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CONVERGENCE PROPERTIES IN CERTAIN
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THE KARLIN–ROUAULT LAW
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Abstract

Let x denote a vector of length q consisting of 0s and 1s. It can be interpreted as an
‘opinion’ comprised of a particular set of responses to a questionnaire consisting of q
questions, each having {0, 1}-valued answers. Suppose that the questionnaire is answered
by n individuals, thus providing n ‘opinions’. Probabilities of the answer 1 to each
question can be, basically, arbitrary and different for different questions. Out of the 2q

different opinions, what number, µn, would one expect to see in the sample? How many
of these opinions, µn(k), will occur exactly k times? In this paper we give an asymptotic
expression forµn/2q and the limit for the ratiosµn(k)/µn, when the number of questions
q increases along with the sample size n so that n = λ2q , where λ is a constant. Let p(x)
denote the probability of opinion x. The key step in proving the asymptotic results as
indicated is the asymptotic analysis of the joint behaviour of the intensities np(x). For
example, one of our results states that, under certain natural conditions, for any z > 0,∑

1{np(x)>z} = dnz
−u, dn = o(2q).

Keywords: Number of unique outcomes; sparse tables; Karlin–Rouault law; Zipf’s law;
Good–Turing index; large deviations; contiguity
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1. Introduction

Consider the multinomial vector νn = (ν1n, ν2n, . . . , νNn) of frequencies of N disjoint
events, with sample size n and vector of probabilities p = (p1, p2, . . . , pN). Consider the
statistics, sometimes called ‘spectral statistics’, based on these frequencies:

µn(k) =
N∑
x=1

1{νxn=k}, k = 1, 2, . . . ,

and

µn =
N∑
x=1

1{νxn≥1} .

Here and elsewhere, 1A is the indicator function of an eventA and, therefore,µn(k) is the number
of events occurring exactly k times and µn is the number of different events observed in the
sample. These statistics have been central to classical occupancy problems. The bibliography
is large; for a review and recent developments, we refer the reader to [3], [8], and [20]. Earlier
references can be found in, e.g. [9].
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1096 E. V. KHMALADZE

There are two main groups of problems associated with the spectral statistics, namely, various
forms of the central limit theorem (CLT) and law of large numbers (LLNs). Papers [3] and [8]
cited above established relatively difficult (local) forms for the CLT by extending the method
called Poissonization. For this, the multinomial frequencies νxn are replaced by independent
Poisson random variables with the same expected values npx, x = 1, 2, . . . , N . For example,
Lemma 2.1 of [3] states general conditions under which this replacement is valid. Integral
CLT, but for the generalized occupancy problem, with several types of allocated particle, was
recently presented in [20].

In this paper, however, we are interested in statements of the LLNs type, namely, in limits
of the quotients

µn(k)

µn
, k = 1, 2, . . . ,

and the asymptotic behaviour of the ratio µn/n for the case that the vector p becomes ‘essen-
tially’ dependent on n and changes as n increases. Specifically, we consider triangular arrays
of multinomial distributions as n, N , and p change simultaneously.

For fixedp, the range of possibilities for the LLNs is narrow: for example, Lemma 3.2 of [12]
shows that a positive limit for µn(k)/µn exists if and only if the probabilities px , arranged in
decreasing order, form a regularly varying function of x. In this case the limits of µn(k)/µn
form a discrete version of the Karlin–Rouault law, derived in [14].

Prior to analysis of any particular triangular array, it would be convenient to have some
classification of such arrays. In [12] two main classes have been defined and investigated: the
class of multinomial distributions, called (d1), such that

lim inf
n→∞

µn(1)

n
> 0,

and another class, called (d2), such that

lim
n→∞µn = ∞ and lim inf

n→∞
µn(1)

µn
> 0.

These definitions are not equivalent, with (d1) ⊂ (d2); very interesting cases are found in
(d2) \ (d1). Indeed, no other arrays can lead to such well-known laws as Zipf’s law (see,
e.g. [1] and [13]), or the Karlin–Rouault law (see, e.g. [24] or Theorem 2 below). In both of
these cases µn/n → 0 and, hence, they cannot be obtained within the simpler class (d1). Note
that the earlier classifications, which we know about, do not reflect the class (d2) \ (d1). For
example, in the frequently cited classification given in [17] there are three ‘zones’: a ‘central
zone’, where, for n and N → ∞ and some constants C, C1, and C2,

nmax
x
px < C, C1 <

n

N
< C2;

a ‘left m-zone’ for m ≥ 2, where, for a constant λ,

nmax
x
px → 0, Eµn(m) → C;

and a ‘right m-zone’ for m ≥ 0, where

nminpx → ∞, Eµn(m) → C.
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The latter ‘right’ zones are irrelevant here as then Eµn(k)/Eµn → 0 for all k and, there-
fore, even (d2) is not possible, while in the case of Zipf’s law or Karlin–Rouault’s law only
Eµn(1)/Eµn is half or close to half (see Section 5). In the first two zones above only (d1) is
possible and in the left m-zone only the degenerate limit limn→∞ Eµn(1)/n = 1 is possible
(see the functional limit theorems for this case in [21]). In the situation we study in this
paper nmaxx px → ∞ while nminx px → 0. Moreover, for overwhelmingly many x,
npx → 0, while although npx → ∞ for increasingly many x, the number of such x is
o(N); see Corollary 4.

