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Abstract

Neuromuscular controllers (NMCs) offer a promising approach to adaptive and task-invariant control of exoskeletons
for walking assistance, leveraging the bioinspired models based on the peripheral nervous system. This article
expands on our previous development of a novel structure for NMCs with modifications to the virtual muscle model
and reflex modulation strategy. The modifications consist firstly of simplifications to the Hill-type virtual muscle
model, resulting in a more straightforward formulation and reduced number of parameters; and second, using a finer
division of gait subphases in the reflex modulation state machine, allowing for a higher degree of control over the
shape of the assistive profile. Based on the proposed general structure, we present two controller variants for hip
exoskeletons, with four- and five-state reflex modulations (NMC-4 and NMC-5). We used an iterative data-driven
approach with two tuning stages (i.e., muscle parameters and reflex gains) to determine the controller parameters.
Biological joint torque profiles and optimal torque profiles for metabolic cost reduction were used as references for
the final tuning outcome. Experimental testing under various walking conditions demonstrated the capability of both
variants for adapting to the locomotion task with minimal parameter adjustments, mostly in terms of timing.
Furthermore, NMC-5 exhibited better alignment with biological and optimised torque profiles in terms of timing
characteristics and relative magnitudes, resulting in less negative mechanical work. These findings firstly validate the
adequacy of the simplifiedmusclemodel for assistive controllers, and demonstrate the utility of amore nuanced reflex
modulation in improving the assistance quality.

1. Introduction

Lower-limb exoskeletons are increasingly gaining traction for applications outside of research labs. In
addition to use in rehabilitation clinics (Plaza et al., 2023) and facilitating functional mobility for
individuals with severe impairments (van Dijsseldonk et al., 2020), exoskeletons are being considered
for assisting workers in industrial (Kim et al., 2019) and construction sites (de Looze et al., 2016),
improving athletic performance (Moon et al., 2023), and even maintaining fitness in low-gravity
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environments (Rea et al., 2013). Although specific performance requirements vary across these different
use cases, a common challenge is effectively bridging the gap between human intent and the actions of the
assistive device (Lobo-Prat et al., 2014). While many of the existing exoskeleton control strategies can
effectively provide assistance under controlled settings, they often struggle in adapting to the diverse needs
and dynamic contexts of real-world scenarios, due to the reliance on predefined parameters or assistance
patterns. This restricts the exoskeleton’s ability to seamlessly adjust its support to different locomotion
tasks (e.g., walking, stair climbing) and individual user characteristics (e.g., strength, gait patterns).

One way to overcome this limitation is adding a higher-level layer to adjust the controller based on
recognition of the terrain and its features (Al-dabbagh andRonsse, 2020), detection of the locomotion task
(Moreira et al., 2022) and its characteristics (Slade et al., 2022;Medrano et al., 2023), or measurements of
the users’ response to variations in assistance (human-in-the-loop optimisation approaches) (Ding et al.,
2018; Song and Collins, 2021).While these approaches have shown promising outcomes, they comewith
trade-offs. The added complexity demands more sensory information, higher computational loads, and
extensive data and training.

Another approach is to rely on control methods that inherently adapt to the user and task, without the
need for explicit detection and parameter adjustments. That is, rather than using predefined assistance
patterns or trajectories, the assistive torque/force emerges in real-time from the interaction of the device
with the user. A basic example of such methods which was proposed early in the exoskeleton literature is
proportional myoelectric control (Ferris et al., 2005). In this method, the exoskeleton torque is directly
determined by the muscle activities of the user. Despite the straightforward concept and positive
experimental outcomes, this method is hindered by issues associated with EMG sensing, such as
sensitivity to electrode placement, susceptibility to noise and variability, and the necessity for user-
specific calibration (Türker, 1993; Cimolato et al., 2022). Model-based methods such as “integral
admittance shaping” (Nagarajan et al., 2016) and “energy shaping” (Lin et al., 2022) leverage dynamical
models of walking mechanics. By manipulating the general dynamics of the human-exoskeleton system,
these methods can provide task-agnostic assistance. However, implementation of such methods is
challenging in practice, mainly due to their dependence on accurate models and parameters such as
segment inertias, which are difficult to obtain accurately. Alternatively, there are heuristic methods of
mapping sensory information to assistive action such as the one proposed by Lim et al. (2019) for hip
exoskeletons. While these methods tend to be more practically feasible without the need for complex
models or sensors, the lack of a systematic approach limits them to a specific joint and offers a narrower
scope for fine-tuning the provided assistance.

Inspired by the remarkable versatility of human locomotion, exoskeleton control strategies based on
neuromuscular and biomechanical models of human gait provide a different avenue for improving
controller adaptability (Firouzi et al., 2023). A main group of these methods was initiated by the early
work of Geyer et al. (2003) and Geyer and Herr (2010) in which a simplified body model actuated by
virtual muscles, driven by local feedback loops mimicking reflexes of the peripheral nervous system,
generated stable and robust human-like gaits in simulation. Controllers based on this idea, also known as
neuromuscular controllers (NMCs)1, were implemented on prostheses (Eilenberg et al., 2010) and later on
exoskeletons (Dzeladini et al., 2016), showing inherent adaptability without the need for extensive
sensory inputs (Tagliamonte et al., 2022). Thanks to the modularity of the model, it has been extended to
assist different joints and degrees of freedom, including sagittal hip-knee (Wu et al., 2017) and ankle
(Tamburella et al., 2020; Shafer et al., 2021), and Meijneke et al. (2021) have extended it by including
abduction/adduction assistance too. In a recent study (Afschrift et al., 2023), the controller has been
augmented with a reflex driven by the center of mass velocity deviations from a standard trajectory in
addition to local reflexes, and implemented on an ankle exoskeleton to also assist balance recovery after
perturbations. A similar implementation with center of mass reflexes for standing balance assistance has
also been reported (Yin et al., 2022).

