+7 by Proposition 5.1, there exists a linear functional _0 : (2ℓ+7 → R
such that_0(&ℓ+3\{0}) = R>0 and _0(r) < 0 by the Hahn–Banach separation theorem [Bar02, Theorem
III.1.3]. We extend _0 to _ : +2ℓ+7 → C as _(s) = 1

2_0(s+s
∗) + 8

2_0(8(s
∗−s)). Then 〈s1, s2〉 = _

(
s
∗
2s1

)
defines a scalar product on +ℓ+3. Recall that X 9 (+ℓ+2) ⊆ +ℓ+3. Then for s1 ∈ +ℓ+1 and s2 ∈ +ℓ+2,

〈
X 9s1, s2

〉
= _

(
s
∗
2G 9s1

)
=
〈
s1,X 9s2

〉
. (5.1)

Furthermore,

〈!(X)v,v〉 = _(v∗!v) > 0 (5.2)

for all v ∈ +4
ℓ+1, where the canonical extension of 〈·, ·〉 to a scalar product on C4 ⊗ +ℓ+1 is considered.

Let B be an ordered orthogonal basis of V with respect to the inner product (·, ·) as in Section 4;
recall that such a basis has the property that B ∩+: is a basis for +: for all : ∈ N. Let B0 be an ordered
orthogonal basis of +ℓ+2 with respect to 〈·, ·〉 that contains a basis for +ℓ+1, and let B1 = B \+ℓ+2. If we
identify operators X 9 with their matrix representations relative to the ordered basis (B0,B1) of V, then
X 9 ∈ M∞(C) are Hermitian matrices by Lemma 4.2 and equation (5.1).

Let *0 be the orthogonal complement of +ℓ+1 in +ℓ+2 relative to 〈·, ·〉. Since X 9 (+ℓ+1) ⊆ +ℓ+2, we
can consider the restriction X 9 |+ℓ+1 in a block form

(
- 9
. 9

)

with respect to the decomposition +ℓ+2 = +ℓ+1 ⊕ *0. Since X ∈ dom∞ A , by Proposition 3.5 there exist
a finite-dimensional vector space*1, a scalar product on +ℓ+1 ⊕*0 ⊕*1 extending 〈·, ·〉, an operator E

on*0 ⊕ *1 and a d-tuple Z of Hermitian operators on*0 ⊕ *1 such that

-̃ :=
©­«

-
(
. ∗ 0

)
�∗

�

(
.

0

)
/

ª®¬
∈ hdom A. (5.3)

Since X 9 (+ℓ) ⊆ +ℓ+1, we conclude that

-̃ 9 |+ℓ = X 9 |+ℓ . (5.4)

Observe that for all but finitely many Y1, Y2 > 0 we can replace /, � with Y1/, Y2� and formula (5.3)
still holds. By equation (5.2) we can thus assume that Z and E are close enough to 0 so that !( -̃) � 0.
Finally, since equation (5.4) holds and 2g(A) + g(1) = ℓ + 2, Proposition 4.3 implies

〈
A
(
-̃
)

1, 1
〉
= 〈r, 1〉 = _(r) < 0.

Therefore -̃ ∈ hdom A ∩D(!) and A
(
-̃
)

is not positive semidefinite. �
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Given a unital ∗-algebra A and � = �∗ ∈ Mℓ (A), the quadratic module in A generated by A is

QMA(�) =

{∑
9

E∗9 (1 ⊕ �)E 9 : E 9 ∈ A
ℓ+1

}
.

Theorem 5.2 then in particular states that noncommutative rational functions that are positive semidef-
inite on a free spectrahedron D(!) belong to QMC (<G )> (!).

Remark 5.3. Set A ∈ ℜC (G) and

= = 2
(
43<2 + 4<(24ℓ − 1) + ℓ(4ℓ − 2)

)
,

where ℓ = dim+2g (A )−1, < = dim+2g (A ) − dim+2g (A )−1 and e is the size of a linear representation of
r. If A � 0 on hdom A ∩ D(!), then by Remark 3.4 and the proofs of Theorem 5.2 and Proposition 3.5
there exists - ∈ hdom= A ∩D= (!) such that A (-) � 0.