Below we focus on one particular form of probabilities given not on positive integers but on
the set�q of all vectors x of length q consisting of 0s and 1s, as, for example, (0, 1, 0, . . . , 1)�.
Let ξ = (ξ1, ξ2, . . . , ξq)

� denote a q-dimensional random vector with Bernoulli random
variables as coordinates. Heuristically, ξ can be interpreted in many ways: as a random response
to a questionnaire with q questions with binary-valued answers, as a randomly changing state
of a system with q ‘on/off’ components, or as a result of, say, taxonomic evaluation with q
‘present/absent’ classifiers, and so on. In the latter case observation often leads to the so-called
q-dimensional ‘sparse tables’. The sparse tables are also commonly found in classifications of
industrial companies or financial institutions. Usual practice consists of reducing such high-
dimensional tables to lower-dimensional tables, say, 2×2 or 3×3 tables. In this paper, however,
the approach is to take high-dimensional sparse tables as they are, in order not to lose diversity
in the underlying sample. Below we use the first example of questionnaires when needed.

Let pq(x) = P{ξ = x} denote the distribution of ξ on �q , and let ξ1, . . . , ξn denote an
independent and identically distributed (i.i.d.) sequence of n vectors with this distribution. In
this setting our N = 2q and, for each of the 2q possible vectors x, we denote the frequency in
this sample by

νn(x) =
n∑
j=1

1{ξj=x} .

From now on we consider spectral statistics based on these frequencies νn(x) and study their
asymptotic behaviour as n and N → ∞ (hence, q → ∞) in such a way that n = λN , where λ
is a constant.

Instead of trying to arrange the probabilities p(x) in decreasing order, as is commonly done
for scalar x but would not seem natural in this case, we study the tail of their distribution
function

Hn(z) = 1

N

∑
x∈�q

1{Npq(x)≥z} . (1)

It is easy to see thatHn provides a complete symmetric characteristic of the probabilities pq(x):
any symmetric function of these probabilities is a functional from Hn. We will also see that it
is fruitful to shift our attention from np(x), usually perceived as an expected value, toNpq(x),
which differs from it under our asymptotics only by a constant. The latter quantity, however,
can be viewed as a likelihood ratio of pq and the uniform distribution on �q , given by the
probabilities p0(x) = 1/2q . Then Hn is the distribution of this likelihood ratio under this
uniform measure. Hence, in its asymptotic analysis we can use asymptotic methods developed
for likelihood ratios, as we indicate in Sections 2 and 3.

To be precise, we show in Section 3 that if the coordinates of ξ are independent, that is, if the
p(x) are given by (4) below with, basically, arbitrary probabilities a1, . . . , aq for the answer
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1098 E. V. KHMALADZE

‘yes’ to each question, then

Hn(z) ∼ cn(λz)
−u, with cn = Eµn/N

�(1 − u)
→ 0. (2)

In the limit, the parameter u is the only trace of the probabilities pq(x), x ∈ �q ; numerically, it
is surprisingly stable: its typical values lie between 0.4 and 0.5. According to (2), it is not true
that the majority of frequencies νn(x), x ∈ �q , have asymptotically any nondegenerate Poisson
distribution. Rather, the contrary holds in that the intensities np(x) for the overwhelming
majority converge to 0.

Although one does not have to insist on any sort of randomness of the probabilities p(x), it
may help to gain some insight if we use familiar terminology and say that the intensities np(x)
overall behave as ‘asymptotically small random variables’ and that ‘their distribution belongs
to the domain of attraction’ of the u-stable law, of which R(z) = z−u is the Lévy–Khinchine
measure.

For the triangular arrays, we consider it is possible that Hn may behave differently from (2)
and actually converge to a nondegenerate limit distribution. Conditions for this, in terms of the
contiguity of the distributions pq(x) and p0(x), are given in Section 2.

In principle, one might expect that if in a sample of size n an event x occurs νn(x) times
then its probability would be estimated best by the maximum likelihood estimator (MLE)
p̂q(x) = νn(x)/n. As a corollary of Theorem 2, we conclude that these MLEs would be
unsatisfactory estimators: the asymptotic behaviour of the function

Ĥn(z) = 1

N

∑
x∈�q

1{νn(x̂)>z} (3)

as n → ∞ is different from that ofHn; the two are similar only for large values of z. There are
other corollaries which we give in Section 4. One of them shows the asymptotic expressions
for the so-called Good–Turing indices (see [6]) and, in particular, for the overall probability
of the outcomes not seen in the sample. The other corollary shows how µn increases with n,
which is an important question in studying the diversity of biological species for example.

As a final aside, we recall that the case where all the ai are equal but different from 1
2 , was

studied in [14]. The proofs in that paper are quite different from what we give below.

2. The approach and the case of contiguity

To begin with, let us assume that the coordinates ξ1, . . . , ξq of each ξ are independent with
P{ξi = 1} = ai . Then the probability of an outcome x equals

pq(x) =
q∏
i=1

a
xi
i (1 − ai)

1−xi . (4)

As q → ∞, these probabilities tend to 0; we shall see that the expectations npq(x), mostly,
remain bounded or may even be small. Therefore, an assumption of asymptotically Poisson
behaviour of the frequencies νn(x) looks natural; in the expressions below we assume that
the νn(x), x ∈ �q , are independent Poisson random variables with means npq(x). Although,
for triangular arrays, this Poissonization can essentially change the CLT statement for spectral
statistics, more so for the functional CLT (see, e.g. [11]); for the LLNs, it makes no difference.
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The key step in our asymptotic analysis of the ratio µn/N and µn(k)/µn consists of the
analysis of Eµn/N and Eµn(k)/Eµn, because it is possible to prove that the ratios µn/Eµn
and µn(k)/Eµn(k) converge to 1 almost surely. We therefore concern ourselves with the
following expressions for the expected values:

Eµn(k) =
∑
x∈�q

π(k, npq(x)) and Eµn =
∑
x∈�q

[1 − π(0, npq(x))].

