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Abstract We construct a nonseparable Banach space X (actually, of density continuum) such that any
uncountable subset Y of the unit sphere of X contains uncountably many points distant by less than 1
(in fact, by less then 1− ε for some ε > 0). This solves in the negative the central problem of the search
for a nonseparable version of Kottman’s theorem which so far has produced many deep positive results
for special classes of Banach spaces and has related the global properties of the spaces to the distances
between points of uncountable subsets of the unit sphere. The property of our space is strong enough to
imply that it contains neither an uncountable Auerbach system nor an uncountable equilateral set. The
space is a strictly convex renorming of the Johnson–Lindenstrauss space induced by an R-embeddable
almost disjoint family of subsets of N. We also show that this special feature of the almost disjoint family
is essential to obtain the above properties.
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1. Introduction

All Banach spaces considered in this paper are infinite dimensional and over the reals.

For unexplained terminology, see Section 2. If X is a Banach space, Y ⊆X and r > 0, we
say that Y is

• (r+)-separated if ‖y−y′‖> r for any two distinct y,y′ ∈ Y,
• r -separated if ‖y−y′‖ ≥ r for any two distinct y,y′ ∈ Y,
• r -concentrated if ‖y−y′‖ ≤ r for any two distinct y,y′ ∈ Y,
• r -equilateral if ‖y−y′‖= r for any two distinct y,y′ ∈ Y,
• equilateral if it is r -equilateral for some r > 0.

The classical Riesz lemma of 1916 (If Y is a closed proper subspace of X and ε > 0,

then there is x in the unit sphere of X such that the distance of x from Y does
exceed 1− ε, [44]) allows one to construct (1− ε)-separated sets of the cardinality equal

to the density of a Banach space and in its unit sphere. By the compactness of the

balls in finite-dimensional spaces it also yields infinite 1-separated sets in any infinite
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dimensional Banach space. Kottman proved in 1975 [30] that the unit sphere of every

infinite-dimensional Banach space admits an infinite (1+)-separated subset, which was

improved in 1981 by Elton and Odell to (1+ε)-separated for some ε> 0 [9]1 who also noted
that c0(ω1) does not admit an uncountable (1+ε)-separated set. The Kottman constant

of a Banach space (the supremum over δ > 0 such that there is an infinite δ-separated

subset of the unit sphere) turned out to be an important tool used for investigating the
geometry of the space (e.g., [3, 32, 40, 34, 1, 41]). In fact, it is related to many aspects

of Banach spaces such as, for example, packing balls, measures of noncompactness, fixed

points, average distances and infinite dimensional convexity (see, e.g., the papers citing
[31] or [9]).

It has been clear, at least since the paper [38] of Mercourakis and Vassiliadis, that the

nature of separation in uncountable subsets of the unit sphere of a nonseparable Banach

space could be equally indicative of the global and diverse properties of the space as in the
separable case. The question of whether the unit sphere of a nonseparable Banach space

must contain an uncountable (1+)-separated set and if so, of what cardinality compared to

the density of the space, has been studied for various classes of Banach spaces, for exampl,
in [5, 25, 37, 38] and recently culminated in the paper [19], where it is highlighted as a

central question. Notably, the existence of (1+ ε)-separated sets of the size equal to the

density of the space was proved for superreflexive Banach spaces by Kania and Kochanek
in [25] and for C(K) spaces, where K is compact Hausdorff and totally disconnected

by Mercourakis and Vassiliadis. Moreover Hájek, Kania and Russo proved in [19] that

uncountable (1+)-separated sets exist in any Banach space of sufficiently large density.

However, we provide quite a strong negative answer to the general question:

Theorem 1. There is a (strictly convex) Banach space of density continuum where every

uncountable subset of the unit sphere of regular cardinality κ includes a subset of the same

cardinality which is (1− ε)-concentrated for some ε > 0.

To prove it, apply Propositions 15 and 10 obtaining the validity of their hypotheses by

Lemmas 12 and 7, respectively. The strength of the above property2 may be appreciated

by seeing how easily it yields the next two theorems which provide other natural properties
of Banach spaces unknown to occur until now without making some additional consistent

but unprovable set-theoretic assumptions.

Recall an observation of Terenzi from [48] that, if Y is an equilateral set in a Banach

space X , by scaling we may assume that it is a 1-equilateral set, and then by considering
{y0−y : y ∈ Y \{y0}} for any y0 ∈ Y we obtain a 1-equilateral set consisting of elements

of the unit sphere of X . So Theorem 1 yields:

1In fact there is a recent stronger result of T. Russo ([45]) which say that the sphere of any
infinite-dimensional Banach space contains infinite Y such that {±y : y ∈Y} is (1+ε)-separated
for some ε > 0.

2Another striking property of such spaces is that one cannot pack uncountably many pairwise
disjoint open balls of radius 1

3 into the unit ball, as such a packing would yield an uncountable
1-separated subset of the unit sphere (cf. [31]). Packing of uncountably many balls of radius
1
3 −ε into the unit ball is possible in any inseparable Banach space for any ε > 0 by the Riesz
lemma.
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Theorem 2. There is a (strictly convex) Banach space of density continuum which does

not admit an uncountable equilateral set.