The solution of Hilbert’s 17th problem for a free skew field is now as follows.

Corollary 5.4. Set r ∈ C (<G )>. Then r � 0 on hdom r if and only if

r = r1r
∗
1 + · · · + r<r

∗
<

for some r8 ∈ C (<G )> with hdom r8 ⊇ hdom r.

Proof. By Proposition 2.1 there exists A ∈ r such that hdom r = hdom A . The corollary then follows
directly from Theorem 5.2 applied to ! = 1, since the Hermitian domain of an element in+2g (A ) contains
hdom r. �

Remark 5.5. Corollary 5.4 also indicates a subtle distinction between solutions of Hilbert’s 17th
problem in the classical commutative context and in the free context. While every (commutative)
positive rational function d is a sum of squares of rational functions, in general one cannot choose
summands that are defined on the whole real domain of the original function d. On the other hand, a
positive noncommutative rational function always admits a sum-of-squares representation with terms
defined on its Hermitian domain.

For a possible future use, we describe noncommutative rational functions whose invertible evaluations
have nonconstant signature; polynomials of this type were of interest in [HKV20, Section 3.3].

Corollary 5.6. Set r = r
∗ ∈ C (<G )>. The following are equivalent:

(i) There are = ∈ N and -,. ∈ hdom= r such that r(-), r(. ) are invertible and have distinct

signatures.

(ii) Neither r or −r equals
∑
8 r8r

∗
8 for some r8 ∈ C (<G )>.

Proof. (i)⇒(ii) If ±r =
∑
8 r8r

∗
8 , then ±r(-) � 0 for all - ∈ hdom r.

(ii)⇒(i) Let O= = hdom= r ∩ hdom= r
−1. By Remark 2.5 there is =0 ∈ N such that O= ≠ ∅ for all

= ≥ =0. Suppose that r has constant signature on O= for each = ≥ =0–that is, r(-) has c= positive
eigenvalues for every - ∈ O=. Since O: ⊕ Oℓ ⊂ O:+ℓ for all :, ℓ ∈ N, we have

=c< = c<= = <c= (5.5)

for all <, = ≥ =0. If c=′ = =′ for some =′ ≥ =0, then c= = = for all = ≥ =0 by equation (5.5), so r � 0 on
O= for every n. Thus r =

∑
8 r8r

∗
8 by Theorem 5.2. An analogous conclusion holds if c=′ = 0 for some

=′ ≥ =0. However, equation (5.5) excludes any alternative: if =0 ≤ < < = and n is a prime number, then
0 < c= < = contradicts equation (5.5). �

https://doi.org/10.1017/fms.2021.54 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.54


Forum of Mathematics, Sigma 15

5.2. Positivity and invariants

Let G be a subgroup of the unitary group U3 (C). The action of G on C3 induces a linear action of G on
C (<G )>. If G is finite and solvable, then the subfield of G-invariantsC (<G )>� is finitely generated [KPPV20,
Theorem 1.1], and in many cases again a free skew field [KPPV20, Theorem 1.3]. Furthermore, we can
now extend [KPPV20, Corollary 6.6] to invariant noncommutative rational functions with singularities.

Corollary 5.7. Let � ⊂ U3 (C) be a finite solvable group. Then there exists '� ∈ GL |� | (C (<G )>) with

the following property: if r ∈ C (<G )>� and L is a Hermitian monic pencil of size e, then r � 0 on

hdom r ∩D(!) if and only if r ∈ QMC (<G )>� (!�), where

!� = '∗
�'� ⊕ ('� ⊗ �)∗

©­«
⊕
6∈�

!6
ª®¬
('� ⊗ �) ∈ M |� | (4+1)

(
C (<G )>�

)
.

Proof. Combine [KPPV20, Corollary 6.4] and Theorem 5.2. �

5.3. Real free skew field and other variations

In this subsection we explain how the preceding results apply to real free skew fields and their symmetric
evaluations, and to another natural involution on a free skew field.

Corollary 5.8 (real version of Theorem 5.2). Let L be a symmetric monic pencil of size e and set

r ∈ R (<G )>. Then r(-) � 0 for every - ∈ hdom r ∩D(!) if and only if r ∈ QMR (<G )> (!).