Here π(k, z) = zke−z/k! denotes the Poisson probability of k with mean z.
In some cases we can study these expected values as they are. For example, if all the ai

equal 1
2 , i.e. if all the pq(x) equal 1/2q , we immediately deduce that

Eµn
2q

= 1 − π(0, λ) and
Eµn(k)

Eµn
= π(k, λ)

1 − π(0, λ)
. (5)

In particular, this implies that we should expect the number of different opinions in a sample
to be of the same order as the number of all possible opinions.

In the general situation, where all the ai can be different, or even simply not equal to 1
2 , the

asymptotic analysis of the sums Eµn and Eµn(k)may not appear to be that simple. However,
we can turn it into a purely probabilistic problem, using general and simple tools to study it,
which otherwise would seem irrelevant and distant to the problem. Specifically, let Pq and P0
denote the distributions on �q defined by pq(x) and p0(x) = 1/2q , respectively. Then

Mq(x) := 2qpq(x) = pq(x)

p0(x)

is the likelihood ratio of Pq and P0, and we can write

Eµn(k)

2q
=

∫ ∞

0
π(k, λz) dHn(z) = E0 π(k, λMq(ξ)), k = 1, 2, . . . ,

Eµn
2q

=
∫ ∞

0
[1 − π(0, λz)] dHn(z) = E0[1 − π(0, λMq(ξ))],

(6)

where E0 denotes the expectation calculated with respect to the uniform distribution P0 of ξ .
As we have just seen in (5), if the questionnaire is ‘symmetric’, or ‘balanced’, that is, if each

ai is equal to 1
2 , the ratio µn/2q has a positive limit. The same should be true then for ‘nearly

symmetric’ or ‘nearly balanced’ questionnaires, when the ais are close enough to 1
2 . UsingMq ,

we immediately obtain the tool to describe this situation in a relatively complete form.
Specifically, if the sequence of distributions Pq is contiguous with respect to the sequence

of uniform distributions P0, then, under P0,Mq typically converges in distribution to a random
variable eL, where L is normal N(−c2/2, c2), and the expected values in (6) converge to the
corresponding limits. In Theorem 1 below we formally state the conditions and specify the
constant c2. In this theorem and everywhere below, �µ,σ 2(z) and φµ,σ 2(z) denote the normal
distribution function and normal density with mean µ and variance σ 2, respectively.

Theorem 1. Suppose that the probabilities a1q, . . . , aqq form a triangular array in q such that

max
i

∣∣∣∣aiq − 1

2

∣∣∣∣ → 0 and lim sup
q→∞

q∑
i=1

[1 − √
2aiq ] < ∞.
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Then

lim inf
q→∞

Eµn
2q

> 0.

If the finite limit

lim
q→∞

q∑
i=1

[1 − √
2aiq ] = c2

2

exists then
Eµn
2q

∼
∫
(1 − π(0, λez))�−c2/2,c2(dz)

and
Eµn(k)

Eµn
∼

∫
π(k, λez)�−c2/2,c2(dz)∫

(1 − π(0, λez))�−c2/2,c2(dz)
. (7)

Proof. The condition on the limit supremum of
∑q
i=1[1 − √

2aiq ] guarantees contiguity of
the sequence of distributions Pq to the sequence of uniform distributions P0. In its turn, the
contiguity implies that the sequence of distributions of the log-likelihood ratio lnMq is weakly
compact. Hence, the result on E0 µn follows.

Existence of the limit, together with the condition on maxi |aiq − 1
2 |, guarantees asymptotic

normality of lnMq (see, e.g. [22]) with parameters, under the null distribution, equal to −c2/2
and c2. This asymptotic normality implies convergence of the expected values as the integrands
are continuous and bounded functions of lnMq .

Remark. Note that the result extends to a very general class of distributions. Namely, whether
the coordinates ξ1, . . . , ξq are independent and pq(x) is a product of Bernoulli distributions or
matters little. For any distribution on �q , the quantity Mq still remains a likelihood ratio and,
hence, a martingale in q. The conditions of asymptotic normality of lnMq , if Mq is a positive
martingale, are well known: if now aiq is random and denotes the conditional probability of
ξi = 1 given ξ1, . . . , ξi−1 then, notationally, the same conditions, with convergence replaced
by convergence in probability, imply asymptotic normality for Lq (see [7]). Therefore, the
statement of Theorem 1 remains true.

Note also that, under the conditions of Theorem 1, the array of distributions Pq with n = λ2q

belongs to the class (d1). Under the conditions of Theorem 2 below, it belongs to the class
(d2) \ (d1).