Banach spaces with this property were previously consistently constructed by the author

in [27]. These spaces were of the form C(K) for K compact Hausdorff, while it was

also proved in [27] that consistently every Banach space of the form C(K) admits an
uncountable equilateral set.

Different examples of Banach spaces satisfying Theorem 2 which also do not require

any additional set-theoretic assumptions are being presented at the same time in a joint
paper of the author with H.M. Wark [29]. They are renormings of �1([0,1]), and moreover

they do not admit even any infinite equilateral set (However, all equivalent renormings

of �1(Γ) for Γ uncountable admit (1+ ε)-separated set of size Γ by Remark 3.16 of [19]).

The above theorem solves Problem 293 of [16].
As in the case of (1+)-separated or (1+ ε)-separated sets, the existence of infinite or

uncountable equilateral sets (by the above argument of Terenzi one may assume that such

sets are subsets of the unit sphere) was proved by various authors for many particular
classes of Banach spaces. For example, infinite equilateral sets exist in any Banach space

which contains an isomorphic copy of c0 [37] or any uniformly smooth space [10]. However,

in contrast to the case of (1+)-separated sets, there are infinite-dimensional Banach
spaces with no infinite equilateral subsets [48, 47, 11]. Uncountable equilateral sets in

nonseparable Banach spaces have been investigated as well, for example, in [5, 27, 37,

38]. Also the strict convexity of the norm of our example should be compared with the

results saying that the unit sphere of an infinite-dimensional uniformly convex space
admits a (1+ ε)-separated set of the cardinality equal to the density of the space [40],

Proposition 4.16 of [19].

As stressed in [19], (1+)-separated subsets of the sphere are related to Auerbach bases.
Recall that for a Banach space X the system (xi,x

∗
i )i∈I ⊆X ×X ∗ is called a biorthogonal

system when x∗
j (xi) = 0 if i �= j and x∗

i (xi) = 1 for each i,j ∈ I. It is called an Auerbach

system if it is biorthogonal and ‖xi‖=1= ‖x∗
i ‖ for every i∈ I. It is clear that the elements

of X in an Auerbach system (xi,x
∗
i )i∈I form a 1-separated subset of the unit sphere as

‖xi −xj‖ ≥ |xi(xi −xj)| = |x∗
i (xi)| = 1 for any distinct i,j ∈ I. Thus, Theorem 1 yields

the following:

Theorem 3. There is a (strictly convex) Banach space of density continuum with no

uncountable Auerbach system.

A Banach space with this property was previously only constructed under the

assumption of the continuum hypothesis CH in [19] (in fact, this is a renorming of c0(ω1)

so WLD, the property not shared by our space). By a result of Day, every separable
Banach space admits an infinite Auerbach system [6]. Constructions of Banach spaces of

density continuum with no fundamental Auerbach systems were presented in [13, 14, 43,

15].
Our Banach space is an equivalent renorming (XA,‖ ‖T ) of the subspace (XA,‖ ‖∞)

of �∞ which is spanned by c0 and characteristic functions of elements of an uncountable

almost disjoint family A of infinite subsets of N. Recall that A ⊆ ℘(N) is called almost
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disjoint if A∩A′ is finite for any distinct A,A′ ∈A. Such spaces XA were first considered by

Johnson and Lindenstrauss in [23, 24]. The renorming ‖ ‖T is obtained in a standard way

using a bounded injective operator T : �∞ → �2 (see Section 2.3). As is well known, such
a space (XA,‖ ‖∞) is isometric to the space of the form C0(KA), where KA is locally

compact, totally disconnected, scattered, separable Hausdorff space known as Ψ-space

or Mrówka-Isbell space or Alexandroff–Urysohn space (see, e.g., [21, 28]). In particular,
it is c0-saturated (by [42]) so admits infinite equilateral sets by [37]. The main point,

which actually allows one to conclude directly the previous theorems, is to obtain the

behaviour of separated sets of the unit sphere as in c0(Γ) and at the same time to have
the underlying locally compact space separable (which allows the construction an injective

operator from C(KA) into the separable �2). This is summarized in the following theorem

which is proved by applying Lemma 12 and Proposition 15:

Theorem 4. There is a separable locally compact Hausdorff space K of weight continuum

such that for every ε > 0 and every subset Y of the unit sphere of C0(K) of a regular

uncountable cardinality there is a subset Z ⊆ Y of the same cardinality which is (1+ ε)-
concentrated.

To obtain the above property of the space (XA,‖ ‖∞) and consequently the properties
of its renorming (XA,‖ ‖T ) we need some special property of the almost disjoint family

A. A known property that is sufficient for us is the R-embeddability of A (Definition

11). On the other hand, we show that certain almost disjoint families which are not R-
embeddable, known as Luzin families (Definition 18), induce the Banach space XA such

that the sphere of (XA,‖ ‖∞) admits an uncountable 2-equilateral subset (Proposition

20) and the sphere of (XA,‖ ‖T ) admits an uncountable (2− ε)-separated subset for any

ε > 0 (Proposition 21). For more on R-embeddability, see [17]. Note that A. Dow showed
in [8] that assuming PFA (the proper forcing axiom) every maximal almost disjoint family

contains a Luzin subfamily. However, R-embeddable families of cardinality continuum are

abundant and elementary to construct with no additional set-theoretic assumptions (like
Luzin families of cardinality ω1).

