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Abstract. In this paper we consider two piecewise Riemannian metrics defined on the
Culler–Vogtmann outer space which we call the entropy metric and the pressure metric. As
a result of work of McMullen, these metrics can be seen as analogs of the Weil–Petersson
metric on the Teichmüller space of a closed surface. We show that while the geometric
analysis of these metrics is similar to that of the Weil–Petersson metric, from the
point of view of geometric group theory, these metrics behave very differently than the
Weil–Petersson metric. Specifically, we show that when the rank r is at least 4, the action
of Out(Fr ) on the completion of the Culler–Vogtmann outer space using the entropy metric
has a fixed point. A similar statement also holds for the pressure metric.
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1. Introduction
The purpose of this paper is to introduce and examine two piecewise Riemannian metrics,
called the entropy metric and the pressure metric, on the Culler–Vogtmann outer space
CV (Fr ). The Culler–Vogtmann outer space is the moduli space of unit-volume marked
metric graphs and as such it is often viewed as the analog of the Teichmüller space
of an orientable surface Sg . Both the Culler–Vogtmann outer space and the Teichmüller
space admit a natural properly discontinuous action by a group. For the Culler–Vogtmann
outer space, the group is the outer automorphism group of a free group Out(Fr ) =
Aut(Fr )/ Inn(Fr ). For the Teichmüller space, the group is the mapping class group of
the surface MCG(Sg) = π0(Homeo+(Sg)). Strengthening the connection between these
spaces and groups are the facts that (i) Out(Fr ) is isomorphic to the group of homotopy
equivalences of a graph whose fundamental group is isomorphic to Fr , that is, Out(Fr )

can be thought of as the mapping class group of a graph, and (ii) the Dehn–Nielsen–Baer
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theorem which states that the extended mapping class group MCG±(Sg) (which also
includes isotopy classes of orientation-reversing homeomorphisms) is isomorphic to
Out(π1(Sg)) [17]. This analogy has led to much fruitful research on the outer automor-
phism group of a free group Out(Fr ).

The metrics on the Culler–Vogtmann outer space we consider in this paper are analogs
to the classical Weil–Petersson metric on the Teichmüller space of an orientable surface.
The Weil–Petersson metric has been studied extensively from the point of view of both
geometric analysis and geometric group theory. On the one hand, it enjoys many important
analytic properties which can be expressed naturally in terms of hyperbolic geometry on
Sg . Its utility in geometric group theory then stems from the fact that every isometry of the
Weil–Petersson metric is induced by a mapping class [25]. Thus, the action of MCG(Sg)

on the Teichmüller space equipped with the Weil–Petersson metric encodes information
about useful invariants for mapping classes.

As the piecewise Riemannian metrics on the Culler–Vogtmann outer space that we
study in this paper are motivated by the classical Weil–Petersson metric on the Teichmüller
space of a closed surface, it is natural to ask to what extent they are true analogs of the
Weil–Petersson metric. A major takeaway from the work in this paper is that they should
be seen as natural analogs from the geometric analysis point of view, but not from the
geometric group theory perspective. Specifically, while we highlight some similarities
between these metrics and the Weil–Petersson metric as seen from the analytic point of
view (Theorems 1.1 and 1.2) the main result (Theorem 1.3) of this paper shows that from
the geometric group-theoretic perspective, these metrics are not useful (except possibly
when r = 3). The content of this theorem is summarized as follows: the action of Out(Fr )

on the metric completion of the Culler–Vogtmann outer space has a fixed point for r ≥ 4.
The remainder of this introduction discusses these metrics more thoroughly and provides
context for the main results.

1.1. Metrics on outer space. The topology of CV (Fr ) has been well studied; see, for
instance, the survey papers of Bestvina [5] and Vogtmann [35]. The metric theory of
CV (Fr ) has been steadily developing over the past decade. What is desired is a theory that
reflects the dynamical properties of the natural action by Out(Fr ), that further elucidates
the connection between Out(Fr ) and MCG(S), and that leads to useful new discoveries.

The metric that has received the most attention to date is the Lipschitz metric. Points in
the Culler–Vogtmann outer space are represented by triples (G, ρ, �) where G is a finite
connected graph, ρ : Rr → G is a homotopy equivalence where Rr is the r-rose, and �

is a function from the edges of G to (0, ∞) for which the sum of �(e) over all edges of
G is equal to 1. (See §2.2 for complete details.) We think of the function � as specifying
the length of each edge and as such � determines a metric on G where the interior of each
edge e is locally isometric to the interval (0, �(e)). The Lipschitz distance between two
unit-volume marked metric graphs (G1, ρ1, �1) and (G2, ρ2, �2) in CV (Fr ) is defined by

dLip((G1, ρ1, �1), (G2, ρ2, �2)) = log inf{Lip(f ) | f : G1 → G2, ρ2 � f ◦ ρ1}, (1.1)

where Lip(f ) is the Lipschitz constant of the function f : G1 → G2 using the metrics
induced by �1 and �2. respectively. In general the function dLip is not symmetric. As such,

https://doi.org/10.1017/etds.2021.165 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.165


732 T. Aougab et al

dLip(�, �) is not a true metric, but an asymmetric metric. See [1, 2, 20] for more on the
asymmetric aspects of the Lipschitz metric.

Regardless, the Lipschitz metric has been essential in several recent developments for
Out(Fr ). This is in part due to the fact that the Lipschitz metric connects the dynamical
properties of an outer automorphism of Fr acting on CV (Fr ) to its action on conjugacy
classes—of elements and of free factors—in Fr . Notable are the ‘Bers-like proof’ of the
existence of train-tracks by Bestvina [6], the proof of hyperbolicity of the free factor
complex by Bestvina and Feighn [8], and the proof of hyperbolicity of certain free group
extensions by Dowdall and Taylor [18].

In this way, the Lipschitz metric is akin to the Teichmüller metric on Teichmüller space
which was used to prove the corresponding statements for the mapping class group [4, 19,
26]. One can also define the Lipschitz metric on Teichmüller space using the same idea
as in (1.1), and in this setting it is oftentimes called Thurston’s asymmetric metric [34].
This metric has seen renewed attention lately, in part due to the usefulness of the Lipschitz
metric on CV (Fr ).

As a result of McMullen’s interpretation of the Weil–Petersson metric on Teichmüller
space via tools from the thermodynamic formalism applied to the geodesic flow on
the hyperbolic surface [27, Theorem 1.12], there exists a natural candidate for the
Weil–Petersson metric on the Culler–Vogtmann outer space. This idea was originally
pursued by Pollicott and Sharp [31].

1.2. Thermodynamic metrics. The metrics we consider in this paper arise from the tools
of the thermodynamic formalism as developed by Bowen [9], Parry and Pollicott [29],
Ruelle [32] and others. The central objects involved are the notions of entropy and pressure.
For a graph G, these notions define functions

hG : M(G) → R and PG : R
n → R (1.2)

where n is the number of (geometric) edges in G and M(G) = R
n
>0—this space

parametrizes the length functions on G. The entropy and pressure functions are real
analytic, strictly convex and are related by hG(�) = 1 if and only if PG(−�) = 0 (see
Theorem 3.7). As these functions are smooth and strictly convex, their Hessians induce an
inner product on the tangent space of the unit-entropy subspace M1(G) = {� ∈M(G) |
hG(�) = 1} at a length function (see Definition 3.10). Hence the notions of entropy and
pressure induce Riemannian metrics on M1(G) which we call the entropy metric and
pressure metric, respectively. By dh,G and dP,G we denote the induced distance functions
onM1(G). We caution the reader that these metrics have been considered by others with
conflicting terminology. Throughout this introduction, we will use the above terminology
even when referencing the work of others. See Remark 3.11 for a further discussion.

Pollicott and Sharp initiated the study of the thermodynamic metrics when they first
defined the pressure metric on M1(G) [31]. They proved that the pressure metric is not
complete for the 2-rose R2 and they derived formulas for the sectional curvature for the
theta graph �2 and barbell graph B2 (see Figure 2 for these graphs). Additionally, Pollicott
and Sharp produce a dynamical characterization of the entropy metric in terms of generic
geodesics similar to Wolpert’s result for the Weil–Petersson metric [37] (see Remark
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3.11). Kao furthered these results by showing that the pressure metric is incomplete for
�2, B2 and the 3-rose R3, and by showing that the entropy metric is complete for R2

[22]. Additionally, he derives formulas for the sectional curvature with respect to both the
entropy and the pressure metric for �2, B2 and R3. Xu shows that for certain graphs, the
moduli space M1(G) equipped with the entropy metric arises in the completion of the
Teichmüller space of a surface with boundary using the pressure metric [39].

In this paper we will investigate the entropy metric not only on the moduli space of a
single graph, but on the full moduli space of all marked graphs. Let X(Fr ) be the space
of marked metric graphs so that contained in X(Fr ) is the Culler–Vogtmann outer space
CV (Fr ). The notion of entropy extends to X(Fr ) by h([(G, ρ, �)]) = hG(�) and we set

X1(Fr ) = {[(G, ρ, �)] ∈ X(Fr ) | h([(G, ρ, �)]) = 1}. (1.3)

There is a homeomorphism between CV (Fr ) and X1(Fr ) defined by scaling the length
function (see §3.1). Fixing a graph G and a marking ρ : Rr → G, the map M1(G) →
X1(Fr ) that sends a length function � inM1(G) to the point determined by (G, ρ, �) in
X1(Fr ) is an embedding whose image we denote by X1(G, ρ). Considering all marked
graphs individually, this induces a piecewise Riemannian metric on X1(Fr ). See §3.3 for
complete details. We denote the induced distance function on X1(Fr ) by dh.

For a closed orientable surface Sg , one can repeat the above discussion using the
moduli space of marked Riemannian metrics with constant curvature X(Sg). In this case,
the entropy and the area of the Riemann surface are directly related. In particular, the
unit-entropy, constant-curvature metrics correspond to the hyperbolic metrics, that is, those
with constant curvature equal to −1, and hence to those with area equal to 2π(2g − 2). In
other words, the entropy and area normalizations on X(Sg) result in the same subspace,
the Teichmüller space of the surface. McMullen proved that the ensuing entropy metric on
the Teichmüller space is proportional to the Weil–Petersson metric [27, Theorem 1.12].

It is this connection between the entropy metric and the Weil–Petersson metric that
drives the research in this paper. After introducing the framework for both the entropy and
the pressure metrics in §3, we specialize the discussion to the entropy metric because of
this connection to the Weil–Petersson metric. All of the main results of this paper have
analogous statements for the pressure metric and the proofs are similar, and in most cases
substantially easier. The statements for the pressure metric are given in §1.6.

It is not necessary for this paper, but we mention that building on work of McMullen,
Bridgeman [10] and Bridgeman et al [11] used these same ideas to define a metric on the
space of conjugacy classes of regular irreducible representations of a hyperbolic group into
a special linear group.

In the next three subsections, we explain our main results on the entropy metric on
X1(Fr ) and their relation to the Weil–Petersson metric on Teichmüller space.

1.3. Incompletion of the metric. Our first main result concerns the completion of the
entropy metric on X1(Fr ). Wolpert showed that the Weil–Petersson metric on Teichmüller
space is not complete [36]. Our first theorem shows that when r ≥ 3, the same holds for
the entropy metric on X1(Fr ).
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THEOREM 1.1. The metric space (X1(Fr ), dh) is complete if r = 2 and incomplete if
r ≥ 3.

For r ≥ 3, this theorem is proved by exhibiting a finite-length path in M1(Rr ) that
exits every compact subset. This path is defined by sending the length of one edge in
Rr to infinity, while shrinking the others to maintain unit entropy (Proposition 7.8). This
strategy—also used by Pollicott and Sharp [31] and Kao [22]—shows that (M1(Rr ), dh,Rr

)

is incomplete. We further show in §8 that this path also exits every compact set in X1(Fr ).
As dh,Rr

is an upper bound to dh (when defined), this path still has finite length when
considered in X1(Fr ) and thus Theorem 1.1 follows.

