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Abstract

In this paper we study the local cohomology modules of Du Bois singularities. Let
(R,m) be a local ring; we prove that if Rred is Du Bois, then H i

m(R) → H i
m(Rred) is

surjective for every i. We find many applications of this result. For example, we answer a
question of Kovács and Schwede [Inversion of adjunction for rational and Du Bois pairs,
Algebra Number Theory 10 (2016), 969–1000; MR 3531359] on the Cohen–Macaulay
property of Du Bois singularities. We obtain results on the injectivity of Ext that
provide substantial partial answers to questions in Eisenbud et al. [Cohomology on toric
varieties and local cohomology with monomial supports, J. Symbolic Comput. 29 (2000),
583–600] in characteristic 0. These results can also be viewed as generalizations of the
Kodaira vanishing theorem for Cohen–Macaulay Du Bois varieties. We prove results
on the set-theoretic Cohen–Macaulayness of the defining ideal of Du Bois singularities,
which are characteristic-0 analogs and generalizations of results of Singh–Walther
and answer some of their questions in Singh and Walther [On the arithmetic rank of
certain Segre products, in Commutative algebra and algebraic geometry, Contemporary
Mathematics, vol. 390 (American Mathematical Society, Providence, RI, 2005),
147–155]. We extend results on the relation between Koszul cohomology and local
cohomology for F -injective and Du Bois singularities first shown in Hochster and
Roberts [The purity of the Frobenius and local cohomology, Adv. Math. 21 (1976),
117–172; MR 0417172 (54 #5230)]. We also prove that singularities of dense F -injective
type deform.

1. Introduction

The notion of Du Bois singularities was introduced by Steenbrink based on work of Du Bois
[DBoi81], which itself was an attempt to localize Deligne’s Hodge theory of singular varieties
[Del74]. Steenbrink studied them initially because families with Du Bois fibers have remarkable
base-change properties [Ste81]. On the other hand, Du Bois singularities have recently found
new connections across several areas of mathematics [KK10, KS16a, Lee09, CHWW11, HJ14].
In this paper we find numerous applications of Du Bois singularities especially to questions of
local cohomology. Our key observation is as follows.
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Key Lemma (Lemma 3.3). Suppose that (S,m) is a local ring essentially of finite type over C
and that Sred = S/

√
0 has Du Bois singularities. Then

H i
m(S) → H i

m(Sred)

is surjective for every i.

In fact, we obtain this surjectivity for Du Bois pairs, but we leave the statement simple in
the introduction. Utilizing this lemma and related methods, we prove several results.

Theorem A (Corollary 3.9). Let X be a reduced scheme and let H ⊆ X be a Cartier divisor.
If H is Du Bois and X\H is Cohen–Macaulay, then X is Cohen–Macaulay and hence so is H.

This first consequence answers a question of Kovács and the second author and should be
viewed as a generalization of several results in [KK10, § 7]. In particular, we do not need a
projective family. This result holds if one replaces Cohen–Macaulay with Sk and also generalizes
to the context of Du Bois pairs as in [KS16b]. Theorem A should also be viewed as a
characteristic-0 analog of [FW89, Proposition 2.13] and [HMS14, Corollary A.4]. Theorem A
also implies that if X\H has rational singularities and H has Du Bois singularities, then X has
rational singularities (see Corollary 3.10), generalizing [KS16b, Theorem E].

Our next consequence of the key lemma is the following.

Theorem B (Proposition 4.1). Let (R,m) be a Gorenstein local ring essentially of finite type
over C, and let I ⊆ R be an ideal such that R/I has Du Bois singularities. Then the natural
map ExtjR(R/I,R) → Hj

I (R) is injective for every j.

This gives a partial characteristic-0 answer to [EMS00, Question 6.2], asking when such
maps are injective. A special case of the analogous characteristic p > 0 result was obtained by
Singh–Walther [SW07]. This result leads to an answer of [DN16, Question 7.5] on the bounds
on the projective dimension of Du Bois and log canonical singularities. In the graded setting, we
can prove a much stronger result on the injectivity of Ext.

Theorem C (Theorem 4.5). Let (R,m) be a reduced Noetherian N-graded (R0 = C)-algebra
with m the unique homogeneous maximal ideal. Suppose that RP is Du Bois for all P 6= m.
Write R = A/I, where A = C[x1, . . . , xn] is a polynomial ring with deg xi = di > 0 and I is a
homogeneous ideal. Then the natural degree-preserving map ExtjA(R,A) → Hj

I (A) induces an
injection

[ExtjA(R,A)]>−d ↪→ [Hj
I (A)]>−d

for every j, where d =
∑
di.

Theorem C leads to new vanishing for local cohomology for N-graded isolated non-Du Bois
singularities (Theorem 4.8), a generalization of the Kodaira vanishing theorem for Cohen–
Macaulay Du Bois projective varieties.

Our next consequence of the key lemma answers a longstanding question, but first we
give some background. Du Bois singularities are closely related to the notion of F -injective
singularities (rings where the Frobenius acts injectively on local cohomology of maximal ideals).
In particular, it is conjectured that X has Du Bois singularities if and only if its reduction
to characteristic p > 0 has F -injective singularities for a Zariski dense set of primes p � 0
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(this is called dense F -injective type). This conjecture is expected to be quite difficult, as it is
closely related to asking for infinitely many ordinary characteristic p > 0 reductions for smooth
projective varieties over C [BST13]. On the other hand, several recent papers have studied how
Du Bois and F -injective singularities deform [KS16a, HMS14]. We know that if a Cartier divisor
H ⊆ X has Du Bois singularities, then X also has Du Bois singularities near H. However, the
analogous statement for F -injective singularities in characteristic p > 0 is open and has been
since [Fed83]. In fact, F -injective singularities were introduced because it was observed that
Cohen–Macaulay F -injective singularities deform in this way but F -pure singularities1 do not.
We show that at least the property of having dense F -injective type satisfies such a deformation
result, in other words that F -injectivity deforms when p is large.

Theorem D (Theorem 5.3). Let (R,m) be a local ring essentially of finite type over C and let x
be a non-zero divisor on R. Suppose that R/xR has dense F -injective type. Then, for infinitely
many p > 0, the Frobenius action xp−1F on H i

mp(Rp) is injective for every i, where (Rp,mp) is
the reduction mod p of R. In particular, R has dense F -injective type.

Our final result is a characteristic-0 analog of a strengthening of the main result of [HR76],
and we can give a characteristic p > 0 generalization as well.

Theorem E (Corollary 4.13). Let R be a Noetherian N-graded k-algebra, with m the unique
homogeneous maximal ideal. Suppose that R is equidimensional and Cohen–Macaulay on
SpecR− {m}. Assume one of the following:

(a) k has characteristic p > 0 and R is F -injective;

(b) k has characteristic 0 and R is Du Bois.

Then [Hr(x,R)]0 ∼= Hr
m(R) for every r < n = dimR and every homogeneous system of

parameters x = x1, . . . , xn, where Hr(x,R) denotes the rth Koszul cohomology of x. In other
words, it is not necessary to take a direct limit when computing the local cohomology.

In fact, we prove a more general result (Theorem 4.12), which does not require any F -injective
or Du Bois conditions, from which Theorem E follows immediately thanks to our injectivity and
vanishing results (Theorems 4.5 and 4.8).

2. Preliminaries

Throughout this paper, all rings will be Noetherian and all schemes will be Noetherian and
separated. When in equal characteristic 0, we will work with rings and schemes that are essentially
of finite type over C. Of course, nearly all of our results also hold over all other fields of
characteristic 0 by base change.

2.1 Du Bois singularities
We give a brief introduction to Du Bois singularities and pairs. For more details, see for instance
[KS11] and [Kol13]. Frequently we will work in the setting of pairs in the Du Bois sense.

Definition 2.1. Suppose that X and Z are schemes of essentially finite type over C. By a pair
we will mean the combined data of (X,Z). We will call the pair reduced if both X and Z are
reduced.

1 We now know that F -pure singularities are analogs of log canonical singularities [HW02].
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Suppose that X is a scheme essentially of finite type over C. Associated to X is an object
Ω0
X ∈ Db

coh(X) with a map OX → Ω0
X functorial in the following way. If f : Y → X is a map of

schemes, then we have a commutative square

OX

��

// Ω0
X

��
Rf∗OY // Rf∗Ω

0
Y

If X is non-reduced, then Ω0
X = Ω0

Xred
by definition. To define Ω0

X in general, let π : X q→ X be

a hyper-resolution and set Ω0
X = Rπ∗OX q (alternatively, see [Sch07]).

If Z ⊆ X is a closed subscheme, then we define Ω0
X,Z as the object completing the following

distinguished triangle:

Ω0
X,Z → Ω0

X → Ω0
Z

+1−→ .

We observe that there is an induced map IZ⊆X → Ω0
X,Z . We also note that by this definition

and the fact that Ω0
X = Ω0

Xred
, we have Ω0

X,Z = Ω0
Xred,Zred

.

Definition 2.2 (Du Bois singularities). We say that X has Du Bois singularities if the map
OX → Ω0

X is a quasi-isomorphism. If Z ⊆ X is a closed subscheme, we say that (X,Z) has
Du Bois singularities if the map IZ⊆X → Ω0

X,Z is a quasi-isomorphism.

Remark 2.3. It is clear that Du Bois singularities are reduced. In general, a pair (X,Z) being
Du Bois does not necessarily imply that X or Z is reduced. However, if a pair (X,Z) is Du Bois
and X is reduced, then so is Z [KS16b, Lemma 2.9].

2.2 Cyclic covers of non-reduced schemes
In this paper we will need to take cyclic covers of non-reduced schemes. We will work in the
following setting. We assume what follows is well known to experts but we do not know a reference
in the generality we need (see [KM98, § 2.4] or [dFEM, § 2.1.1]). Note also that the reason we are
able to work with non-reduced schemes is because our L is actually locally free and not just a
reflexive rank-1 sheaf.

Setting 2.4. Suppose that X is a scheme of finite type over C (typically projective). Suppose
also that L is a line bundle (typically semi-ample). Choose a (typically general) global section
s ∈ H0(X,L n) for some n > 0 (typically n� 0) and form the sheaf of rings

R(X,L , s) = OX ⊕L −1 ⊕ · · · ⊕L −n+1,

where, for i, j < n and i + j > n, the multiplication L −i ⊗L −j
→ L −i−j+n is performed by

the formula a ⊗ b 7→ abs. We define ν : Y = YL ,s = SpecR(X,L , s) → X. Note we did not
assume that s was non-zero or even locally a non-zero divisor.