3. The case of arbitrary ais

Suppose now that the probabilities a1, . . . , aq are arbitrary, i.e. they form some sequence
in q. In this case the behaviour of the likelihood ratioMq becomes somewhat erratic: under P0,
we haveMq → 0 in probability, but E0Mq = 1, and, therefore, increasingly large values ofMq

are unavoidable. Consequently, in the asymptotic analysis of the expectation E0[1−π(0, λMq)]
we can no longer rely, say, on Taylor series approximations like

1 − e−λMq ∼ λMq.

Indeed, in the mean the asymptotic behaviour as just indicated is not correct: we show shortly
that

E0[1 − π(0, λMq)] → 0, while E0 λMq = λ.
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The size of the quantity E0[1−π(0, λMq)] is not immediately obvious: for large q, while the
random variableMq is small with large probability, the integrand 1 −π(0, λMq) also becomes
small, and although Mq is large with only a small probability, the integrand is close to 1, i.e. it
is not small. We did not find it fruitful to try and locate a part where the main contribution to
the integral E0[1 − π(0, λMq)] is made directly. Instead, we express it as a certain probability
which, as we shall see, is connected in a natural way with the theory of large deviations.

Let T1 be an exponential random variable with scale parameter 1, independent of Mq , and
let η1 = ln T1. The distribution function of η1 is 1 − π(0, ex) = 1 − e−ex . As above, let
Lq = lnMq denote the log-likelihood. Then we can write

E0[1 − π(0, λMq)] = P0{Lq > η1 − ln λ}.
Similarly, if Tk is a gamma-distributed random variable with shape parameter k, i.e. if Tk is a
sum of k independent copies of T1, independent of Mq , and if ηk = ln Tk , then

E0

∞∑
j=k

π(j, λMq) = P0{Lq > ηk − ln λ}.

With some abuse of notation, in the last two displayed formulae (and within some proofs later
on) we use P0 for the joint distribution of Lq , under the uniform distribution on �q , and ηk
with the appropriate k.

It is clear that

Lq = ln
p(ξ)

p0(ξ)
=

q∑
i=1

[ξi ln 2ai + (1 − ξi) ln 2(1 − ai)],

where ξ1, . . . , ξq , under P0, are independent symmetric Bernoulli random variables: P0{ξi =
1} = 1

2 . Let ψi(u) denote the logarithm of the moment generating function of each summand

ψi(u) = ln(E0 exp u[ξi ln 2ai + (1 − ξi) ln 2(1 − ai)])
= ln[2u(aui + (1 − ai)

u)] − ln 2.

Now ψi(u) is a convex, infinitely differentiable function of u and ψi(0) = ψi(1) = 0 (see,
e.g. [10]). Then so too is the sum

∑q
i=1 ψi(u), which is the logarithm of the moment generating

function of Lq .
Consider the sequence a1, a2, . . . , aq , and let

Fq(a) = 1

q

q∑
i=1

1{ai<a}

denote the empirical distribution function of this sequence. Again, by using the term ‘empirical
distribution function’ we do not imply that a1, a2, . . . , aq are to be considered as independent
random variables. We assume only a certain ergodic property, namely, that there is a continuous
distribution function F on the interval [0, 1] such that, as q → ∞,

Fq(a) → F(a) for all a ∈ [0, 1],∫ 1

0

(
ln

a

1 − a

)2

dFq(a) →
∫ 1

0

(
ln

a

1 − a

)2

dF(a) < ∞.
(8)
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In the second condition we assume that, asymptotically, we do not have too many ai too close
to 0 or 1. For example, F can be any beta distribution.

Let ψ ′
i (u) and ψ ′′

i (u) denote the first and second derivatives of ψi(u).

Lemma 1. Suppose that the conditions in (8) are satisfied. Let u = uq be such that

q∑
i=1

ψ ′
i (u) = 0.

Define

σ 2
q =

q∑
i=1

ψ ′′
i (uq)

q
.

Then limq→∞ uq and limq→∞ σ 2
q exist, with

0 < lim
q→∞ uq < 1 and 0 < lim

q→∞ σ
2
q < ∞.

Proof. It is easy to see that the conditions in (8) imply the convergence

q∑
i=1

ψi(u)

q
→

∫ 1

0
ln[2u(au + (1 − a)u)] dF(a)− ln 2

for all u ∈ [0, 1] together with the convergence for the first two derivatives. In particular,

q∑
i=1

ψ ′
i (0)

q
→ 1

2

∫ 1

0
(ln 4a(1 − a)) dF(a) > −∞

and
q∑
i=1

ψ ′
i (1)

q
→

∫ 1

0
[a ln a + (1 − a) ln(1 − a)] dF(a)+ ln 2 < ∞.

Therefore, both limits in the lemma exist, and since the limit of
∑q
i=1 ψi(u)/q is also a convex

function, equal to 0 at u = 0 and 1, the limit of uq cannot equal 0 or 1.

An essential step in Theorem 2 below is given by the following lemma.

Lemma 2. Suppose that the conditions in (8) are satisfied. Then, with u as in Lemma 1,

P0{Lq > z} ∼ exp

[ q∑
i=1

ψi(u)− uz

]
1

u
√
q
φ0,σ 2

q

(
z√
q

)
[1 + rq(z)], (9)

where, for any fixed β > 0,

sup
−β√

q<z<β
√
q

|rq(z)| = o(1) as q → ∞.