1All of the abbreviations and acronyms used in the article are listed in Supplementary Table 1.
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Despite differences in reflex mappings and configuration of the joints, all of the mentioned imple-
mentations of NMCs use a two-phase (i.e., stance/swing) reflex modulation and a Hill-type (Miller, 2018)
muscle model, similar to the original structure introduced by Geyer and Herr (2010). However, some
studies exploring neuromechanical models in simulation have utilised more nuanced reflex modulations
based on subphases within stance and swing for finer control of generated behaviours (Wang et al., 2012;
Ong et al., 2019). Furthermore, the Hill-type model was originally designed to replicate the behaviour of
biological muscles. While achieving high fidelity with respect to biological systems can be beneficial for
predictive and explanatory objectives in simulation studies, the added complexity might not be warranted
in practical applications for controlling assistive devices. In addition to the added computational
complexity and the need for numerical solutions, the Hill model can also cause numerical issues such
as oscillatory response due to numerical integration (Van der Noot et al., 2014), and unstable behaviour in
serially connected elements (Yeo et al., 2023).

Based on these observations, we proposed modifications to the commonly used NMC structure, simpli-
fying the virtual muscle model and using a more fine-grained reflex modulation (Messara et al., 2023). The
simplification of the muscle model aims to reduce the computational complexity without loss of functionality.
In contrast, the added nuance to the reflex modulation structure is intended to improve the adaptability of the
controller’s output and facilitate tailoring the torque profiles to specific needs. In this article, we give a more
thorough description of the novel structure, and detail our parameter tuning strategy.We also test and compare
the performance of two variants of the controller designed for hip exoskeletons targeting general augmentative
assistance, with different numbers of phases for reflexmodulation to evaluate the utility of usingmore phases.
A more in-depth analysis of the results of assisted walking experiments is also given.

2. Materials and methods

2.1. Controller structure and modifications

The general structure of NMCs (see Figure 1 for an example) can be divided into two parts: the high-level
“neural” layer, where the feedbackmappings (termed “reflexes”) between sensory inputs and control actions
are defined; and the low-level “muscular” layer, where the action signals from the neural layer are translated
into joint torque commands using virtual muscles. Our proposedmodifications to the NMC structure involve
both layers, andwill be described separately here. For each layer,wewill provide the general formulation, and
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Figure 1. The schematic structure of the NMC (left) and the virtual muscle model (right). The high-level
(neural) layer consists of the finite-state machine (“Gait FSM”) and reflex loops (“Neural stimulation”)
which are directly modulated by the FSM. The low-level (muscular) layer involves the virtual muscles,

and is not affected by the FSM.
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then describe our proposed modifications. We will use the same notations as Geyer and Herr (2010) unless
stated otherwise. A comprehensive list of the symbols can be found in Supplementary Table 2.

2.1.1. Virtual muscles
TheHill-typemuscle models are a class of phenomenological models of the biological muscle initiated by
the early work of Hill (1938), which have been widely used in computational models of animal
movement. These models represent the muscle-tendon unit (MTU) with a combination of active and
passive nonlinear viscoelastic elements (Miller, 2018). The commonly used configuration in NMCs (the
one used by Geyer and Herr (2010)) consists of four nonlinear viscoelastic elements (Figure 1, right).
Three of the elements are passive; namely, the serial element (SE), the parallel element (PE) and the buffer
element (BE). PE and BE only act when theMTU length is outside of its normal operating range. The last
element, termed the contractile element (CE), is the only active element which generates muscle
contractions. The force generated by the passive (NLP) elements at the contraction is given by the
force–length relationship (Geyer and Herr, 2010):

FSE ¼Fmax �
ℓSE

ℓSE,slack
�1

ϵSE

0
BB@

1
CCA

2

(1)

FBE ¼Fmax �
ℓBE

ℓBE,slack
�1

ϵBE

0
BB@

1
CCA

2

(2)

FPE ¼Fmax � f vðvCEÞ �
ℓPE

ℓPE,slack
�1

ϵPE

0
BB@

1
CCA

2

(3)

where ℓNLP
2 is the length of the NLP element, ℓNLP,slack

3 is its slacking length, ϵNLP4 the reference strain,
and Fmax the maximum isometric force of the MTU.

The CE force at the contraction, denoted as FCE, is calculated based on the muscle activation Act, the
force–length relationship f ℓ and the force–velocity relationship f v, described as:

FCE ¼Act tð Þ � f v vCEð Þ � f ℓ ℓCEð Þ �Fmax (4)

τ � d
dt
Act tð Þ¼Stim tð Þ�Act tð Þ (5)

f ℓ ℓCEð Þ¼ exp

ℓCE
ℓopt

�1

ω

 !2
0
@

1
A (6)

2 The subscript “NLP” is replaced either by “SE,” “PE,” or “BE” in the equations for each element.
3 The equivalent notations in (Geyer and Herr, 2010) are ℓse,slack ¼ℓrest, ℓbe,slack ¼ℓmin, ℓpe,slack ¼ℓopt .

4 The equivalent notations in (Geyer and Herr, 2010) are ϵSE ¼ ϵref , ϵBE ¼ w�ℓopt

2�ℓmin
, ϵPE ¼w.
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f v vCEð Þ¼

1� vCE
vmax

1þK � vCE
vmax

if vCE ≥ 0

Nþ N�1ð Þ
1þ vCE

vmax

�1þ7:56 �K � vCE
vmax

if vCE < 0

8>>>>>>>>><
>>>>>>>>>:

(7)

The equations involve the two internal state variables of the CE, namely, the CE length (ℓCE) and
velocity (vCE), in addition to the activation (Act) signal, which is determined by the stimulation (Stim)
signal (received from the neural layer) through the dynamical Equation (5) with the time constant τ. In the
force–length relationship (Equation 6), ℓopt is the optimum CE length (corresponding to the maximum
force), and the constant ω determines the width of the Gaussian. In the force–velocity relationship
(Equation 7),K is a curvature constant, vmax is themaximum contraction velocity, andN is the normalised
MTU force, FCE=Fmax. Finally, the generated force at each MTU is given by:

FMTU ¼FSE ¼FPEþFCE�FBE (8)

The third part of the model establishes the links between the mechanical state of the joint and that of
each connectedMTU. These relationships are specific to each joint and are deduced from the geometry of
the joint model. For the hip joint:

r tð Þ¼ r0 (9)

ℓMTU θð Þ¼ℓoptþℓslack ± r0 �ρ � θ�θrefð Þ (10)

where r is the muscle moment arm (equal to the constant r0 for the hip), ℓMTU denotes the MTU length,
θ the joint angle, ℓslack the tendon slacking length, θref the angle at which the MTU length is equal to
ℓoptþℓslack, and ρ is a constant accounting for muscle pennation angles. The choice of the operation for
the ± depends on the type of the muscle: þ for the flexor and � for the extensor. Furthermore, the joint
angles in the direction of flexion are considered positive. The equations for the knee and ankle muscles
(in the case of bi-articular muscles whose states present a coupling of the two joints) are:

r tð Þ¼ r0 � cos θ�θrefð Þ (11)

ℓMTU θð Þ¼ℓoptþℓslack ± r0 �ρ � sin θ�θrefð Þ� sin θmax�θrefð Þð Þ (12)

Again, the ± sign depends on the type of the muscle, but for this group of muscles � corresponds to
flexor and þ to extensor muscles.