Now let us work locally on an affine chart U trivializing L , where U = SpecR ⊆ X with
corresponding ν−1(U) = SpecS. Fix an isomorphism L |U ∼= OU and write

S = R⊕Rt⊕Rt2 ⊕ · · · ⊕Rtn−1,

where t is a dummy variable used to help keep track of the degree. The choice of the section
s|U ∈ H0(X,L n) is the same as the choice of map OX → L n (send 1 to the section s).
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If s is chosen to be general and L n is very ample, then this map is an inclusion, but it is
not injective in general. Working locally where we have fixed L |U = OU , we also have implicitly
chosen L n = OU and hence we have just specified that tn = s|U ∈ Γ(U,L n) = Γ(U,OU ). In
other words,

S = R[t]/〈tn − s〉.
In particular, it follows that ν is a finite map.

Lemma 2.5. The map ν is functorial with respect to taking closed subschemes ofX. In particular,
if Z ⊆X is a closed subscheme and L and s are as above, then we have the following commutative
diagram.

YL ,s SpecR(X,L , s)
νX // X

WL |Z ,s|Z SpecR(Z,L ⊗OZ , s|Z) νZ
//

?�

OO

Z
?�

OO

Furthermore, WL |Z ,s|Z = π−1(Z) is the scheme-theoretic preimage of Z.

Proof. The first statement follows since R(X,L , s) = OX ⊕L −1 ⊕ · · · ⊕L −n+1 surjects onto
R(Z,L |Z , s|Z) = OZ ⊕L |−1Z ⊕ · · · ⊕L |−n+1

Z in the obvious way. For the second statement, we
simply notice that

R(X,L , s)⊗OX OZ = R(Z,L |Z , s|Z). 2

Lemma 2.6. Suppose that we are working in Setting 2.4 and that X is projective and also
reduced (respectively normal), L n is globally generated and s is chosen to be general. Then
Y = YL ,s is also reduced (respectively normal).

Proof. To show that Y is reduced, we will show that it is S1 and R0. We work locally on an open
affine chart U = SpecR ⊆ X.

To show that it is R0, it suffices to consider the case where R = K is a field. Because s was
picked generally, we may assume that the image of s in K is non-zero (we identify s with its
image). Then we need to show that K[t]/〈tn− s〉 is a product of fields. But this is obvious since
we are working in characteristic 0.

Next, we show that it is S1. Indeed, if (R,m) is a local ring of depth > 1, then obviously
S = R[t]/〈tn − s〉 has depth > 1 as well since it is a free R-module. Finally, the depth condition
is preserved after localizing at the maximal ideals of the semilocal ring of S.

This proves the reduced case. The normal case is well known but we sketch it. The R1

condition follows from [KM98, Lemma 2.51] and the fact that s is chosen generally, utilizing
Bertini’s theorem. The S2 condition follows in the same way that S1 followed above. 2

2.3 F -pure and F -injective singularities
Du Bois singularities are conjectured to be the characteristic-0 analog of F -injective singularities
[Sch09, BST13]. In this short subsection we collect some definitions about singularities in positive
characteristic. Our main focuses are F -pure and F -injective singularities.

A local ring (R,m) is called F -pure if the Frobenius endomorphism F : R → R is pure.2

Under mild conditions, for example when R is F -finite, which means that the Frobenius map

2 A map of R-modules N → N ′ is pure if for every R-module M the map N ⊗R M → N ′ ⊗R M is injective. This
implies that N → N ′ is injective, and is weaker than the condition that 0 → N → N ′ be split.
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R
F−→ R is a finite map, R being F -pure is equivalent to the condition that the Frobenius

endomorphism R
F−→ R is split [HR76, Corollary 5.3]. The Frobenius endomorphism on R induces

a natural Frobenius action on each local cohomology module H i
m(R) and we say that a local ring

is F -injective if this natural Frobenius action on H i
m(R) is injective for every i [Fed83]. This holds

if R is F -pure [HR76, Lemma 2.2]. For some other basic properties of F -pure and F -injective

singularities, see [HR76, Fed83, EH08].

3. The Cohen–Macaulay property for families of Du Bois pairs

We begin with a lemma, which we assume is well known to experts; indeed, it is explicitly stated

in [Kol13, Corollary 6.9]. However, because many of the standard references also include implicit

reducedness hypotheses, we include a careful proof that deduces it from the reduced case. Of

course, one could also go back to first principles but we believe the path we take below is quicker.

Lemma 3.1. Let X be a projective scheme over C and let Z ⊆ X be a closed subscheme (X,Z

are not necessarily reduced). Then the natural map

H i(X,IZ) → Hi(Xred,Ω
0
Xred,Zred

) ∼= Hi(X,Ω0
X,Z)

is surjective for every i ∈ Z.

Proof. Note that if the result holds for C, it certainly also holds for other fields of characteristic 0.

The isomorphism in the statement of the lemma follows from the definition. For the surjectivity,

we consider the following commutative diagram, where we let U = X\Z. Note that the rows are

not exact.

H i
c(Ured,C) // H i(Xred,IZred

) // Hi(Xred,Ω
0
Xred,Zred

)

H i
c(U,C) //

∼=

OO

H i(X,IZ) //

OO

Hi(X,Ω0
X,Z)

∼=

OO

The composite map in the top horizontal line is a surjection by [KS16b, Lemma 2.17] or [Kov11,

Corollary 4.2]. The vertical isomorphism on the left holds because the constant sheaf C does not

see the non-reduced structure. Likewise for the vertical isomorphism on the right, where Ω0
X,Z

does not see the non-reduced structure. The diagram then shows that H i(X,IZ) → Hi(Xred,

Ω0
Xred,Zred

) is a surjection. 2

Next, we prove the key injectivity lemma for possibly non-reduced pairs. The proof is

essentially the same as in [KS16b] or [KS16a]. We reproduce it here carefully because we need

it in the non-reduced setting.

Lemma 3.2. Let X be a scheme of essentially finite type over C and Z ⊆ X a closed subscheme

(X and Z are not necessarily reduced). Then the natural map

hj(ω
q
X,Z) ↪→ hj(RHomOX (IZ , ω

q
X))

is injective for every j ∈ Z, where ω
q
X,Z = RHomOX (Ω0

X,Z , ω
q
X).
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Proof. The question is local and compatible with restricting to an open subset; hence, we may
assume that X is projective with ample line bundle L . Let s ∈ H0(X,L n) be a general
global section for some n � 0 and let η: Y = Spec

⊕n−1
i=0 L −i

→ X be the nth cyclic cover
corresponding to s. Set W = η−1(Z). Then, for n � 0 and s general, the restriction of η to
W is the cyclic cover W = Spec

⊕n−1
i=0 L |−iZ → Z by Lemma 2.5. Likewise, η also induces the

corresponding cyclic covers of the closed subschemes Yred → Xred and Wred → Zred by Lemmas
2.5 and 2.6. We have η∗IW =

⊕n−1
i=0 IZ ⊗L −i and

η∗Ω
0
Y,W
∼= η∗Ω

0
Yred,Wred

∼=
n−1⊕
i=0

Ω0
Xred,Zred

⊗L −i ∼=
n−1⊕
i=0

Ω0
X,Z ⊗L −i,

where the second isomorphism is [KS16b, Lemma 3.1] (see also [KS16a, Lemma 3.1]). Since
Lemma 3.1 implies that Hj(Y,IW )� Hj(Y,Ω0

Y,W ) is surjective for every j ∈ Z, we know that

Hj(X,IZ ⊗L −i)� Hj(X,Ω0
X,Z ⊗L −i) is surjective for every i > 0 and j ∈ Z.

Applying Grothendieck–Serre duality, we obtain an injection

Hj(X,ω
q
X,Z ⊗L i) ↪→ Hj(X,RHomOX (IZ , ω

q
X)⊗L i)

for all i > 0 and j ∈ Z. Since L is ample, for i� 0 the spectral sequence computing the above
hypercohomology degenerates. Hence, for i� 0, we get

H0(X,hj(ω
q
X,Z)⊗L i) ↪→ H0(X,hj(RHomOX (IZ , ω

q
X))⊗L i).

But again since L is ample, the above injection for i � 0 implies the injection hj(ωX,Z) ↪→

hj(RHomOX (IZ , ω
q
X)). 2

Next, we prove the key lemma stated in the introduction (and we do the generalized pair
version). It follows immediately from the above injectivity, Lemma 3.2. For simplicity, we will
use (S, S/J) to denote the pair (SpecS, SpecS/J).

Lemma 3.3. Let (S,m) be a local ring essentially of finite type over C and let J ⊆ S be an
ideal. Suppose further that S′ = S/N , where N ⊆ S is an ideal contained in the nilradical (for
instance, N could be the nilradical and then S′ = Sred). Suppose that (S′, S′/JS′) is a Du Bois
pair. Then the natural map H i

m(J) → H i
m(JS′) is surjective for every i. In particular, if Sred is

Du Bois, then H i
m(S) → H i

m(Sred) is surjective for every i.

Proof. We consider the following commutative diagram.

H i
m(J) //

����

H i
m(JS′)

∼=
��

Hi
m(Ω0

S,S/J)
∼= // Hi

m(Ω0
S′,S′/JS′)

Here the left vertical map is surjective by the Matlis dual of Lemma 3.2 applied to X = SpecS
and Z = SpecS/J , the right vertical map is an isomorphism because (S′, S′/JS′) is a Du Bois
pair and the bottom map is an isomorphism because Sred = S′red. Chasing the diagram shows
that H i

m(J) → H i
m(JS′) is surjective. The last sentence is the case that J is the unit ideal (i.e.,

the non-pair version). 2
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Remark 3.4. The characteristic p > 0 analog of the above lemma (in the case J = S, i.e., the non-
pair version) holds if Sred is F -pure. We give a short argument here. Without loss of generality,
we may assume that S and Sred are complete, so S = A/I and Sred = A/

√
I, where A is a

complete regular local ring. We may pick e � 0 such that (
√
I)[p

e] ⊆ I. We have a composite
map

H i
m(A/(

√
I)[p

e]) → H i
m(A/I) ∼= H i

m(S)
φ−→ H i

m(A/
√
I) ∼= H i

m(Sred).