The path described above illustrates a general method for producing paths that exit
every compact subset and that have finite length in the entropy metric: deform the metric
by sending the length of some collection of edges to infinity while shrinking the others to
maintain unit entropy. So long as the complement of the collection supports a unit-entropy
metric, this path will have finite length. This explains why (X1(F2), dh) is complete: any
metric on a graph where every component has rank at most 1 has entropy equal to zero. In
§6 we demonstrate the calculations required to prove that (X1(F2), dh) is complete.

This is completely analogous to the setting of the Weil–Petersson metric on Teichmüller
space. In that setting, deforming a hyperbolic metric on Sg by pinching a simple closed
curve results in a path with finite length that exits every compact set. Moreover, the
geometric analysis agrees. For the path in M1(Rr ) described above, if we parametrize
the long edge by − log(t) as t → 0, then the entropy norm along this path is O(t−1/2), as
shown in Proposition 7.8. For the path in the Teichmüller space of Sg , if we parametrize the
curve which is being pinched by t as t → 0, then the Weil–Petersson norm along this path
is O(t−1/2) [38, §7]. Note that in this case, the length of the shortest curve that intersects
the pinched one has length approximately − log(t).

1.4. The moduli space of the r-rose. Our second main result is concerned with the
entropy metric on the moduli space of the r-rose Rr .

THEOREM 1.2. The completion of (M1(Rr ), dh,Rr
) is homeomorphic to the complement

of the vertices of an (r − 1)-simplex.

The space M1(Rr ) is homeomorphic to the interior of an (r − 1)-simplex. The faces
added in the completion for dh,Rr

correspond to unit-entropy metrics on subroses. Such
a metric is obtained as the limit of a sequence of length functions on Rr by sending the
length of a collection of edges to infinity and scaling the others to maintain unit entropy.
Specifically, a (k − 1)-dimensional face of the completion corresponds to the moduli
space of unit-entropy metrics on a sub-k-rose. As before, intuitively, the vertices of the
(r − 1)-simplex are missing in the completion as there does not exist a unit-entropy metric
on R1.

That unit-entropy metrics on subroses arise as points in the completion follows from the
calculations provided for the proof of incompleteness in Theorem 1.1 and some continuity
arguments. This is shown in §9.1. The difficult part of the proof of Theorem 1.2 is showing
that any path in (M1(Rr ), dh,Rr

) that sends the length of one edge to 0 (and hence the
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lengths of the other edges to infinity) necessarily has infinite length. This argument appears
in Lemma 7.10 and Proposition 7.14. In §9.2 we combine these two facts to complete the
proof of Theorem 1.2.

In Example 9.7 we compare the completion of (M1(R3), dh,R3) to the closure of the
unit-volume metrics on R3 in the axes topology on CV (F3) (see §2.2 for definitions). By
Theorem 1.2, the completion in the entropy metric is a 2-simplex without vertices, whereas
the closure in the axes topology is a 2-simplex. More interestingly, the newly added edges
and vertices are dual: edges in the entropy completion correspond to vertices in the axes
closure and the missing vertices in the entropy completion correspond to the edges in the
axes closure. This is explained in detail in Example 9.7 and illustrated in Figure 6.

While it is not necessary for Theorem 1.2, we mention that in §9.3 we prove that
the diameter of a cross-section of the (r − 1)-simplex goes to 0 as the length of one of
the edges goes to 0, that is, as the cross-section moves out toward one of the missing
vertices. In other words, the completion of (M1(Rr ), dh,Rr

) is geometrically akin to an
ideal hyperbolic (r − 1)-simplex; see Lemma 9.9.

1.5. A fixed point in the completion. Whereas the first two main results demonstrate the
similarity between the geometric analysis for the Weil–Petersson metric on the Teichmüller
space and the entropy metric on the Culler–Vogtmann outer space, our final main result
provides a stark contrast between these two metrics with respect to geometric group theory.

THEOREM 1.3. The subspace (X1(Rr , id) · Out(Fr ), dh) ⊂ (X1(Fr ), dh) is bounded if
r ≥ 4. Moreover, the action of Out(Fr ) on the completion of (X1(Fr ), dh) has a fixed
point.

This subspace consists of the unit-entropy metrics on every marked r-rose. To illustrate
the difference with respect to the setting of the Weil–Petersson metric on Teichmüller
space, we mention the fact due to Daskalopoulos and Wentworth that pseudo-Anosov
mapping classes have positive translation length in their action on the Teichmüller space
[16]. In particular, the action of the mapping class group does not have a fixed point in the
completion of Teichmüller space with the Weil–Petersson metric.

The first step in the proof of Theorem 1.3 is to show that the image of the inclusion
map M1(Rr ) → X1(Rr , id) ⊂ X1(Fr ) has bounded diameter for r ≥ 4. This result is
particularly striking in contrast to Theorem 1.2, since implicit in that theorem is that
the space (M1(Rr ), dh,Rr

) has infinite diameter. Boundedness of the image of M1(Rr )

is achieved by showing that the map induced via Theorem 1.2, � : �r−1 − V → X̂1
(Fr ),

extends to �r−1, where �r−1 is an (r − 1)-simplex, V ⊂ �r−1 is the set of vertices, and
X̂1

(Fr ) is the completion of X1(Fr ) for dh. The existence of this extension shows that
X1(Rr , id) lies in a compact set and hence is bounded.

In order to show that � : �r−1 − V → X̂1
(Fr ) extends to the set V, we show that �

maps every (k − 1)-dimensional face of �r−1 − V to a single point when 1 < k < r − 1.
This is shown in §11. This fact, together with the previously mentioned fact about the
diameter of the cross-sections going to 0, gives that � extends to the set V and that the
entire (r − 3)-skeleton of �r−1 is mapped to a single point in X̂1

(Fr ). The collapse of a
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M1(R2)
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FIGURE 1. Illustration of a path with length 0 in the completion of (M1(G2,2), dh,G2,2 ).

(k − 1)-dimensional face of �r−1 − V for 1 < k < r − 1 arises from paths in X1(Fr )

connecting points in X1(Rr , id) whose length is much shorter than paths in M1(Rr )

connecting the same points. In other words, there are shortcuts present in X1(Fr ) that
are not present inM1(Rr ).

These shortcuts are most easily understood in terms of unit-entropy metrics on marked
subgraphs, that is, points in the completion of (X1(Fr ), dh). Pathologies arise when the
subgraph is not connected. In this case, the entropy of the metric on the subgraph is the
maximum of the entropy—in the previous sense—on a component of the subgraph. Hence,
by holding the length function constant on a component of the subgraph with unit entropy,
we are free to modify the length function on the other components at will, so long as the
entropy is never greater than 1 on any of these components. In Proposition 3.12 we show
that the entropy and pressure metrics can be computed using the second derivatives of the
lengths of edges along a path. Hence the length of a path that changes the length of the
edges in a component with entropy less than 1 linearly has zero length in either of these
metrics.

Figure 1 illustrates the central idea that is exploited in §10 to show that many paths have
zero length. This figure is taking place in the completion of M1(G2,2) using the metric
dh,G2,2 . This space hasM1(R4) as a face in X1(F4) corresponding to the collapse of the
separating edge. The completion of M1(R4) has an edge corresponding to unit-entropy
metrics on two of the edges (denoted a and b in Figure 1). This edge also corresponds to a
subset in the completion ofM1(G2,2). Illustrated in Figure 1 is a path through unit-entropy
length functions on subgraphs of G2,2, that is, points in the completion. As all edge
lengths are changing linearly, this path has length 0 and hence all of these length functions
correspond to the same point in the completion.

This shows that the edge corresponding toM1(R2) is mapped by � to a point. The same
idea works for any sub-k-rose of Rr so long as 1 < k < r − 1: it is necessary to separate
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two subroses, each of which supports a unit-entropy metric. This is the reason why we
require r ≥ 4 in Theorem 1.3.

Once we know that the entire (r − 3)-skeleton of �r−1 is mapped by � to a point in
X̂1

(Fr ), we utilize the structure of the Culler–Vogtmann outer space to conclude in §12
that this point is independent of the marking ρ : Rr → Rr used to define the inclusion
M1(Rr ) → X1(Fr ). This completes the proof of Theorem 1.3.

1.6. Analogous statements for pressure metric. For the pressure metric on X1(Fr ) we
have the following analogs of Theorems 1.1–1.3. By dP we denote the induced distance
function.
(1) The space (X1(Fr ), dP) is incomplete for r ≥ 2.
(2) The completion of (M1(Rr ), dP,Rr

) is homeomorphic to an (r − 1)-simplex.
(3) The space (X1(Fr ), dP) is bounded if r ≥ 2; moreover, the action of Out(Fr ) on the

completion of (X1(Fr ), dP) has a fixed point.
These can be shown using techniques similar—and simpler—to those in this paper. The
key source of the distinction between the entropy and pressure metrics is that the length
function that assigns 0 to the unique edge on R1 has pressure equal to 0 even through the
entropy is not defined. Hence the path in M1(R2) that sends the length of one edge to
infinity while shrinking the length of the other (necessarily to 0) to maintain unit entropy
has finite length in the pressure metric, whereas the length in the entropy metric is infinite.

1.7. Further discussion and questions. This work raises a number of questions.
Our proof that the action of Out(Fr ) on the completion of (X1(Fr ), dh) has a fixed

point relies heavily on the assumption that r ≥ 4: the key construction uses an edge that
separates a given graph into two subgraphs, each with rank at least 2. This leaves the door
open to a negative answer for the following question, which would allow for interesting
applications specifically for F3.

Question 1.4. Does (X1(F3), dh) admit an Out(F3)-invariant bounded subcomplex?

Theorem 1.3 demonstrates the existence of an Out(Fr ) orbit in (X1(Fr ), dh) with
bounded diameter but we do not yet know that the entire space has bounded diameter.
We therefore ask the following question.

Question 1.5. Is (X1(Fr ), dh) bounded for r ≥ 4?

We believe the answer to this question is yes. Indeed, the only way (X1(Fr ), dh) could
fail to be bounded is if the subspace (X1(G, ρ), dh) has infinite diameter for some marked
graph ρ : Rr → G. As the diameter of (X1(Rr , id) · Out(Fr ), dh) is bounded, to answer
the question in the affirmative, it would suffice to find a bound (in terms of r) on the
distance from any pointX1(Fr ) to a point inX1(Rr , id) · φ for some φ ∈ Out(Fr ). Another
approach to answer Question 1.5 in the affirmative would be to show the existence of
a bound (in terms of r) on distance from any point in X1(G, ρ) to a completion point
represented by a unit-entropy metric on a proper subgraph (with the goal of getting to
a point in the completion of a marked rose via induction). This led us to the following
question, which is of independent interest and we pose here as a conjecture.
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Conjecture 1.6. For any r ≥ 3 there exists C > 0 so that any metric graph of rank r with
unit entropy contains a proper subgraph with entropy at least C.

It suffices to show the conjecture for a fixed topological type of graph since, for a given
rank r, there are only finitely many topological types of graph of rank r.

One can also define the notion of the entropy metric on the Teichmüller space of a
surface with boundary. In [39], Xu shows that this metric is incomplete. As mentioned
previously, McMullen proved that for closed surfaces, the entropy metric is a constant
multiple of the Weil–Petersson metric. However, by partially characterizing the completion
of the entropy metric in the bordered setting, Xu is able to show that this is not true in the
presence of boundary. Concretely, Xu identifies certain graphs G so that, in the notation of
this paper, (M1(G), dh) isometrically embeds in the completion of the Teichmüller space
of the surface equipped with the entropy metric. We therefore ask if the work in this paper
can be used to fully understand the completion of the Teichmüller space of a bordered
surface equipped with the entropy metric.