Finally, let us comment on the isomorphic theory structure of our spaces (For the

Kottman constant in the isomorphic context, see [4]). Using the arguments of Section 5
of [2] (cf. [35]) one can see that there are 22

ω

pairwise nonisomorphic spaces satisfying

Theorem 1. It should be clear that the almost disjoint family of branches of the Cantor

tree is R-embeddable and such families are Borel in the product topology on 2N (see, e.g.,

Lemma 30 of [28]), so it follows from the results of [36] that the spaces XA satisfying
Theorem 1 can be isomorphically of the form C(KA), where KA is a Rosenthal compact

space. The results of [12] imply that such spaces are representable in the sense of that

paper, so they should be considered relatively constructive and nonpathological. XA in
the norm ‖ ‖∞ admits a 1-equilateral set of cardinality continuum which is an Auerbach

system (just characteristic functions of the elements of the almost disjoint family A).

Although, as mentioned above, there are many nonisomorphic Banach spaces of the form
XA for an almost disjoint families A, under Martin’s axiom MA and the negation of

CH all spaces XA are pairwise isomorphic for A of cardinality ω1, in particular XA can

be isomorphic to XA′ with A being R-embeddable and A′ being Luzin ([2]). This, for
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example, provides equivalent renormings of (XA,‖ ‖∞) for any Luzin family A which

satisfy Theorem 1. In fact, at least consistently, every nonseparable Banach space can be

renormed so that the new unit sphere admits uncountable 2-equilateral sets (Theorem 3
[37]). It is unknown at the present moment if this can be proved in ZFC alone.

2. Preliminaries and terminology

2.1. Notation

The notation attempts to be standard, for unexplained terminology see [18]. In particular

C(K) denotes the set of all continuous functions on a compact Hausdorff space K and
C0(K) denotes all continuous functions f on a locally compact Hausdorff K such that

for each ε > 0 there is a compact L ⊂K such that |f(x)| < ε for all x ∈K \L. Both of

these types of linear spaces are considered as Banach spaces with the supremum norm
which is denoted by ‖ ‖∞. The notation 1A denotes the characteristic function of a set

A. When Y is a subset of a Banach space, span(Y) denotes the norm closure of the linear

span of Y. The density of an infinite-dimensional Banach space is the minimal cardinality

of a norm dense subset of the space. By ω1, we mean the first uncountable cardinal.
All almost disjoint families of subsets of N considered in this paper are uncountable and

consist of infinite sets. A cardinal κ is said to be of uncountable cofinality if the union of

countably many sets of cardinalities smaller than κ has cardinality smaller than κ. If A
is a set, then [A]2 denotes the family of all two-element subsets of A. The cardinals like

ω1 or the continuum are of uncountable cofinality ([22]). If (xn)n∈N is a sequence of reals

and A⊆N is infinite by limn∈Axn we mean limk→∞xnk
, where (nk)k∈N is any (bijective)

renumeration of A.

2.2. Banach spaces XA

Given an infinite almost disjoint familyA of infinite subsets of N, we consider the subspace

of (�∞,‖ ‖∞) defined by

XA = span({1A :A ∈ A}∪ c0).

Note that for a fixed A0 ∈ A the set

�A0
∞ = {f ∈ �∞ : lim

n∈A0

f(n) exists}

is a closed (in the ‖ ‖∞-norm) linear subspace of �∞. As for every A0 ∈A all the generators

{1A : A ∈ A}∪ c0 of XA are in this space, it follows that the entire XA is contained in

every �A∞ for A ∈ A.

Lemma 5. Suppose that A is an almost disjoint family of infinite subsets of N. Let k ∈N,
g ∈ c0, A1, . . . ,Ak ∈ A be distinct, q1, . . . qk ∈ R and

f = g+
∑

1≤i≤k

qi1Ai
.

Then for every 1≤ j ≤ k, we have limn∈Aj
f(n) = qj.
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Proof. We have limn∈Aj
g(n) = 0 as g ∈ c0 and limn∈Aj

1Ai
(n) = 0 for i �= j since Ai∩Aj

is finite.

2.3. Equivalent renormings induced by bounded operators

Recall that two norms ‖ ‖ and ‖ ‖′ on a Banach space X are equivalent if the identity
operator between (X ,‖ ‖) and (X ,‖ ‖′) is an isomorphism, that is, when there are positive

constants c,C such that c‖x‖ ≤ ‖x‖′ ≤C‖x‖ for every x∈X . For more on renormings, see

[7]. It is clear that if X and Y are Banach spaces with norms ‖ ‖X and ‖ ‖Y , respectively,
and T : X →Y is a bounded linear operator. Then

‖x‖T = ‖x‖X +‖T (x)‖Y

is a norm on X which is equivalent to the norm ‖ ‖X . In this paper, besides the supremum

norm ‖ ‖∞, we will consider norms of the form ‖ ‖T . Recall that a norm ‖ ‖ on a Banach

space X is called strictly convex if ‖x+ y‖ = ‖x‖+ ‖y‖ for x,y ∈ X \ {0} implies that
x= λy for some λ > 0. An example of a strictly convex norm is the standard ‖ ‖2 norm

on �2.