The final torque around the joints is finally given by:

TMTU ¼FMTU � r tð Þ (13)

Finding the MTU force requires resolving six state variables: one neural state variable (CE activation)
which depends directly on the neural stimulation, and five mechanical state variables, namely the lengths
of the BE, SE, PE and CE and the velocity of the CE. Solving for the mechanical state variables is more
challenging as the number of the mechanical equations (three) is less than the number of the unknown
variables (five). The challenge is further aggravated by the nonlinear and highly coupled nature of the
system.
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Geyer and Herr (2010) adopted an iterative approach that uses the precedent value of the CE length to
compute all the forces and then invert the f v relationship to find vCE. The next value of ℓCE is then
obtained by numerically integrating vCE. As this method uses an iterative pattern with inversions and
numerical integration, this makes it less accurate and less adapted to real-time calculations. For these
reasons, we propose two simplifications to themodel that lead to amore efficient computational approach.

Simplifications of the model. In order to solve the mechanical states algebraically, we assumed the SE
(which roughly captures the series elasticity of the tendon) to have a constant length. This is motivated by
the high biological stiffness of the tendon that is reported in the literature to be around 150 kN�m�1

(Maganaris and Paul, 1999). By making this assumption, the internal degrees of freedom are reduced,
which allows to exploit the analytical derivative of the CE length to obtain its velocity:

ℓCE ¼ℓMTU�ℓSE

¼ℓoptþℓslackþΔℓMTU θð Þ�ℓSE
(14)

vCE ¼ d
dθ

ΔℓMTU θð Þ �dθ tð Þ
dt

(15)

The expression of ΔℓMTU θð Þ depends on the considered joint, according to Equations 10 and 12. For
example, in the case of the hip joint, from Equation 10:

ΔℓMTU θð Þ¼ r0 �ρ � θ�θrefð Þ (16)

vCE ¼ r0 �ρ � _θ (17)

We call this computational strategy the derivative approach, which contrasts with the integral approach
for obtaining ℓCE from vCE, as proposed by Geyer and Herr (2010) and utilised in the classic NMC
structure.

The force generated at the joint level is approximated as:

FMTU ¼FCEþFPE�FBE ≈FCE (18)

The last approximation comes from the negligible role of BE and PE in the normal ranges ofmovement
required for locomotion. Note that these two elements only act when the MTU is over-stretched or over-
slacked, and thus do not have a major effect on the generated forces.

Choice of virtual muscles and joint torque. In this study, we target a hip exoskeleton and therefore only
the hip joint is considered in the neuromuscular model. Around the hip joint, the model of Geyer and Herr
(2010) considered two extensors, namely, hamstring (HAMS) and gluteusmaximus (GLU), in addition to
the hip flexor group (HFL). The same muscles were used by Ong et al. (2019), but the HFL was
decomposed into rectus femoris (RF) and iliopsoas (ILPS). Since the exoskeleton used in this study
provides actuation and sensing only at the hip level, we only considered themono-articular muscles solely
affecting the hip, i.e., GLU as the extensor and ILPS as the flexor, to avoid dependence on the state of the
knee joint.

During tuning and pilot testing, we observed that with the initial values of the parameters, the
amplitude of the generated assistive torques did not sufficiently adapt to various walking conditions.
Therefore, we introduced a scaling gain Gs,v, which was manually tuned according to the walking speed
and ground inclination. The total applied torque is thus given by:

Tassist ¼Gs,v � T ILPS�TGLUð Þ (19)
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A detailed block diagram representation of the controller is shown in Supplementary Figure 1. For the
experiments, the output of this equation was sent through a low-pass filter (first-order, f c ¼ 20Hz) in
order to enhance the smoothness of the torque profile and prevent discomfort to the user.

2.1.2. Reflex modulation and state machine
The stimulation signal used in Equation 5 is determined in the neural layer, based on one or a combination
of reflexes for each muscle, with this general expression:

Stim tð Þ¼ Stim0þ
X

i
±Gi �Pi t�δtð Þð Þ (20)

where Stim0 is a basal stimulation, Gi‘s are reflex gains, and Pi‘s are reflex sensory inputs delayed by a
signal propagation time δt. Typically used reflex sensory inputs are muscle forces, lengths and rates of
lengthening, but constant values have also been used. In this work, we chose to rely only on length
feedback and constant inhibition. This choice is motivated mostly by the smoothness of the length signal.
Moreover, it has been shown that length and velocity feedback were sufficient to adapt to different
walking speeds (Ong et al., 2019). The general expression of Stim in our case thus becomes:

Stim tð Þ¼Stim0 þGℓ �ℓCE t�δtð Þ½ � �C½ � (21)

whereGℓ is the length reflex gain andC is a constant inhibition term. For the hipmuscles, we used δt¼ 5 ms,
which is a constant simulating the neural signal delays.

The neural stimulation of the legmuscles during the gait cycle exhibits trends that are dependent on the
gait phase (Nielsen and Sinkjær, 2002). In accordance with this observation, the goal of reflex modulation
is to determine the reflexes included in the summation term on the right hand side of Equation 20 in each
subphase of gait. For this reason, a finite statemachine (FSM) composed of gait phases is a good candidate
for reflex modulation. In addition, FSMs with state transitions triggered by gait events do not require
perfect periodicity or prior knowledge of the walking speed or cadence, unlike time-based synchronisa-
tionmethods. In their initial study, Geyer andHerr (2010) considered only two states, corresponding to the
stance and swing phases, which is a rather coarse decomposition of the gait cycle.