Remark. Since
E0 Lq

q
→ 1

2

∫ 1

0
[ln 4a(1 − a)] dF(a) < 0,
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and, therefore, Lq → −∞, the probability P0{Lq > z} for any given z is a large deviation
probability for Lq . Lemma 2 exhibits the asymptotic expression for this probability and not its
logarithm, as is more often stated in the literature. For the i.i.d. case, the idea can already be
seen in [2], and, for the general case, it was carried through, with the aid of some assumptions,
in [4]. Lemma 2 also states that the asymptotic expression is correct uniformly in z in increasing
intervals of length

√
q. We could have extended its length to o(q3/4), but do not need this—the

rate
√
q is sufficient for the application of (9) in Theorem 2 below.

Proof of Lemma 2. Consider the distribution Q that is adjoint to P0. It is defined by

P0{Lq > z} = exp

[ q∑
i=1

ψi(u)

] ∫ ∞

z

e−ux dQ(x). (10)

Then the moment generating function of Q is given by

∫
ert dQ(t) = exp

[ q∑
i=1

[ψi(u+ r)− ψi(u)]
]
,

and, therefore, with the choice of u as in the lemma, the expected value of Q is 0 and its variance
is qσ 2

q . Denote the distribution of Lq/
√
q under the distribution Q by QLq/

√
q . Then (10) can

be rewritten as

P0{Lq > z} = exp

[ q∑
i=1

ψi(u)

] ∫ ∞

z/
√
q

e−u√qy d QLq/
√
q(y)

= exp

[ q∑
i=1

ψi(u)− uz

] ∫ ∞

0
e−u√qx d QLq/

√
q

(
x + z√

q

)
. (11)

Since QLq/
√
q is the distribution of a normalized sum of independent and bounded random

variables with mean 0 and variance σ 2
q , it can be approximated by a normal distribution with

the same moments. First we replace QLq/
√
q(x) by�0,σ 2

q
(x) and then justify this replacement.

We obtain

u
√
q

∫ ∞

z/
√
q

e−u√qyφ0,σ 2
q
(y) dy = e−uzu√q

∫ ∞

0
e−u√qxφ0,σ 2

q

(
x + z√

q

)
dx

= e−uzφ0,σ 2
q

(
z√
q

)
[1 + rq(z)], (12)

where
sup

|z|<β√
q

|rq(z)| → 0 as q → ∞.

Note that, to obtain nonzero asymptotics, we have normalized the integral above by
√
q.

Therefore, we must consider the normalized difference

u
√
q

∫ ∞

z/
√
q

e−u√qy[QLq/√q(dy)−�0,σ 2
q
(dy)],
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in which the difference
√
q[QLq/√q(y)−�0,σ 2

q
(y)] need not be small; we need a better

approximation for QLq/
√
q(y), which we can obtain in the form of an Edgeworth expansion

(see the next lemma). According to this expansion,

sup
y

| QLq/
√
q(y)− Cq(y)| = o

(
1√
q

)
, (13)

where

Cq(y) = �0,σ 2
q
(y)+

P(y)φ0,σ 2
q
(y)

√
q

with P(y) = y3 − 3y, the third Hermite polynomial. The asymptotics in (12) are not affected
by the term P(y)φ0,σ 2

q
(y)/

√
q, while using integration by parts leads to

√
q

∫ ∞

0
e−u√qx d

[
QLq/

√
q

(
x + z√

q

)
− Cq

(
x + z√

q

)]

= −√
q

[
QLq/

√
q

(
z√
q

)
− Cq

(
z√
q

)]

+ uq

∫ ∞

0
e−u√qx

[
QLq/

√
q

(
x + z√

q

)
− Cq

(
x + z√

q

)]
dx

→ 0,

uniformly in z.

The next lemma shows that the Edgeworth expansion (13) for the distribution QLq/
√
q(z)

does indeed exist.

Lemma 3. If the conditions in (8) are satisfied then there exists an Edgeworth expansion for
the distribution function QLq/

√
q(z).

Proof. Use the notation q(ai) = qi = Q(ξi = 1) and ω(ai) = ωi = ln[ai/(1 − ai)]. Note
that q(a) = au/[au + (1 − a)u]. Then

ξi(t) = e−itqiωi [qi(eitωi − 1)+ 1]
is the characteristic function of the ith summand of Lq in the measure Q. For the proof, we
need to show (14) below, while the rest basically follows the lines of the proof for the i.i.d. case
given in [5, Chapter XVI.2–4]. We give only a sketch. If Gq(z) is as in Lemma 2 and γq(t) is
its Fourier transform, then, for arbitrarily small ε, there exists a large enough constant b such
that

| QLq/
√
q(z)−G(z)| ≤

∫ b
√
q

−b√q
| ∏q

i=1 ξi(t/
√
q)− γq(t)|

t
dt + ε√

q
,

and we can split the domain of integration into |t | < δ
√
q and δ

√
q < |t | < b

√
q. For

|t | < δ
√
q, the expansion of the characteristic function

∏q
i=1 ξi(t/

√
q) of Lq/

√
q, just as in

the case of i.i.d. random variables, shows that the corresponding integral is o(1/
√
q). For

intervals δ
√
q < |t | < b

√
q, it is sufficient to show that

sup
δ<|t |/√q<a

∣∣∣∣
q∏
i=1

ξi

(
t√
q

)∣∣∣∣ < cq for some 0 < c < 1. (14)
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However, for the norm of this characteristic function, we have

1

q
ln

q∏
i=1

|ξi(s)| = 1

q

q∑
i=1

ln[1 + 2qi(1 − qi)(cos sωi − 1)]

=
∫ 1

0
ln[1 + 2q(a)(1 − q(a))(cos sω(a)− 1)] dFq(a)

≤ 2
∫ 1

0
q(a)(1 − q(a))(cos sω(a)− 1) dFq(a).