Lemma 6. Suppose that X and Y are Banach spaces. If T :X →Y is an injective bounded

linear operator, (Y,‖ ‖Y) is strictly convex, then (X ,‖ ‖T ) is strictly convex.

Proof. For nonzero x,y ∈ X , by the triangle inequality, the condition

‖x+y‖X +‖T (x)+T (y)‖Y = ‖x‖X +‖T (x)‖Y +‖y‖X +‖T (y)‖Y

implies that ‖x+ y‖X = ‖x‖X + ‖y‖X and ‖T (x) + T (y)‖Y = ‖T (x)‖Y + ‖T (y)‖Y . The
latter implies T (x) = λT (y) for some λ > 0, which gives x= λy since T is injective.

Lemma 7. There is an injective bounded linear operator T : �∞ → �2. In particular, the

equivalent renorming (�∞,‖ ‖T ) is strictly convex.

Proof. Consider T : �∞ → �2 given by

T (f) =
(f(n)
2n/2

)
n∈N

.

‖f‖∞ ≤ ‖f‖∞+‖T (f)‖2 = ‖f‖∞+
√∑

n∈N

f(n)2

2n ≤ (1+
√
2)‖f‖∞.

Lemma 8. Suppose that κ is a cardinal of uncountable cofinality and Y is a subset of

cardinality κ of a separable Banach space X . Then for every ε > 0 there is Y ′ ⊆ Y of

cardinality κ such that ‖y−y′‖ ≤ ε for every y,y′ ∈ Y ′.

Proof. Let {xn : n ∈ N} be norm dense countable subset of X . Balls of diameter ε with

the centers in the points xn cover X and so cover Y. By the uncountable cofinality of κ,

one of the balls must contain κ elements of Y.
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Lemma 9. Suppose that 0 < a ≤ ‖x‖ ≤ ‖x′‖ ≤ b < 1 for some a,b ∈ R and x,x′ in a

Banach space X . Then

‖x−x′‖ ≤ b

∥∥∥∥∥
x

‖x‖ − x′

‖x′‖

∥∥∥∥∥+(b−a)

Proof.

‖x−x′‖ ≤ ‖x− (‖x‖/‖x′‖)x′‖+‖(‖x‖/‖x′‖)x′−x′‖ ≤

≤ ‖x‖
∥∥∥∥∥

x

‖x‖ − x′

‖x′‖

∥∥∥∥∥+
∣∣∣∣∣
‖x‖
‖x′‖ −1

∣∣∣∣∣‖x
′‖ ≤

≤ b

∥∥∥∥∥
x

‖x‖ − x′

‖x′‖

∥∥∥∥∥+(1−a/b)b.

The following reduction result allows us to infer the main properties of the final space

(XA,‖ ‖T ) as stated in Theorem 1 from the properties of the space (XA,‖ ‖∞) which are
proved in Proposition 15.

Proposition 10. Suppose that X is a nonseparable Banach space and κ is a cardinal

of uncountable cofinality such that for every subset Y of the unit sphere of (X ,‖ ‖X ) of

cardinality κ and every ε> 0 there is Y ′ ⊆Y of cardinality κ which is (1+ε)-concentrated.
If T : X →Z is a bounded linear injective operator into a Banach space Z with separable

range, then (X ,‖ ‖T ) has the following property: For every subset Y of the unit sphere

of (X ,‖ ‖T ) of cardinality κ, there is δ > 0 and Y ′ ⊆ Y of cardinality κ which is (1− δ)-
concentrated.

Proof. Let Y be a subset of the unit sphere of (X ,‖ ‖T ) of cardinality κ. As T is injective,

we have 0< ‖y‖X < ‖y‖T =1 for every y ∈Y. The interval (0,1) can be covered by intervals

of the form (q− (1− q)/4,q) for rationals q satisfying 0 < q < 1. As κ has uncountable
cofinality by passing to a subset of cardinality κ, we may assume that there is a rational

0< q < 1 such that

q− (1− q)/4< ‖y‖X < q

for every y ∈ Y. Now, apply the property of X with the norm ‖ ‖X to {y/‖y‖X : y ∈ Y}
and ε= (1−q)/4q obtaining X ′ ⊆{y/‖y‖X : y ∈Y} of cardinality κ such that X ′ is (1+ε)-

concentrated in the ‖ ‖X norm. By Lemma 9 for a= q−(1−q)/4≤ ‖y‖X ≤ ‖y′‖X ≤ q= b,
we obtain that

‖y′−y′′‖X ≤ q(1+(1− q)/4q)+(1− q)/4 =

= (q+(1− q)/4)+(1− q)/4 = q+(1− q)/2

for every y′,y′′ ∈ Y ′ = {y ∈ Y : y/‖y‖X ∈ X ′}. Again using the countable cofinality of κ

and Lemma 8, we find Y ′′ ⊆Y ′ of cardinality κ such that ‖T (y)−T (y′)‖Z ≤ (1−q)/4 for

all y,y′ ∈ Y ′′. So
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‖y−y′‖T = ‖y−y′‖X +‖T (y)−T (y′)‖Z ≤ q+3(1− q)/4 = 1− (1− q)/4

obtaining that Y ′′ is (1− δ)-concentrated for δ = (1− q)/4 as required.