Proof. Ifr ∈ R (<G )> and r � 0 on hdom r ∩ D(!), then r ∈ QMC⊗R (<G )> (!) by Theorem 5.2, because
the complex vector spaces +ℓ are spanned with functions given by subexpressions of some A ∈ r, and
we can choose r in which only real scalars appear. For s ∈ C ⊗ R (<G )> we define re(s) = 1

2 (s + s) and
im(s) = 8

2 (s − s) in R (<G )>. If

r =

∑
9

s
∗
9s 9 +

∑
:

v
∗
:!v:

for s 9 ∈ (C ⊗ R (<G )>) and v: ∈ (C ⊗ R (<G )>)4, then

r = re(r) =
∑
9

(
re

(
s 9

)∗
re

(
s 9

)
+ im

(
s 9

)∗
im

(
s 9

) )
+
∑
:

(re(v: )
∗! re(v: ) + im(v: )

∗! im(v: )) ,

and so r ∈ QMR (<G )> (!). �

Given r ∈ R (<G )>, one might prefer to consider only the tuples of real symmetric matrices in the
domain of r, and not the whole hdom r. Since there exist ∗-embeddings M= (C) ↩→ M2= (R), evaluations
on tuples of real symmetric 2=×2=matrices carry at least as much information as evaluations on tuples of
Hermitian =× =matrices. Consequently, all dimension-independent statements in this paper also hold if
only symmetric tuples are considered. However, it is worth mentioning that for r ∈ R (<G )>, it can happen
that dom= r contains no tuples of symmetric matrices for all odd n–for example, if r = (G1G2 − G2G1)

−1.
Another commonly considered free skew field with involution is C (<G, G∗ )>, generated with 23

variables G1, . . . , G3 , G
∗
1, . . . , G

∗
3
, which is endowed with the involution ∗ that swaps G 9 and G∗9 . Ele-

ments of C (<G, G∗ )> can be evaluated on d-tuples of complex matrices. The results of this paper also
directly apply to C (<G, G∗ )> and such evaluations, because C (<G, G∗ )> is freely generated by elements
1
2

(
G 9 + G

∗
9

)
, 82

(
G∗9 − G 9

)
, which are fixed by ∗. Finally, as in Corollary 5.8 we see that a suitable ana-

logue of Theorem 5.2 also holds for R (<G, G∗ )> and evaluations on d-tuples of real matrices.
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5.4. Examples of nonconvex Positivstellensätze

Given m = m
∗ ∈ Mℓ (C (<G )>), let

D(m) =
⋃
=∈N

D= (m), where D= (m) = {- ∈ hdom=m : m(-) � 0},

be its positivity domain. Here, the domain of m is the intersection of domains of its entries.

Proposition 5.9. Set m = m
∗ ∈ Mℓ (C (<G )>) and assume there exist a Hermitian monic pencil L of size

4 ≥ ℓ, an ∗-automorphism i of C (<G )>, and � ∈ GL4 (C (<G )>) such that

i(m) ⊕ � = �∗!�. (5.6)

If r ∈ C (<G )>, then r � 0 on hdom r ∩D(m) if and only if r ∈ QMC (<G )> (m).

Proof. Equation (5.6), Remark 2.5 and the convexity of D= (!) imply that the sets D= (i(m)) and
D= (m) have the same closures as their interiors in the Euclidean topology for all but finitely many n.
Therefore, by Theorem 5.2 and Equation (5.6),

r|hdom r∩D(m ) � 0 ⇔ i(r) |hdom i (r)∩D(i (m )) � 0

⇔ i(r) |hdom i (r)∩D(!) � 0

⇔ i(r) ∈ QMC (<G )> (!)

⇔ r ∈ QMC (<G )>

(
i−1(!)

)
= QMC (<G )> (m). �

The following example presents a family of quadratic noncommutative polynomials @ = @∗ ∈
C<G, G∗> that admit a rational Positivstellensatz on their (not necessarily convex) positivity domains
D(@) = {- : @(-, -∗) � 0}:

Example 5.10. Given a linearly independent set {00, . . . , 0=} ⊂ spanC{1, G1, . . . , G3}, let

@ = 0∗000 − 0
∗
101 − · · · − 0∗=0= ∈ C<G, G∗> .

