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Abstract

The Einstein field equations have been solved for Bianchi type VI, spacetimes with
viscous fluid source. Four cosmological models are derived. They have nonzero
expansion and shear. One of them have nonzero constant shear viscosity coefficient.

1. Introduction

Many cosmologists believe that the standard cosmological models are too
restrictive because of their insistence on isotropy. Several attempts have been
made to study nonstandard (anisotropic) cosmological models (Narlikar [10],
Mac Callum [7]). It would therefore be fruitful to carry out detailed studies of
gravitational fields which can be described by spacetimes of various Bianchi
types.

Viscosity plays an important role in explaining many physical features of
the homogeneous world models. Since viscosity counteracts the cosmological
collapse, a different picture of the early universe may appear due to dissipative
processes caused by viscosity. Homogeneous cosmological models filled with
viscous fluid have been widely studied, e.g. by Murphy [8]; Klimek [6];
Banerjee et al. [2]; Dunn and Tupper [4]; Roy and Prakash [13]; Roy and
Singh [14]; Ribeiro and Sanyal [12]; Santos et al. [15].

The main purpose of the present work is to derive some new Bianchi type
VI, cosmological models filled with viscous fluid.
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2. Einstein field equations

The space time is taken to be nontilting and is characterised by the line
element
dx’ = A4(d? - dx*) - B (™ dy* + e d 27 (1)
where the metric potentials 4 and B are functions of time ¢, and m is a
nonzero constant.
We assume that the material distribution filling the models is viscous fluid.
Therefore, the corresponding energy-momentum tensor is given by

T,'k = (1_7“" p)’Ul-’Uk "ﬁg,'k —Nhy (2)
where

vp'=1,  P=p-(-21/3),

H
Bie = V; e + 0 — W'y + o0, ). (3)
Here the semicolon denotes the covariant derivative. The variables ¢ and 7
are respectively the bulk and shear viscosity coefficients. In the above, p is
pressure, p is the density and v; is the flow vector of the fluid. The variable
7 is called the effective pressure. We shall use the comoving coordinates.
Einstein field equations are

Ry — jRgy = -8nT, — Ag, (4)
where A is the cosmological constant and 7, and g, are given by (2) and
(1) respectively. The equations (4) give rise to

1 [B* 4B
8np=-A+— 7 [BZ +2E -m ] , (5)
— 16xnB 1 [ 2 A* A4 B
8xp=A- 1 B+A2[ +P"Z—§], (6)
167y (B 4 1[B 4 _4AB A B
a4 (B A) =z [B 1 %48t A2+32+2 (7)

Here and in what follows, an overhead dot indicates differentiation with
respect to time ¢. The expansion 6 and the shear o of the flow vector v,

are given by
1 (4 2B
e—z(z+§) ®)

1 (A B
U=7_3?(Z—E). (9)
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Since we are interested in anisotropic models, we take o # 0, i.e., A/4 #
B/B.

Here it should be mentioned that the coefficient & of bulk viscosity does
not appear explicitly in (5), (6) and (7). We take & = 0 for simplicity. If
& # 0, it can be determined by assuming an equation of state of the fluid.

We have a system of three equations (5), (6), and (7) for the determination
of five unknowns P, p, n, A and B. Therefore we have to assume two
appropriate relations among these variables in order to obtain solutions of
these equations. In the next section we present some explicit solutions of
these equations.

We end this section by a brief discussion of the Raychaudhuri [11] equa-
tion. For our case this equation becomes

6.0 -6 /3~ f,+20" = R,v'v* (10)
where f; = v®v;., is the acceleration vector of the flow vector. Assuming
A =0, the field equations imply Rikvivk = —47(p + 3p + 2n6) . Therefore
the Hawking-Penrose [5] energy conditions are satisfied if Rikvkvk <0,ie.
if p+35+2n6 >0.