We know from [Lyu06, Lemma 2.2] that the image of the composite map is equal to
spanA〈fe(H i

m(Sred))〉, where fe denotes the natural eth Frobenius action on H i
m(Sred). In

particular, the Frobenius action on H i
m(Sred)/imφ is nilpotent. However, since imφ is an F -stable

submodule of H i
m(Sred) and Sred is F -pure, [Ma14, Theorem 3.7] shows that the Frobenius acts

injectively on H i
m(Sred)/imφ. Hence, we must have H i

m(Sred) = imφ, that is, H i
m(S) → H i

m(Sred)
is surjective.

We next give an example showing that the analog of Lemma 3.3 for F -injectivity fails in
general. The example is a modification of [EH08, Example 2.16].

Example 3.5. Let K = k(u, v), where k is an algebraically closed field of characteristic p > 0,
and let L = K[z]/(z2p + uzp + v) be as in [EH08, Example 2.16]. Now let R = K + (x, y)L[[x, y]]
with m = (x, y)L[[x, y]]. Then it is easy to see that (R,m) is a local ring of dimension 2 and we
have a short exact sequence:

0 → R → L[[x, y]] → L/K → 0.

The long exact sequence of local cohomology gives

H1
m(R) ∼= L/K, H2

m(R) ∼= H2
m(L[[x, y]]).

Moreover, one can check that the Frobenius action on H1
m(R) is exactly the Frobenius action on

L/K. The Frobenius action on L/K is injective since Lp ∩K = Kp, and the Frobenius action
on H2

m(L[[x, y]]) is injective because L[[x, y]] is regular. Hence, the Frobenius actions on both
H1

m(R) and H2
m(R) are injective. This proves that R is F -injective.

Write R = A/I for a regular local ring (A,m). One checks that the Frobenius action
F : H1

m(R) → H1
m(R) is not surjective up to K-span (and hence not surjective up to R-span,

since the residue field of R is K) because L 6= Lp[K] by our choice of K and L (see [EH08,
Example 2.16] for a detailed computation on this). But now [Lyu06, Lemma 2.2] shows that
H1

m(A/I [p]) → H1
m(A/I) is not surjective. Therefore, we can take S = A/I [p] with Sred = R

that is F -injective, but H1
m(S) → H1

m(Sred) is not surjective.

In view of Remark 3.4 and Example 3.5 and the relation between F -injective and Du Bois
singularities, it is tempting to try to define a more restrictive variant of F -injective singularities
for local rings. In particular, if (R,m) is a local ring such that Rred has these more restrictive
F -injective singularities, then it should follow that H i

m(R) → H i
m(Rred) surjects for all i.

Theorem 3.6. Suppose that (X,Z) is a reduced pair and that H ⊆ X is a Cartier divisor such
that H does not contain any irreducible components of either X or Z. If (H,Z ∩H) is a Du Bois
pair, then for all i and all points η ∈ H ⊆ X, the following segment of the long exact sequence:

0 → H i
η(IZ,η · OH,η) ↪→ H i+1

η (IZ,η · OX,η(−H))� H i+1
η (IZ,η) → 0
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is exact for all i. Dually, in the special case that IZ = OX , we can also phrase this as saying
that

0 → h−i(ω
q
X) → h−i(ω

q
X(H)) → h−i+1(ω

q
H) → 0

is exact for all i.

Proof. Localizing at η, we may assume that X = SpecR, Z = SpecR/I, H = div(x) with (R,m)
a local ring and η = {m}. Moreover, the hypotheses imply that x is a non-zero divisor on both
R and R/I. It is enough to show that the segment of the long exact sequence

0 → H i
m(I/xI) → H i+1

m (I)
·x−→ H i+1

m (I) → 0 (3.6.1)

induced by 0 → I
·x−→ I → I/xI → 0 is exact.

Consider S = R/xnR and J = I(R/xnR). The pair (S′ = R/xR, S′/IS′) = (H,Z ∩H) is Du
Bois by hypothesis (note that we do not assume that H is reduced). Thus, Lemma 3.3 implies
that

H i
m(I(R/xnR))� H i

m(I(R/xR)) (3.6.2)

is surjective for every i, n. Since x is a non-zero divisor on R/I, xnI = I ∩ xnR. Thus,

I(R/xnR) =
I + xnR

xnR
∼= I

I ∩ xnR = I/xnI.

Hence, (3.6.2) shows that
H i

m(I/xnI)� H i
m(I/xI)

is surjective for every i, n. The long exact sequence of local cohomology induced by 0 →

I/xn−1I
·x−→ I/xnI → I/xI → 0 tells us that

H i
m(I/xn−1I)

·x−→ H i
m(I/xnI)

is injective for every i, n. Hence, after taking a direct limit, we obtain that

φi : H i
m(I/xI) → lim−→

n

H i
m(I/xnI) ∼= H i

m

(
lim−→
n

(I/xnI)

)
∼= H i

m(H1
x(I)) ∼= H i+1

m (I)

is injective for every i. Here the last two isomorphisms come from the fact that x is a non-zero
divisor on I (since it is a non-zero divisor on R) and a simple computation using the local
cohomology spectral sequence.

Claim 3.7. The φi are exactly the connection maps in the long exact sequence of local

cohomology induced by 0 → I
·x−→ I → I/xI → 0:

· · ·→ H i
m(I) → H i

m(I/xI)
φi−→ H i+1

m (I)
·x−→ H i+1

m (I) → · · · .

This claim immediately produces (3.6.1) because we proved that φi is injective for every i.
Thus, it remains to prove the claim.

Proof of claim. Observe that, by definition, φi is the natural map in the long exact sequence of
local cohomology

· · ·→ H i
m(I/xI)

φi−→ H i
m(Ix/I)

·x−→ H i
m(Ix/I) → · · · ,
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which is induced by 0 → I/xI → Ix/I
·x−→ Ix/I → 0 (note that x is a non-zero divisor on I and

H1
x(I)∼= Ix/I). However, it is easy to see that the multiplication by x map H i

m(Ix/I)
·x−→H i

m(Ix/I)

can be identified with the multiplication by x map H i+1
m (I)

·x−→H i+1
m (I) because we have a natural

identification H i
m(Ix/I) ∼= H i

m(H1
x(I)) ∼= H i+1

m (I). This finishes the proof of the claim and thus
also the local cohomology statement. 2

The global statement can be checked locally, where it is simply a special case of the local
dual of the local cohomology statement. 2

The following is the main theorem of the section; it answers a question of Kovács and the
second author [KS16b, Question 5.7] and is a generalization to pairs of a characteristic-0 analog
of [HMS14, Corollary A.5].

Theorem 3.8. Suppose that (X,Z) is a reduced pair and that H ⊆ X is a Cartier divisor such
that H does not contain any irreducible components of either X or Z. If (H,Z ∩H) is a Du Bois
pair and IZ |X\H is Sk, then IZ is Sk.

Proof. Suppose that IZ is not Sk; choose an irreducible component Y of the non-Sk locus of
IZ . Since IZ |X\H is Sk, we know that Y ⊆ H. Let η be the generic point of Y . Theorem 3.6
tells us that

H i
η(IZ · OX(−H))� H i

η(IZ)

is surjective for every i. Note that if we localize at η and use the same notation as in the proof

of Theorem 3.6, this surjection is the multiplication by x map H i
m(I)

·x−→ H i
m(I).

However, after we localize at η, I is Sk on the punctured spectrum and H i
m(I) has finite

length for every i < k. In particular, for h� 0, xh annihilates H i
m(I) for every i < k. Therefore,

for i < k, the multiplication by x map H i
m(I)

·x−→ H i
m(I) cannot be surjective unless H i

m(I) = 0,
which means that I is Sk as an R-module. But this contradicts our choice of Y (because we pick
Y as an irreducible component of the non-Sk locus of IZ). Therefore, IZ is Sk. 2

Corollary 3.9. Let X be a reduced scheme and let H ⊆ X be a Cartier divisor. If H is Du
Bois and X\H is Cohen–Macaulay, then X is Cohen–Macaulay and hence so is H.

As mentioned in the Introduction, these results should be viewed as a generalization of
[KK10, Corollaries 1.3 and 7.13] and [KS16b, Theorem 5.5]. In those results, one considered a
flat projective family X → B with Du Bois fibers such that the general fiber is Sk. It was then
shown that the special fiber is Sk. Let us explain this result in a simple case. Suppose that B
is a smooth curve, Z = 0, the special fiber is a Cartier divisor H and X\H is Cohen–Macaulay.
Then we are trying to show that H is Cohen–Macaulay, which is of course the same as showing
that X is Cohen–Macaulay, which is exactly what our result proves. The point is that we had
to make no projectivity hypothesis for our family.

This result also implies [KS16b, Conjecture 7.9], which we state next. We leave out the
definition of a rational pair here (this is a rational pair in the sense of Kollár and Kovács: a
generalization of rational singularities analogous to divisorially log terminal singularities; see
[Kol13]); the interested reader can look it up, or simply assume that D = 0.

Corollary 3.10. Suppose that (X,D) is a pair with D a reduced Weil divisor. Further suppose
that H is a Cartier divisor on X not having any components in common with D such that
(H,D ∩H) is Du Bois and such that (X\H,D\H) is a rational pair in the sense of Kollár and
Kovács. Then (X,D) is a rational pair in the sense of Kollár and Kovács.
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Proof. We follow [KS16b, Proof of Theorem 7.1]. It goes through word for word once one observes
that OX(−D) is Cohen–Macaulay, which follows immediately from Theorem 3.8. 2

This corollary is also an analog of [FW89, Proposition 2.13] and [HMS14, Corollary A.4].

4. Applications to local cohomology

In this section we give many applications of Lemma 3.3 to local cohomology; several of these
applications are quite easy to prove. However, they provide strong and surprising characteristic-0
analogs and generalizations of results in [HR76, SW05, SW07, Var13, DN16] as well as answer
their questions. Moreover, our results can give a generalization of the classical Kodaira vanishing
theorem.

4.1 Injectivity of Ext and a generalization of the Kodaira vanishing theorem
Our first application gives a solution to [EMS00, Question 6.2] on the injectivity of Ext in
characteristic 0, which parallels its characteristic p > 0 analog [SW07, Theorem 1.3].