One might say that q is a hereditary quadratic polynomial of positive signature 1. Note that D1 (@) is
not convex if 00 ∉ C. Since 00, . . . , 0= are linearly independent affine polynomials in C<G> (and in
particular = ≤ 3), there exists a linear fractional automorphism i on C (<G )> such that i−1

(
G 9
)
= 0 90

−1
0

for 1 ≤ 9 ≤ =. We extend i uniquely to an ∗-automorphism on C (<G, G∗ )>. Then

i(00)
−∗i(@)i(00)

−1
= 1 − G∗1G1 − · · · − G∗=G=,

and thus i(@) ⊕ �= = �∗!�, where

! =

©­­­­­«

1 G∗1 · · · G∗=

G1
. . .

...
. . .

G= 1

ª®®®®®¬
, � =

©­­­­«

i(00)
−G1 1
...

. . .

−G= 1

ª®®®®¬
.

Therefore r � 0 on hdom r ∩ D(@) if and only if r ∈ QMC (<G,G∗ )> (@) for every r ∈ C (<G, G∗ )>, by
Proposition 5.9.

For example, the polynomial G∗1G1 − 1 is of the type discussed, and thus admits a rational Positivstel-
lensatz. In particular,

G1G
∗
1 − 1 =

(
G1 − G

−∗
1

) (
G∗1 − G

−1
1

)
+ G−∗1

(
G∗1G1 − 1

)
G−1

1 ∈ QMC (<G,G∗ )>

(
G∗1G1 − 1

)
.
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On the other hand, we claim that G1G
∗
1 − 1 ∉ QMC<G,G∗>

(
G∗1G1 − 1

)
(compare [HM04, Example 4]). If

G1G
∗
1 − 1 were an element of QMC<G,G∗> (G

∗
1G1 − 1), then the implication

(∗( − � � 0 ⇒ ((∗ − � � 0

would be valid for every operator S on an infinite-dimensional Hilbert space; however, it fails if S is the
forward shift operator on ℓ2(N). A different Positivstellensatz (polynomial, but with a slack variable)
for hereditary quadratic polynomials is given in [HKV20, Corollary 4.6].

5.5. Eigenvalue optimisation

Theorem 5.2 is also essential for optimising noncommutative rational functions. Namely, it implies
that finding the eigenvalue supremum or infimum of a noncommutative rational function on a free
spectrahedron is equivalent to solving a semidefinite program [BPT13]. This equivalence was stated in
[KPV17, Section 5.2.1] for regular noncommutative rational functions; the novelty is that Theorem 5.2
now confirms its validity for noncommutative rational functions with singularities.

Let L be a Hermitian monic pencil of size e, and set r = r
∗ ∈ C (<G )>. Suppose we are interested in

`∗ = sup
- ∈hdom r∩D(!)

[
maximal eigenvalue of r(-)

]
.

Choose some A ∈ r (the simpler representative the better) and let ℓ = 2g(A) + 1. Theorem 5.2 then
implies that

`∗ = inf

` ∈ R : ` − r =

"∑
8=1

s
∗
8 s8 +

#∑
9=1

v
∗
9!v 9 : s8 ∈ +ℓ ,v 9 ∈ +

4
ℓ


 , (5.7)

where we can take " = dim (2ℓ +1 and # = dim (2ℓ+1 +1 by Carathéodory’s theorem [Bar02, Theorem
I.2.3]. The right-hand side of equation (5.7) can be stated as a semidefinite program [WSV00, BPT13].
Concretely, to determine the global (no L) eigenvalue supremum of r, one solves the semidefinite
program

min
�

`

subject to ` − r = ®F∗� ®F,
� � 0,

(5.8)

where H is a (dim+ℓ) × (dim+ℓ) Hermitian matrix and ®F is a vectorised basis of +ℓ . For constrained
eigenvalue optimisation (L is present), one can set up a similar semidefinite program using localising
matrices [BKP16, Definition 1.41].

