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Abstract

Every invertible n-by- n matrix over a ring R satisfying the first Bass stable range condition
is the product of n simple automorphisms, and there are invertible matrices which cannot be
written as the products of a smaller number of simple automorphisms. This generalizes results
of Ellers on division rings and local rings.
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1. Introduction

In various situations it is instructive to represent a matrix as a product of
matrices of a special nature. For example, every orthogonal n-by-»n matrix
is the product of at most n reflections [1], [2, Proposition 5, Chapter IX,
86, section 4] (see [4], for further work on reflections). In linear algebra,
one writes an invertible matrix as a product of elementary matrices. One can
ask how many elementary matrices (or commutators) are needed to represent
any product of elementary matrices (respectively, commutators); see [3]. In
multiplicative simplex methods, one writes an invertible matrix over a field as
the product of matrices each of which differs from the identity matrix by one

The research was supported in part by NSF grant DMS 86-20428.
© 1990 Australian Mathematical Society 0263-6115/90 $A2.00 + 0.00

455

https://doi.org/10.1017/51446788700029980 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700029980

456 Leonid N. Vaserstein and Ethel Wheland 2]

column. These matrices are simple in the sense of the following definition
of Ellers [5].

An invertible matrix # over a (possibly non-commutative) field X is sim-
ple, if rank(f—1,) =1, thatis, # fixes every vector of some hyperplane in
V. Examples of simple matrices include reflections, involutions, transvec-
tions, axial affinities and hyperreflections.

Motivated partly by geometric applications, Ellers showed that if £ is an
element of Aut(}) and rank(f —1,) = ¢, there are simple mappings B, in
Aut(¥) such that g = 8,B,---B,, and ¢ is the smallest number for which
such a factorization of f exists.

Later Ellers generalized these results to commutative local rings R [6] and
then to non-commutative local rings R [7].

In this paper, we extend these results to any ring R satisfying the first Bass
stable range condition. Along with local rings R, this includes all semilocal
rings R, all Artinian rings R, all O-dimensional commutative rings R (that
is, every prime ideal of R is maximal), and many other rings [8], [9], [12].

2. Statement of results

First, we introduce some definitions and notations.
Let R be an associative ring with 1, V' a right R-module,

V* = Homg(V, R)

the dual module, End(V) = Homg(V', V) the ring of all R-linear endomor-
phisms of V', and Aut(V) the group of all automorphisms of V' (Aut(V) C
End(V)). A vector v € V is called unimodular if fv =1 forsome fe V™.

When R is a division ring, the rank of a € End(V) is defined as the
dimension of al . In general, there are different ways to extend the notion
of rank. In this paper we use two different definitions of rank.

DEeFINITION 1. The rank, rank (a), is the least integer s > 0 such that
a=uv fi+ --+vf, with v,eV and fieV".

In other words, a:¥V — V can be decomposed as ¥ — R° — V', where
R® is the R-module of s-columns over R.

DEeFINITION 2. The unimodular rank, u-rank () is the least integer s > 0
such that a = v, f] + -+ v, f, with unimodular v, € V and f, e V".

Both ranks could be infinite (when no such s exists). Clearly, rank(a) <
u-rank(a) always. When R is a division ring, both definitions coincide with
the usual definition of the rank as the dimension of al .

An automorphism B in Aut(V) is called simple (respectively, u-simple),
if rank(f—1,) = 1 (respectively, u-rank(f—1,)=1). Thatis, g =1,+vf
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with v € V (v is unimodular in the case of u-simple #) and f € V*.
Invertibility of such g is equivalent [10, Section 2] to 1+ fv € GL, R.

Examples of simple automorphisms include transvections (when fv = 0)
and reflections (or involutions, when fv = —2). More generally, a hyper-
reflection can be defined [5] as a simple § = 1, + vf with fv having a
finite order modulo the commutator subgroup [GL, R, GL, R].

Recall that the first Bass stable range condition on R is:

If a, b€ R and Ra+ Rb = R then there is ¢ € R such that R(a+cbh) =
R.

We write sr(R) = 1 if R satisfies this condition and R # 0. See [8], [9],
[12] for various examples of such rings.