3. Concentration in spheres of Banach spaces (XA,‖ ‖∞) induced by

R-embeddable almost disjoint families

Definition 11. An almost disjoint family A of subsets of N is called R-embeddable if
there is a function φ : N→ R such that the sets φ[A] for A ∈ A are ranges of sequences

converging to distinct reals.

So R-embeddable families of cardinality continuum are examples of perhaps most

standard almost disjoint families.

Lemma 12 (Folklore). There exist almost disjoint families of infinite subsets of N of

cardinality continuum which are R-embeddable.

Remark 13. In fact, an almost disjoint family A of infinite subsets of N is R-embeddable

if and only if there is an injective φ :N→Q such that the sets φ[A] for A∈A are ranges of
sequences converging to distinct irrational reals. This follows from Lemma 1 and Lemma

2 of [17].

Lemma 14. Suppose that κ is a cardinal of uncountable cofinality not bigger than

continuum, X ⊆ [0,1] is uncountable and that A= {Ax : x∈X} is an R-embeddable almost

disjoint family of infinite subsets of N. Then given

(1) k ∈ N,

(2) a finite F ⊆ N,

(3) a collection {aξ : ξ < κ} of pairwise disjoint finite subsets of X with aξ = {xξ
1, . . . ,x

ξ
k}

(xξ
i �= xξ

j for 1≤ i < j ≤ k) for any ξ < κ such that

Axξ
i
∩Axξ

j
⊆ F

for any ξ < κ and any 1≤ i < j ≤ k,

there is a subset Γ⊆ κ of cardinality κ such that for every ξ,η ∈ Γ we have

Axξ
i
∩Axη

j
⊆ F

for every 1≤ i < j ≤ k.

Proof. Let φ : N→ R be as in the definition of R-embeddability. By composing it with

a homeomorphism from R onto (0,1), we may assume that Y = φ[N] ⊆ [0,1]. As the
properties stated in the lemma do not change if we relabel the elements of A, we may

assume that φ[Ax] = {qxn : n ∈ N} ⊆ [0,1]∩Y is such that (qxn)n∈N converges to x.

Fix k ∈N and a finite F ⊆N. Let {aξ : ξ < ω1} be a collection of pairwise disjoint finite

subsets of X with aξ = {xξ
1, . . . ,x

ξ
k} as in the lemma. Using the uncountable cofinality of

κ, by passing to subset of cardinality κ, we may assume that for all ξ < κ we have δξ > δ
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for some δ > 0, where

δξ =min({|xξ
i −xξ

j | : 1≤ i < j ≤ k}.

Now, note that there is (x1, . . . ,xk) ∈ [0,1]k such that every Euclidean neighbourhood of

(x1, . . . ,xk) contains κ-many points (xξ
1, . . . ,x

ξ
k) for ξ < κ. This is because otherwise we can

cover [0,1]k by open sets each containing less than κ-many of the points (xξ
1, . . . ,x

ξ
k), and

the existence of a finite subcover would contradict the fact that all k -tuples (xξ
1, . . . ,x

ξ
k)

are distinct as the sets {xξ
1, . . . ,x

ξ
k} are pairwise disjoint.

Since δξ > δ for every ξ < κ, we have that min({|xi − xj | : 1 ≤ i < j ≤} ≥ δ, and in
particular all elements xi for 1 ≤ i ≤ k are distinct. Let I1, . . . Ik be open intervals such

that xi ∈ Ii and Ii ∩ Ij = ∅ for all 1 ≤ i < j ≤ k. By the choice of (x1, . . . ,xk), there is

Γ′ ⊆ κ of cardinality κ such that

xξ
i ∈ Ii

for all ξ ∈ Γ′ and all 1≤ i≤ k.

Since the sequence (q
xξ
i

n )n∈N converges to xξ
i , for every ξ ∈ Γ′, there is a sequence

(F ξ
1 , . . . F

ξ
k ) of finite subsets of N such that for each 1≤ i≤ k we have

(1) F ξ
i ⊆Axi

ξ

(2) φ[Axi
ξ
\F ξ

i ]⊆ Ii.

As Ii∩ Ij = ∅ for distinct i,j ≤ k condition (2) implies that

(3) (Axi
ξ
\F ξ

i )∩ (Axj
η
\F η

j ) = ∅ for any ξ,η < κ and 1≤ i < j ≤ k.

As the cofinality of κ is uncountable and there are countably many such k -tuples of sets
(F ξ

1 , . . . F
ξ
k ) (as they are all subsets of N), we may choose Γ⊆ Γ′ of cardinality κ such that

(F ξ
1 , . . . F

ξ
k ) is equal to some fixed (F1, . . . Fk).

It remains to prove the property of Γ stated in the lemma. Fix distinct ξ,η ∈ Γ and

1≤ i < j ≤ k. Then by (1) and (3) for all 1≤ i < j ≤ k, we have

Axξ
i
∩Axη

j
= (Fi∩Fj)∪ (Axξ

i
∩Fj)∪ (Axη

j
∩Fi).