3. Solutions

Let us first assume a linear relation between shear and expansion, i.e.
0/6 = constant. This leads to

A/A=aB/B, ie. A=B" (11)

where a is a constant. Note that a # 1, otherwise ¢ becomes zero. Here it
should be noted that the condition o/6 = constant has been used by Collins
et al [3] for the construction of spatially homogeneous cosmological models.
Now we must assume one more relation among the variables 7, p, 1, 4
and B in order to have an explicit solution of the equations (5), (6) and (7).
In the present work, we shall discuss the following three cases:

Case (i). p=yp, 0<y <1, a barotropic equation of state connecting the
density and the effective pressure, and A =0.

Cask (ii). (8np+A)/ 6% = constant. This condition has been used by Baner-
jee et al [1] for deriving a viscous-fluid cosmological model with Bianchi type
II space time.

We take A = 0. Then our assumption says that p is proportional to 6.
The effect of viscosity is more prominent at the beginning where 6 and p
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are quite large. Thus, when 6 increases, p also increases. Therefore it is
reasonable to assume p to be proportional to 6. At later stages the viscosity
may play only an insignificant role.

Cask (iii). The metric potential B satisfies the differential equation B/B +
1."?2/32 = 2m®. This equation has been used by Narain [9] in connection
with the Bianchi type VI, perfect fluid model.

The assumption made here is purely mathematical. We are interested to
have a viscous fluid generalisation of Narain’s solution. This is the only
motivation for this assumption.

CasE (i). Using (11) and p=yp, A =0, we obtain

2 -2 .
m B B
- - -1 - = - — =
Gopl@+ D+r@-Dl+l@-1)-ra+ i - (@+23
The above differential equation has a simple solution in the case y =
(@a-1)/(2a+1). As y > 0, we must take a > 1. Clearly @ > 1 implies

y < 1. This simple solution is given by
m’(3a> +a +2)

0. (12)

bt 2 _

B=e", bV =mha-noasD (13)
For this solution, the parameters p, p and 75 are determined as
8np = e *'[(2a + 1)b* - m?], (14)
— -2k (a—1) 22
8np=e (2a+1)[(2a+1)b m-], (15)
and

1 —abe b2 m? 16
8nn = 3¢ + T—al (16)

In view of (13), one can easily verify that the physical requirements p > p > 0
are satisfied. The explicit form of the metric of this solution is

ds2 — e2abt(dt2 _ dx2) _ e2bt(e2mx dy2 + e—2mx dZZ)‘ (17)

It should be mentioned that if b>+m? /(1—a) =0, n vanishes and we get a
perfect fluid model. In this situation y = 3'; and 8np = 5m? exp(—8mt/V3).
Thus the above perfect fluid model is filled with disordered radiation. The
differential equation (12) can be made integrable for other values of y also.
Let us define a new time coordinate 7 by d7 = vVBdt and assume that
y = (a—4)/[2(2a + 1)]. We must take a > 4. Clearly y < 1. In this case
the solution of {(12) can be expressed as

_ mi5d*+a+6)
T 2(a-1(a+2)(2a+1)

B=la?2+,3?+C, a

: (18)
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where B8 and C are constants of integration. For the sake of brevity, we
shall not give the expressions for 7, p and 5 for the above solution.

Cask (ii). Assuming (87p + A)/6* = constant = /*> and using (11) we get
(32/32)[(2a +1) - 12(a + 2)2] = m?. Therefore we must have (2a+1) -
12(a + 2)2 =k™% > 0. In this case we have

B ==k (19)
The parameters p, 7 and #n for this solution are given by
87np = —A + m* e ™ [(2a + 1)k - 1], (20)
875 = A + m’e* " [—“ o 3k2] : (21)
_ m xamkt 2.4
8nn = i—k(l — a)e [k°(1 —a)+ 1]. (22)
If A =0, the physical requirements p > P > 0 give the inequality
1 fa+1 2 1
S(m)z" S TEIN 23)

If A =0, then clearly p/p is a constant. This is a note-worthy feature of
this solution. For brevity, we shall not write the metric of this solution.