6. More on domains

In this section we prove two new results on (Hermitian) domains. One of them is the aforementioned
Proposition 2.1, which states that every noncommutative rational function admits a representative with
the largest Hermitian domain. The other one is Proposition 6.3 on cancellation of singularities of
noncommutative rational functions.

6.1. Representatives with the largest Hermitian domain

We will require a technical lemma about matrices over formal rational expressions and their Hermitian
domains. A representative of a matrix m over C (<G )> is a matrix over ℜC(G) of representatives of m8 9 ,
and the domain of a matrix over ℜC(G) is the intersection of domains of its entries.
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Lemma 6.1. Let m be an 4×4 matrix overℜC (G) such thatm ∈ GL4 (C (<G )>). Then there exists B ∈ m
−1

such that hdom< ∩ hdomm
−1 = hdom B.

Proof. Throughout the proof we reserve italic letters (<, 2, etc.) for matrices over ℜC(G) and bold
letters (m, c, etc.) for the corresponding matrices over C (<G )>. We prove the statement by induction
on e. If 4 = 1, then <−1 is the desired expression. Assume the statement holds for matrices of size
4 − 1, and let c be the first column of m. Then hdom 2 ⊇ hdom<, and 2(-) is of full rank for every
- ∈ hdom< ∩ hdomm

−1. Hence

hdom(2∗2)−1 ⊇ hdom< ∩ hdomm
−1. (6.1)

Let m̂ be the Schur complement of c∗c in m
∗
m. Note that the entries of m̂ are polynomials in entries of

m
∗
m and (c∗c)−1; lifting these polynomials to formal expressions in ℜC(G), we obtain a representative

<̂ ∈ m̂ such that

hdom <̂ = hdom< ∩ hdom(2∗2)−1. (6.2)

If - ∈ hdom<, then <(-) is invertible if and only if (2∗2) (-) and <̂(-) are invertible. Thus by
formulas (6.1) and (6.2), we have

hdom< ∩ hdomm
−1

= hdom< ∩
(
hdom(2∗2)−1 ∩ hdom m̂

−1
)
. (6.3)

Since <̂ is an (4 − 1) × (4 − 1) matrix, by the induction hypothesis there exists B̂ ∈ m̂
−1 such that

hdom <̂ ∩ hdom m̂
−1 = hdom B̂. By equation (6.3) we have

hdom< ∩ hdomm
−1

= hdom< ∩
(
hdom(2∗2)−1 ∩ hdom B̂

)
. (6.4)

The entries of (m∗
m)−1 can be represented by expressions B′8 9 which are sums and products of expres-

sions <8 9 , <∗
8 9 , (2

∗2)−1, B̂8 9 . Thus B′ ∈ (m∗
m)−1 satisfies

hdom< ∩ hdomm
−1

= hdom B′,

by equation (6.4). Finally, B = B′<∗ is the desired expression because m
−1 = (m∗

m)−1
m

∗. �

Proof of Proposition 2.1. Set r ∈ C (<G )>. Let 4 ∈ N, an affine matrix pencil M of size e and D, E ∈ C4

be such that r = D∗"−1E in C (<G )>, and e is minimal. Recall that dom r =
⋃
A ∈r dom A . By comparing

(D, ", E) with linear representations of representatives of r as in [CR99, Theorem 1.4], it follows that

dom r ⊆
⋃
=∈N

{
- ∈ M= (C)

3 : det" (-) ≠ 0
}
. (6.5)

Since M contains no inverses, it is defined at every matrix tuple; thus by Lemma 6.1 there is a
representative of "−1 whose Hermitian domain equals {- = -∗ : det" (-) ≠ 0}. Since r is a linear
combination of the entries in "−1, there exists A ∈ r such that hdom A = hdom r by formula (6.5). �

Example 6.2. The domain of r ∈ C (<G )> given by the expression
(
G4 − G3G

−1
1 G2

)−1
equals

dom r =

⋃
=∈N

{
- ∈ M= (C)

4 : det

(
-1 -2

-3 -4

)
≠ 0

}
,

and dom A ( dom r for every A ∈ r by [Vol17, Example 3.13].
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Following the proof of Proposition 2.1 and Lemma 6.1, let m =
( G1 G2
G3 G4

)
. Then

m
∗
m =

(
G2

1 + G
2
3 G1G2 + G3G4

G2G1 + G4G3 G2
2 + G

2
4

)
,

and the Schur complement of m∗
m with respect to the (1, 1)-entry equals

m̂ = G2
2 + G

2
4 − (G2G1 + G4G3)

(
G2

1 + G
2
3

)−1
(G1G2 + G3G4).