Problem 1.7. Fully characterize the completion of (M1(G), dh,G) for an arbitrary graph
G and use this to study the completion of the Teichmüller space of a bordered surface,
equipped with the entropy metric.

The pathology exhibited by Theorem 1.3 relies on the existence of a sequence of
unit-entropy length functions whose limiting metric is supported on a subgraph with
multiple components where the metric on some component need not have entropy equal
to 1. This behavior does not occur in the Teichmüller space of a closed surface since a
unit-entropy metric on a constant-curvature surface is a hyperbolic metric and vice versa,
and thus for the subsurface supporting the limit of a sequence of unit-entropy metrics,
the metric on each component also has entropy equal to 1. One can also consider an
entropy function defined over the moduli space of singular flat metrics on a closed surface.
This setting appears more similar to the situation of Theorem 1.3 in that the unit-entropy
condition is not encoded by the local geometry. It appears likely that some version of
Theorem 1.3 holds for singular flat metrics, and so we therefore ask our final question of
this introduction.

Question 1.8. Can the techniques used in this paper in the setting of metric graphs apply
to the study of an entropy metric on the moduli space of singular flat metrics on a closed
surface?

2. Graphs and outer space
In this section we introduce some concepts that are necessary for the sequel. First, we
set some notation for dealing with graphs. Then we define the Culler–Vogtmann outer
space—including its topology—and the Out(Fr ) action on this space.

2.1. Graphs. We use Serre’s convention for graphs [33]. That is, an (undirected) graph
is a tuple G = (V , E, o, τ , ¯) where:
(1) V and E are sets, called the vertices and the directed edges (we think of E as

containing two copies, with opposite orientations, of each undirected edge);
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(2) o, τ : E → V are functions that specify the originating and terminating vertices of
an edge;

(3) ¯ : E → E is a fixed point free involution such that o(e) = τ(ē) (¯ flips edges).
We fix an orientation on G, that is, a subset E+ ⊂ E that contains exactly one edge from
each pair {e, ē}. Since we consider the pair {e, ē} to be a single edge, the number of edges
of G is |E+| = |E|/2. The valance of a vertex v is the number of edges from e ∈ E+
with o(e) = v plus the number of edges from e ∈ E+ with τ(e) = v (an edge e for which
o(e) = τ(e) = v contributes 2 to the valance). Oftentimes when defining a graph we only
specify the edges in E+ (together with the restrictions of o and τ to E+). The complete set
of edges is then defined as E = E+ ∪ E+, where E+ is a copy of E+, and o, τ , and ¯ are
defined in the obvious way. We blur the distinction between the tuple (V , E, o, τ , ¯) and
the corresponding one-dimensional CW-complex with 0-cells V and 1-cells E+.

The space of length functions on G is the open convex cone

M(G) = {� : E+ → R>0}. (2.1)

We consider this set as a subset of R|E+|. A length function � : E+ → R>0 extends to a
function � : E → R>0 by �(e) = �(ē) if e /∈ E+. By 1 ∈M(G) we denote the constant
function with value 1.

An edge path is a sequence of edges (e1, . . . , en) in E such that τ(ei) = o(ei+1) for
i = 1, . . . , n − 1. A function f : E → R (in particular, a length function) extends to a
function on edge paths γ = (e1, . . . , en) by

f (γ ) =
n∑

i=1

f (ei). (2.2)

2.2. Outer space. We will introduce some definitions and notation for the Culler–
Vogtmann outer space. This space was originally defined by Culler and Vogtmann [14].
For more information, see for example the survey papers by Vogtmann [35] or Bestvina [5].

Let Rr be the r-rose. That is, Rr the graph with a unique vertex v and r edges. Fix
an isomorphism Fr

∼= π1(Rr , v). A marked metric graph (of rank r) is a triple (G, ρ, �)

where:
(1) G is a finite connected graph without vertices of valence 1 or 2;
(2) ρ : Rr → G is a homotopy equivalence; and
(3) � is a length function on G.
There is an equivalence relation on the set of marked metric graphs defined by
(G1, ρ1, �1) ∼ (G2, ρ2, �2) if there exists a graph automorphism α : G1 → G2 such
that �1 = �2 ◦ α and such that the following diagram commutes up to homotopy:

G1

α

��
Rr

ρ1 ��������

ρ2 ����
���

�

G2
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We let X(Fr ) denote the set of equivalence classes of marked metric graphs of
rank r. The group Out(Fr ) acts on X(Fr ) on the right by precomposing the marking.
Specifically, for any outer automorphism φ ∈ Out(Fr ), there is a homotopy equivalence
gφ : Rr → Rr that induces φ on π1(Rr ) via the aforementioned fixed isomorphism Fr

∼=
π1(Rr , ∗). Moreover, this homotopy equivalence is unique up to homotopy. With this, we
define

(G, ρ, �) · φ = (G, ρ ◦ gφ , �). (2.3)

This action respects the equivalence relation on marked metric graphs and so defines an
action on X(Fr ) as claimed.

LetGr denote the set of finite connected graphs without vertices of valence 1 or 2 whose
fundamental group has rank r. We observe that this is a finite set. Given a graph G ∈ Gr

and homotopy equivalence ρ : Rr → G, we set

X(G, ρ) = {[(G0, ρ0, �0)] ∈ X(Fr ) | G0 = G and ρ0 � ρ}.
There is a bijection X(G, ρ) →M(G) defined by [(G0, ρ0, �0)] �→ �0. These sets
partition the set X(Fr ) and are permuted under the action by Out(Fr ). Specifically, for
each G ∈ Gr we fix a marking ρG : Rr → G. Then

X(Fr ) =
⋃

G∈Gr

⋃
φ∈Out(Fr )

X(G, ρG) · φ.

There is a topology on X(Fr ) that is often defined in three different ways. We will need
to use the first two and for completeness we explain all three here.

The weak topology. The notion of a collapse induces a partial order on the set of marked
graphs. Specifically, for two graphs G and G0, we say that G collapses to G0 if there is
a surjection c : G → G0 such that the image of any edge in G is either a vertex or an
edge of G0 and such that c−1(x) is a contractible subgraph of G for each point x of G0.
The map c is a called a collapse. Observe that if the map c : G → G0 is a collapse,
then a length function � ∈M(G0) can be considered as a degenerate length function �G0

on G by

�G0(e) =
{

�(c(e)) if c(e) is an edge in G0,

0 otherwise.
(2.4)

This defines a map c∗ : M(G0) → R
|E+|
≥0 by c∗(�) = �G0 . We now define the following

subset of R|E+|
≥0 :

M(G) =
⋃

c : G→G0

c∗(M(G0)). (2.5)

We note theM(G) is a subset ofM(G) as the identity map id : G → G is a collapse.
Next, given two marked graphs ρ : Rr → G and ρ0 : Rr → G0, we say that (G, ρ)

collapses to (G0, ρ0) if there is a collapse c : G → G0 such that ρ0 � c ◦ ρ. In this case
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we write (G0, ρ0) ≤ (G,ρ). We now define the following subset of X(Fr ):

X(G, ρ) =
⋃

(G0,ρ0)≤(G,ρ)

X(G0, ρ0). (2.6)

The bijectionX(G, ρ) →M(G) extends in a natural way to a bijectionX(G, ρ) →M(G)

and allows us to consider X(G, ρ) as a subset of R|E+|
≥0 .

The weak topology is defined using this collection of subsets. Specifically, a set U ⊆
X(Fr ) is open if U ∩ X(G, ρ) is open as a subset of R|E+|

≥0 for all marked graphs (G, ρ).

The axes topology. Given a marked metric graph (G, ρ, �) and an element g ∈ Fr , we
denoted by �([g]) the �-length of the shortest loop in G representing the conjugacy class
[ρ(g)]. This induces a function Len: X(Fr ) → R

Fr≥0 where Len([(G, ρ, �)]) : Fr → R≥0

is the function defined by

Len([(G, ρ, �)])(g) = �([g]).

Culler and Morgan proved that the map Len is injective [13, 3.7 Theorem]. The resulting
subspace topology on Len(X(Fr )) ⊂ R

Fr≥0 is called the axes topology. It is known that this
topology agrees with the weak topology. (See [14, §1.1] or [21, Proposition 5.4].)

The equivariant Gromov–Hausdorff topology. We will not need this definition, and we only
remark that Paulin showed that it is equivalent to the axes topology [30, Main Theorem].

There is an action of R>0 on X(Fr ) given by scaling the length function. Specifically,
a · (G, ρ, �) = (G, ρ, a · �). The quotient of X(Fr ) is denoted PX(Fr ).

There are many continuous sections of the quotient map X(Fr ) → PX(Fr ). An often
used choice uses the notion of the volume of a length function, vol(�), that we define now.
For a length function � ∈M(G), we define the volume of � by vol(�) =∑e∈E+ �(e).
There is a sectionV : PX(Fr ) → X(Fr ) defined by

V([[(G, ρ, �)]]) =
[(

G, ρ,
1

vol(�)
�

)]
.

We denote the image of this section by CV (Fr ); it is known as the Culler–Vogtmann
outer space. Further, given a marked graph ρ : Rr → G, we set CV (G, ρ) = X(G, ρ) ∩
CV (Fr ). This set is homeomorphic to an open simplex of dimension |E+| − 1.

Example 2.1. There are three graphs in G2: the 2-rose R2, the theta graph �2 and the
barbell graph B2; see Figure 2. Figure 3 shows a portion of CV (F2) and how these
simplices piece together. The homotopy equivalences used for Figure 3 are as follows:

ρ� : R2 → �2 : e1 �→ e1ē3, e2 �→ e2ē3;

ρB : R2 → B2 : e1 �→ e1, e2 �→ e3e2ē3;

a : R2 → R2 : e1 �→ e1, e2 �→ ē2;

b : R2 → R2 : e1 �→ ē2, e2 �→ e1ē2.

Notice that ρ� is the homotopy inverse to the map �2 → R2 that collapses the edge e3.
Likewise ρ� ◦ b is the homotopy inverse to the collapse of e2 and ρ� ◦ b2 is the homotopy
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R2

e1 e2

v

B2

e1 e2

e3
v w

Θ2

e1

e2

e3

v w

FIGURE 2. The three homeomorphism types of graphs in G2.
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FIGURE 3. A portion of the Culler–Vogtmann outer space CV (F2).

inverse to the collapse of e1. Similarly, ρB is the homotopy inverse to the map B2 → R2

that collapses e3.

One of the goals of this paper is to investigate a different continuous section of the
quotient map. This uses the notion of entropy, hG(�), defined in §3.1. Using this notion,
there is a sectionH : PX(Fr ) → X(Fr ) defined by

H([[(G, ρ, �)]]) = [(G, ρ, hG(�)�)].

We will denote the image of this section by X1(Fr ).

3. Thermodynamic metrics
In this section we introduce the entropy and pressure of a length function in M(G), for
a graph G as in §2.1. By normalizing the entropy to be equal to 1, we realize X1(Fr )

(as defined in §2.2) as a section of X(Fr ) → PX(Fr ); it will follow that X1(Fr ) is
homeomorphic to CV (Fr ) (see Theorem 3.5). We use entropy and pressure to construct
piecewise Riemannian metrics on X1(Fr ), which we call the thermodynamic metrics.
Pollicott and Sharp were the first to consider one of these metrics [31]. Kao [22] and
Xu [39] have also investigated these metrics. In these papers, the metric is only considered
for a single marked graph and never on the entire outer space, as we will do here.