Now we need to show that this integral becomes less than some negative number −ε, uniformly
for s ∈ [δ, b]. If Hq and H are respectively the empirical and limit distribution functions of
the ωis, then

∫ 1

0
[1 − cos sω(a)][dFq(a)− dF(a)] =

∫ ∞

−∞
(1 − cos sω)[dHq(ω)− dH(ω)],

and integration by parts leads to

s

∣∣∣∣
∫ ∞

−∞
sin sω[Hq(ω)−H(ω)] dω

∣∣∣∣ ≤ s

∫ ∞

−∞
|Hq(ω)−H(ω)| dω.

The conditions in (8) imply that the last integral converges to 0, because they guarantee both
thatHq(ω) → H(ω) uniformly in ω and that the second moment (hence, also the first absolute
moment) converges. Obviously, this is true uniformly in s ∈ [δ, b]. On the other hand, for any
continuous distribution, ∫ ∞

−∞
cos sω dH(ω) < 1 − 2ε

for s > δ and, therefore, (14) is true with c = 1 − ε.

Note that the form of condition (14) varies in the literature. Often, it may seem simpler
to require this inequality to hold uniformly for t > δ (see, e.g. [16, p. 34]). However, this
requirement would be restrictive for us: under (8), it will not be true generally. To see this,
consider Fq , which attaches equal weight 1/q to regularly spaced points j/q, j = 1, . . . , q.
However, if a1, . . . , aq were assumed to be independent random variables then (14) would be
true for t > δ.

Now we are ready to formulate the following theorem. The expression Ru(k) is known in
the literature as the Karlin–Rouault law.

Theorem 2. If, with N = 2q , n = λN , and q → ∞, the conditions in (8) are satisfied and
u = lim uq , then

Eµn
2q

∼ exp

[ q∑
i=1

ψi(uq)

]
λu

u
√
q
φ0,σ 2

q
(0)�(1 − u),

Eµn(k)

Eµn
→ Ru(k) = u�(k − u)

�(1 − u)�(k + 1)
,

(15)

for every fixed k = 1, 2, . . . .
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Proof. We start with the asymptotic expression for

E0

∞∑
j=k

µn(j) = P0{Lq > ηk − ln λ}, k ≥ 1.

Let Fk denote the gamma distribution function with shape parameter k and scale parameter 1.
Then Fk(ex) is the distribution function of ηk . We have

P0{Lq > ηk − ln λ} =
∫ ∞

−∞
P0{Lq > z− ln λ} dFk(e

z), (16)

where
∫ ∞
−∞ = ∫ −β√

q

−∞ + ∫ β√
q

−β√
q
+ ∫ ∞

β
√
q
. Using (11), for the integral over (−∞,−β√

q], we
have ∫ −β√

q

−∞
P0{Lq > z− ln λ} dFk(e

z)

= Fk(e
−β√

q)P0{Lq > −β√
q − ln λ}

+ exp

[ q∑
i=1

ψi(u)

] ∫ −β√
q

−∞
Fk(λe

√
qz)e−u√qz d QLq/

√
q(z).

Since Fk(ε) < 1
2ε
k < 1

2ε for all sufficiently small ε, we obtain

∫ −β√
q

−∞
P0{Lq > z− ln λ} dFk(e

z) < e−β√
q P0{Lq > −β√

q − ln λ}

+ exp

[ q∑
i=1

ψi(u)

]
λ

∫ −β√
q

−∞
e
√
q(1−u)z d QLq/

√
q(z).

The last integral on the right-hand side isO(e−q(1−u)β), where u stays strictly inside [0, 1] for
all large enough q. Similarly, for the interval [β√

q,∞), we have∫ ∞

β
√
q

P0{Lq > z− ln λ} dFk(e
z) < P0{Lq > β

√
q − ln λ}e−eβ

√
q

.

For the integral on |z| ≤ β
√
q, we use Lemma 2:

∫ β
√
q

−β√
q

P0{Lq > z− ln λ} dFk(e
z)

∼ exp

[ q∑
i=1

ψi(u)

]
λu

u
√
q

∫ β
√
q

−β√
q

e−uzφ0,σ 2
q

(
z− ln λ√

q

)
dFk(e

z)

∼ exp

[ q∑
i=1

ψi(u)

]
λu

u
√
q

∫ ∞

−∞
e−uzφ0,σ 2

q

(
z− ln λ√

q

)
dFk(e

z)

= exp

[ q∑
i=1

ψi(u)

]
λu

u
√
q

∫ ∞

0
s−uφ0,σ 2

q

(
ln s − ln λ√

q

)
dFk(s).
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Thus, we can rewrite (16) as

P0{Lq > ηk − ln λ} ∼ exp

[ q∑
i=1

ψi(u)

]
λu

u
√
q
φ0,σ 2

q
(0)
�(k − u)

�(k)
,

and, hence,
P0{Lq > ηk}
P0{Lq > η1} ∼ �(k − u)

�(1 − u)�(k)
. (17)

Taking the difference in k completes the proof.