THEOREM 3. If sr(R) =1, B € Aut(V) and rank(f — 1) = s < o0, then
B is the product of s simple automorphisms, and it cannot be factored into
any product of a smaller number of simple automorphisms.

THEOREM 4. If st(R) =1, B € Aut(V) and u-rank(f—1) =5 < oo, then
B is the product of s u-simple automorphisms, and it cannot be factored into
any product of a smaller number of u-simple automorphisms.

Theorem 3 will be proved in the next section. The proof of Theorem 4 is
so similar that we leave it to the reader.

3. Proof of Theorem 3

Let GL, R denote the group of all n-by-n invertible matrices over R. It
can be identified with Aut(R"), where R" is the R-module of n-columns
over R.

LEMMA 5. Assume that st(R) = 1. Let n > 1 be an integer, and
B = (b; ;) € GL,R. Then there is a simple matrix y € GL, R such that

-1
(yBy )n’n €GL,R.

Proor. Consider the lastrow (b, ,, ..., b, ,) of the matrix g = (b, j)E
GL,R. Since B is invertible >°b, ;R = R. The first Bass stable range
condition implies all higher Bass conditions for R as well as for the opposite
ring [11]. So there are ¢; € R such that

(by pntb, 0+ + b, n_1cni-)R=R.

Since sr(R) = 1, every one-sided unit in R is a unit (a result of Kaplansky,
see [12]). So bn,,, + bn’lcl +-+ bn,n_lcn_l € GL, R. Let y be the simple
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matrix which differs from the identity matrix 1, only in the last column,
the entries of the last column of y being —c¢,, —¢,, ..., —¢ 1. Then

By Ny n=b, ,+b, 0+ -+b, ,_c,_, €EGLR.

Let us prove now the first conclusion of Theorem 3. Solet § =1, +
v fi+--+vf, € Aut(V) with v, € V and f, € V". We want to prove
that B is a product of s simple matrices. We proceed by induction on
s. Set b, ;= fv; € R and consider the matrix §' = 1.+ (b; ;). By [10,

Section 2], B’ € GL_R. By Lemma 5 above, there is y € GL R such

n—1°

that (yﬂ'y_l)s’s € GL, R. Replacing (v,,...,v) by (v, ..., us)y_l and
(fiseees fs)T by y(fy, ... ,fs)T, we do not change B, but replace g’ =
L+s+(fis - £) vy, ..., v) by B'y™" . Sowe can assume that 1+f,v, =

(B'), , € GL R. By [10, Section 2], 6 = 1, + v f, € Aut(V). So ¢ isa
simple matrix. We have g = 5(1,,+(5_11/l)fl +-- -+((5_11/s_1)fs_1) . By the
induction hypothesis, the second factor, (1, +(o7! vfit+- (67! v )foy)
is the product of s — 1 simple automorphisms. So g is the product of s
simple automorphisms.

1et us prove now the second conclusion of Theorem 3. That 1s, we want
to prove that if g =4, ---d, is the product of ¢ simple automorphisms o,
then rank(f —1,) <t. We write J, =1, +v,f, with v, €V and feV".
By induction on m, we see easily that d,---d,, = 1, +v, g + - +V,8&,,
where g, € V" depend on m. So rank(f —1,) <t.

Theorem 3 is proved. We complement it with the following result.

ProPOSITION 6. For any associative ring R with st(R) = 1, any integer
n > 2, and any integer s in the interval 0 < s < n, there is a matrix
B € GL, R with u-rank(f—1,) =rank(f—1,) =s. So this p is the product
of s simple matrices and it is not a product of a smaller number of simple
matrices.

To prove this proposition we will need the following two lemmas.

LEMMA 7. Let R be an associative ring with st(R) =1 and o € End(V)
be such that the R-module oV is a direct summand of V and has a free basis
of cardinality s. Then u-rank(a) =rank(a)=s.

PrOOF. Let {e¢.} be a free basis for aV of cardinality s.

We prove first that rank(a) < u-rank(a) <s. If s = oo, there is nothing
to prove, so let s < oco. For every v in V, we have av = ) e, fi(v)
with f,(v) € R. Since {e;} is a basis, f, € V*. So a = Y e,f;, hence
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rank(a) < u-rank(a) < s. (Note that rank(a) < s holds even without the
assumption that ol is a direct summand.)