3.1. Entropy. Fix a finite connected graph G = (V , E, o, τ , ¯). An edge path
(e1, . . . , en) in a graph G is reduced if ei �= ēi+1 for i = 1, . . . , n − 1. A reduced edge
path (e1, . . . , en) is a based circuit if τ(en) = o(e1) and en �= ē1. The set of all based
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circuits in G is denoted by C(G). For a length function � ∈M(G) and a real number
t ≥ 0, define

CG,�(t) = {γ ∈ C(G) | �(γ ) ≤ t}.
Definition 3.1. The entropy of a length function � ∈M(G) is

hG(�) = lim
t→∞

1
t

log|CG,�(t)|.

Remark 3.2. We defined entropy as the growth rate of the number of reduced based
circuits. In the literature, there exist many equivalent definitions of entropy. In particular,
one can count the growth of reduced edge paths in G starting at a particular vertex and
the adjective ‘based’ can be removed from the count of circuits [24, Proposition 2.3]. This
shows that hG(�) equals the volume entropy of (G, �). The volume entropy is defined as
the exponential growth rate of the volume of balls in (G̃, g�), where G̃ is the universal
cover of G and g� is the piecewise Riemannian metric obtained by pulling back the length
function �. That is,

hG(�) = lim
t→∞

1
t

log volg�
B(x, t)

where B(x, t) is the ball of radius t centered at x ∈ G̃, which is an arbitrary basepoint.

Example 3.3. The number of reduced edge paths in Rr with 1-length equal to n is exactly
2r(2r − 1)n−1. Thus for any vertex v ∈ R̃r we have

volg1 B(v, n) = r

r − 1
((2r − 1)n − 1).

Hence hRr
(1) = log(2r − 1).

The next lemma shows that entropy is homogeneous of degree −1 and thus any length
function � ∈M(G) can be scaled to have unit entropy. Specifically, hG(a · �) = 1 if and
only if a = hG(�).

LEMMA 3.4. Let G be a finite connected graph and fix � ∈M(G). If a ∈ R>0, then

hG(a · �) = 1
a
hG(�).

Proof. We reparametrize the limit defining entropy by setting s = at . Then

hG(�) = lim
t→∞

1
t

log|{γ ∈ C(G) | �(γ ) ≤ t}|
= lim

s→∞
a

s
log|{γ ∈ C(G) | a · �(γ ) ≤ s}| = ahG(a · �).

Entropy defines an Out(Fr )-invariant function on X(Fr ) by h([(G, ρ, �)]) = hG(�).
This function was investigated by Kapovich and Nagnibeda, who showed the following
theorem.

THEOREM 3.5. [23, Theorem A] The entropy function h : X(Fr ) → R is continuous.
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In particular, the map H : PX(Fr ) → X(Fr ) defined by normalizing to have unit
entropy,

H([[(G, ρ, �)]]) = [(G, ρ, hG(�)�)],

is a section. Hence the image X1(Fr ) = {[(G, ρ, �)] ∈ X(Fr ) | hG(�) = 1} is homeomor-
phic to CV (Fr ).

3.2. Pressure. Fix a finite connected graph G = (V , E, o, τ , ¯). We assume throughout
this subsection and the next that χ(G) < 0 (where χ(G) = |V | − 1

2 |E| is the Euler
characteristic of G—note the 1

2 factor is present as E includes edges with both orientations)
and that G has no vertices with valence equal to 1 or 2.

Define AG ∈ Mat|E|(R) by

AG(e, e′) =
{

1 if τ(e) = o(e′) and ē �= e′,
0 otherwise.

(3.1)

It follows that the entry An
G(e, e′) is the number of reduced edge paths of the form

(e1, . . . , en) where e1 = e, τ(en) = o(e′) and ēn �= e′. In particular, tr(An
G) is the number

of based edge circuits with 1-length equal to n. Denoting the spectral radius of a matrix by
spec(�), we get, from the definition of entropy, that

hG(1) = log(spec(AG)). (3.2)

We remark that the above assumptions on G ensure that AG is irreducible.
In order to get a matrix that incorporates the metric and is related to entropy, we scale

the rows of AG as follows: given a function f : E → R, we define AG,f ∈ Mat|E|(R) by

AG,f (e, e′) = AG(e, e′) exp(−f (e)). (3.3)

As for AG, it follows that An
G,f (e, e′) is the sum of exp(−f (γ )) over all edge paths of the

form γ = (e1, . . . , en) where e1 = e, τ(en) = o(e′) and ēn �= e′.

Definition 3.6. The pressure of a function f : E → R is defined as PG(f ) =
log spec(AG,−f ).

By equation (3.2) we have that PG(0) = hG(1) as AG,−0 = AG, where 0 is the zero
function.

The connection between entropy and pressure is given by the following theorem.

THEOREM 3.7. Suppose that G = (V , E, o, τ , ¯) is a finite connected graph. Then the
following statements hold.
(1) For any length function � ∈M(G), PG(−�) = 0 if and only if hG(�) = 1.
(2) The pressure function PG : R

|E+| → R is real analytic and convex.
(3) The entropy function hG : M(G) → R is real analytic and strictly convex.

Proof. The first item appears in the work of Pollicott and Sharp [31, Lemma 3.1(2)].
The properties of pressure stated in the second item can be found in the work of Parry

and Pollicott [29, Propositions 4.7 and 4.12].
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The properties of entropy stated in the third item can be found in the work of McMullen
[28, Proposition A.4]. Kapovich and Nagnibeda gave an alternative proof of the real
analyticity of hG [23].

Let M1(G) = {� ∈M(G) | hG(�) = 1}. By the first item above, we have that alter-
natively M1(G) = {� ∈M(G) | PG(−�) = 0}. To see that M1(G) is a codimension-1
submanifold of R|E+| we need to argue that 1 is a regular value of hG. This follows from
the following lemma. We denote the standard Euclidean inner product on R

n by 〈�, �〉.

LEMMA 3.8. Let G be a finite connected graph and fix � ∈M(G). Then 〈�, ∇hG(�)〉 =
−hG(�).

Proof. This follows from the homogeneity of the entropy function (Lemma 3.4). Indeed,

〈�, ∇hG(�)〉 = lim
s→0

hG(� + s�) − hG(�)

s
= lim

s→0

hG((1 + s)�) − hG(�)

s

= lim
s→0

1
1+s

hG(�) − hG(�)

s
= hG(�) lim

s→0

−s

s(s + 1)
= −hG(�).

We record the following properties of the partial derivatives and the gradient of the
pressure function. Given a function f : R

|E+| → R and an edge e ∈ E+, we denote the
partial derivative of f with respect to the eth coordinate by ∂ef . Let ‖�‖1 denote the usual
L1-norm on vectors in R

n.

LEMMA 3.9. Let G = (V , E, o, τ , ¯) be a finite connected graph and fix � ∈M(G). Then
the following statements hold.
(1) ∂ePG(�) > 0 for any e ∈ E+.
(2) ‖∇PG(�)‖1 = 1.

Proof. By the Perron–Frobenius theorem, the spectral radius of AG,� is realized by
a positive, real, simple eigenvalue λ. Let v ∈ R

|E| be a corresponding positive left
eigenvector so that vAG,� = λv. Consider the matrix QG,� ∈ Mat|E|(R) defined by
QG,�(e, e′) = (v(e)/λv(e′))AG,�(e, e′). Again, by the Perron–Frobenius theorem, as this
matrix is column stochastic, there is a positive vector p ∈ R

|E| with QG,�p = p and
‖p‖1 = 1. As explained by Parry and Pollicott, we have that ∂ePG(�) = p(e) + p(ē) [29,
Ch. 2, Remark 1 and Proposition 4.10]. Items (3.9) and (3.9) readily follow.

3.3. Thermodynamic metrics. Fix a finite connected graph G = (V , E, o, τ , ¯). As in
the previous section, we assume that χ(G) < 0 and that G has no vertices with valence
equal to 1 or 2. The tangent space T�M1(G) at the length function � ∈M1(G) is the
space of vectors v ∈ R

|E+| such that 〈v, ∇hG(�)〉 = 0. The tangent bundle TM1(G) is the
subspace ofM1(G) × R

|E+| consisting of pairs (�, v) where v ∈ T�M1(G).
We now define two Riemannian metrics onM1(G). We denote the Hessian (that is, the

matrix of second derivatives) of a smooth function f : R
n → R by H[f (x)].
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Definition 3.10. Given a length function � ∈M1(G) and tangent vectors v1, v2 ∈
T�M1(G) we define the entropy metric by

〈v1, v2〉h,G = 〈v1, H[hG(�)]v2〉,
and the pressure metric by

〈v1, v2〉P,G = 〈v1, H[PG(−�)]v2〉.
The associated norms on the tangent bundle TM1(G) are denoted by

‖(�, v)‖2
h,G = 〈v, H[hG(�)]v〉 and ‖(�, v)‖2

P,G = 〈v, H[PG(−�)]v〉.
By Theorem 3.7(3) we have that 〈�, �〉h,G is positive definite. Positive definiteness

of 〈�, �〉P,G on T�M1(G) has been noted by others, but also follows from the positive
definiteness of 〈�, �〉h,G by Proposition 3.12.

Remark 3.11. Other authors have considered these metrics with different and conflicting
terminology. We discuss this now using the notation introduced above. Pollicott and Sharp
defined ‖�‖P,G, calling it the Weil–Petersson metric [31]. Kao defined ‖�‖h,G, calling it
the Weil–Petersson metric, and also studied ‖�‖P,G, calling it the pressure metric [22]. Xu
considered ‖�‖h,G, calling it the pressure metric [39]. We use the terminology as stated in
Definition 3.10 as it accurately reflects the functions on which the metrics are based. The
definitions of these metrics in the literature are not those as given in Definition 3.10, but
are equivalent as can be seen by Proposition 3.12.

We note that Theorem 3 in the paper by Pollicott and Sharp [31] holds for the metric
‖�‖h,G and not for ‖�‖P,G as claimed.

The following proposition shows that these metrics lie in the same conformal class
and that they can be calculated using the second derivative along a path. This feature is
essential particularly for the material in §10.

PROPOSITION 3.12. Let G be a finite connected graph. If �t : (−1, 1) →M1(G) is a
smooth path, then

‖(�t , �̇t )‖2
h,G = −〈�̈t , ∇hG(�t )〉 and ‖(�t , �̇t )‖2

P,G = 〈�̈t , ∇PG(−�t )〉.
Additionally, given a length function � ∈M1(G) and tangent vectors v1, v2 ∈ T�M1(G),
we have

〈v1, v2〉h,G = 〈v1, v2〉P,G

〈�, ∇PG(−�)〉 .

Proof. Differentiating the equation PG(−�t ) = 0 with respect to t, we have 〈�̇t ,
∇PG(−�t )〉 = 0. Differentiating again, we find that

〈�̈t , ∇PG(−�t )〉 − 〈�̇t , H[PG(−�t )]�̇t 〉 = 0.

Hence ‖(�t , �̇t )‖2
P = 〈�̇t , H[P(−�t )]�̇t 〉 = 〈�̈t , ∇P(−�t )〉 as claimed.

The proof of the analogous statement for the entropy norm is similar, observing that
hG(�t ) = 1.
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By Lemma 3.8, we have that 〈�, ∇hG(�)〉 = −1 for any � ∈M1(G). Further, we have
that ∇PG(−�) is non-zero by Lemma 3.9 and hence is parallel to ∇hG(�) by Theorem
3.7(1). Hence we find that

‖(�t , �̇t )‖2
h,G =−〈�̈t , ∇hG(�t )〉= 〈�̈t , ∇hG(�t )〉

〈�t , ∇hG(�t )〉 = 〈�̈t , ∇PG(−�t )〉
〈�t , ∇PG(−�t )〉 = ‖(�t , �̇t )‖2

P,G

〈�t , ∇PG(−�t )〉.

By polarization, the norm determines the inner product and so the claim follows.

