DYNAMO ACTION IN ACCRETION DISKS

ULF TORKELSSON

Lund Observatory, Box 43, S-221 00 Lund, Sweden

Abstract. Employing the standard theory for thin accretion disks I estimate the relevant parameters for a dynamo in an accretion disk. These estimates could then be compared to the results of numerical simulations. Some preliminary results of such simulations (Torkelsson & Brandenburg 1992) are presented too.

Key words: accretion, accretion disks – dynamo – (MHD) – cataclysmic variables – active galactic nuclei

1. Introduction

Using the theory for thin accretion disks (Shakura & Sunyaev 1973) it is possible to estimate several of the relevant parameters for a dynamo. These estimates are primarily based on the α -description of viscous friction. I assume that $\alpha = 0.1$ and the magnetic Prandtl number is of order unity. In Tab. 1 M is the mass of the compact object, R_{disk} the radial coordinate for a point in the disk, and Mthe accretion rate. The dynamo numbers are calculated according to $C_{\alpha} = \frac{\alpha_0 R_{\text{disk}}}{\eta_{\text{disk}}}$ and $C_{\Omega} = \frac{\Omega_0 R_{\text{disk}}^2}{\eta_{\text{disk}}}$, where α_0 is a typical velocity for the turbulent α -effect, Ω_0 the angular velocity, and η_{disk} the turbulent magnetic diffusivity in the disk. The given time scales are the Keplerian time scale, t_{Kepl} , and the magnetic diffusivity time scale, t_{diff} . Note that in the numerical calculations I use the diffusivity of the corona instead, which is assumed to be 20 times larger. The magnetic field, B_{press} is estimated by equilibrating the gas and magnetic pressure. Finally I give the temperature T of the disk. The low dynamo numbers for the AGN is due to the choice of a high accretion rate and low mass for the black hole.

2. Numerical simulations

We have undertaken numerical simulations of a disk dynamo by solving the dynamo equation

$$\frac{\partial \mathbf{B}}{\partial t} = \mathbf{\nabla} \times (\mathbf{V} \times \mathbf{B} + \alpha \mathbf{B}) - \mathbf{\nabla} \times (\eta_{t} \mathbf{\nabla} \times \mathbf{B}), \qquad (1)$$

(Torkelsson & Brandenburg 1992). It is solved with a time-stepping method on a 2-dimensional grid in the $r\theta$ -plane, where r and θ are spherical coordinates ranging from 0 to 1, and 0 to $\frac{\pi}{2}$ or π , respectively (Brandenburg et al. 1989). We assume Keplerian rotation in the disk except in the innermost 25 % where it turns over into rigid rotation. The magnetic diffusivity is small, 0.05, and constant inside the disk, and 1 outside the disk, to simulate a surrounding vacuum. Finally the α -effect is proportional to the angular velocity Ω and the vertical coordinate z.

An example of a simulation is presented in Fig. 1. If one decreases the thickness of this disk, it will be easier to excite a steady S0 mode than the oscillating A0 mode, which is in agreement with Stepinski & Levy (1990).

209

F. Krause et al. (eds.), The Cosmic Dynamo, 209–210. © 1993 IAU. Printed in the Netherlands.

https://doi.org/10.1017/S0074180900174133 Published online by Cambridge University Press

0	biect	White dwarf	Neutron star	Stellar black hole	Black hole in AGN
M	$\overline{(M_{o})}$	1	1	10	107
R_{diak} (m)		107	310^{6}	10 ⁶	10 ¹²
\dot{M} (M_{\odot} yr ⁻¹)		8 10 ⁻⁹	10 ⁻⁹	2 10 ⁻⁹	1
C_{α}		70	100	500	2
C_{Ω}		5 000	20 000	200 000	3
$t_{\rm Kepl}$ (s)		20	0.02	0.006	6 0 0 0
t _{diff} (s)		10 000	60	200	3 000
$B_{\rm press}$ (T)		80	10 000	20 000	0.03
T	(eV)	70	2 000	3 000	60
Poloidal	min -0.0006 max	0.0036 min -0	.0009 max 0.0029 m	in -0.0021 max = 0.0021	min -0.0032 max 0.0011
Toroidal		0.000	t = 0.053	t = 0.106	t = 0.159 min -2.1 max 0.3
	min -0.7 max	1.7 min	-1.2 max 0.0	. mm -1.7 max 0.6	

TABLE I Magnetic fields and time scales in accretion disks

Fig. 1. For a disk with thickness 0.25 at the rotational axis and thickening outwards with a slope of 0.25, the most easily excited mode is an oscillating A0 mode with $C_{\alpha}C_{\Omega} = 43.2$ and angular frequency of 14.7 in units of the inverse of the magnetic diffusivity time outside the disk. This is in agreement with Stepinski & Levy (1988). The upper row of the figure shows the poloidal field and the lower one the toroidal field, solid lines are for positive values and broken lines for negative. t = 0 is chosen arbitrarily.

Acknowledgements

The numerical calculations are being carried out on the Cray X-MP/416 at the National Supercomputer Center, Linköping, Sweden.

References

Brandenburg, A., et al: 1989, A & A 213, 411 Shakura, N. I. and Sunyaev, R. A.: 1973, A & A 24, 337 Stepinski, T. F. and Levy, E. H.: 1988, ApJ 331, 416 Stepinski, T. F. and Levy, E. H.: 1990, ApJ 362, 318 Torkelsson, U. and Brandenburg, A.: 1992, A & A, in preparation