By (1), this set is included in (Axξ
i
∩Axξ

j
)∪ (Axη

j
∩Axη

i
) which is included in F by the

hypothesis of the lemma. So we obtain Axξ
i
∩Axη

j
⊆ F as required.

Proposition 15. Suppose that A is an R-embeddable almost disjoint family of subsets

of N. Whenever ε > 0 and Y is a subset of of the unit sphere of (XA,‖ ‖∞) of regular

uncountable cardinality κ, there is Y ′ ⊆ Y of cardinality κ which is (1+ ε)-concentrated.

Proof. We may label elements of A as Ax for x ∈X for some X ⊆ [0,1].

Fix a subset Y = {fξ : ξ < κ} of the unit sphere of (XA,‖ ‖∞) of uncountable regular

cardinality κ. By the definition of XA for each ξ < κ, there are finite sets {xξ
1, . . . x

ξ
mξ

}⊆X

(xξ
i �= xξ

j for 1≤ i < j≤mξ and ξ <κ), distinct rationals qξ1, . . . q
ξ
mξ

for all ξ <κ and rational
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valued finitely supported gξ ∈ c0 such that
∥∥∥fξ −

(
gξ +

∑
1≤i≤mξ

qξi 1Ax
ξ
i

)∥∥∥
∞

≤ ε/3.

Using the uncountable cofinality of κ by passing to a subset of cardinality κ, we may

assume that for all ξ < ω1 we have mξ = m for some m ∈ N, gξ = g for some finitely

supported g ∈ c0, and that qξi = qi for some rationals qi for all 1≤ i≤m and for all ξ < κ.
Since for a regular cardinal κ any family of κ-many finite sets contains a subfamily of

cardinality κ such that the intersection of any two distinct members of the subfamily is

a fixed finite Δ⊆ κ (A version of the Δ-system lemma, Example 25.3 of [26]) by passing
to a subset of cardinality κ, we may assume that there is such a Δ satisfying

{xξ
1, . . . x

ξ
m}∩{xη

1, . . . x
η
m}=Δ

for every ξ < η < κ. By passing to a subset of cardinality κ, we may assume that there
is a fixed G ⊆ {1, . . . ,m} such that Δ = {xξ

i : i ∈ G} for every ξ < κ. If G = {1, . . . ,m},
we conclude that {fξ : ξ < κ} is even 2ε/3-concentrated, so we will assume that G is

a proper subset of {1, . . . ,m}. So by reordering {1, . . . ,m}, we may assume that there is
1≤ k≤m such that the sets {xξ

1, . . . x
ξ
k} are pairwise disjoint for ξ < κ and {xξ

k+1, . . . x
ξ
m}=

{xk+1, . . . xm}=Δ for some xk+1, . . . xm ∈X for each ξ < κ. So for every ξ < κ, we have
∥∥∥fξ −

(
g+

∑
1≤i≤m

qi1A
x
ξ
i

)∥∥∥
∞

≤ ε/3. (1)

And for every ξ < η < κ, we have

‖fξ −fη‖∞ ≤ ‖
∑

1≤i≤k

qi1A
x
ξ
i

−
∑

1≤i≤k

qi1Ax
η
i

‖∞+2ε/3. (2)

Also, as for each 1≤ j ≤ k, we have limn∈A
x
ξ
j

|fξ(n)| ≤ 1 since the elements fξ are taken

from the unit sphere in the ‖ ‖∞-norm, and limn∈A
x
ξ
j

g(n) = 0 as g ∈ c0 and

lim
n∈A

x
ξ
j

( ∑
1≤i≤m

qi1A
x
ξ
i

)
(n) = qj,

by Lemma 5, so we may conclude from (1) that for all 1≤ j ≤ k we have

|qj | ≤ 1+ ε/3. (3)

Moreover, since there are countably many finite subsets of N and κ is of uncountable

cofinality, we may assume that there is a fixed finite F ⊆ N such that

Axξ
i
∩Axξ

j
⊆ F for all 1≤ i < j ≤m and every ξ < κ. (4)

Using Lemma 14 and the hypothesis that A is R-embeddable, there is subset Γ ⊆ κ of

cardinality κ such that

Axξ
i
∩Axη

j
⊆ F for any 1≤ i < j ≤ k and any ξ,η ∈ Γ. (5)
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Since there are countably many rational valued functions defined on F, by passing to a
subset of Γ of cardinality κ we may also assume that for each ξ,η ∈ Γ and each n ∈ F we

have
( ∑
1≤i≤k

qi1A
x
ξ
i

)
(n) =

( ∑
1≤i≤k

qi1Ax
η
i

)
(n).

So by (5), the following are the only possible cases for n ∈ N:

( ∑
1≤i≤k

qi1A
x
ξ
i

−
∑

1≤i≤k

qi1Ax
η
i

)
(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if n ∈ F,

qi− qi = 0 if n ∈Axξ
i
∩Axη

i
\F for some i,

qi if n ∈Axξ
i
\ (Axη

i
∪F ) for some i,

−qi if ∈Axη
i
\ (Axξ

i
∪F ) for some i,

0 if n �∈
⋃

1≤i≤k(Axξ
i
∪Axη

i
).