It should be noted that when k% = 1/(a—1), a>1, n vanishes and we
get a perfect fluid model. The pressure p and the density p of this model

are given by
87tp=—A+m2exp (;;’:’_nlt> (Zif) s (24)
87p = A + m*exp (q:\/z:_'_nft) (Z:f) (25)

If A =0, the equation of state of the perfect fluid is p = ((a—-2)/(a+2))p.
This equation of state is physically significant provided a > 2. Thus in the
case a > 2, we have p = yp where 0 < y < 1. The perfect fluid satisfies
the barotropic equation of state.

CasE (iii). Let us assume that the function B satisfies the differential equa-
tion B/B + B? /B2 = 2m?. The solution of this equation is given by

B = B,cosh'/*(2mz). (26)
Therefore
A = B cosh®*(2mu). 27)
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Here B, is the constant of integration. The parameters p, p and 5 are

given by
875 = A+ 7 e Z—f—l —3— (1 +2a)sech (2mt)] (28)
2
87p=—A+ —[(2a + 1) tanh*(2mz) — 1], (29)
8nn = % coth(2mt) (30)

where A is given by (27). The reality conditions 7 > 0 and g > p imply
that

2

m _a+1l 2(@-2)
m[za.;.?, a—1]>A>A2[a i +(2a+1)sech(2mt)] (31)

where A is given by (27).
The geometry of this solution is described by the line element

ds® = B} cosh®(2mi)(dt® — dx*) - B} cosh(2mit)(e®™ dy® + e72™ d2°).
(32)
Here it should be noted that when a = 2, the coefficient # of shear viscosity
vanishes. In this case our solution reduces to the perfect fluid solution given
by Narain [9]. Thus, our solution is a viscous-fluid generalisation of Narain’s
solution.

We have verified that if @ > 1, then the Hawking-Penrose energy condition
p + 3P + 216 > 0 is satisfied for all three solutions discussed above.

The present upper limit for the ratio o/6 is 1073 , obtained from in-
direct arguments concerning the isotropy of primordial black body radia-
tion {Collins et al. [9]). For the above three solutions a > 1 and /6 =
(a —1)/(a + 2)V/3. This ratio can be made considerably greater than 1073.
For example, taking a = 1.5 we have ¢/6 = 1/(7v/3) = 0.0824 which is
larger than 1073 This shows that our solutions describe the early stages of
the evolution of the universe.

In viscous hydrodynamics, the shear viscosity coefficient 5 is often as-
sumed to be constant. Let us now assume that 7 is a constant. In this case,
(7) becomes

167ndZ = 2 + 2%2 +2m? (33)
where eZ = B/A. We shall integrate (33) for the case in which 4 and B?
are linear functions of prime ¢.
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CasE (iv). Under the above assumptions, (33) admits the solution

2
2 _ _ _4m'(gt+ )]

B=qr+l, a=-TA2 (34)
where ¢ and / are arbitrary constants. The parameters 7 and p are given
by

srp= At 3 [mty T (35)
A% 4(qt +1)?
2
8np=—A+—12- l——z—m2 (36)
A t4(gt+ D)

where the function A4 is given by (34). The physical requirements 7 > 0
and p >p imply that

2 2
Slme L | ca< | =L —am? (37)
A 4(qt +1) 2(

where A is given by (34).

In this case, 4/4 = 2B/B and hence the ratio a/0 = 1/4v/3 = 0.147.
This value is considerably greater than the present value 1072, Therefore
the above solution represents an early stage of the evolution of the universe.

When 7 = 0, the metric potential A becomes singular. Therefore we can-
not put 7 =0 and consequently there is no perfect-fluid counterpart of our
above solution.

Roy and Singh [14] have considered two equations

Z+2m*=0, B/B=8un4
instead of (33) and discussed a viscous-fluid cosmological model. Here it
should be noted that the differential equation (33) can be made integrable for

other choices of 4 and B also. But we shall not go into these mathematical
details here.
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