Since the average
∑q
i=1 ψi(u)/q converges to a negative number, the first statement of

Theorem 2 implies that the number of different outcomes in a sample is asymptotically o(N)
as N → ∞: only a negligible portion of possible different opinions will be seen in a sample.
The second statement implies that, no matter how large is the ‘rate per cell’ λ, as soon as it is
fixed, the limit of the ratios µn(k)/µn does not depend on it.

In the next section we present further corollaries and discussion of Theorems 1 and 2.

4. Some corollaries, an inverse problem, and Good–Turing indices

We start by noting how the statements of Theorems 1 and 2 are inter-related. It is, of course,
the case that in studying the asymptotic behaviour of the tail of the distribution of Lq when z
and q increase simultaneously we cannot use the sequential limit, first for q → ∞ and then
z → ∞. However, as the corollary below shows, if we consider the limit of the ratio in (7) then
as the distributions P become ‘less and less’ contiguous to P0, the sequential limit does agree
with (15) in a very natural way.

Corollary 1. If c → ∞ then∫
π(k, λez)�−c2/2,c2(dz)∫ [1 − π(0, λez)]�−c2/2,c2(dz)

→ u�(k − u)

�(k + 1)�(1 − u)

∣∣∣∣
u=1/2

.

Proof. In (16) replace P0{Lq > z − ln λ} directly by the tail of the normal distribution
function and use its asymptotics for c → ∞:

1 −�−c2/2,c2(z− ln λ) = 1 −�0,1

(
z− ln λ

c
+ 1

2
c

)
∼ λe−z

[
1 −�0,1

(
1

2
c

)]
.

Taking the integral produces the result.

Next we consider the following question. If in a sample of size n0 there are µn0 different
opinions in a sample, how many more will we expect to see if the sample size is increased to n?
The following corollary supplies the answer.

Corollary 2. For sample sizes n0 = λ0N and n = λN , as N → ∞,

µn

µn0

∼
(
n

n0

)u
.

Proof. The assertion follows from the first display in (15).
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To carry this question further, consider a testing problem for a system of loosely independent
‘on/off’components. In real systems of this type there will be a large number of states of overall
small probability when the system will fail, while in other states it will continue to function.
If the composition of the system is unknown or complex, it is important, during trials of the
system, that we see as many different states as possible, or, at least, a ‘significant proportion’
of all possible states. Under the conditions of Theorem 2, this will not happen. Therefore, it
is necessary to either design a testing procedure with probabilities ai close to 1

2 , and then the
number of trials of order 2q will be sufficient (cf. Theorem 1), or use some appropriately large
rate λ for large q. The statement below specifies the rate of such λ when the probabilities of
the ‘on’-position of the components are arbitrary, apart from satisfying the conditions in (8).

Corollary 3. Suppose that the conditions in (8) are satisfied. If

λ = λq � em0q+b√q,

where

m0 = −1

2

∫ 1

0
ln[4a(1 − a)] dF(a)

and b is a constant, then

Eµn
2q

∼ 1 −�0,σ 2
0
(−b) and, for every fixed k ≥ 1,

Eµn(k)

Eµn
→ 0. (18)

Proof. Again, we can rewrite P0{Lq > z− ln λq} in (16) as

P0

{
Lq + qm0√

q
>

z√
q

− b

}
→ 1 −�0,σ 2

0
(−b).

Therefore, P0{Lq > η1 − ln λ} → 1 −�0,σ 2
0
(−b) and

P0{Lq > ηk − λ}
P0{Lq > η1 − λ} → 1,

which proves both statements in (18).

We now consider a converse to the question considered in the previous section: given that
statistics µn(k), k = 1, 2, . . . , and µn agree with the Karlin–Rouault law, what can be said
about the overall behaviour of the underlying probabilities p(x), x ∈ �q?

In a sense, a complete answer can be formulated as follows.

Theorem 3. If, for any fixed k = 1, 2, . . . , µn(k)/µn → Ru(k) then, for every z > 0,

N

Eµn
Hn(z) → (λz)−u.

We omit proof of this statement, noting however that assumption (4) is not needed here.
Klaassen and Mnatsakanov [15] studied the problem of convergence of the normalized Hn as
part of a general inverse problem.

Given the tradition of how this inverse question has been studied in the literature, we consider
it in more detail from a somewhat different angle. Recall first (cf. the introduction) that it may
seem reasonable to think that the best we can do is to rely on the vector of relative frequencies
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νn(x)/n, x ∈ �q , as an estimator of the vector of probabilities pq(x), x ∈ �q . However, this
would not be satisfactory: first, this would imply the estimate 0 for the overall probability of
a very large number of outcomes that did not occur in the sample; and second, as highlighted
in the next corollary, the two vectors νn(x)/n and pq(x) differ in their overall asymptotic
behaviours.

Corollary 4. For the functions Ĥn(z) and Hn(z) defined in (1) and (3), with k = [z] + 1,

E Ĥn(z) ∼ Eµn
N

�(k − u)/�(k)

�(1 − u)

and

Hn(z) ∼ Eµn
N

(λz)−u

�(1 − u)
.

Proof. Note that ∑
x∈�q

1{νn(x)≥z} =
∞∑

j=[z]+1

µn(j).

Then the proof of the first relation is included around (17) in the proof of Theorem 2. For the
second, since Hn(z) = P0{Lq ≥ ez − λ}, its proof follows from Lemma 2.