In our implementation, we opted for a more detailed state decomposition that could better encapsulate
the continuous trends of stimulation during gait. The design of the FSM and its state transition criteria
must account for variations in gait as a result of environmental factors, as well as the inter-person

Table 1. NMC-4 reflex modulations for each FSM state, displaying the types of reflexes (positive length, Lþ, or constant inhibition,

C�) along with the numerical values (in square brackets)

Phase Muscle ES MS�PS S LP

GLU Lþ 0:8½ � Lþ 0:8½ �,C� 0:08½ � Basal 0:01½ � Lþ 0:8½ �
ILPS Basal 0:01½ � Lþ 0:6½ � Lþ 0:6½ � Basal 0:01½ �

Table 2. NMC-5 reflex modulations for each FSM state, displaying the types of reflexes (positive length, Lþ, or constant inhibition,

C�) along with the numerical values (in brackets)

Phase Muscle ES MS PS S LP

GLU Lþ 0:8½ � Lþ 0:65½ �,C� 0:03½ � Lþ 0:65½ �,C� 0:08½ � Lþ 0:65½ �,C� 0:08½ � Lþ 0:6½ �
ILPS Basal 0:01½ � Lþ 0:6½ � Lþ 0:6½ � Lþ 0:6½ � Lþ 0:65½ �,C� 0:04½ �
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variability in gait patterns. Hence, in this work we rely on robustly detectable events with little inter-
person variability based on ground contact status (based on insole pressure sensing) and zero crossings of
the hip angular velocity. We propose two variants of the controller with four and five states, named
NMC-4 and NMC-5 respectively, as detailed in what follows.

Four-state FSM (NMC-4). This statemachine includes the following states: early stance (ES), mid-stance
and pre-swing (MS-PS), swing (S) and landing preparation (LP). The events for detecting the state
transitions are the ipsilateral heel-strike (LP to ES), the contralateral toe-off (ES toMS-PS), the ilpsilateral
toe-off (MS-PS to S), and the flexion-to-extension zero crossing of the ipsilateral hip angular velocity
(S to LP).

Five-state FSM (NMC-5). The considered states in this FSMare: early stance (ES), mid-stance (MS), pre-
swing (PS), swing (S), and landing preparation (LP). The events are similar to those of the four-state FSM,
in addition to the contralateral heel-strike for the transition from MS to PS.

2.2. Tuning procedures

The muscular model consists of 18 parameters per virtual muscle, plus six reflex gains per leg for the
NMC-4 variant and 13 gains per leg for NMC-5. Here, we describe the detailed tuning procedure, a
summary of which was provided in our previous work (Messara et al., 2023).

2.2.1. Virtual muscle parameter tuning
For the tuning of the virtual muscle parameters, we used data-driven simulations, in which prerecorded
gait data was provided as input to the controller in a simulated environment. The prerecorded data (i.e., hip
angles, angular velocities, and ground contact status) were obtained from three able-bodied participants;
onemale with a bodymass of 69 kg, and a female with a bodymass of 58 kg, both with prior experience of
assisted walking with a hip exoskeleton, in addition to a naïve participant (male, body mass 65 kg). The
participants walked under different conditions; freely at their self-selected speed on flat ground, as well as
on the treadmill at different speeds ranging from 0.8 m/s to 1.80 m/s and under different inclinations from
0% to 10%.Datawere collectedwith the same exoskeletonwhichwas used for the evaluation experiments
(see Section 2.3), but without applying any assistance torque. The moderate variation of characteristics in
the tuning population (gender, weight, and experience with the exoskeleton) as well as in the walking
conditions aimed at preventing overfitting biases to ensure scaling to different users and conditions.

We relied on two former studies for the initial values; the one of Geyer and Herr (2010) in which the
gains were manually tuned in simulation, and the study of Ong et al. (2019) which optimised a multi-
objective function including the gross cost of transport, falling and ligament injuries minimisation, and
head tilting and step speeds stability maximisation. We followed an iterative approach, consisting in
analysing the resulting torques and the various state variables (ℓCE, vCE, TMTU, Stim, Act, etc.). Two
torque profiles were used as the benchmarks for this comparison; that is, the estimated torque profiles of
the human hip joint (Winter, 1991; Reznick et al., 2021), to which we will refer as “biological profiles”,
and those obtained in human in the loop (HIL) assistance torque optimisation studies (Ding et al., 2018;
Franks et al., 2022), which we will address as “HIL profiles”. This approach was used to isolate a set of
focal parameters to be re-tuned, varying one parameter per iteration. The identified focal parameters and
their effects were:

• the optimal CE length (ℓopt) in Equation 6, which affects the Gaussian peak of the force–length
relationship, and the reference angle (θref ) which influences the MTU force lever. These two
parameters correlate to the timing of the flexion and extension torque peaks and are thus crucial
in setting the torque profile;
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• the maximum speed (vmax) and the constant K in Equation 7, which shape the slope of the force–
velocity relationship and control accordingly the sensitivity of the torque profile to velocity
variations;

• the maximum force (Fmax) in Equation 4, which sets the magnitudes of the muscular force and joint
torque. Since only twomuscles are considered in themodel, it was not possible to keep the biological
force ratio between the GLU and the ILPS as this would have led to a disequilibrium between the
flexion and the extension torques. Thus, the maximum forces ratio was set equal in order to
compensate for the absence of the other muscles.

• the time constant (τ) in Equation 5 defines the attenuation between the muscle stimulation and
activation and accordingly the torque profile smoothing;

• the choice of SE length (ℓSE) was tuned to a mean working value since it is assumed constant in the
simplified model.

The remaining model parameters kept their initial values, except for the basal stimulation Stim0 of ILPS,
which was adjusted to be similar to that of GLU to compensate for the missing flexors compared to the
base model (Geyer and Herr, 2010). All of the numerical values of the parameters are reported in
Supplementary Table 3.

2.2.2. Neural reflex gain tuning
Tuning the reflex gains was more challenging, given that the chosen types and combination of reflexes
were different from previous studies. In addition, the gains highly influence the magnitude of the
generated torques, and thus needed to be adapted to the hardware capacities of the target exoskeleton
in terms of peak and nominal torques of the actuators.We used a two-stage simulation approach with hand
tuning. First, we performed hardware in the loop simulation which consisted of playing pre-recorded gait
kinematic profiles on the exoskeleton’s embedded computer. Second, system in the loop with the
exoskeleton was used; the torques were simulated on the exoskeleton in real-time based on the kinematics
measured online, but it was not applied yet on the motors. The generated torque was monitored using a
desktop application connected to the embedded computer, then MATLAB was used for further analysis.
The tuning criteria of the inhibition constants and gains were, first, the continuity and smoothness of the
torque profiles despite the discrete state transitions and second, the mimicry of the biological and HIL
torque profile in terms of curve tendency, characteristic times, and magnitude ratio (Winter, 1991; Franks
et al., 2022). The values of the neural reflex gains for the four- and five-state variants are reported in Tables
1 and 2, respectively. Regarding the slope (s) and velocity (v) adaptation gain (Gs,v), we used the average
ratio between the biological torque profiles of different inclines and speed groups, compared to a baseline
walking condition (walking speed of 1.25 m/s and 0% slope) (Reznick et al., 2021; Winter, 1991). The
values ofGs,v were 0:8, 1, 1:15 for the slow, normal, and high speed groups, respectively and 1:15 for the
incline (the same gain was applied for all inclines not exceeding 15%).