Proposition 4.1. Let (R,m) be a Gorenstein local ring essentially of finite type over C, and let
I ⊆ R be an ideal such that R/I has Du Bois singularities. Then the natural map ExtjR(R/I,R)

→ Hj
I (R) is injective for every j.

Proof. By Lemma 3.3 applied to S = R/It and applying local duality, we know that

ExtjR(R/I,R) → ExtjR(R/It, R)

is injective for every j and every t > 0. Now taking a direct limit, we obtain the desired injectivity
ExtjR(R/I,R) → Hj

I (R). 2

Remark 4.2. Theorem 1.3 of [SW07] proves the same injectivity result in characteristic p > 0
when R/I is F -pure (and when R is regular). Perhaps it is worth pointing out that Proposition 4.1
fails in general if we replace Du Bois by F -injective: Example 3.5 is a counterexample, because
there we have that S = A/I is F -injective but H1

m(A/I [p]) → H1
m(A/I) is not surjective. Hence,

applying local duality shows that

ExtdimA−1
A (A/I,A) → ExtdimA−1

A (A/I [p], A)

is not injective, so neither is ExtdimA−1
A (A/I,A) → HdimA−1

I (A).

An immediate corollary of Proposition 4.1 is the following, which is a characteristic-0 analog
of [DN16, Theorem 7.3] (this also answers [DN16, Question 7.5], which is motivated by Stillman’s
conjecture).

Corollary 4.3. Let R be a regular ring of essentially finite type over C. Let I ⊆ R be an
ideal such that S = R/I has Du Bois singularities. Then pdR S 6 ν(I), where ν(I) denotes the
minimal number of generators of I.

Proof. For every j > ν(I) and every maximal ideal m of R, we have Hj
IRm

(Rm) = 0. Therefore,

by Proposition 4.1, we have ExtjRm
(Sm, Rm) = 0 for every j > ν(I). Since pdRm

Sm <∞, we have

pdRm
Sm = sup{j | ExtjRm

(Sm, Rm) 6= 0} 6 ν(I)3.

Because this is true for every maximal ideal m, we have pdR S 6 ν(I). 2

3 This follows from applying the functor HomRm(−, Rm) to a minimal free resolution of Sm and observing that the
matrix defining the maps has elements contained in m. See also [DGI06, 2.4].
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Next, we want to prove a stronger form of Proposition 4.1 in the graded case. We will first

need the following criterion of Du Bois singularities for N-graded rings. This result and related

results should be well known to experts (or at least well believed by experts): for example

[Ma15, Theorem 4.4], [BST13, Lemma 2.14], [KS16b, Lemma 2.12] or [GK14]. However, all these

references only deal with the case that R is the section ring of a projective variety with respect

to a certain ample line bundle, while here we allow arbitrary N-graded rings which are not even

normal. We could not find a reference that handles the generality that we will need and hence

we write down a careful argument.

Proposition 4.4. Let (R,m) be a reduced Noetherian N-graded (R0 = k)-algebra with m the

unique homogeneous maximal ideal. Suppose that RP is Du Bois for all P 6= m. Then we have

hi(Ω0
R) ∼= [H i+1

m (R)]>0

for every i > 0 and

h0(Ω0
R)/R ∼= [H1

m(R)]>0.

In particular, R is Du Bois if and only if [H i
m(R)]>0 = 0 for every i > 0.

Proof. Let R\ denote the Rees algebra of R with respect to the natural filtration R>t. That is,

R\ = R⊕R>1 ⊕R>2 ⊕ · · · . Let Y = ProjR\. We first claim that Y is Du Bois: Y is covered by

D+(f) for homogeneous elements f ∈ R>t and t ∈ N.

If deg f > t, then [R\f ]0 ∼= Rf is Du Bois. If deg f = t, then [R\f ]0 ∼= [Rf ]>0 is also Du Bois4

(see [KSSW09, Lemma 5.4] for an analogous analysis on rational singularities).

Since R and thus R\ are Noetherian, there exists n such that R>nt = (R>n)t for every

t > 1 [Bou98, ch. III, § 3, Proposition 3]. Let I = (R>n); then we immediately see that Y ∼=
Proj(R ⊕ I ⊕ I2 ⊕ · · ·) is the blow up of SpecR at I. We define the exceptional divisor to be

E ∼= Proj(R/I ⊕ I/I2 ⊕ I2/I3 ⊕ · · ·). We next claim that

(R/I ⊕ I/I2 ⊕ I2/I3 ⊕ · · ·)red ∼= R0 ⊕Rn ⊕R2n ⊕ · · · . (4.4.1)

The point is that, for x ∈ It/It+1 = R>nt/R>n(t+1), if x ∈ Rnt+a for some a > 0, then we can

pick b > 0 such that ba > n; we then have

xb ∈ Rbnt+ba ⊆ R>n(bt+1).

But this means that xb = 0 in Ibt/Ibt+1 and thus x is nilpotent in R/I⊕ I/I2⊕ I2/I3⊕· · · . This

proves (4.4.1).

By (4.4.1), we have Ered
∼= ProjR0 ⊕ Rn ⊕ R2n ⊕ · · · ∼= ProjR is Du Bois (because [Rf ]0 is

Du Bois for every homogeneous f ∈ R). We consider the following commutative diagram.

E //

π
��

Y

π

��
SpecR/I // SpecR

4 In general, if S is a Z-graded ring, then S>0
∼= S[z]0, where deg z = −1. Hence, if S is Du Bois, then S>0, being

a summand of S[z], is also Du Bois [Kov99].
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Since Y , Ered and (SpecR/I)red ∼= Spec k are all Du Bois by the above discussion, the exact

triangle Ω0
R → Rπ∗Ω

0
Y ⊕ Ω0

R/I → Rπ∗Ω
0
E

+1−→ reduces to

Ω0
R → Rπ∗OY ⊕ k → Rπ∗OEred

+1−→ . (4.4.2)

Next, we study the map Rπ∗OY → Rπ∗OEred
using the Čech complex. We pick x1, . . . ,

xm ∈ I = (R>n) in R⊕ I ⊕ I2 ⊕ · · · such that:

(a) the internal degree deg xi = n for each xi (in other words, xi ∈ Rn ⊆ R>n = I);

(b) the images x1, . . . , xm in (R/I ⊕ I/I2 ⊕ I2/I3 ⊕ · · ·)red = R0 ⊕Rn ⊕R2n ⊕ · · · are algebra
generators of R0 ⊕Rn ⊕R2n ⊕ · · · over R0 = k.

Note that conditions (a) and (b) together imply that the radical of (x1, . . . , xm) in R⊕I⊕I2⊕· · ·
is the irrelevant ideal I ⊕ I2 ⊕ · · · . In particular, {D+(xi)}16i6m forms an affine open cover of
Y . The point is that for any y ∈ It = R>tn, yn ∈ Itn = R>tn2 as an element in R⊕ I ⊕ I2 ⊕ · · ·
is always contained in the ideal (x1, . . . , xm); this is because the internal degree of yn is divisible
by n, so it can be written as a sum of monomials in xi by (b).

The natural map OY → OEred
induces a map between the sth spot of the Čech complexes

of OY and OEred
with respect to the affine cover {D+(xi)}16i6m. The induced map on Čech

complexes can be explicitly described as follows (all the direct sums in the following diagram are
taken over all s-tuples 1 6 i1 < · · · < is 6 m):⊕OY (D+(xi1xi2 · · ·xis)) //

∼=
��

⊕OEred
(D+(xi1xi2 · · ·xis))

∼=
��⊕{

y
(xi1xi2 ···xis )h

∣∣∣∣ h > 0, y ∈ Ish = R>nsh

}
//

∼=
��

⊕{
y

(xi1xi2 ···xis )h

∣∣∣∣ h > 0, y ∈ Rnsh
}

∼=
��⊕

[Rxi1xi2 ···xis ]>0
φ //

⊕
[Rxi1xi2 ···xis ]0

The induced map on the second line takes the element y/(xi1xi2 · · ·xis)n to y/(xi1xi2 · · ·xis)n,
where y denotes the image of y in Rnsh. Hence, the same map φ on the third line is exactly ‘taking
the degree-0 part’. Therefore, we have

Riπ∗OY ∼= H i(Y,OY ) = [H i+1
m (R)]>0,

while
Riπ∗OEred

∼= H i(Ered,OEred
) ∼= [H i+1

m (R)]0

for every i > 1, and the map Riπ∗OY → Riπ∗OEred
is taking the degree-0 part. Therefore, taking

cohomology of (4.4.2), we have

hi(Ω0
R) ∼= [H i+1

m (R)]>0 for every i > 2. (4.4.3)

Moreover, for i = 0, 1, the cohomology of (4.4.2) gives

0 → h0(Ω0
R) → H0(Y,OY )⊕ k φ−→ H0(Ered,OEred

) → h1(Ω0
R) → [H2

m(R)]>0 → 0. (4.4.4)

A similar Čech complex computation as above shows that

H0(Y,OY ) = ker(⊕[Rxi ]>0 → ⊕[Rxixj ]>0),
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while H0(Ered,OEred
) = ker(⊕[Rxi ]0 → ⊕[Rxixj ]0). Therefore, φ is surjective, which implies that

h1(Ω0
R) ∼= [H2

m(R)]>0. (4.4.5)

Taking the degree > 0 part of (4.4.4), we get an exact sequence

0 → h0(Ω0
R)>0 → ⊕[Rxi ]>0 → ⊕[Rxixj ]>0.

This implies that h0(Ω0
R)>0

∼= (Γ(SpecR\m,OSpecR))>0 and so

h0(Ω0
R)>0/R>0

∼= [H1
m(R)]>0. (4.4.6)

Finally, we notice that h0(Ω0
R) ∼= Rsn is the seminormalization of R [Sai00, 5.2]. We know

that Rsn
0 ⊆ Rsn is reduced. But we can also view Rsn

0 as the quotient Rsn/Rsn
>0; in particular, the

prime ideals of Rsn
0 correspond to prime ideals of Rsn that contain Rsn

>0, so they all contract to
m in R. Since seminormalization induces a bijection on spectrum, Rsn

0 has a unique prime ideal.
Thus, Rsn

0 , being a reduced Artinian local ring, must be a field. Since seminormalization also
induces isomorphism on residue fields, Rsn

0 = k and thus h0(Ω0
R)0 ∼= Rsn

0 = R0. Hence, (4.4.6)
tells us that

h0(Ω0
R)/R ∼= [H1

m(R)]>0. (4.4.7)

Now (4.4.3), (4.4.5) and (4.4.7) together finish the proof. 2

Now we prove our result on injectivity of Ext. Later we will see that this theorem can be
viewed as a generalization of the Kodaira vanishing theorem.