Positive definiteness of the Hessians follows from strict convexity of hG and PG on
M(G) and R

|E+|, respectively (Theorem 3.7).
Using these norms, we can define the entropy or pressure length of a piecewise smooth

path �t : [t0, t1] →M1(G) by

Lh,G(�t |[t0, t1]) =
∫ t1

t0

‖(�t , �̇t )‖h,G dt ,

LP,G(�t |[t0, t1]) =
∫ t1

t0

‖(�t , �̇t )‖P,G dt .

These induce the entropy and pressure distance functions onM1(G) by

dh,G(x, y) = inf{Lh,G(�t |[0, 1]) | �t : [0, 1] →M1(G), �0 = x, �1 = y},
dP,G(x, y) = inf{LP,G(�t |[0, 1]) | �t : [0, 1] →M1(G), �0 = x, �1 = y}.

Given a marked graph (G, ρ), we set X1(G, ρ) = X(G, ρ) ∩ X1(Fr ). Using the natural
bijection X1(G, ρ) ↔M1(G), we get metrics and distance functions on X1(G, ρ) that we
denote using the same notation as above.

Next, we explain how these fit together to get distance functions on X1(Fr ). Suppose
αt : [0, 1] → X1(Fr ) is a piecewise smooth path and that there is a partition t1 = 0 < t2 <

· · · < tn+1 = 1 and marked graphs (Gk , ρk) for k = 1, . . . , n such that αt ∈ X1(Gk , ρk)

for t ∈ (tk , tk+1). We set

Lh(αt ) =
n∑

k=1

Lh,Gk
(αt |(tk , tk+1)) and LP(αt ) =

n∑
k=1

LP,Gk
((αt |(tk , tk+1)).

These define distance functions on X1(Fr ) as usual—by taking the infimum of the lengths
of paths—that we denote by dh and dP. It is obvious that the proposed distance functions
are symmetric and satisfy the triangle inequality; positive definiteness of the Hessians
implies non-degeneracy. However, it is not obvious that the distances they define are finite:
a priori it may be possible that the length of a path that collapses an edge is infinite. This
will be addressed in §5.

Remark 3.13. For the remainder of the paper we will mainly be concerned with the entropy
metric. As stated in §1.6, the main results of this paper also hold for the pressure metric
with slightly altered hypotheses.
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4. A determinant-defining equation forM1(G)

The purpose of this section is to derive formulas to assist in computing the metrics
introduced in the previous section. The first of these appears in §4.1, specifically
Proposition 4.6, where it is shown that these metrics can be computed using finite sums
of exponential functions onM1(G). Next, in §4.2, we present a simplification for certain
graphs that is useful in the sequel.

4.1. Determinant equation. Fix a finite connected graph G = (V , E, o, τ , ¯). We
always assume that χ(G) < 0 and G has no vertices of valence 1 or 2.

Let DG be the directed graph with adjacency matrix AG. Thus the vertex set for DG

is the set E (recall our notation E = E+ ∪ E+) and there is an edge from e to e′ if
AG(e, e′) = 1, that is, if τ(e) = o(e′) and ē �= e′. The cycle complex of DG, denoted
by CG, is the abstract simplicial complex with an n-simplex for each collection � =
{z1, . . . , zn+1} of pairwise disjoint simple cycles, that is, embedded loops, in DG.

Example 4.1. Suppose that G is the barbell graph as shown below:

c
a b

Order the edges of G by a, ā, b, b̄, c, c̄. The matrix AG and directed graph DG are as
presented below:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 1 0 1
0 0 1 1 0 0
1 1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

a

ā

c

c̄

b

b̄

There are eight simple cycles in DG: γa = (a), γā = (ā), γb = (b), γb̄ = (b̄), γab =
(a, c, b, c̄), γab̄ = (a, c, b̄, c̄), γāb = (ā, c, b, c̄) and γāb̄ = (ā, c, b̄, c̄). The cycle complex
CG is the flag complex whose 1-skeleton is shown in Figure 4.

Given a function f : E → R (in particular, a length function) and a simple cycle z in
DG, we set f (z) =∑n

i=1 f (ei) where e1, . . . , en are the vertices in DG traversed by z
(each corresponding to an oriented edge in G). Likewise, for a simplex � = {z1, . . . , zn}
in CG we set f (�) =∑n

k=1 f (zk). We consider the empty set as a simplex and define
f (∅) = 0 for any function f : E → R. Lastly, for a simplex � = {z1, . . . , zn} we set
|�| = n.

Recall that given a length function � ∈M(G), the matrix AG,� is defined
by AG,�(e, e′) = exp(−�(e))AG(e, e′). We consider the function FG : M(G) → R
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γb γb̄

γa

γā

γāb̄

γab̄ γab

γāb

FIGURE 4. The 1-skeleton of the cycle complex CG in Example 4.1.

given by

FG(�) = det(I − AG,�). (4.1)

This function can be expressed using the cycle complex CG as follows.

THEOREM 4.2. Let G be a finite connected graph and fix � ∈M(G). Then

FG(�) =
∑

�∈CG

(−1)|�| exp(−�(�)).

Proof. This follows from the coefficient theorem for digraphs. See, for instance, [15] and
[3, Theorems 2.5 and 2.14].

Example 4.3. We apply Theorem 4.2 to the case when G is the barbell graph as in
Example 4.1. Using the change of variables x = exp(−�(a)), y = exp(−�(b)) and z =
exp(−�(c)), we find that

FG(�) = 1 − (2x + 2y + 4xyz2) + (x2 + y2 + 4xy + 4x2yz2 + 4xy2z2)

− (2x2y + 2xy2 + 4x2y2z2) + x2y2.

The following statements show how the function FG is related toM1(G).

LEMMA 4.4. For � ∈M1(G) we have:
(1) FG(�) = 0;
(2) ∇FG(�) �= 0; and moreover,
(3) ∂eFG(�) > 0 for any e ∈ E+.

Proof. Since � lies in M1(G), Theorem 3.7(1) and the definition of pressure imply
that spec(AG,�) = 1. Above we remarked that the assumptions on G imply that AG is
irreducible; hence so is AG,�. By the Perron–Frobenius theorem the spectral radius of
AG,� is realized by a positive, real, simple eigenvalue; (1) follows.
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Now consider the function p : R → R defined by p(t) = det(I − tAG,�). Let 1 =
λ1, . . . , λ|E| be the roots of the characteristic polynomial of AG,�. Then we can write

p(t) = (1 − t)

|E|∏
i=2

(1 − tλi).

Therefore, taking the derivative, we find that

p′(1) = −
|E|∏
i=2

(1 − λi).

For i = 2, . . . , |E| we have that |λi | ≤ 1 and λi �= 1. Combining these observations
with the fact that complex eigenvalues come in conjugate pairs, it follows that p′(1) < 0.
Observe that FG(� + s · 1) = det(I − exp(−s)AG,�) = p(exp(−s)). Therefore we have
that 〈1, ∇FG(�)〉 = −p′(1) exp(0) > 0, giving (2).

We claim that ∇FG(�) is parallel to ∇PG(�) for � ∈M1(G). Indeed, this follows as (1),
(2) and Theorem 3.7 imply that P−1

G (0) =M1(G) is a connected component of F−1
G (0).

By (2) and Lemma 3.9(2) the gradients of FG and PG are non-zero for this subset. As
gradients are always orthogonal to level sets, the claim follows. Hence by Lemma 3.9(1),
we have that either ∂eFG(�) > 0 or ∂eFG(�) < 0 for all e ∈ E+ and � ∈M1(G). Since
〈1, ∇FG(�)〉 > 0, we must have the former, whence (3).

As a remarked in the proof of Lemma 4.4, we have the following corollary.

COROLLARY 4.5. The unit-entropy moduli spaceM1(G) is a connected component of the
level set {� ∈M(G) | FG(�) = 0}.

Using these observations, we can compute the entropy and pressure norms using the
function FG.

PROPOSITION 4.6. If �t : (−1, 1) →M1(G) is a smooth path, then

‖(�t , �̇t )‖2
h,G = −〈�̇t , H[FG(�t )]�̇t 〉

〈�t , ∇FG(�t )〉 = 〈�̈t , ∇FG(�t )〉
〈�t , ∇FG(�t )〉 ,

‖(�t , �̇t )‖2
P,G = −〈�̇t , H[FG(�t )]�̇t 〉

‖∇FG(�t )‖1
= 〈�̈t , ∇FG(�t )〉

‖∇FG(�t )‖1
.

Proof. The proof of the formula for the entropy norm is similar to that of Proposition 3.12
and left to the reader.

The proof of the formula for the pressure norm is again similar, noting that
‖∇P(�)‖1 = 1 as stated in Lemma 3.9(2).

Using Theorem 4.2, we can compute the partial derivatives of FG. We find for any edges
e, e′ ∈ E+ that

∂eFG(�) = −
∑

�∈CG

(−1)|�|�(e) exp(−�(�)), (4.2)

∂ee′FG(�) =
∑

�∈CG

(−1)|�|�(e)�(e′) exp(−�(�)), (4.3)
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where �(e) ∈ {0, 1, 2} denotes the cardinality of the intersection {e, ē} ∩ �. Using this
notation, we remark that �(�) =∑e∈E+ �(e)�(e) for a length function � ∈M(G) and
simplex � ∈ CG. Given a vector v ∈ R

|E+| and a simplex � ∈ CG, we set v(�) =∑
e∈E+ �(e)v(e). Using these expressions, we can rewrite the dot products appearing in

the formulas for the metrics in Proposition 4.6 as sums over simplices in CG rather than
over the edges of G as follows.

LEMMA 4.7. For � ∈M(G), we have

〈�, ∇FG(�)〉 = −
∑

�∈CG

(−1)|�|�(�) exp(−�(�)).

Proof. We compute:

〈�, ∇FG(�)〉 =
∑
e∈E+

�(e)

(
−
∑

�∈CG

(−1)|�|�(e) exp(−�(�))

)

= −
∑

�∈CG

(−1)|�| exp(−�(�))

( ∑
e∈E+

�(e)�(e)

)
= −

∑
�∈CG

(−1)|�|�(�) exp(−�(�)).

LEMMA 4.8. Let G be a finite connected graph. If (�, v) ∈ TM1(G), then

〈v, H[FG(�)]v〉 =
∑

�∈CG

(−1)|�|v(�)2 exp(−�(�)).

Proof. This is similar to Lemma 4.7. The eth component of H[FG(�)]v is∑
e′∈E+

( ∑
�∈CG

(−1)|�|�(e)�(e′) exp(−�(�))

)
v(e′) =

∑
�∈CG

(−1)|�|�(e)v(�) exp(−�(�)).

Hence

〈v, H[∇FG(�)]v〉 =
∑
e∈E+

v(e)

( ∑
�∈CG

(−1)|�|�(e)v(�) exp(−�(�))

)
=
∑

�∈CG

(−1)|�|v(�)2 exp(−�(�)).

By Lemma 4.4, if hG(�) = 1 then FG(�) = 0. The next lemma gives a partial converse.

LEMMA 4.9. If hG(�) < 1, then FG(�) > 0.

Proof. We begin by showing that if hG(�) < 1, then FG(�) �= 0. To begin, we observe that
if hG(�) < 1, then PG(−�) < 0. Indeed, let �t : [0, 1] →M(G) be the path defined by

�t = (1 − t)� + thG(�)�.

We have that 〈∇PG(−�t ), −�̇t 〉 > 0 as each component of ∇PG(−�t ) is positive by
Lemma 3.9(1) and each component of −�̇t is positive by construction. Notice that
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PG(−�1) = 0 by Theorem 3.7(1) since hG(�1) = 1. Therefore, we find that

−PG(−�0) =
∫ 1

0
〈∇PG(−�t ), −�̇t 〉 dt > 0

and hence PG(−�) = PG(−�0) is negative as claimed. Therefore we have that
spec(AG,�) < 1 and, in particular, 1 is not an eigenvalue of AG,�. Hence FG(�) �= 0.
This completes the claim that FG(�) �= 0 for any � ∈M(G) where hG(�) < 1.