2.3. Experimental setup and protocol

Nine healthy participants (5 females, 4 males, age: 27 ± 2:3 years, body mass: 65:0 ± 8:4 kg, height:
171:8 ± 4:7cm) were recruited for the experimental testing. The protocol was reviewed and approved by
the EPFL Human Research Ethics Committee. The participants provided their written informed consent
prior to partaking in the experiment.

An autonomous hip exoskeleton (e-Walk V1) was used as the implementation platform for the
controllers. The exoskeleton’s mass is 5 kg and can deliver torques of up to 35 N�m around the frontal
axis in active mode. In passive mode, the joints are easily backdrivable thanks to efficient planetary
reducers with a 6:1 ratio. Flexibility of the thigh segments around the sagittal axis allows hip abduction in
the limited range required for walking. Hip flexion/extension angles and angular velocities are measured
using the encoders of the motors, and the output torques are estimated from motor currents. Additionally,
foot contact status is determined using insole pressure sensors. All control and data logging operations
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were performed on the embedded computer of the exoskeleton at 500 Hz. More details about the device
can be found in our previous article (Messara et al., 2023). A treadmill with adjustable speed and
inclination (N-Mill, Forcelink B.V., Netherlands) was used for all of the experimental conditions. The
experimental setup is schematically represented in Figure 2A.

The experimental procedure consisted of walking on the treadmill at various speeds and inclinations
while wearing the exoskeleton, starting with 0% inclination at 0.8 m/s (C1), 1.25 m/s (C2), and 1.8 m/s
(C3), and then 1.25 m/s with 10% inclination (C4). The selected walking speeds were intended to
represent a variety of slow to fast walking speeds used by able-bodied individuals in daily ambulation, in
line with the target application of general augmentative assistance. We will refer to C1–C4 as the
“constant” conditions, since the treadmill speed and inclination were constant in each one. The partic-
ipants went through the constant conditions first with NMC-5, followed by NMC-4. The same conditions
were also repeated with the exoskeleton in transparent (zero-torque) mode (TRS) to measure each
participant’s baseline kinematics. The chronological order of the conditions was the same for all
participants, as shown in Figure 2. However, the durations were slightly shorter in the TRS set, as we
did not expect any substantial gait adaptation, unlike in the assisted conditions where adaptation to the
exoskeleton’s assistance was anticipated. Lastly, in order to test the adaptation of assistance to continuous
changes in inclination, a final condition was tested during which the inclination of the treadmill gradually
increased from 0 to 15% over 1 min (C5). We will refer to this condition as the “variable inclination”
condition. While both variants were tested under this condition, we will only present the results for
NMC-5 since it consistently showed better performance in the constant conditions.

The only parameter that was modified between the conditions was the linear scaling gain Gs,v, which
was manually changed to improve the adaptation of assistance amplitude as explained in Section 2.2.2.

2.4. Data processing and analysis

All of the gathered data were first visually inspected for integrity prior to processing. The data for three
participants (P3, P4, and P6) in the C5 condition were excluded from analysis due to issues in ground
contact sensing. Signals from the insole pressure sensors were used for heel-strike detection and stride
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Figure 2.Experimental setup and procedure. (A) Schematic illustration of the experimental setup. (B) The
order and specifications of the experimental conditions.
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segmentation, with heel-strikes marking the start of the gait cycle. To analyse the generated assistive
torques, we directly used the torque commands calculated from Equation 19 (after low-pass filtering, as
explained in Section 2.1.1). To calculate themechanical power output of the exoskeleton, however, we used
the measured torques (based on actuator currents). All torque and power values were normalised by the
participants’ bodymass. Due to the symmetry between left and right sides, we only used the data for the left
leg in our analyses. The left/right symmetrywas verifiedby checking the stride durations and average single-
stride profiles of the hip joint angles and assistive torques for each participant. Before calculating the average
profiles, we removed the outlier strides, identified as those including samples that were more than three
scaledmedian absolute deviations away from the localmedian. To obtain themeans and standard deviations
across all participants, we first calculated the mean values over all strides for each participant and then
calculated the grand mean and standard deviation from the participant means. Angles and torques in the
direction of flexion were taken to be positive. All data processing was carried out using MATLAB.

3. Results

3.1. Assistive torques and powers

Due to substantial differences in the generated torques across participants, we chose to present the
average torque and power profiles for individual participants rather than averaging across them. The
torque profiles generated by the two variants under the constant conditions are shown in Figure 3 for

Figure 3. Torque profiles generated by the four-state (NMC-4) and five-state (NMC-5) variants under
different conditions (C1–C4) for three representative participants (P1, P5, and P9). The curves represent

the mean across strides, and the shaded area represents ± 1 standard deviation around the mean.
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three representative participants. The torque profiles under these conditions for all participants can be
found in Supplementary Figures 2–5. Both variants applied extension assistance starting from mid- to
late swing; that is, at 88:5% of the gait cycle with NMC-4, and 85:7% with NMC-5 on average. The
extension assistance reached a peak in early stance, on average occurring at 5:5% of the gait cycle in the
flat conditions (C1–C3) and at 7:8% in the inclined condition (C4) with NMC-4; with NMC-5,
the average peak timing was 8:2% in the flat conditions and 11:0% in the inclined condition. This
was followed by a gradual transition to flexion assistance during the stance period, taking place at
around 20–30% of the gait cycle in case of NMC-4 and near 50% with NMC-5. The peak flexion
assistance occurred on average around 67% of the gait cycle with NMC-4 and near 60%with NMC-5. In
terms of magnitude, the average ratio of extension to flexion peak torques was 1:71 in the NMC-4
profiles and 2:45 with NMC-5.