Let us prove now that rank(a) > s. Suppose on the contrary that ¢ =
rank{a) < s. That is,

a=v fi+ - +vf €Au(V)

with v, € V and f, € V*. Pick 7 € End(V) such that 7’ = 7 and
nV =aV. Set u; = nv,. We can write u;, = }_.e.q, y with a; ; € R.
Note that ¢ < 0o, so only ﬁmtely many e; are 1nvolved in all these linear
combinations. Say, u, = E ea; ; for z_ 1, , 1 with t < m < 0co. Now
we write e; =) ub, fOI‘j—l mw1thb ,ER. Wehave aff =1,
where a = (4; ;) and B=1( ). Complementlng a by zero columns and
B by zero rows, we obtain two matnces o', B' in the ring M, R of square
matrices over R such that o'’ = af = 1,,. Since sr(R) = 1, we have
st(M,R) =1 by [11]. So, by Kaplansky’s result [12], g € GL,, R. But since
B has a zero row, this is impossible.

REMARK. Lemma 7 holds if the condition sr(R) = | is replaced by the
condition R # 0 together with the condition sr(R) < oo or the condition

that R is commutative.

LEMMA 8. For any n > 2 there exists an invertible matrix B, in GL, R
such that the matrix B, — 1 is also invertible.

PrROOF. When n =2, we can take

(1 70)

When n = 3, we can take

101
B={1 10
010

For n > 4, we can write f, as the direct sum of the above matrices
B, and B,. For example, B, = B, ® B, is the required matrix in GL, R,
Bs = B, ® B, is the required matrix in GL; R, and so on.

PROOF OF PROPOSITION 6. When s =0, wetake f=1,. When 1 <s<
n—1,wecantake f=y+1, . ,,where y € GL R is the Jordan matrix
with ones along the diagonal. Then (f — ln)R" is a direct summand of R"
with s free generators, so u-rank(f —1,) =rank(f —1,) =s by Lemma 7.
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Finally, when s = n, we find 8 as in Lemma 8, so (8 —1,)R" = R",
hence rank(f —1,) =n by Lemma 7.

References

[1] E. Artin, Geometric algebra, (Wiley-Interscience, New York, 1957).

[2] N. Bourbaki, Eléments de mathématique, Livre 2 (Algebre, Hermann, Paris, 1947).

[3] R. K. Dennis and L. N. Vaserstein, ‘On a question of M. Newman on the number of
commutators’, J. Algebra 118 (1988), 150-161.

(4] D. Z. Djokovié and J. Malzan, ‘Products of reflections in the general linear group over
a division ring’, Linear Algebra Appl. 28 (1979), 53-62.

[5] E. W. Ellers, ‘Product of axial affinities and products of central collineations’, in The
Geometric Vein, pp. 465-470, (Springer, New York, 1982).

[6] E. W. Ellers and H. Ishibashi, ‘Factorization of transformations over a local ring’, Linear
Algebra 85 (1987), 17-217.

[7]1 E. W. Ellers and H. Lausch, ‘Length theorems for the general linear group of a module
over a local ring’, J. Austral. Math. Soc. Ser. A 46 (1989), 122-131.

[8] K. R. Goodearl and P. Menal, ‘Stable range one for rings with many units’, J. Pure Appl.
Algebra 54 (1988), 261-287.

[9] L. F. Putnam, ‘The invertible elements are dense in the irrational rotation C*-algebras’,
preprint.

[10] L. N. Vaserstein, ‘ K -theory and the congruence subgroup problem’, Mar. Zametki §
(1969), 233-244 (Translation, Math. Notes 5, 141-148).

[11] L. N. Vaserstein, ‘The stable range of rings and the dimension of topological spaces’,
Funkcional. Anal. i PriloZen. 5 (1971), 17-27 (Translation, Functional Anal. Appl. §,
102-110).

[12] L. N. Vaserstein, ‘Bass’s first stable range condition’, J. Pure Appl. Algebra 34 (1984),
319-330.

The Pennsylvania State University
University Park, Pennsylvania 16802
U.S.A.

https://doi.org/10.1017/51446788700029980 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700029980