By (3), it follows that
∥∥∥

∑
1≤i≤k

qi1A
x
ξ
i

−
∑

1≤i≤k

qi1Ax
η
i

∥∥∥
∞

≤max{|qi| : 1≤ i≤ k} ≤ 1+ ε/3

which by (2) implies the required ‖fξ −fη‖ ≤ 1+ ε for any ξ,η ∈ Γ.

Remark 16. We note that in the language of the paper [20] of Hrušák and Guzmán

an almost disjoint family A cannot have both the property from Lemma 14 and contain
an n-Luzin gap for some n ∈ N. They showed that under the assumption of MA and the

negation of CH every almost disjoint family of cardinality smaller than continuum which

contains no n-Luzin gaps for any n ∈ N is R-embeddable.

Remark 17. By Proposition 15, for every ε > 0 the space (XA,‖ ‖∞) for an R-

embeddable almost disjoint family A admits no uncountable (1+ ε)-separated set in its

unit sphere. Nevertheless, such spaces always admit (1+)-separated sets of unit vectors
of the cardinality equal to the density of XA. For A ∈ A, define

fA = 1A−
∑

{ 1

k+1
1{k} : k ∈ N\A}

Then given any two distinct A,A′ ∈A, choose k ∈A\A′ and observe that we have ‖fA−
fA′‖ ≥ |fA−fA′ |(k) = 1− (−1/(k+1))> 1.

4. Separation in spheres of Banach spaces (XA,‖ ‖T ) induced by Luzin

almost disjoint families

Definition 18. An almost disjoint family {Aξ : ξ < ω1} is called a Luzin family if fα :
α→ N is finite-to-one for any α < ω1, where

fα(β) = max(Aβ ∩Aα)

for every β < α < ω1.

Lemma 19 ([33]). Luzin families exist.

https://doi.org/10.1017/S1474748022000573 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748022000573


748 P. Koszmider

Luzin families were first constructed in [33]. See Section 3.1. of [21] for the construction

and for more information.

Proposition 20. Suppose that L= {Aξ : ξ < ω1} is a Luzin family, and ξα,ηα satisfy

ξβ < ηβ < ξα < ηα < ω1

for all β < α < ω1. Then (XL,‖ ‖∞) admits an uncountable 2-equilateral set {fα : α ∈X}
among elements of its unit sphere of the form

fα = 1Aξα
−1Aηα

for all α ∈ Γ for some uncountable Γ⊆ ω1.

Proof. It is clear that ‖fα‖∞ ≤ 1 for each α < ω1 as fα may assume values among

{−1,0,1}. Since Aξα ∩Aηα
is finite and both Aξα,Aηα

are infinite, we have that ‖fα‖= 1

for each α < ω1. Let Fα ⊆ N for α < ω1 be such a finite set that Aξα ∩Aηα
⊆ Fα. By

passing to an uncountable subset, we may assume that Fα = F for each α < ω1 and

some finite F ⊆ N. Let k ∈ N be such that F ⊆ {1, . . . ,k}. Now, we will use the following

version of Erdös-Dushnik-Miller theorem: Whenever κ is regular and uncountable cardinal
and c : [κ]2 → {0,1}, then either there is 1-monochromatic set of cardinality κ or there

is a 0-monochromatic set of order type ω+1 (see 24.32 of [26]). Consider a coloring

c : [ω1]
2 → {0,1} defined by c({β,α}) = 0 if fξα(ηβ) ≤ k for the ordering of the elements

β < α and c({β,α}) = 1 otherwise. Note that there cannot be a 0-monochromatic set

Δ⊆ ω1 of order type ω+1 because denoting its biggest element as α we would have that

fξα |{ηβ : β ∈Δ∩α} is bounded below by k which would contradict the hypothesis that L
is a Luzin family, that is, that the functions fξα are finite-to-one. So it follows that there
is an uncountable 1-monochromatic Γ⊆ ω1 for the coloring c.

For α,β ∈ Γ with β < α, there is m > k such that m ∈ Aξα ∩Aηβ
. By the choice of F

and the fact that F ⊆ {1, . . . ,k}, we have that neither m ∈ Aηα
nor m ∈ Aξβ , and so it

follows that

‖fα−fβ‖∞ = ‖(1Aξα
−1Aηα

)− (1Aξβ
−1Aηβ

)‖∞ = 2.

Proposition 21. Suppose that L = {Aξ : ξ < ω1} is a Luzin family, A is an almost

disjoint family such that L⊆A, X is a Banach space and T :XA →X is a bounded linear

operator with separable range. Then for every ε ∈ (0,1) the unit sphere of (XA,‖ ‖T )
admits an uncountable (2− ε)-separated set.