A well-known way of making inferences about probabilities pq is to consider the so-called
Good–Turing indices. Good [6], referring to A. Turing, introduced the quantities

Gn(k) =
∑
x∈�q

p(x) 1{νn(x)=k}

and

pn(k) = Gn(k)

µn(k)
.

The intuitive meaning of these quantities is both appealing and transparent: Gn(k) is the total
probability of outcomes (in our case, ‘opinions’) that happen to appear k times in a sample,
while pn(k) is an ‘average’ or ‘typical’ probability of each of these outcomes. The definitions
extend to k = 0, in which case Gn(0) is the total probability of outcomes that do not appear in
the sample, while pn(0) is an ‘average’ probability of any such outcome.

Based on the simple equality

EGn(k) = k + 1

n
Eµn(k + 1),

Good [6] proposed the estimation of Gn(k) and pn(k) by

Ĝn(k) = k + 1

n
µn(k + 1)

and

p̂n(k) = k + 1

n

µn(k + 1)

µn(k)
,

respectively. Since then, several authors have investigated the statistical properties of these
estimators (e.g. their rate of convergence was studied recently in [19]).
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Notwithstanding the importance of this work, note that Theorems 1 and 2 imply that, for a
sample which agrees either with (7) or with the Karlin–Rouault law, there is no need to use any
estimator. In particular, for the latter case, we have the following statement.

Corollary 5. If µn(k)/µn → Ru(k) for k = 1, 2, . . . then

EGn(k) ∼ u�(k + 1 − u)

�(1 − u)�(k + 1)

Eµn
n

and pq(k) ∼ k − u

n
, (19)

and, for k = 0,

EGn(0) ∼ u

n
Eµn and Epq(0) ∼ u

n

Eµn
2q − Eµn

. (20)

Orlitzky et al. [23] recalled that Laplace [18] suggested the use of the quantities

p̃n(k) = k + 1

n+ µn + 1
, k = 1, 2, . . . ,

which leads to the value

G̃n(0) = 1

n+ µn + 1

for the total probability of unseen outcomes. Corollary 5 shows that if the sample agrees with
the Karlin–Rouault law then the estimation of the total probability of unseen outcomes is more
optimistic (small but infinitely larger) than the value G̃n(0) suggested by Laplace.

In conclusion, we remark that the approach used in this paper depends not so much on
the form of the probabilities pq(x) or where they are defined, but rather on the asymptotic
properties of likelihood ratios. It may, therefore, be applicable to occupancy problems in other
situations.

5. Numerical behaviour of the asymptotic formulae for moderate q

As mentioned in the introduction, for the systems of q ‘on/off’ components, it is possible
that q will be of the order of several hundreds. However, in the context of questionnaires or
classifications, the number of questions or the number of classifying parameters q will rarely
be larger than several tens. For this reason, we would prefer to stay within the case of not very
large q and consider how good the asymptotic expressions above work for q between only 10
and 20.

Stability of uq . The arg min, defined in Lemma 1, is surprisingly stable numerically—not
only for the sum

∑q
i=1 ψi(u), but even for one single summand ψi(u). For ai changing in

the interval [0.55, 0.90], and by symmetry, in the interval [0.1, 0.45], the value of u, where
ψi(u) attains its minimum, changes only in the interval [0.46, 0.50]. If we choose ai uniformly
distributed on [0, 1] and q = 10, when values considerably larger than 0.9 (or smaller than 0.1)
can easily occur, the mean value of uq turned out to be 0.442 with the standard deviation of
only 0.024. For values of ai closer to 0.5, ψi(u), as a function in u, becomes quite ‘flat’ and,
therefore, its arg min will be more volatile. However, in this case its exact value will not matter
much.

Convergence ofµq(k)/µq . The plots in Figures 1 and 2 show that this convergence, although
not too quick, is reasonable. The bundle of plots of the ratio µq(k)/µq, k = 1, . . . , 10, for
q = 10 uniformly distributed probabilities ai along with the limiting expression is given in
Figure 1. For q = 20, Figure 2 shows closer approximations and much smaller spread in the
bundle of trajectories of µq(k)/µq .
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Figure 1: The bundle of trajectories ofµq(k)/µq for k = 1, . . . , 10. The number of questions q = 10 and
probabilities a1, . . . , a10 are uniformly distributed on [0,1]. Open circles indicate the limits ofµq(k)/µq .
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Figure 2: The bundle of trajectories of µq(k)/µq for k = 1, . . . , 10. The number of questions q = 20
and probabilities a1, . . . , a20 are uniformly distributed on [0,1].

Transition from the contiguity case to the Karlin–Rouault law. It is interesting to see which
limiting values c of the Hellinger distance correspond to the contiguity case, and which ones
would already correspond to the large deviations. The plots in Figure 3 show the ratio of
integrals (7) for three values c = 1, 3, 6. For c = 1, the distance (uniform and in the total
variation) between�−c2/2,c2 and�c2/2,c2 is equal to only 0.3829, while, for c = 6, it is equal to
0.9973, so the latter case can be thought of as the case of ‘large deviations’. The corresponding,
uppermost at k = 1, graph in Figure 3 is quite close to the limit, while the graph for c = 1 is
very far from it.
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Figure 3: Plots of the ratio (7) in k for c = 1, 3, 6. Here λ = 5.
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