Theorem 4.5. Let (R,m) be a reduced Noetherian N-graded (R0 = C)-algebra with m the
unique homogeneous maximal ideal. Suppose that RP is Du Bois for all P 6= m. Write R = A/I,
where A = C[x1, . . . , xn] is a polynomial ring with deg xi = di > 0 and I is a homogeneous ideal.
Then the natural degree-preserving map ExtjA(R,A) → Hj

I (A) induces an injection

[ExtjA(R,A)]>−d ↪→ [Hj
I (A)]>−d

for every j, where d =
∑
di.

Proof. We have the hypercohomology spectral sequence

Hp
m(hq(Ω0

R))⇒ Hp+q
m (Ω0

R).

Since R is Du Bois away from V (m), hq(Ω0
R) has finite length when q > 1. Thus, we know that

Hp
m(hq(Ω0

R)) = 0 unless p = 0 or q = 0. We also have that H0
m(hi(Ω0

R)) ∼= hi(Ω0
R) for i > 1. Hence,

the above spectral sequence carries the data of a long exact sequence

0 → H1
m(h0(Ω0

R)) → H1
m(Ω0

R) → h1(Ω0
R) →

→ H2
m(h0(Ω0

R)) → H2
m(Ω0

R) → h2(Ω0
R) →

· · · · · · · · ·
→ H i

m(h0(Ω0
R)) → Hi

m(Ω0
R) → hi(Ω0

R) → · · ·

(4.5.1)

We also have a short exact sequence 0 → R → h0(Ω0
R) → [H1

m(R)]>0 → 0 by Proposition 4.4.
Therefore, the long exact sequence of local cohomology and the observation that [H1

m(R)]>0 has
finite length tell us that

H1
m(h0(Ω0

R)) ∼= H1
m(R)/[H1

m(R)]>0
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and
H i

m(h0(Ω0
R)) ∼= H i

m(R) for every i > 2.

Now taking the degree 6 0 part of (4.5.1) and again using Proposition 4.4 yields

[H i
m(R)]60 ∼= [Hi

m(Ω0
R)]60 for every i. (4.5.2)

At this point, note that by the Matlis dual of Lemma 3.2 (see the proof of Lemma 3.3 applied to
S = A/J for

√
J = I, and thus Sred = A/I =R), we always have a surjectionH i

m(A/J)�Hi
m(Ω0

R)
for every i and

√
J = I. Taking the degree 6 0 part and applying (4.5.2), we thus get that

[H i
m(A/J)]60 � [H i

m(R)]60 (4.5.3)

is surjective for every i and
√
J = I. Now taking J = It and applying graded local duality

(we refer to [BS98] for definitions and standard properties of graded canonical modules, graded
injective hulls and graded local duality, but we emphasize here that the graded canonical module
of A is A(−d)), we have that

[ExtjA(R,A(−d))]>0 ↪→ [ExtjA(A/It, A(−d))]>0

is injective for every j and t. So, after taking a direct limit and a degree shift, we have

[ExtjA(R,A)]>−d ↪→ [Hj
I (A)]>−d

is injective for every j. This finishes the proof. 2

Remark 4.6. The dual form of Theorem 4.5 says that [H i
m(A/J)]t � [H i

m(R)]t is surjective for
every i, every t 6 0 and every

√
J = I; see (4.5.3). When R = A/I has an isolated singularity,

A is standard graded and t = 0, this was proved in [Var13, Proposition 3.8]. Therefore, our
Theorem 4.5 greatly generalizes this result.

In general, we cannot expect that [ExtjA(R,A)]<−d ↪→ [Hj
I (A)]<−d is injective under the

hypothesis of Theorem 4.5 (even if R is an isolated singularity). Consider the following example.

Example 4.7 (Cf. [SW07, Example 3.5]). Let R = C[s4, s3t, st3, t4]. Then we can write R = A/I,
where A = C[x, y.z, w] with standard grading (i.e., x, y, z, w all have degree one). It is
straightforward to check that R is an isolated singularity with

H1
m(R) = [H1

m(R)]>0 6= 0

(in particular, depthR = 1). By graded local duality, we have [Ext3A(R,A)]<−4 6= 0. On the other
hand, using standard vanishing theorems in [HL90, Theorem 2.9], we know that H3

I (A) = 0.
Therefore, the map [Ext3A(R,A)]<−4 → [H3

I (A)]<−4 is not injective.

An important consequence of Theorem 4.5 (in fact, we only need the injectivity in degree
> −d) is the following vanishing result.

Theorem 4.8. Let (R,m) be a Noetherian N-graded (R0 = C)-algebra with m the unique
homogeneous maximal ideal. Suppose that RP is Du Bois for all P 6= m and H i

m(R) has finite
length for some i. Then [H i

m(R)]<0 = 0.
In particular, if R is equidimensional and is Cohen–Macaulay Du Bois on SpecR−{m}, then

[H i
m(R)]<0 = 0 for every i < dimR.
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Proof. Let R = A/I, where A = C[x1, . . . , xn] is a (not necessarily standard graded) polynomial
ring and I is a homogeneous ideal. Set deg xi = di > 0 and d =

∑
di. The graded canonical

module of A is A(−d). By graded local duality,

Extn−iA (R,A)(−d) ∼= H i
m(R)∗.

Therefore, if [H i
m(R)]−j 6= 0 for some j > 0, then [Extn−iA (R,A)]j−d 6= 0 for some j > 0. By

Theorem 4.5, we have an injection

[Extn−iA (R,A)]j−d ↪→ [Hn−i
I (A)]j−d.

Since H i
m(R) has finite length, Extn−iA (R,A) also has finite length. Hence, the natural degree-

preserving map Extn−iA (R,A) → Hn−i
I (A) factors through

Extn−iA (R,A) → H0
mH

n−i
I (A) → Hn−i

I (A).

Taking the degree-(j − d) part, we thus get an injection

[Extn−iA (R,A)]j−d → [H0
mH

n−i
I (A)]j−d.

It follows that [H0
mH

n−i
I (A)]j−d 6= 0 for some j > 0. However, H0

mH
n−i
I (A) is an Eulerian graded

D-module supported only at m. Thus, by [MZ14, Theorem 1.2],5 the socle of H0
mH

n−i
I (A) is

concentrated in degree −d, so that [H0
mH

n−i
I (A)]>−d = 0, which is a contradiction. 2

If R is the section ring of a normal Cohen–Macaulay and Du Bois projective variety X with
respect to an ample line bundle L , then [H i

m(R)]<0 = 0 is exactly the Kodaira vanishing for
X (which is well known; for example see [Ma15] or [Pat15]). But Theorem 4.8 can handle more
general R, i.e., R need not be a section ring of an ample line bundle. If R is normal, then any
graded ring is the section ring of some Q-divisor [Dem88] and, in that case, our results yield
variants and consequences of Kawamata–Viehweg vanishing (also see [Wat81, Lemma 2.1 and
Proposition 2.2]). But for general graded rings we do not know how to view them as section
rings. Thus, our results (Theorems 4.5 and 4.8) should be viewed as generalizations of the
Kodaira vanishing theorem for Cohen–Macaulay Du Bois projective varieties. It would also be
natural to try to generalize the results of Proposition 4.4 through Theorem 4.8 to the context
of Du Bois pairs. One particular obstruction is the use of the Eulerian graded D-module at the
end of the proof of Theorem 4.8.

4.2 Set-theoretic Cohen–Macaulayness
Our next application is a characteristic-0 analog of [SW05, Lemma 3.1] on set-theoretic Cohen–
Macaulayness. Recall that an ideal I in a regular ring R is set-theoretically Cohen–Macaulay if
there exists an ideal J such that

√
I =
√
J and R/J is Cohen–Macaulay.

Proposition 4.9. Let (R,m) be a regular local ring essentially of finite type over C and let I ⊆ R
be an ideal. If R/I is Du Bois but not Cohen–Macaulay, then the ideal I is not set-theoretically
Cohen–Macaulay.

5 [MZ14, Theorem 1.2] assumes that A = C[x1, . . . , xn] has standard grading, i.e., di = 1 and hence d =
∑

di = n.
However, the same proof can be adapted to the general case: one only needs to replace the Euler operator

∑
xi∂i

by
∑

dixi∂i. The reader is referred to [Put15, § 2] for a discussion on this.
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Proof. Suppose that I =
√
J for some J such that R/J is Cohen–Macaulay. Applying Lemma 3.3

to S = R/J , we find that for every i < dimR/I,

0 = H i
m(R/J)� H i

m(R/I)

is surjective and thus R/I is Cohen–Macaulay, which is a contradiction. 2

In the graded characteristic-0 case, we have a stronger criterion for set-theoretic Cohen–
Macaulayness.

Corollary 4.10. Let R = C[x1, . . . , xn] be a polynomial ring with possibly non-standard
grading. Let I be a homogeneous ideal of R such that R/I is Du Bois on SpecR − {m} (e.g.,
R/I has an isolated singularity at {m}).

Suppose that [H i
m(R/I)]60 6= 0 for some i < dimR/I (e.g., R/I is not Cohen–Macaulay on

SpecR − {m}, or H i(X,OX) 6= 0 for X = ProjR/I). Then I is not set-theoretically Cohen–
Macaulay.

Proof. Suppose that I =
√
J for some J such that R/J is Cohen–Macaulay. Applying the dual

form of Theorem 4.5 (see Remark 4.6), we get

0 = [H i
m(R/J)]60 � [H i

m(R/I)]60

is surjective for every i < dimR/I. This clearly contradicts our hypothesis. 2

We point out the following example as an application.

Example 4.11. Let k be a field and let Ek ⊆ P2
k be a smooth elliptic curve over k. We want to

study the defining ideal of the Segre embedding Ek × P1
k ⊆ P5

k. We let k[x0, . . . , x5]/I = A/I be
this homogeneous coordinate ring. It is well known that A/I is not Cohen–Macaulay.

(a) k has characteristic p > 0 and Ek is an ordinary elliptic curve. In this case it is well
known that A/I is F -pure, so [SW05, Lemma 3.1] shows that I is not set-theoretically
Cohen–Macaulay.