We now complete the proof of the lemma. Suppose that hG(�) < 1 and consider the con-
tinuous function p : [0, ∞) → R defined by p(t) = FG(� + t · 1). As hG(� + t · 1) < 1
for all t ∈ [0, ∞), by the above claim we have that p(t) �= 0. Since p(t) → 1
as t → ∞, we have that p(t) > 0 for all t ∈ [0, ∞). In particular, we have that
FG(�) = p(0) > 0.

4.2. A simplification. The function FG factors non-trivially in special cases as a result of
certain aspects of the graph G. In such a case, we can replace FG with one of these factors
and simplify the expressions for the entropy and pressure norm from Proposition 4.6.

For instance, one factorization occurs if e is a loop edge. When �(e) = 0 the vector
v ∈ R

|E|, where v(e) = 1, v(ē) = −1, and the rest of the entries are equal to 0, is an
eigenvector of AG,� with eigenvalue 1. This means 1 − exp(−�(e)) is a factor of FG.

Example 4.10. Using the notation from Example 4.3, we have that both 1 − x and 1 − y

are factors of FG. Factoring, we have

FG(�) = (1 − x)(1 − y)(1 − x − y + xy − 4xyz2).

Another case where there is a factorization of FG is when the edge involution e ↔ ē

is a graph automorphism of G. There are only two types of graphs for which such an
automorphism exists:
(1) the r-rose, Rr ;
(2) the graph �r with vertices, v and w, and edges e1, . . . , er+1 where o(ei) = v and

τ(ei) = w for i = 1, . . . , r + 1.
In this case ordering the edges in E+ first and then ordering the edges in E − E+
accordingly, we have that

AG =
[
BG B ′

G

B ′
G BG

]
for two matrices BG, B ′

G ∈ Mat|E+|(R). Thus

FG(�) = det(I − AG,�) = det

[
I − BG,� −B ′

G,�
−B ′

G,� I − BG,�

]
= det(I − BG,� − B ′

G,�) det(I − BG,� + B ′
G,�).

Since each row of BG or B ′
G corresponds to an edge e ∈ E+ the notation BG,� and B ′

G,�
still makes sense.
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For Rr , we have that BRr is the r × r matrix consisting of all 1s and B ′
Rr

= BRr − I . In
this case

det(I − BRr ,� + B ′
Rr ,�) =

∏
e∈E+

(1 − exp(−�(e))).

These are precisely the factors which were observed above for loop edges.
For �r , we have that B�r is the (r + 1) × (r + 1) matrix consisting of all 0s and B ′

�r
is

the (r + 1) × (r + 1) matrix where all diagonal entries are 0 and all non-diagonal entries
are 1. In this case we have

F�r (�) = det(I − B ′
�r ,�) det(I + B ′

�r ,�).

In general, we now construct a graph quotient DG → DG that identifies certain edge
pairs {e, ē} resulting in a new matrix AG, which selects the appropriate factor. In this new
matrix, every row corresponds to either an edge e ∈ E or an edge pair {e, ē}, and so we
can still make sense of AG,f for a function f : E+ → R.

When G is Rr or �r , we take D�r to be the quotient of D�r by the orientation-reversing
automorphism e �→ ē. In this case AG,� = BG,� + B ′

G,�.
Otherwise, for each pair {e, ē} that is a loop edge of G, we identify the vertices of

DG corresponding to e and ē, now denoted eē, keep the incoming edges and identify
the outgoing edges that have the same terminal vertex. We call the resulting graph DG.
Algebraically, we add together the columns corresponding to e and ē and delete one of the
rows corresponding to e and ē.

We define FG : M(G) → R by

FG(�) = det(I − AG,�). (4.4)

The formula in Theorem 4.2, the formulas for the partial derivatives in (4.2) and (4.3), and
the inner products in Lemmas 4.7 and 4.8 hold for FG using the complex CG, which is the
cycle complex of the directed graph DG.

Example 4.11. For G equal to the barbell graph as in Example 4.1 we have AG and DG as
shown below (columns of the matrix are ordered as aā, bb̄, c, c̄):

⎡⎢⎢⎣
1 0 1 0
0 1 0 1
0 2 0 0
2 0 0 0

⎤⎥⎥⎦ aā

c

c̄

bb̄

The two directed edges from c̄ to aā are identified with the set {a, ā} so that we think
of the sequence c, a or c, ā as specifying which of the two edges between c̄ and aā to
traverse in a cycle. There are six simple cycles: γaā = (aā), γbb̄ = (bb̄), γab = (a, c, b, c̄),
γab̄ = (a, c, b̄, c̄), γāb = (ā, c, b, c̄) and γāb̄ = (ā, c, b̄, c̄). The cycle complex CG is
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shown below:

γaā

γbb̄

γāb̄γab̄

γab γāb

Using Theorem 4.2, we find (with x = exp(−�(a)), y = exp(−�(b)) and z =
exp(−�(c))) that

FG(�) =
∑

�∈CG

(−1)|�| exp(−�(�)) = 1 − (x + y + 4xyz2) + xy.

The astute reader will notice the comparison with Example 4.10.

LEMMA 4.12. With the above setup, spec(AG,�) = spec(AG,�).

Proof. Each circuit in DG lifts to at most two circuits of the same length in DG. Thus
tr(A

n

G,�) ≤ tr(An
G,�) ≤ 2 tr(A

n

G,�) for all n ∈ N and so the lemma follows.

In particular, we have that PG(−�) = log spec(AG,�). As in Corollary 4.5, we have the
following statement. This follows for the same reasons as in Lemma 4.4 as FG(�) = 0 and
∇FG(�) �= 0 for � ∈M1(G).

PROPOSITION 4.13. The unit-entropy moduli spaceM1(G) is a connected component of
the level set {� ∈M(G) | FG(�) = 0}.

We also observe that the formulas for the metrics in Proposition 4.6 hold for FG.

PROPOSITION 4.14. If �t : (−1, 1) →M1(G) is a smooth path, then

‖(�t , �̇t )‖2
h,G = −〈�̇t , H[FG(�t )]�̇t 〉

〈�t , ∇FG(�t )〉
= 〈�̈t , ∇FG(�t )〉

〈�t , ∇FG(�t )〉
,

‖(�t , �̇t )‖2
P,G = −〈�̇t , H[FG(�t )]�̇t 〉

‖∇FG(�t )‖1
= 〈�̈t , ∇FG(�t )〉

‖∇FG(�t )‖1
.

5. The topology induced by the entropy metric
The purpose of this section is to show that the metric topology induced by dh on X1(Fr )

is the same as the weak topology on X1(Fr ). We do so using the formulas for the entropy
metric derived in §4 and seeing that they behave as one might anticipate with regards to
collapses. We refer the reader back to §2.2 for the notation used in this section.

By Theorem 3.5 we have that hG : M(G) → R extends to a continuous function on
M(G). Indeed, if c : G → G0 is a collapse, then for � ∈M(G0) we have hG(c∗(�)) =
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hG0(�). We setM1
(G) = {� ∈M(G) | hG(�) = 1} and observe that we have

M1
(G) =

⋃
c : G→G0

c∗(M1(G0))

as well. This set is homeomorphic to the closure of CV (G, ρ) in CV (Fr ) for any marking
ρ : Rr → G. Given a graph G, we observe that FG :M(G) → R admits an extension
(still denoted FG) to R

|E+|. In particular, FG is defined onM(G) ⊂ R
|E+|. The next result

shows that this function behaves as expected with respect to collapses.

LEMMA 5.1. If c : G → G0 is a collapse, then FG ◦ c∗ = FG0 .

Proof. It suffices to consider the case when c : G → G0 is the collapse of a single edge
e ∈ E+. Order the edges in E starting with e and ē. Since e can be collapsed, it is not a loop
and so we have that AG(e, e) = AG(ē, ē) = 0. By definition, AG(e, ē) = AG(ē, e) = 0.
Thus the top-leftmost 2 × 2 block of the matrix I − AG is the 2 × 2 identity matrix.

Let � ∈M(G0). For an edge e′ /∈ {e, ē}, the entry [I − AG,c∗(�)](e, e′) is either −1 or 0
depending on whether or not e′ can follow e. Likewise for [I − AG,c∗(�)](ē, e′). Again, as
e is not a loop, for any edge e′ /∈ {e, ē}, at most one of these entries is non-zero.

For each edge e′ /∈ {e, ē}, where [I − AG,c∗(�)](e, e′) = −1, we consider the column
operation that adds the column for e to the column for e′. This zeros the (e, e′) entry. The
(ē, e′) entry was previously 0 and is unaffected by this operation. We next see what effect
this has on the remaining rows. In the row for e′′ /∈ {e, ē}, this adds − exp(−�(e′′)) to
AG,c∗(�)(e′′, e′) if e can follow e′′ and 0 otherwise. In the former case, the previous entry
was either 0 (e′ �= e′′) or 1 (e′ = e′′) as e is not a loop edge. In other words, this adds
− exp(−�(e′′)) whenever e′ can follow e′′ in G0. Therefore, the remaining entries in the
column for e′ agree with the corresponding entries in the column of I − AG0,� for e′.

Hence, after performing column operations to I − AG,c∗(�) with the column for e to
clear out the rest of the row for e and column operations with the column for ē to
clear out the rest of the row for ē, the resulting matrix has lower block triangular form.
The top-leftmost 2 × 2 block is still the 2 × 2 identity matrix and the bottom-rightmost
(|E| − 2) × (|E| − 2) block is I − AG0,�.

As these column operations do not change the determinant, we have for � ∈M(G0) that

FG(c∗(�)) = det(I − AG,c∗(�)) = det(I − AG0,�) = FG0(�).

As a consequence of Lemma 5.1 we deduce the following result. If c : G → G0 is
a collapse and e ∈ E+ is an edge such that c(e) is not a vertex, then ∂c(e)FG0(�) =
∂eFG(c∗(�)) for all � ∈M(G0). Similarly, in this same setting, if additionally c(e′) is
not a vertex for an edge e′ ∈ E+, then ∂c(e)c(e′)FG0(�) = ∂ee′FG(c∗(�)).

The tangent bundle TM1
(G) is the subspace of (�, v) ∈ R

|E+| × R
|E+| such that

� ∈M1
(G) and 〈v, ∇FG(�)〉 = 0. Given a collapse, we let c∗ : R

|(E0)+| → R
|E+| be the

derivative of the map c∗ : M(G0) →M(G) and T c∗ : TM1(G0) → TM1
(G) be the

map given by T c∗(�, v) = (c∗(�), c∗(v)).
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Using this notation, we see that

〈c∗(v), H[FG(c∗(�))]c∗(v)〉 = 〈v, H[FG0(�)]v〉,
〈c∗(�), ∇FG(c∗(�))〉 = 〈�, ∇FG0(�)〉.

Hence, by Proposition 4.6, we get the following proposition.

PROPOSITION 5.2. Let G be a finite connected graph. The entropy norm ‖�‖h,G :

TM1(G) → R extends to a continuous semi-norm ‖�‖h,G : TM1
(G) → R. Specifically,

if c : G → G0 is a collapse and (�, v) = T c∗(�0, v0), then the extension satisfies

‖(�, v)‖h,G = ‖(�0, v0)‖h,G0 .

Consequently, we see that the distance function dh,G extends to a distance function on

M1
(G) and that the induced topology is the same as the subspace topology. As X1(Fr ) is

locally finite, the metric topology agrees with the weak topology, as we now show.