The resultingmechanical powers output by the exoskeletonwere predominantly positive, as illustrated
in Figure 4 for three representative participants in the constant conditions. The power profiles for all
participants are provided in Supplementary Figures 6–9 for conditions C1–C4, respectively. In both
variants, the most prominent bursts of power occurred around the periods of transition between swing and
stance, in accordance with the periods of peak torque observed in Figure 3. In terms of mechanical work
(i.e., the time integral of power), NMC-4 delivered positive and negative works of 0.158 and�0:011 J/kg
in each stride, whereas NMC-5 delivered 0.114 and �0:002 J/kg of positive and negative mechanical

Figure 4. Exoskeleton output mechanical power profiles of the four-state (NMC-4) and five-state
(NMC-5) variants under different conditions (C1–C4) for three representative participants (P5, P6, and
P9). The curves represent the mean across strides, and the shaded area represents ± 1 standard deviation

around the mean.
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work, respectively (average across all conditions and participants). The average values of positive and
negative mechanical work per stride for each condition are reported in Supplementary Table 4.

To better visualise the adaptation of assistance across different walking conditions, the average torque
profiles generated by NMC-5 under the constant conditions for each participant are plotted together in
Figure 5. While the specific details of the torque profiles varied between participants, the overall trends
across the four conditions were largely consistent, particularly in terms of timing.

In the variable-inclination condition, the torque profiles displayed a continuous evolution, as illus-
trated in Figure 6. The evolution was most prominent in the extension assistance period between late
swing and mid-stance. With increasing inclination, the average peak extension timing tended to occur
later in the gait cycle, going from 8:4% of the gait cycle on flat treadmill to 12:0% of the gait cycle at the
maximum inclination. In addition, the magnitudes decreased at higher inclinations, with total reductions
of around 20% and 24% in the peak extension and flexion torques respectively between the initial and
final inclinations. These magnitude trends were partly affected by the force-length factor of the virtual
muscles, depicted in Supplementary Figure 10.

3.2. Hip joint kinematics

The assistance provided by both variants slightly altered the hip joint angles compared to unassisted
walking, as observed in the average profiles in Figure 7A–D. The hip joint angle profiles for individual

Figure 5. Torque profiles produced by the five-state variant (NMC-5) under the four conditions (C1–C4),
shown for each participant (P1–P9) separately. The curves represent the mean across strides, and the

shaded area represents ± 1 standard deviation around the mean.
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participants under different conditions are shown in Supplementary Figures 11–14. Furthermore, there
were conspicuous differences in the profiles between NMC-4 and NMC-5. The differences were also
reflected in the average ranges of motion (RoMs) of the hip joint, plotted in Figure 7E. NMC-4 increased
the range of motion in flexion mostly, by an average of 9.90° in C1, 13.26° in C2, 11.19° in C3, and 7.80°
in C4. Inversely, NMC-5 caused higher extension angles with increases of 3.50° in C1, 5.18° in C2, 5.59°
in C3, and 4.97° in C4 compared to unassisted walking.

Figure 7. Average hip angle profiles (panels A–D) and ranges of motion (RoMs) (panel E) across all
participants obtained with the four-state (NMC-4) and five-state (NMC-5) variants, compared against
unassisted walking (TRS). In the average profiles, the curves represent the means across all participants

and strides, and the shaded areas mark ± 1 standard deviation around the means.

Figure 6. Stride-by-stride evolution of the assistive torque profiles generated by the five-state variant
(NMC-5) during the variable-inclination condition (C5) for individual participants. Each curve corre-
sponds to one stride, and the darker curves occurred later in time and therefore correspond to larger

inclinations.
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4. Discussion

4.1. Generated assistance in the constant conditions

We focus our analysis of the performance of the two variants mostly on the timing of assistance, since the
magnitudes were considerably affected by the manually modified gain Gs,v. The timings, on the other
hand, had a completely emergent nature. When analysing magnitude, we focus mostly on the relative
values within each condition, which were not affected by Gs,v.

The FSM state transition timings of both variants were coherent with the gait phase transition timings
typically observed in normal walking. Since the transition criteria for the common states between the two
variants were identical, the state transition timing values were nearly the same. On average, the states ES,
MS-PS, S, and LP started at 0%, 10.3%, 60.6%, and 87.2%, respectively, in accordance with the values
reported in normal gait (Winter, 1991).

Overall, the generated assistive torques by both the NMC-4 and NMC-5 variants displayed similar
trends compared to the biological hip joint moment profiles, as expected from the tuning procedure. The
torque profiles of both variants under each condition were quite similar across different strides for each
participant. Contrarily, notable differences in trends and timing were observed among the participants,
resulting from individual differences in gait pattern, as observed in Supplementary Figures 11–14.
Generally, both variants generated a relatively steep shift toward extension assistance in late swing,
leading to a prominent peak of extension torque in early stance. With NMC-4, this peak happened on
average at 5:5% in the flat conditions (C1–C3) and at 7:8% in the inclined condition (C4). For NMC-5, the
peak occurred around 8:2% in the flat conditions and near 11:0% in the inclined condition. The timings of
these peaks (5.5–7.8% of the gait cycle for NMC-4, and 8.2–11.0% for NMC-5) are close to the timings
observed in both the biological joint moment profiles (Reznick et al., 2021) and those obtained from HIL
optimisation (Franks et al., 2022), which occur on average at 6:0% and 10:3%, respectively. Furthermore,
in both variants this peak occurred later as speed and inclination increased, in agreement with the trend
observed in biological profiles.

The extension-to-flexion torque transition occurring around midstance was remarkably different
between the two variants. The transition happened earlier (20–30% gait cycle) in NMC-4, and had a
relatively high variation between the conditions. These values fall in the low range of the biological
timings, and precede the ones of HIL optimisation reported at 36:5 ± 3:5% of the gait cycle. Furthermore,
under the condition C3 (fast walking), the transition from extension to flexion showed an oscillatory
behaviour for some participants (i.e., P2, P5, P7, and P8 in Supplementary Figure 4), which can disturb the
wearer’s movements and lead to discomfort. In contrast, with NMC-5 the transition happened more
consistently near the middle of the gait cycle. Thus, NMC-5 provided extension assistance for a longer
duration during the stance phase, which can contribute to the forward propulsion of body and reduce the
need for ankle push-off.