(b) k has characteristic p > 0 and Ek is supersingular. We want to point out that, at least when k
is F -finite, I is still not set-theoretically Cohen–Macaulay. This answers a question in [SW05,
Remark 3.4]. Suppose that there exists J such that

√
J = I and A/J is Cohen–Macaulay.

Let e � 0 be such that I [p
e] ⊆ J . The composite of the Frobenius map on A/I with the

natural surjection A/I
F−→ A/I [p

e]� A/J makes A/J a small Cohen–Macaulay algebra over
A/I (note that k, and hence A, is F -finite). However, by a result of Bhatt [Bha14, Example
3.11], A/I does not have any small Cohen–Macaulay algebra, which is a contradiction.

(c) k has characteristic 0. In this case, it is easy to check using Proposition 4.4 that A/I is
Du Bois. Hence, Proposition 4.9 immediately shows that I is not set-theoretically Cohen–
Macaulay. This example was originally obtained in [SW05, Theorem 3.3] using reduction
to characteristic p > 0. Thus, our Proposition 4.9 can be viewed as a vast generalization of
that result.

It is worth pointing out that in Example 4.11, we know that H i
m(A/J) � H i

m(A/I) for
every i and every

√
J = I in characteristic 0, since A/I is Du Bois. In characteristic p > 0, we

have H i
m(A/J) � H i

m(A/I) for every i and every
√
J = I when Ek is ordinary; however, it is

straightforward to check that H2
m(A/I [p]) → H2

m(A/I) is not surjective (it is the zero map) when
Ek is supersingular. Therefore, the surjective property proved in Lemma 3.3 does not pass to
reduction mod p� 0.
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4.3 Koszul cohomology versus local cohomology
Our last application in this section is a strengthening of the main result of [HR76]. We start by
proving a general result, which is characteristic-free. The proof is inspired by [Sch82].

Theorem 4.12. Let R be a Noetherian N-graded k-algebra, where k = R0 is an arbitrary field.
Let m be the unique homogenous maximal ideal. If Hr

m(R) = [Hr
m(R)]0 for every r < n =

dimR, then [Hr(x,R)]0 ∼= Hr
m(R) for every r < n and every homogeneous system of parameters

x = x1, . . . , xn, where Hr(x,R) denotes the rth Koszul cohomology of x. In other words, it is
not necessary to take a direct limit when computing the local cohomology.

Proof. We fix x = x1, . . . , xn, a homogeneous system of parameters. Let deg xi = di > 0. Consider
the graded Koszul complex

K q : 0 → R(−d1 − d2 − · · · − dn) → · · ·→ ⊕R(−di) → R → 0.

After we apply HomR(−, R), we obtain the graded Koszul cocomplex

K
q
: 0 → R → ⊕R(di) → · · ·→ R(d1 + d2 + · · ·+ dn) → 0.

We note that K
q
lives in cohomology degree 0, 1, . . . , n.

Let ω
q
R be the graded normalized dualizing complex of R; thus, ωR = h−nω

q
R is the graded

canonical module of R. Let (−)∗ = HomR(−, ∗E), where ∗E is the graded injective hull of k. We
have a triangle

ωR[n] → ω
q
R → τ>−nω

q
R

+1−→ .

Applying RHomR(K
q
,−), we get

RHomR(K
q
, ωR[n]) → RHomR(K

q
, ω

q
R) → RHomR(K

q
, τ>−nω

q
R)

+1−→ .

Applying HomR(−, ∗E) and using graded local duality, we obtain

RHomR(K
q
, τ>−nω

q
R)∗ → K

q
→ RHomR(K

q
, ωR[n])∗

+1−→ .

Note that RHomR(K
q
, ωR[n])∗ lives in cohomological degree n, n + 1, . . . , 2n; hence, we obtain

a graded isomorphism in the derived category:

τ<nK
q∼= τ<nRHomR(K

q
, τ>−nω

q
R)∗.

Therefore, for every r < n, we have

hr(K
q
) ∼= hr(RHomR(K

q
, τ>−nω

q
R)∗).

At this point, notice that Hr
m(R) = [Hr

m(R)]0 for every r < n implies that R is Buchsbaum
by [Sch82, Theorem 3.1]. This means that τ>−nω

q
R is quasi-isomorphic to a complex of graded

k-vector spaces. Moreover, we know that all these graded vector spaces have degree 0 because
H i

m(R) = [H i
m(R)]0 for every i < n. In other words, we have

τ>−nω
q
R
∼= 0 → ksn−1 → ksn−2 → · · ·→ ks1 → ks0 → 0,

where the complex on the right-hand side has zero differentials and ksi has internal degree 0 and
sits in cohomology degree −i, with si = dimk[H

i
m(R)]0.
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Recall that di > 0; hence, by keeping track of the internal degrees, we see that

[RHomR(K
q
, τ>−nω

q
R)]0 ∼= τ>−nω

q
R.

Now, by graded local duality, we have

[Hr(x,R)]0 = [hr(K
q
)]0 ∼= [hr(RHomR(K

q
, τ>−nω

q
R)∗)]0 ∼= hr((τ>nω

q
R)∗) ∼= Hr

m(R)

for every r < n. This finishes the proof. 2

Now we can prove the following extension of the main result of [HR76].

Corollary 4.13. Let R be a Noetherian N-graded (R0 = k)-algebra with m the unique
homogeneous maximal ideal. Suppose that R is equidimensional and Cohen–Macaulay on
SpecR− {m}. Assume one of the following:

(a) k has characteristic p > 0 and R is F -injective;

(b) k has characteristic 0 and R is Du Bois.

Then [Hr(x,R)]0 ∼=Hr
m(R) for every r < n= dimR and every homogeneous system of parameters

x = x1, . . . , xn, where Hr(x,R) denotes the rth Koszul cohomology of x. In other words, it is
not necessary to take a direct limit when computing the local cohomology.

Proof. Since R is equidimensional and Cohen–Macaulay on the punctured spectrum, we know
that Hr

m(R) has finite length for every r < n = dimR. We will show that Hr
m(R) = [Hr

m(R)]0 for
every r < n in situation (a) or (b). This will finish the proof by Theorem 4.12.

In situation (a), Hr
m(R) = [Hr

m(R)]0 is obvious because Hr
m(R) has finite length and the

Frobenius acts injectively on it. In situation (b), notice that [Hr
m(R)]<0 = 0 by Theorem 4.8

while [Hr
m(R)]>0 = 0 by Theorem 4.4; hence, Hr

m(R) = [Hr
m(R)]0. 2

Remark 4.14. In situation (b) above, if R is normal standard graded, then Hr
m(R) = [Hr

m(R)]0
also follows from [Ma15, Theorem 4.5]. However, in the above proof we do not need any normal
or standard graded hypothesis thanks to Proposition 4.4 and Theorem 4.8.

Remark 4.15. Corollary 4.13 was proved when R is F -pure and k is perfect in [HR76, Theorem
1.1] and, by a technical reduction to a p > 0 technique, it was also proved when R is of F -pure
type [HR76, Theorem 4.8]. Since F -pure certainly implies F -injective and F -injective type implies
Du Bois (see [Sch09]), our theorem gives a generalization of Hochster–Roberts’s result, and our
proof is quite different from that of [HR76].

We end this section by pointing out an example showing that in Theorem 4.12 or
Corollary 4.13, it is possible that Hr(x,R) 6= Hr

m(R), i.e., we must take the degree-0 piece
of the Koszul cohomology. This is a variant of Example 4.11.

Example 4.16. Let R = (k[x, y, z]/(x3 + y3 + z3))#k[a, b, c] be the Segre product of
k[x, y, z]/(x3 + y3 + z3) and k[a, b, c], where the characteristic of k is either 0 or congruent to 1
mod 3. Therefore, R is the homogeneous coordinate ring of the Segre embedding of X = E ×P2

to P8, where E = Proj (k[x, y, z]/(x3 + y3 + z3)) is an elliptic curve. Notice that dimX = 3 and
dimR = 4. Since R has an isolated singularity, it is Cohen–Macaulay on the punctured spectrum.
It is easy to check that R is Du Bois in characteristic 0 and F -pure (and thus F -injective) in
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characteristic p > 0, since p ≡ 1 mod 3. So, we know that H i
m(R) = [H i

m(R)]0 for every i < 4,
where m is the unique homogeneous maximal ideal of R. Now we compute

H2
m(R) = [H2

m(R)]0 = H1(X,OX) =
⊕
i+j=1

H i(E,OE)⊗k Hj(P2,OP2) ∼= k,

H3
m(R) = [H3

m(R)]0 = H2(X,OX) =
⊕
i+j=2

H i(E,OE)⊗k Hj(P2,OP2) = 0.

The first line shows that R is not Cohen–Macaulay (actually, we have depthR = 2), so for
any homogeneous system of parameters x of R, we have H3(x,R) ∼= H1(x,R) 6= 0. Hence,
H3(x,R) 6= H3

m(R).

5. Deformation of dense F -injective type

In this section we use results in § 3 to prove that singularities of (dense) F -injective type in
characteristic 0 deform. In fact, we prove a slightly stronger result. Our motivation for studying
this question is a recent result of Kovács and Schwede [KS16a] that Du Bois singularities in
characteristic 0 deform.

By the main result of [Sch09], singularities of dense F -injective type are always Du Bois.
It is conjectured [BST13, Conjecture 4.1] that Du Bois singularities should be equivalent to
singularities of dense F -injective type. This conjecture is equivalent to the weak ordinarity
conjecture of Mustaţă and Srinivas [MS11]. If this conjecture is true, then singularities of
dense F -injective type deform because Du Bois singularities deform [KS16a]. However, the weak
ordinarity conjecture is wide open.

Setup 5.1 (Reduction to characteristic p > 0). We recall briefly reduction to characteristic p > 0.
For more details in our setting, see [HH06, § 2.1] and [Sch09, § 6].

Suppose that (R,m) is essentially of finite type over C (or another field of characteristic 0,
which we will also call C), so that (R,m) is a homomorphic image of TP , where T = C[x1, . . . , xt]
and P ⊆ T is a prime ideal, so that R = (T/J)P . Given a finite collection of finitely generated
R-modules Mi (and finitely many maps between them), we may assume that each Mi = (M ′i)P for
a finitely generated T -module M ′i annihilated by J . Suppose that E → SpecT/J is the reduced
preimage of T/J in a log resolution of (SpecT, SpecT/J). We also keep track of E → SpecT/J in
the reduction to characteristic p > 0 process, as well as the modules hi(Ω0

T/J) = Riπ∗OE . Assume

that x is the image of h(x1, . . . , xt) ∈ T (note that if x has a problematic denominator, we can
replace x by another element that generates the same ideal and does not have a denominator).