Proof. As XL is a subspace of XA, we can assume that A= L. By Lemma 8, there is an
uncountable subset Ξ⊆ ω1 such that

‖T (1Aξ
−1Aη

)‖ ≤ ε/2

1− ε/2
(�)

for every ξ,η ∈ Ξ. Let {ξα : α< ω1} and (ηα : α< ω1) be enumerations of two uncountable

and disjoint subsets of Ξ satisfying for all β < α < ω1 the following conditions

ξβ < ηβ < ξα < ηα.

https://doi.org/10.1017/S1474748022000573 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748022000573


Banach spaces in which large subsets of spheres concentrate 749

By Proposition 20, there is an uncountable Γ⊆ ω1 such that {fα : α∈ Γ} is a 2-equilateral

set of the unit sphere of (XA,‖ ‖∞), where for each α ∈ Γ we have

fα = 1Aξα
−1Aηα

.

For α ∈ Γ, consider

gα = fα/‖fα‖T .

We claim that {gα : α ∈ Γ} is the desired (2− ε)-separated set of the unit sphere of

(XA,‖ ‖T ). To prove it take β < α with α,β ∈ Γ. As

‖gα−gβ‖T = ‖gα−gβ‖∞+‖T (gα)−T (gβ)‖X ,

it is enough to prove that ‖gα−gβ‖∞ ≥ 2− ε. We have

‖gα−gβ‖∞ = ‖ fα
‖fα‖T

− fα
‖fα‖T

‖∞ ≥ ‖fα−fβ‖∞−‖ fα
‖fα‖T

−fα‖∞−‖ fβ
‖fβ‖T

−fβ‖∞.

Since α,β ∈ Γ, we have ‖fα‖∞ = ‖fβ‖∞ = 1, ‖fα−fβ‖∞ = 2. So now, we estimate

‖ fα
‖fα‖T

−fα‖∞ =
∣∣∣ 1

‖fα‖∞+‖T (fα)‖X
−1

∣∣∣‖fα‖∞ =
∣∣∣ 1

1+‖T (fα)‖X
−1

∣∣∣.

By equation (*), we have ‖T (fα)‖X ≤ ε/2
1−ε/2 , and so

1− ε/2 =
1

1+ ε/2
1−ε/2

≤ 1

1+‖T (fα)‖X
≤ 1,

and so

‖ fα
‖fα‖T

−fα‖∞ ≤ ε/2.

The same calculation works for ‖ fβ
‖fβ‖T

−fβ‖∞, so we conclude that

‖gα−gβ‖∞ ≥ 2− ε/2− ε/2 = 2− ε

as required.

5. Final remarks and open problems

Recall that the Ramsey theorem says that given any k ∈ N and any coloring c : [N]2 →
{1, . . . ,k} there is an infinite A ⊆ N which is i -monochromatic for c for some 1 ≤ i ≤ k,

that is, c[[A]2] = {i}. On the other hand, colorings of all pairs of uncountable cardinals
not bigger than continuum may not have uncountable monochromatic sets as already

shown by Sierpiński (24.23 of [26]). The phenomena considered in this paper can be seen

from a Ramsey theoretic point of view. For example, given a Banach space X one can
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consider a coloring c : [SX ]2 →{−1,0,1} given by

cX (x,y) =

⎧⎪⎨
⎪⎩

−1 if ‖x−y‖< 1

0 if ‖x−y‖= 1

1 if ‖x−y‖> 1.

A(1+)-separated set in SX is a 1-monochromatic set for cX , and by an observation of

Terenzi mentioned in the introduction, the existence of an uncountable equilateral set

in X is equivalent to the existence of an uncountable 0-monochromatic set for cX . On

the other hand, our main result says that there is a nonseparable Banach space X such
that every uncountable subset of SX contains an uncountable (−1)-monochromatic set.

It is not accidental that the separable results of Kottman or Elton and Odell employ the

Ramsey theorem [30, 9]. However, we are still far from understanding the structure of
monochomatic sets for the colorings cX . For example, it is natural to ask if the following

dichotomy holds:

Question 22. Is it true that the unit sphere of every nonseparable Banach space X either

contains a (1+)-separated set or every uncountable subset of the sphere SX contains an
uncountable subset which is (1−)-concentrated (or (1−ε)-concentrated for some ε > 0)?

Here, by (1−)-concentrated we mean a set Y ⊆ X such that ‖x− y‖ < 1 for any two

distinct x,y ∈ Y. In fact, if the above dichotomy does not hold, it would be interesting

to search for a nonseparable Banach space X such that cX has no uncountable 1-
monochromatic sets and the family of all uncountable (−1)-monochromatic sets is

minimal in some sense. Another aspect of our paper is the following general question:

Question 23. What nonseparable metric spaces can be isometrically embedded in every

nonseparable Banach space?

The Riesz lemma implies that for every ε > 0 every nonseparable Banach space of

density κ contains a metric space (M,d), where M = {0} ∪ {xξ : ξ < κ}, and where
d(0,xξ) = 1 for all ξ < κ and d(xξ,xη)> 1−ε for any ξ < η <κ. In this article, among other

results, we have shown in ZFC that uncountable metric spaces, where distances between

any two distinct points are the same, do not embed isometrically into all nonseparable
Banach spaces. The above question has been considered on the countable level in [39].

On the finite level, for example, Shkarin has proved in [46] that every finite ultrametric

space (a metric space where the distance d satisfies d(x,z)≤max(d(x,y),d(y,z)) for any
points x,y,z) isometrically embeds in any infinite-dimensional Banach space.
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