On average, the peak flexion torques occurred after the initiation of the swing phase (� 67% gait cycle)
with NMC-4, showing a tendency toward earlier values with increasing speeds. This timing lags behind
the typical values of the biological and the HIL profiles. With NMC-5, this peak happened around 60% of
the gait cycle, and was thus better aligned with the initiation of the swing phase. Moreover, in case of
NMC-5, this timing wasmore consistent across different conditions as evident in Figure 5, in line with the
timings in biological torque profiles.

The flexion-to-extension zero crossing happened in late swing (� 88:5% gait cycle) with NMC-4, and
tended to occur later with increases in speed or inclination. This is later than the typical timing in
biological profiles, but aligns with the ones of the HIL optimisation at 88%.With NMC-5, this timing was
closer to the average value of 80% observed in biological profiles (� 85:7% gait cycle). For both variants,
this timing showed the highest inter-participant variability. This is due to the dependence of this timing on
the initiation of the LP state. The switch from S to LP is the only state transition driven by the angular
velocity signal (rather than ground contact, which is used for the rest of the state transitions), and is thus
more sensitive to individual gait patterns.
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Overall, in terms of timing, NMC-5 showed better alignment with both the biological and the HIL
profiles. Notably, in case of NMC-4, the earlier zero crossing from extension to flexion and the later
flexion to extension transition resulted in a rather short extension assistance duration, lasting around 40%
of the gait cycle. This duration was closer to 60% with NMC-5, showing higher coherence with the
duration of the stance phase. Additionally, the direct dependence of the length feedback used in theMS-PS
state of NMC-4 on hip angle resulted in oscillation of the torques between positive and negative values in
mid-stance for some participants. This aspect was improved in NMC-5 thanks to the separation of theMS
and the PS states, which allowed more control over tuning of the reflexes.

In terms of magnitude, the average peak extension to flexion torque ratio in the NMC-4 profiles was
40% lower than those of NMC-5. The NMC-4 profiles also had a decreasing trend at higher speeds and
inclinations; the maximum ratio of 1:91 was obtained in the C1 (slow walking) condition, and the
minimum value of 1:66 was observed in C4 (medium speed at 10% inclination). This ratio is above 1:5 in
the biological torque profiles, around 2:3 in theHIL profiles, and has an increasing trendwith faster speeds
and higher inclinations. A similar increasing tendency was observed in the NMC-5 profiles for most
participants at higher speeds and in the inclined condition. Furthermore, the absolute extension peak in
NMC-4 profiles increasedwith speed but decreasedwith the ground inclination, although a higher effort is
required in uphill walking. In contrast, NMC-5 generated higher extension peaks in C4 compared to C2
for all participants except two (P3 and P6, as shown in Figure 5).

Concerning mechanical powers and works, both variants resulted in mostly positive work. This
indicates that the applied torques were mostly aligned with the user’s intended movement, since the
torques were not high enough to enforce the movements. NMC-4 applied higher peak powers in both
positive and negative directions as seen in Figure 4, resulting in 1:43 times more positive and 13:36 times
more negative mechanical work per stride than NMC-5 on average. A major proportion of the positive
power delivered byNMC-4 occurred during swing, resulting in a visible overshoot of the swing leg, as can
be observed in Figure 7A–D. This added positive power was therefore not efficient in contributing to the
forward propulsion of the user. The majority of the negative work performed by NMC-4 was produced in
the MS-PS state, because of the early transition to flexion torques as discussed earlier. For NMC-5, the
minor negative work was mostly due to fluctuations in the hip angular velocity measured by the actuators
of the exoskeleton around 10–20% of the gait cycle, which were artefacts of the movement of the
attachments relative to the body, as will be discussed in Section 4.2. For both variants, the negative and the
positive works increased at higher walking speeds, due to the compound effect of higher torque
amplitudes and higher angular velocities. Interestingly, the negative works had their lowest average
value in the inclined condition, primarily due to the markedly smoother hip angle profiles in early stance,
as seen in Figure 7D. The resulting elimination of the fluctuations in the sign of angular velocity is
reflected in the reduced prevalence of the short periods of negative power around 0–20% of the gait cycle
in C4 (Supplementary Figure 9) compared to the flat conditions (Supplementary Figures 6–8). The
increased smoothness of the hip angles was likely because the participants adopted a more flexed hip
posture due to the slope, pressing their torsos against the front of the exoskeleton’s waist attachment,
thereby minimising the aforementioned relative movements and their associated measurement artefacts.

4.2. Effects on hip joint kinematics

The differences in the hip angle profiles between the assisted and unassisted conditions were most
prominent in early stance and mid-swing. Both controller variants extended the hip range of motion in all
conditions compared to the transparent trial. NMC-4 increased the range of motion in flexion mostly,
whereas NMC-5 caused higher extension angles compared to unassisted walking. These results are in line
with the patterns observed in the torque and power profiles of the two variants; namely, the higher
magnitudes and longer durations of flexion assistance by NMC-4, and the sustained extension assistance
during mid- and late stance by NMC-5. Note that although NMC-4 led to a bigger increase in the range of
motion, this increase was in large part due to overshooting of the swing leg. This is evident by comparing
the final hip angle at the moment of heel-strike, which was similar between the two variants. Therefore,
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this added movement did not change the effective range of motion since it did not lead to a longer step. In
contrast, the increase induced by NMC-5 resulted from extending the stance leg further, thus pushing the
body further forward.

The hip angle profiles exhibited an abnormal oscillatory pattern in early to mid-stance, particularly in
the flat walking conditions (C1–C3). This pattern was more pronounced with NMC-4, as evident in
Figure 7A–C. By inspecting video recordings of the trials, this pattern was found to be largely an artefact
of the relative movement of the exoskeleton interfaces with respect to the user’s body. These movements
happened due to compliance in the interface materials and the imperfect fitting of the attachments which
allow a slight play at the interface. Therefore, this phenomenon coincided with the peak of extension
torque, and was aggravated by the subsequent steep transition to flexion torque with NMC-4. Besides the
measurement artefact, this behaviour can also lead to discomfort and negatively affect the forward
momentum of the user.