We pick a finitely generated regular Z-algebra A ⊆ C such that the coefficients of the
generators of P , the coefficients of h, the coefficients of J and the coefficients of a presentation
of the M ′i are contained in A. Form TA = A[x1, . . . , xt] and let PA = P ∩ TA, JA = J ∩ TA and
observe that PA ⊗A C = P, JA ⊗A C = J by construction. Note that by generic flatness, we can
replace A by A[b−1] and so shrink SpecA if necessary to assume that RA is a flat A-module and x
is a non-zero divisor on RA. Likewise form (M ′i)A with the same presentation matrix of M ′i (and
likewise with maps between the modules) and form EA → SpecTA/JA, so that (M ′i)A⊗AC = M ′i
and that (Riπ∗OEA)⊗AC = (Riπ∗OEA). Shrinking SpecA yet again if necessary, we can assume
that all these modules are flat over A (and that any relevant kernels and cokernels of the finitely
many maps between them are also flat).

We now mod out by a maximal ideal n of A with κ = A/n. In particular, we use
RA = (TA/JA)PA etc. and Rκ, Tκ, Eκ etc. to denote the corresponding rings, schemes and
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modules over A and κ, where κ = A/n for n a maximal ideal in A. Since all relevant kernels and
cokernels of the maps are flat by shrinking SpecA, x is a non-zero divisor on Rκ for every κ.

We also need a slightly different version of the main result of [Sch09]. In that paper, it was
assumed that if R is of finite type over a field of characteristic 0, and of dense F -injective type,
then R has Du Bois singularities. We need a version of this result in which R is local. The reason
is, that, in the notation of Theorem 5.3, if R is of finite type, and Rp/xpRp is F -injective, then
for p sufficiently divisible, we obtain that Rp is F -injective in a neighborhood of V (xp). The
problem is that we do not know how to control these neighborhoods as p varies. Thus, we need
the following preliminary result. In particular, we do not know whether having dense F -injective
type is an open property in characteristic 0.

Theorem 5.2. Let (R,m) be a local ring essentially of finite type over C and suppose that R
has dense F -injective type. Then R is Du Bois.

The strategy is the same as in [Sch09]; indeed, the proof only differs in how carefully we keep
track of a minimal prime of the non-Du Bois locus.

Sketch of the proof. It is easy to see that R is seminormal, so we need to show that hi(Ω0
R) = 0

for all i > 0. We use the notation of Setup 5.1. Let QC ⊆ P ⊆ T/J correspond to a minimal
prime of the non-Du Bois locus of (R,m), so that hi(Ω0

(T/J)QC
) = hi(Rπ∗OE)QC has finite length

for i > 0. Since (R,m) has dense F -injective type, it is easy to see that so does (RQC , QCRQC),
so we may assume that m = QC. Now using Setup 5.1, reduce to some model so that (Rκ,mκ) is
F -injective. The proof now follows exactly that of [Sch09, Proof 6.1], where we obtain that

hi(R(πκ)∗OEκ)Qκ ↪→ H i+1
Qκ

(Rκ).

But the left-hand side is annihilated by a power of Frobenius by [Sch09, Theorem 7.1] and
Frobenius acts injectively on the right by hypothesis. The result follows. 2

Theorem 5.3. Let (R,m) be a local ring essentially of finite type over C and let x be a non-zero
divisor on R. Suppose that R/xR has dense F -injective type. Then, for infinitely many p > 0,
the Frobenius action xp−1F on H i

mp(Rp) is injective for every i, where (Rp,mp) is the reduction
mod p of R. In particular, R has dense F -injective type.

Proof. By Theorem 5.2, R/xR has Du Bois singularities. By Theorem 3.6 (taking Z = ∅),

H i
m(R)

·x−→ H i
m(R) surjects for all i. By Matlis duality, ExtiT (R, T )

·x−→ Exti(R, T ) injects for all
i. Spreading this out to A, and possibly inverting an element of A, we see that ExtiTA(RA, TA)
·x−→ ExtiTA(RA, TA) injects for all i (note that there are only finitely many Ext to consider).
Inverting another element of A if necessary, we deduce that

ExtiTκ(Rκ, Tκ)
·x−→ ExtiTκ(Rκ, Tκ)

injects for every i and each maximal ideal n ⊆ A, setting κ = A/n. We abuse notation and let x
denote the image of x in Rκ. Applying Matlis duality again and considering the Frobenius on the
local cohomology modules, we have the following collection of short exact sequences for each i:

0 // H i
mκ(Rκ/xRκ) //

F
��

H i+1
mκ (Rκ)

·x //

xp−1F
��

H i+1
mκ (Rκ) //

F
��

0

0 // H i
mκ(Rκ/xRκ) // H i+1

mκ (Rκ)
·x // H i+1

mκ (Rκ) // 0,
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where p is the characteristic of κ and F denotes the natural Frobenius action on H i
mκ(Rκ/xRκ)

and H i+1
mκ (Rκ).

At this point, recall that R/xR has dense F -injective type. It follows that for infinitely many
p > 0, if the residue field κ of A has characteristic p > 0, then the natural Frobenius action on
H i

mκ(Rκ/xRκ) is injective for every i. Now chasing the above diagram, if xp−1F is not injective,
then we can pick 0 6= y ∈ socle(H i+1

mκ (Rκ)) ∩ ker(xp−1F ). Since y is in the socle of H i+1
mκ (Rκ),

it maps to zero under multiplication by x. But then 0 6= y ∈ H i
mκ(Rκ/xRκ), and chasing the

diagram we find that xp−1F (y) 6= 0, which is a contradiction.
We have established that for infinitely many p, after we do reduction to p, the Frobenius

action xp−1F on H i+1
mκ (Rκ) is injective for every i. This certainly implies that the natural

Frobenius action F on H i+1
mκ (Rκ) is injective for every i. Hence, R has dense F -injective type. 2

Remark 5.4. It is still unknown whether F -injective singularities in characteristic p > 0 deform
(and this has been open since [Fed83]). Our theorem is in support of this conjecture: it shows that
this is true ‘in characteristic p� 0’. For the most recent progress on deformation of F -injectivity
in characteristic p > 0, we refer to [HMS14]. On the other hand, Theorem 5.3 provides evidence
for the weak ordinarity conjecture [MS11] because of the relation between the weak ordinarity
conjecture and the conjecture that Du Bois singularities have dense F -injective type [BST13].
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KS16b S. J. Kovács and K. Schwede, Inversion of adjunction for rational and Du Bois pairs, Algebra
Number Theory 10 (2016), 969–1000; MR 3531359.

2169

https://doi.org/10.1112/S0010437X17007321 Published online by Cambridge University Press