THEOREM 5.3. The metric topology on (X1(Fr ), dh) is the same as the weak topology on
X1(Fr ).

Proof. Let U ⊆ X1(Fr ) be an open set in the weak topology and fix a marked metric graph
x = [(G, ρ, �)] ∈ U . There are finitely many marked graphs (G1, ρ1), . . . , (Gn, ρn) such
that (G, ρ) ≤ (Gi , ρi). By definition of the weak topology, the set U ∩ X1

(Gi , ρi) is open
inX1

(Gi , ρi) in the subspace topology inherited from R
|(Ei)+|
≥0 , where Ei is the set of edges

for Gi . As remarked above after Proposition 5.2, this set is also open in the metric topology
induced by dh,Gi

. Hence there is an εi > 0 such that

{y ∈ X1
(Gi , ρi) | dh,Gi

(x, y) < εi} ⊆ U ∩ X1
(Gi , ρi).

Let ε = min{εi | 1 ≤ i ≤ n}. As dh(x, y) ≤ dh,Gi
(x, y) for any y ∈ X1

(Gi , ρi) we have

{y ∈ X1
(Fr ) | dh(x, y) < ε} ⊆

n⋃
i=1

U ∩ X1
(Gi , ρi) ⊆ U .

Hence the metric topology is finer than the subspace topology.
Next, fix a marked metric graph x = [(G, ρ, �)] ∈ X1(Fr ) and let ε > 0. Enumerate

the finitely many marked graphs (G1, ρ1), . . . , (Gn, ρn) such that (G, ρ) ≤ (Gi , ρi) and
such that Gi is trivalent. In other words, (Gi , ρi) are maximal elements in the partial
order on marked graphs. As the norm varies continuously by Proposition 5.2, there is an
L and an open neighborhood V ⊆⋃n

i=1 X
1
(Gi , ρi) of x in the weak topology such that

‖(y, v)‖h,Gi
≤ L whenever y ∈ X1

(Gi) ∩ V and 〈v, v〉 = 1. Therefore, there is an open
neighborhood U of x in the weak topology such that

U ⊆ {y ∈ X1
(Fr ) | dh(x, y) < ε}.

Hence the subspace topology is finer than the metric topology.
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6. The entropy metric on X1(F2)

The goal of this section is to show that (X1(F2), dh) is complete. This appears as
Proposition 6.8 in §6.4. The results in this section are not necessary for the remainder
of the paper and can safely be skipped by a reader primarily interested in Theorems 1.2
and 1.3. However, the calculations can serve as a good introduction to estimating lengths
with the entropy metric. In particular, the main strategy in each of Lemmas 6.1, 6.3 and
6.5 is very similar to the main strategy of Lemma 7.10 in §7.3 which is the key tool used to
show that (M1(Rr ), dh,Rr

) has infinite diameter.
To begin, we analyze the metric for each of the three topological types of graphs

that appear in rank 2: the 2-rose R2, the barbell graph B2 and the theta graph �2. We
refer the reader back to Figure 2 for these graphs. To this end, we define a continuous
function m : X1(F2) → R which is a slight variation of the volume function in that it
counts separating edges twice. In particular, it does not depend on the marking. The exact
definition appears in §6.4. The strategy is to show that for any path �t : [0, 1] →M1(G)

for G ∈ {R2, B2, �2}, if m(�0) and m(�1) are large enough, then the length of �t is
bounded below by

1√
5
(
√

m(�1) −√m(�0)).

These calculations appear in the next three sections (Propositions 6.2, 6.4, and 6.6).
Using these estimates, it is not too hard to see that if (xn)n∈N ⊂ X1(F2) is Cauchy, then

there is an L such that m(xn) ≤ L for all n (Lemma 6.7). From here, using local finiteness
of X1(F2) and a compactness argument, the completeness of (X1(F2), dh) follows. In the
calculations, we make use of Lemmas 4.7 and 4.8.

6.1. The 2-rose. Denote the edges of R2 by e1 and e2. To make the calculations in this
subsection easier to read, given a length function � ∈M(R2), we set a = �(e1), b = �(e2)

and m = �(e1) + �(e2). Applying the definition of FG from §4.2 to R2, we find the
formula

FR2(�) = 1 − exp(−a) − exp(−b) − 3 exp(−m). (6.1)

LEMMA 6.1. Suppose �t : [0, 1] →M1(R2) is a smooth path such that for all t ∈ [0, 1]
we have ṁt > 0. If m0 ≥ 4, then

Lh,R2(�t |[0, 1]) ≥ √
m1 − √

m0.

Proof. Suppose that �t : [0, 1] →M1(R2) is a path where ṁt > 0 as in the statement of
the lemma and assume that m0 ≥ 4. We reparametrize the path �t so that mt = t .

Let nt = min{at , bt }. As FR2(�t ) = 0, we have

1 − 2 exp(−nt ) ≤ 1 − exp(−at ) − exp(−bt ) = 3 exp(−mt) = 3 exp(−t).

In particular, 2 exp(−nt ) ≥ 1 − 3 exp(−t) ≥ 2 exp(−1) as t ≥ 4 and so nt < 1 for all t.
Setting pt = max{at , bt }, we find that pt = t − nt ≥ t − 1. Therefore, as t − 1 ≥ 1 for

t ≥ 4, the edge that realizes the minimum of {at , bt } does not depend on t and hence
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we may assume that bt = nt and that at = pt ≥ t − 1. This gives us that exp(−at ) ≤
exp(−t + 1). Hence, again as FR2(�t ) = 0, we have

1 − exp(−bt ) = exp(−at ) + 3 exp(−mt) ≤ (exp(1) + 3) exp(−t) ≤ 8 exp(−t).

This enables us to give an upper bound on the denominator in the expression for the
entropy norm. Specifically, using the fact that x exp(−x) ≤ 1 − exp(−x) for x ≥ 0, we
have

〈�t , ∇FR2(�t )〉 = at exp(−at ) + bt exp(−bt ) + 3mt exp(−mt)

≤ t exp(−t + 1) + (1 − exp(−bt )) + 3t exp(−t)

≤ 8t exp(−t) + 8 exp(−t)

≤ 12t exp(−t).

In the final inequality we used that fact that t ≥ 4. The expression for 〈�t , ∇FR2(�t )〉 can
be computed either directly from (6.1) or via Lemma 4.7.

Next, we get an upper bound on the numerator in the expression for the entropy norm
by just using mt . Specifically,

−〈�̇t , H[FR2(�t )]�̇t 〉 = (ȧt )
2 exp(−at ) + (ḃt )

2 exp(−bt ) + 3(ṁt )
2 exp(−mt)

≥ 3 exp(−t).

As above, the expression for −〈�̇t , H[FR2(�t )]�̇t 〉 can be computed either directly from
(6.1) or via Lemma 4.8.

Hence we find that the entropy norm along this path is bounded below by

‖(�t , �̇t )‖2
h,R2

= −〈�̇t , H[FR2(�t )]�̇t 〉
〈�t , ∇FR2(�t )〉

≥ 1
4t

.

Therefore the length of this path in the entropy metric is at least∫ m1

m0

√
1
4t

dt = √
m1 − √

m0.

Using this lemma, we can get a lower bound on the distance between length functions in
M1(R2) in terms of the sum of the lengths of edges, so long as they are sufficiently large.

PROPOSITION 6.2. Suppose � and �′ are length functions inM1(R2) where m = �(e1) +
�(e2) and m′ = �′(e1) + �′(e2) are at least 4. Then

dh,R2(�, �′) ≥ √
m′ − √

m.

Proof. Let �t : [0, 1] →M1(R2) be a piecewise smooth path such that �0 = � and
�1 = �′. Let δ ∈ [0, 1] be the minimal value such that mt ≥ 4 for t ∈ [δ, 1]. In particular,
mδ ≤ m.

By only considering the smooth subpaths of �t |[δ, 1] for which ṁt > 0, by Lemma 6.1,
we find that

Lh,R2(�t |[δ, 1]) ≥ √
m′ − √

mδ ≥ √
m′ − √

m.

https://doi.org/10.1017/etds.2021.165 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.165


Thermodynamic metrics on outer space 759

This also provides a lower bound onLh,R2(�t |[0, 1]). Since the path was arbitrary this also
is a lower bound on the distance between � and �′.

6.2. The barbell graph. Let B2 denote the graph with vertices v and w, and edges e1, e2

and e3 where o(e1) = τ(e1) = v, o(e2) = τ(e2) = w, and o(e3) = v and τ(e3) = w. To
make the calculations in this section easier to read, given a length function � ∈M(B2), we
set a = �(e1), b = �(e2) and m = �(e1) + �(e2) + 2�(e3). Applying the definition of FG

from §4.2 to B2, we find the formula

FB2(�) = (1 − exp(−a))(1 − exp(−b)) − 4 exp(−m).

LEMMA 6.3. Suppose �t : [0, 1] →M1(B2) is a smooth path such that for all t ∈ [0, 1]
we have ṁt > 0. If m0 ≥ 4, then

Lh,B2(�t |[0, 1]) ≥ 1√
2
(
√

m1 − √
m0).

Proof. Suppose that �t : [0, 1] →M1(B2) is a path where ṁt > 0 as in the statement of
the lemma and assume that m0 ≥ 4. We reparametrize the path �t so that mt = t .

As FB2(�t ) = 0, we have

(1 − exp(−at ))(1 − exp(−bt )) = 4 exp(−mt) = 4 exp(−t). (6.2)

This enables us to give an upper bound on the denominator in the expression for the entropy
norm. Specifically, using the fact that x exp(−x) ≤ 1 − exp(−x) for x ≥ 0, we have

〈�t , ∇FB2(�t )〉 = at exp(−at )(1 − exp(−bt ))

+ bt exp(−bt )(1 − exp(−at )) + 4mt exp(−mt)

≤ 2(1 − exp(−at ))(1 − exp(−bt )) + 4t exp(−t)

= 4t exp(−t) + 8 exp(−t)

≤ 8t exp(−t).

The penultimate line follows from (6.2), and in the final inequality we use the fact that
t ≥ 4.

Next, we get a lower bound on the numerator in the expression for the entropy norm.
We claim that −〈�̇t , H[FB2(�t )]�̇t 〉 ≥ (ṁt )

2 exp(−mt). We have that

−〈�̇t , H[FB2(�t )]�̇t 〉 = (ȧt )
2 exp(−at )(1 − exp(−bt )) + (ḃt )

2 exp(−bt )(1 − exp(−at ))

− 2ȧt ḃt exp(−at − bt ) + 4(ṁt )
2 exp(−mt).

Therefore if ȧt ḃt < 0 then each term is positive and so the claim holds. Therefore, we
assume that ȧt and ḃt have the same sign. As 〈�̇t , ∇FB2(�t )〉 = 0, we have that

4ṁt exp(−mt) = −ȧt exp(−at )(1 − exp(−bt )) − ḃt exp(−bt )(1 − exp(−at )).

We write this equation as w = u + v. As FB2(�t ) = 0, we find that

2uv = 2ȧt ḃt exp(−at ) exp(−bt )(1 − exp(−at ))(1 − exp(−bt ))

= 2ȧt ḃt exp(−at − bt )(4 exp(−mt)).
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As 2xy ≤ 3
4 (x + y)2 for all x and y, we find that

2ȧt ḃt exp(−at − bt )(4 exp(−mt)) ≤ 3
4 (4ṁt exp(−mt))

2 = 3(ṁt )
2(4 exp(−2mt)).

Therefore 2ȧt ḃt exp(−at − bt ) ≤ 3(ṁt )
2 exp(−mt). From this the claim now follows, and

furthermore that

−〈�̇t , H[FB2(�t )]�̇t 〉 ≥ (ṁt )
2 exp(−mt) = exp(−t).