4.3. Adaptation of the assistance to varying inclination

The NMC-5 torques showed a gradual and continuous adaptation to the changes in the inclination, as
evidenced by Figure 5. In terms of trend, the adaptation had a similar characteristic pattern across
participants. The adaptation trend in terms of timing had similarities to the trends observed in biological
torque profiles at different inclination levels (Winter, 1991; Perry et al., 1992; Reznick et al., 2021).
Namely, the extension assistance period shifted to the right (i.e., later in the gait cycle) as the inclination
increased. As a result, the duration of extension assistance during the stance phase increased for higher
slopes, shifting gradually from an average of 44:9% of the gait cycle for flat walking to 48:9% at 15%
inclination. Also, the extension peak in stance happened later as the inclination increased. The flexion
peak during swing did not undergo major shifting in time, even though the duration of flexion assistance
increased at higher inclinations, and the transition to extension torque tended to happen later. These results
are in accordance with the previously referenced biological torque profiles.

On the other hand, the trends observed in torque magnitudes did not completely follow the biological
torque adaptation patterns. In particular, the extension assistance magnitude tended to slightly decrease at
higher slopes. This is against the adaptation trend observed in biological torques, as walking on steeper
inclinations requires more effort. The flexion peaks also had a decreasing tendency, but this pattern is
coherent with the biological profile trends (Winter, 1991; Perry et al., 1992; Reznick et al., 2021). Both of
these reductions at higher inclinations are related to the more flexed posture at the hip in higher
inclinations. The reduction in extension and the increase in flexion angles lead to a lower CE length
for GLU, and inversely to a higher CE length range for ILPS. The effect of these changes in CE length is
lower values of the force-length factor, f ℓ (Equation 6), since the optimal length (ℓopt) is tuned based on
theCE length range in level-groundwalking conditions. As a result, at higher inclination levels, the output
of the force-length relationship decreases near the beginning and end of the gait cycle, as shown in
Supplementary Figure 10. The generated torque values are therefore reduced, particularly in case of the
extension peak which happens in early stance. It is worth reminding that in condition C5, the manually
tuned gain Gs,v was kept constant, and therefore the observed changes in magnitude were entirely driven
by the changes in controller inputs.

4.4. Limitations and future directions

In this work, we focused on the technical validation and assessment of the novel NMC structure.
Therefore, the main outcomes of interest were the outputs of the controller. Future studies evaluating
more direct functional outcomes of the assistance, such as reductions in metabolic energy expenditure or
muscular activities of users, or increases in their self-selected walking speed, are needed for a more
comprehensive assessment of the practical benefits. For such studies, parameter tuning should also be
purely guided by the targeted functional outcomes, rather than mimicry of the biological torque profiles,
which was used as one of our major metrics for this study. However, given the relatively large number of
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parameters, the tuning procedure remains difficult. Even though the approach proposed in this study based
on the roles of major parameters and separate stages can speed up the procedure, a more systematic
approach would be highly beneficial. Another potential downside is the reliance on prerecorded data for
effective tuning. However, the amount of data used in this study was substantially lower than what is
generally necessary for machine-learning-based controllers (e.g., Molinaro et al., 2024). Specifically, we
utilised data from only three participants across four to five walking conditions each, which could be
collected over a couple of days.

We only studied the adaptation of the controllers to walking at different speeds and inclination levels.
We did not include negative inclinations in our study, as assistance in these scenarios is less critical.
Nonetheless, they remain a commonly encountered daily locomotion task and deserve attention. Eval-
uating how the controller adapts to downward slopes could provide valuable insights into its versatility for
real-world deployment. Another prevalent locomotion task in daily ambulation is stair ascent, which is
particularly important for assistive devices due to its relatively high physical effort requirement. The
proposed general structure can also be applied to this task, since the subphases used for reflex modulation
(based on changes in foot contact status) capture subtasks such as weight acceptance and transfer,
propulsion, and leg swing which remain valid in stair ascent as well. However, readjustment of the
parameters with task-specific data might be required for better performance. On the other hand, extending
the application to non-cyclic and transitional tasks such as sit/stand transitions would require more
substantial modifications. Reflex-based control has been successfully used in simulation to generate
human-like sit-to-stand movements (Muñoz et al., 2022), demonstrating the feasibility of such an
extension. However, whether the potential benefits of this approach outweigh the added complexity in
implementation and tuning is a question worth considering. For brief and transitory tasks, simpler
methods like impedance control may be sufficient for achieving adequate performance in assistive
devices.

In terms of functionality, the main shortcoming in both of the tested variants was the insufficiency of
magnitude adaptation of the torques to changes in walking speed and ground inclination. An intuitive way
to address this issue is using variable reflex gains as a function of speed and inclination. However, such a
solution would come at the cost of requiring speed and inclination estimators. Another option would be to
design the force–length and force–velocity functions of the virtual muscles based on the desired
behaviour, rather than using the relationships used in biological muscle modelling. This approach can
also be used to make the virtual muscles complement their biological counterparts, by delivering higher
forces in configurations where the biological muscles have reduced capacity or efficiency.

Lastly, even though our implementation was entirely focused on the hip joint, the NMC structure is
readily applicable to the knee and the ankle joints as well, as demonstrated in previous studies (Wu et al.,
2017; Meijneke et al., 2021; Yin et al., 2022). Both of our proposed modifications to the structure
(simplification of the virtual muscle models and increased granularity of reflex modulation) are
completely independent of the targeted joint in this study. Therefore, this novel structure can also be
adopted for exoskeletons targeting joints other than the hip in future research.

5. Conclusion

This study presented a novel structure for NMCs, with modifications to the virtual muscle model and
reflex modulation. Based on the proposed general structure, two controller variants for hip exoskeletons
were proposed, with four- and five-state modulation of reflexes (NMC-4 and NMC-5). For setting the
controller parameters, a sequential and iterative approach along with data-driven simulation methods and
leveraging key parameter identification allowed a targeted tuning without the need for costly optimisation
procedures. In validation experiments, both variants demonstrated adaptability of the assistance torque
profile as a function of the gait pattern. The adaptations led to differences in the characteristic timings,
flexion, and extension peakmagnitudes andmagnitude ratios across participants and conditions. A higher
inter-participant variability (compared to the stride-to-stride variability for each individual) corroborated
the potential of personalised assistance using NMCs. The adaptation of the assistance to different walking
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conditions in terms of timing emerged directly from the interplay between the neuromuscular model and
the users’ gait pattern adaptations. The adaptation of magnitudes, on the other hand, had to be improved
using a condition-dependent scaling gain that was adjusted manually. The five-state variant showed a
more desirable adaptive behaviour both in terms of timing and relative magnitudes, underlining the utility
of a more fine-grained reflex modulation.
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