http://www.ams.org/mathscinet-getitem?mr=2225632
http://www.ams.org/mathscinet-getitem?mr=2225632
http://www.ams.org/mathscinet-getitem?mr=2225632
http://www.ams.org/mathscinet-getitem?mr=2225632
http://www.ams.org/mathscinet-getitem?mr=2225632
http://www.ams.org/mathscinet-getitem?mr=2225632
http://www.ams.org/mathscinet-getitem?mr=2225632
http://www.ams.org/mathscinet-getitem?mr=2225632
http://www.ams.org/mathscinet-getitem?mr=2225632
http://www.ams.org/mathscinet-getitem?mr=2225632
http://www.ams.org/mathscinet-getitem?mr=2460693
http://www.ams.org/mathscinet-getitem?mr=2460693
http://www.ams.org/mathscinet-getitem?mr=2460693
http://www.ams.org/mathscinet-getitem?mr=2460693
http://www.ams.org/mathscinet-getitem?mr=2460693
http://www.ams.org/mathscinet-getitem?mr=2460693
http://www.ams.org/mathscinet-getitem?mr=2460693
http://www.ams.org/mathscinet-getitem?mr=2460693
http://www.ams.org/mathscinet-getitem?mr=2460693
http://www.ams.org/mathscinet-getitem?mr=2460693
http://www.ams.org/mathscinet-getitem?mr=701505
http://www.ams.org/mathscinet-getitem?mr=701505
http://www.ams.org/mathscinet-getitem?mr=701505
http://www.ams.org/mathscinet-getitem?mr=701505
http://www.ams.org/mathscinet-getitem?mr=701505
http://www.ams.org/mathscinet-getitem?mr=701505
http://www.ams.org/mathscinet-getitem?mr=701505
http://www.ams.org/mathscinet-getitem?mr=701505
http://www.ams.org/mathscinet-getitem?mr=701505
http://www.ams.org/mathscinet-getitem?mr=1015520
http://www.ams.org/mathscinet-getitem?mr=1015520
http://www.ams.org/mathscinet-getitem?mr=1015520
http://www.ams.org/mathscinet-getitem?mr=1015520
http://www.ams.org/mathscinet-getitem?mr=1015520
http://www.ams.org/mathscinet-getitem?mr=1015520
http://www.ams.org/mathscinet-getitem?mr=1015520
http://www.ams.org/mathscinet-getitem?mr=1015520
http://www.ams.org/mathscinet-getitem?mr=1015520
http://www.ams.org/mathscinet-getitem?mr=1015520
http://www.ams.org/mathscinet-getitem?mr=3395242
http://www.ams.org/mathscinet-getitem?mr=3395242
http://www.ams.org/mathscinet-getitem?mr=3395242
http://www.ams.org/mathscinet-getitem?mr=3395242
http://www.ams.org/mathscinet-getitem?mr=3395242
http://www.ams.org/mathscinet-getitem?mr=3395242
http://www.ams.org/mathscinet-getitem?mr=3395242
http://www.ams.org/mathscinet-getitem?mr=3395242
http://www.ams.org/mathscinet-getitem?mr=3395242
http://www.ams.org/mathscinet-getitem?mr=3395242
http://www.ams.org/mathscinet-getitem?mr=1874118
http://www.ams.org/mathscinet-getitem?mr=1874118
http://www.ams.org/mathscinet-getitem?mr=1874118
http://www.ams.org/mathscinet-getitem?mr=1874118
http://www.ams.org/mathscinet-getitem?mr=1874118
http://www.ams.org/mathscinet-getitem?mr=1874118
http://www.ams.org/mathscinet-getitem?mr=1874118
http://www.ams.org/mathscinet-getitem?mr=1874118
http://www.ams.org/mathscinet-getitem?mr=1874118
http://www.ams.org/mathscinet-getitem?mr=1874118
http://www.math.lsa.umich.edu/~hochster/tcz.ps
http://www.math.lsa.umich.edu/~hochster/tcz.ps
http://www.math.lsa.umich.edu/~hochster/tcz.ps
http://www.math.lsa.umich.edu/~hochster/tcz.ps
http://www.math.lsa.umich.edu/~hochster/tcz.ps
http://www.math.lsa.umich.edu/~hochster/tcz.ps
http://www.math.lsa.umich.edu/~hochster/tcz.ps
http://www.math.lsa.umich.edu/~hochster/tcz.ps
http://www.math.lsa.umich.edu/~hochster/tcz.ps
http://www.math.lsa.umich.edu/~hochster/tcz.ps
http://www.math.lsa.umich.edu/~hochster/tcz.ps
http://www.math.lsa.umich.edu/~hochster/tcz.ps
http://www.math.lsa.umich.edu/~hochster/tcz.ps
http://www.math.lsa.umich.edu/~hochster/tcz.ps
http://www.math.lsa.umich.edu/~hochster/tcz.ps
http://www.math.lsa.umich.edu/~hochster/tcz.ps
http://www.math.lsa.umich.edu/~hochster/tcz.ps
http://www.math.lsa.umich.edu/~hochster/tcz.ps
http://www.math.lsa.umich.edu/~hochster/tcz.ps
http://www.math.lsa.umich.edu/~hochster/tcz.ps
http://www.math.lsa.umich.edu/~hochster/tcz.ps
http://www.math.lsa.umich.edu/~hochster/tcz.ps
http://www.math.lsa.umich.edu/~hochster/tcz.ps
http://www.math.lsa.umich.edu/~hochster/tcz.ps
http://www.math.lsa.umich.edu/~hochster/tcz.ps
http://www.math.lsa.umich.edu/~hochster/tcz.ps
http://www.math.lsa.umich.edu/~hochster/tcz.ps
http://www.math.lsa.umich.edu/~hochster/tcz.ps
http://www.math.lsa.umich.edu/~hochster/tcz.ps
http://www.math.lsa.umich.edu/~hochster/tcz.ps
http://www.math.lsa.umich.edu/~hochster/tcz.ps
http://www.math.lsa.umich.edu/~hochster/tcz.ps
http://www.math.lsa.umich.edu/~hochster/tcz.ps
http://www.math.lsa.umich.edu/~hochster/tcz.ps
http://www.math.lsa.umich.edu/~hochster/tcz.ps
http://www.math.lsa.umich.edu/~hochster/tcz.ps
http://www.math.lsa.umich.edu/~hochster/tcz.ps
http://www.math.lsa.umich.edu/~hochster/tcz.ps
http://www.math.lsa.umich.edu/~hochster/tcz.ps
http://www.math.lsa.umich.edu/~hochster/tcz.ps
http://www.math.lsa.umich.edu/~hochster/tcz.ps
http://www.math.lsa.umich.edu/~hochster/tcz.ps
http://www.math.lsa.umich.edu/~hochster/tcz.ps
http://www.math.lsa.umich.edu/~hochster/tcz.ps
http://www.math.lsa.umich.edu/~hochster/tcz.ps
http://www.math.lsa.umich.edu/~hochster/tcz.ps
http://www.ams.org/mathscinet-getitem?mr=0417172
http://www.ams.org/mathscinet-getitem?mr=0417172
http://www.ams.org/mathscinet-getitem?mr=0417172
http://www.ams.org/mathscinet-getitem?mr=0417172
http://www.ams.org/mathscinet-getitem?mr=0417172
http://www.ams.org/mathscinet-getitem?mr=0417172
http://www.ams.org/mathscinet-getitem?mr=0417172
http://www.ams.org/mathscinet-getitem?mr=0417172
http://www.ams.org/mathscinet-getitem?mr=0417172
http://www.ams.org/mathscinet-getitem?mr=0417172
http://www.ams.org/mathscinet-getitem?mr=3263925
http://www.ams.org/mathscinet-getitem?mr=3263925
http://www.ams.org/mathscinet-getitem?mr=3263925
http://www.ams.org/mathscinet-getitem?mr=3263925
http://www.ams.org/mathscinet-getitem?mr=3263925
http://www.ams.org/mathscinet-getitem?mr=3263925
http://www.ams.org/mathscinet-getitem?mr=3263925
http://www.ams.org/mathscinet-getitem?mr=3263925
http://www.ams.org/mathscinet-getitem?mr=3263925
http://www.ams.org/mathscinet-getitem?mr=3263925
http://www.ams.org/mathscinet-getitem?mr=3272910
http://www.ams.org/mathscinet-getitem?mr=3272910
http://www.ams.org/mathscinet-getitem?mr=3272910
http://www.ams.org/mathscinet-getitem?mr=3272910
http://www.ams.org/mathscinet-getitem?mr=3272910
http://www.ams.org/mathscinet-getitem?mr=3272910
http://www.ams.org/mathscinet-getitem?mr=3272910
http://www.ams.org/mathscinet-getitem?mr=3272910
http://www.ams.org/mathscinet-getitem?mr=3272910
http://www.ams.org/mathscinet-getitem?mr=3272910
http://www.ams.org/mathscinet-getitem?mr=3057950
http://www.ams.org/mathscinet-getitem?mr=3057950
http://www.ams.org/mathscinet-getitem?mr=3057950
http://www.ams.org/mathscinet-getitem?mr=3057950
http://www.ams.org/mathscinet-getitem?mr=3057950
http://www.ams.org/mathscinet-getitem?mr=3057950
http://www.ams.org/mathscinet-getitem?mr=3057950
http://www.ams.org/mathscinet-getitem?mr=3057950
http://www.ams.org/mathscinet-getitem?mr=3057950
http://www.ams.org/mathscinet-getitem?mr=3057950
http://www.ams.org/mathscinet-getitem?mr=2629988
http://www.ams.org/mathscinet-getitem?mr=2629988
http://www.ams.org/mathscinet-getitem?mr=2629988
http://www.ams.org/mathscinet-getitem?mr=2629988
http://www.ams.org/mathscinet-getitem?mr=2629988
http://www.ams.org/mathscinet-getitem?mr=2629988
http://www.ams.org/mathscinet-getitem?mr=2629988
http://www.ams.org/mathscinet-getitem?mr=2629988
http://www.ams.org/mathscinet-getitem?mr=2629988
http://www.ams.org/mathscinet-getitem?mr=2629988
http://www.ams.org/mathscinet-getitem?mr=1658959
http://www.ams.org/mathscinet-getitem?mr=1658959
http://www.ams.org/mathscinet-getitem?mr=1658959
http://www.ams.org/mathscinet-getitem?mr=1658959
http://www.ams.org/mathscinet-getitem?mr=1658959
http://www.ams.org/mathscinet-getitem?mr=1658959
http://www.ams.org/mathscinet-getitem?mr=1658959
http://www.ams.org/mathscinet-getitem?mr=1658959
http://www.ams.org/mathscinet-getitem?mr=1658959
http://www.ams.org/mathscinet-getitem?mr=1658959
http://www.ams.org/mathscinet-getitem?mr=1713307
http://www.ams.org/mathscinet-getitem?mr=1713307
http://www.ams.org/mathscinet-getitem?mr=1713307
http://www.ams.org/mathscinet-getitem?mr=1713307
http://www.ams.org/mathscinet-getitem?mr=1713307
http://www.ams.org/mathscinet-getitem?mr=1713307
http://www.ams.org/mathscinet-getitem?mr=1713307
http://www.ams.org/mathscinet-getitem?mr=1713307
http://www.ams.org/mathscinet-getitem?mr=1713307
http://www.ams.org/mathscinet-getitem?mr=1713307
http://www.ams.org/mathscinet-getitem?mr=2784747
http://www.ams.org/mathscinet-getitem?mr=2784747
http://www.ams.org/mathscinet-getitem?mr=2784747
http://www.ams.org/mathscinet-getitem?mr=2784747
http://www.ams.org/mathscinet-getitem?mr=2784747
http://www.ams.org/mathscinet-getitem?mr=2784747
http://www.ams.org/mathscinet-getitem?mr=2784747
http://www.ams.org/mathscinet-getitem?mr=2784747
http://www.ams.org/mathscinet-getitem?mr=2784747
http://www.ams.org/mathscinet-getitem?mr=2784747
http://www.ams.org/mathscinet-getitem?mr=3531359
http://www.ams.org/mathscinet-getitem?mr=3531359
http://www.ams.org/mathscinet-getitem?mr=3531359
http://www.ams.org/mathscinet-getitem?mr=3531359
http://www.ams.org/mathscinet-getitem?mr=3531359
http://www.ams.org/mathscinet-getitem?mr=3531359
http://www.ams.org/mathscinet-getitem?mr=3531359
http://www.ams.org/mathscinet-getitem?mr=3531359
http://www.ams.org/mathscinet-getitem?mr=3531359
http://www.ams.org/mathscinet-getitem?mr=3531359
https://doi.org/10.1112/S0010437X17007321


Local cohomology of Du Bois singularities and applications to families

KSSW09 K. Kurano, E.-I. Sato, A. K. Singh and K.-I. Watanabe, Multigraded rings, diagonal
subalgebras, and rational singularities, J. Algebra 332 (2009), 3248–3267.

Lee09 B. Lee, Local acyclic fibrations and the de Rham complex, Homology, Homotopy Appl. 11
(2009), 115–140; MR 2506129.

Lyu06 G. Lyubeznik, On the vanishing of local cohomology in characteristic p > 0, Compositio Math.
142 (2006), 207–221.

Ma14 L. Ma, Finiteness properties of local cohomology for F -pure local rings, Int. Math. Res. Not.
IMRN 2014 (2014), 5489–5509.

Ma15 L. Ma, F -injectivity and Buchsbaum singularities, Math. Ann. 362 (2015), 25–42.

MZ14 L. Ma and W. Zhang, Eulerian graded D-modules, Math. Res. Lett. 21 (2014), 149–167.
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