Since

m
−1

= (m∗
m)−1

m
∗
=

(
★ ★

−m̂−1(G2G1 + G4G3)
(
G2

1 + G
2
3

)−1
m̂

−1

) (
★ G3

★ G4

)

and

r =
(
0 1

)
m

−1

(
0
1

)
,

we conclude that the formal rational expression

(
G2

2 + G
2
4 − (G2G1 + G4G3)

(
G2

1 + G
2
3

)−1
(G1G2 + G3G4)

)−1 (
G4 − (G2G1 + G4G3)

(
G2

1 + G
2
3

)−1
G3

)

represents r, and its Hermitian domain coincides with hdom r. Of course, the expression(
G4 − G3G

−1
1 G2

)−1
is a much simpler representative of r.

6.2. Cancellation of singularities

In the absence of left ideals in skew fields, the following proposition serves as a rational analogue of
Bergman’s Nullstellensatz for noncommutative polynomials [HM04, Theorem 6.3]. The proof omits
some of the details, since it is a derivative of the proof of Theorem 5.2.

Proposition 6.3. The following are equivalent for r, s ∈ C (<G )>:

(i) ker r(-) ⊆ ker s(-) for all - ∈ dom r ∩ dom s.

(ii) dom
(
sr

−1
)
⊇ dom r ∩ dom s.

Proof. (ii)⇒(i) If (ii) holds, then s(-) =
(
s(-)r(-)−1

)
r(-) for every - ∈ dom r ∩ dom s, and so

ker r(-) ⊆ ker s(-).
(i)⇒(ii) Suppose (ii) does not hold; then there are A ∈ r, B ∈ s and . ∈ dom A ∩ dom B such that

det A (. ) = 0. Similarly to Section 4, denote

' = {1} ∪ {@ ∈ ℜC(G) \ C : @ is a subexpression of A or B}

and let R be its image in C (<G )>. We also define finite-dimensional vector spaces +ℓ and the finitely
generated algebra V as before. The left ideal +r in V is proper: if qr = 1 for @ ∈ + , then @(. )A (. ) = �,
since . ∈ dom @, which contradicts det A (. ) = 0. Furthermore, s ∉ +r, since (ii) does not hold. Let
 = +/+r, and let  ℓ be the image of +ℓ for every ℓ ∈ N. Let X 9 :  →  be the operator given by the
left multiplication with G 9 ; note thatX 9 ( ℓ) ⊆  ℓ+1 for all ℓ. By induction on the construction of @ ∈ ',
it is straightforward to see that @(X) is well defined for every @ ∈ '. Let ℓ = 2 max{g(A), g(B)} − 2. By
Proposition 3.6, there exist a finite-dimensional vector space U and a d-tuple of operators X on  ℓ+1 ⊕*
such that - ∈ dom A ∩ dom B and

- 9 | ℓ
= X 9 | ℓ
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for 9 = 1, . . . , 3. A slight modification of Proposition 4.3 implies that

A (-) [1] = [r] = 0, B(-) [1] = [s] ≠ 0,

where [q] ∈  denotes the image of q ∈ + . �

The implication (i)⇒(ii) in Proposition 6.3 fails if only Hermitian domains are considered (e.g.,
take r = G2

1 and s = G1). It is also worth mentioning that while Proposition 6.3 might look rather
straightforward at first glance, there is a certain subtlety to it. Namely, the equivalence in Proposition
6.3 fails if only matrix tuples of a fixed size are considered. For example, let r = G1 and s = G1G2; then
dom1 r∩dom1 s = C2 and ker r(-) ⊆ ker s(-) for all - ∈ C2, but dom1

(
sr

−1
)
= C\ {0}×C (compare

[Vol17, Example 2.1 and Theorem 3.10]).
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