Hence we find that the entropy norm along this path is bounded below by

‖(�t , �̇t )‖2
h,B2

= −〈�̇t , H[FB2(�t )]�̇t 〉
〈�t , ∇FB2(�t )〉

≥ 1
8t

.

Therefore the length of this path in the entropy metric is at least∫ m1

m0

√
1
8t

dt = 1√
2
(
√

m1 − √
m0).

As for the 2-rose, we obtain the following proposition.

PROPOSITION 6.4. Suppose � and �′ are length functions inM1(B2) where m = �(e1) +
�(e2) + 2�(e3) and m′ = �′(e1) + �′(e2) + 2�′(e3) are at least 4. Then

dh,B2(�, �′) ≥ 1√
2
(
√

m′ − √
m).

6.3. The theta graph. Let �2 denote the graph with vertices v and w, and edges e1, e2

and e3 where o(ei) = v and τ(ei) = w for i ∈ {1, 2, 3}. To make the calculations in this
section easier to read, given a length function � ∈M(�2), we set a = �(e1) + �(e2), b =
�(e2) + �(e3), c = �(e3) + �(e1) and m = �(e1) + �(e2) + �(e3). Applying the definition
of FG from §4.2 to �2, we find the formula

F�2(�) = 1 − exp(−a) − exp(−b) − exp(−c) − 2 exp(−m).

LEMMA 6.5. Suppose �t : [0, 1] →M1(�2) is a smooth path such that for all t ∈ [0, 1]
we have ṁt > 0. If m0 ≥ 4, then

Lh,�2(�t |[0, 1]) ≥ 1√
5
(
√

m1 − √
m0).

Proof. Suppose that �t : [0, 1] →M1(�2) is a path where ṁt > 0 as in the statement of
the lemma and assume that m0 ≥ 4. We reparametrize the path �t so that mt = t .

Let nt = min{at , bt , ct }. As F�2(�t ) = 0, we have

1 − 3 exp(−nt ) ≤ 1 − exp(−at ) − exp(−bt ) − exp(−ct ) = 2 exp(−mt) = 2 exp(−t).

In particular, 3 exp(−nt ) ≥ 1 − 2 exp(−t) > 3 exp(−2) as t ≥ 4 and thus nt < 2 for all t.
Setting pt = max{at , bt , ct } and qt = at + bt + ct − pt − nt so that {pt , qt , nt } =

{at , bt , ct } for all t, we find that pt , qt ≥ t − 2 as pt + qt = 2t − nt ≥ 2t − 2 and
pt , qt ≤ t . Therefore, as t − 2 ≥ 2 for t ≥ 4, the cycle that realizes the minimum of
{at , bt ct } does not depend on t and therefore we may assume that ct = min{at , bt , ct }
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and thus at , bt ≥ t − 2. Therefore exp(−at ), exp(−bt ) ≤ exp(−t + 2). Hence, again as
F�2(�t ) = 0, we have

1 − exp(−ct ) = exp(−at ) + exp(−bt ) + 2 exp(−mt)

≤ (2 exp(2) + 2) exp(−t) ≤ 20 exp(−t).

This enables us to give an upper bound on the denominator in the expression for the
entropy norm. Specifically, using the fact that x exp(−x) ≤ 1 − exp(−x) for x ≥ 0, we
have

〈�t , ∇F�2(�t )〉 = at exp(−at ) + bt exp(−bt ) + ct exp(−ct ) + 2mt exp(−mt)

≤ at exp(−at ) + bt exp(−bt ) + 1 − exp(−ct ) + 2mt exp(−mt)

≤ t exp(−t + 2) + t exp(−t + 2) + 20 exp(−t) + 2t exp(−t)

≤ 20t exp(−t) + 20 exp(−t)

≤ 40t exp(−t).

In the final inequality we used the fact that t ≥ 4.
Next, we get a lower bound on the numerator in the expression for the entropy norm by

just using mt . Specifically,

−〈�̇t , H[F�2(�t )]�̇t 〉 = (ȧt )
2 exp(−at ) + (ḃt )

2 exp(−bt )

+ (ċt )
2 exp(−ct ) + 2(ṁt )

2 exp(−mt)

≥ 2 exp(−t).

Hence we find that the entropy norm along this path is bounded below by

‖(�t , �̇t )‖2
h,�2

= −〈�̇t , H[F�2(�t )]�̇t 〉
〈�t , ∇F�2(�t )〉

≥ 1
20t

.

Therefore the length of this path in the entropy metric is at least∫ m1

m0

√
1

20t
dt = 1√

5
(
√

m1 − √
m0).

Again, as for the 2-rose, we obtain the following proposition.

PROPOSITION 6.6. Suppose � and �′ are length functions inM1(�2) where m = �(e1) +
�(e2) + �(e3) and m′ = �′(e1) + �′(e2) + �′(e3) are at least 4. Then

dh,�2(�, �′) ≥ 1√
5
(
√

m′ − √
m).

6.4. (X1(F2), dh) is complete. We can now prove the main result of this section that the
entropy metric on X1(F2) is complete. Given a marked metric graph x = [(G, ρ, �)] in
X1(F2), we let

m(x) =

⎧⎪⎪⎨⎪⎪⎩
�(e1) + �(e2) if G = R2,

�(e1) + �(e2) + 2�(e3) if G = B2,

�(e1) + �(e2) + �(e3) if G = �2

We remark that m : X1(F2) → R is an Out(F2)-invariant continuous function.
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LEMMA 6.7. Let (xn)n∈N be a Cauchy sequence in (X1(F2), dh). Then there is an L such
that m(xn) ≤ L for all n.

Proof. Suppose that (xn)n∈N is a sequence in X1(F2) such that m(xn) → ∞. We will
show that (xn)n∈N is not Cauchy by showing that lim sup dh(x1, xn) = ∞.

Let m = max{m(x1), 4}. Given N ≥ 0, we let n be such that
√

m(xn) ≥ √
5N + √

m.
Consider a path αt : [0, 1] → X1(F2) such that α0 = x1 and α1 = xn. Let δ ∈ [0, 1] be
the minimal value such that m(αt ) ≥ 4 for all t ∈ [δ, 1]. In particular, m(αδ) ≤ m.

Combining Propositions 6.2, 6.4 and 6.6, we find that

Lh(αt |[δ, 1]) ≥ 1√
5
(
√

m(xn) −√m(αδ)) ≥ 1√
5
(
√

m(xn) − √
m) ≥ N .

This also provides a lower bound on Lh(αt |[0, 1]). Since the path was arbitrary, this also
is a lower bound on dh(x1, xn).

Therefore dh(x1, xn) ≥ N , showing that lim sup dh(x1, xn) = ∞ as claimed.

Given L ≥ 0, we set X1
L(F2) = {x ∈ X1(F2) | m(x) ≤ L}, and additionally, given a

marked graph ρ : R2 → G, we set X1
L(G, ρ) = X1(G, ρ) ∩ X1

L(F2). We remark that
the closure of X1

L(G, ρ) is compact. As X1(F2) is locally finite and there are only
finitely many topological types of graphs, the following statement holds. For all L, D ≥ 0,
there is an N such that if x ∈ X1

L(F2) then there is a collection of marked graphs
(G1, ρ1), . . . , (GN , ρN) such that

{x′ ∈ X1
L(F2) | dh(x, x′) ≤ D} ⊆

N⋃
k=1

X1
L(Gk , ρk).

PROPOSITION 6.8. The metric space (X1(F2), dh) is complete.

Proof. Let (xn)n∈N be a Cauchy sequence in (X1(F2), dh). By Lemma 6.7, there is an L
such that (xn) ⊂ X1

L(F2). Let n0 be such that dh(xn, xm) ≤ 1 if n, m ≥ n0. By the above
remark, there are finitely marked graphs (G1, ρ1), . . . , (GN , ρN) such that

{xn|n ≥ n0} ⊂ {x′ ∈ X1
L(F2) | dh(xn0 , x′) ≤ 1} ⊆

N⋃
k=1

X1
L(Gk , ρk).

As the closure of this set in X1(F2) is compact, the sequence (xn)n∈N converges.

7. The moduli space of the rose
The purpose of this section is to examine the entropy metric on the moduli space of an
r-roseM1(Rr ). We begin in §7.1 by computing the function FRr introduced in §4.2. For
the r-rose, we can strengthen Proposition 4.13 and conclude thatM1(Rr ) equals the set of
length functions � for which FRr (�) = 0. Next, in §7.2 we show that (M1(Rr ), dh,Rr

) for
r ≥ 3 is not complete by producing paths that have finite length yet no accumulation point.
Lastly, in §7.3 we show that (M1(Rr ), dh,Rr

) has infinite diameter. Specifically, a path that
shrinks the length of an edge to zero necessarily has infinite length.
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7.1. M1(Rr ) as a zero locus. In this section we compute the function FRr . This appears
as Proposition 7.3. In Proposition 7.5 we prove thatM1(Rr ) = {� ∈M(Rr ) | FRr (�) = 0};
this strengthens Proposition 4.13 in this setting.

First we set some notation for working with the graph Rr . We identify the unoriented
edges of Rr with the set [r] = {1, 2, . . . , r}. To simplify the expressions, we will use r
as the identifying subscript rather than Rr and we will use variables � = (�1, . . . , �r)

to denote the length of the unoriented edges. The matrix Ar ,� ∈ Matr (R) has rows and
columns indexed by [r], and we have

Ar ,�(i, j) = exp(−�i)(2 − δ(i, j)) (7.1)

where δ(�, �) is the Kronecker delta function.
For the calculations in this section, we need the following combinatorial identities.

LEMMA 7.1. For any r ≥ 1 and any x ∈ R, the following equations hold:

(1 + x)r−1(x − (2r − 1)) = xr
r∑

k=0

(
r

k

)
(1 − 2k)x−k , (7.2)

(1 + x)r−1(x + (2r + 1)) = xr

r∑
k=0

(
r

k

)
(1 + 2k)x−k . (7.3)

Proof. Differentiate the equation (1 + x)r =∑r
k=0
(
r
k

)
xr−k and multiply it by x to obtain

the equality rx(1 + x)r−1 =∑r
k=0(r − k)

(
r
k

)
xr−k . Therefore

2rx(1 + x)r−1 − (2r − 1)(1 + x)r = 2r

r∑
k=0

(
r

k

)
xr−k −

r∑
k=0

2k

(
r

k

)
xr−k

− 2r

r∑
k=0

(
r

k

)
xr−k +

r∑
k=0

(
r

k

)
xr−k

=
r∑

k=0

(1 − 2k)

(
r

k

)
xr−k = xr

r∑
k=0

(1 − 2k)

(
r

k

)
x−k .

The left-hand side in the above equation simplifies to (1 + x)r−1(x − (2r − 1)). This
shows (7.2). In a similar manner one can derive (7.3).

COROLLARY 7.2. For any r ≥ 1,

r∑
k=0

(
r

k

)
(1 − 2k)(2r − 1)−k = 0. (7.4)

Proof. Evaluate equation (7.2) with x = 2r − 1. The left-hand side becomes 0. Dividing
the resulting equation by (2r − 1)r , we obtain (7.4).

Given a length function � = (�1, . . . , �n) ∈M(Rr ) and a subset S ⊆ [r], we define
�S =∑k∈S �k . In particular, we have �∅ = 0.
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PROPOSITION 7.3. For any r ≥ 2 and any length function � ∈M(Rr ),

F r(�) =
∑
S⊆[r]

(1 − 2|S|) exp(−�S). (7.5)

Proof. Using the expansion of the determinant via permutations of [r], we can express
F r(�) = det(I − Ar ,�) as

F r(�) =
∑
S⊆[r]

cS,r exp(−�S)

for some coefficients cS,r ∈ R depending on the subset S ⊆ [r] and the rank r. Further,
it is apparent that the coefficient cS,r only depends on the cardinality of S. It remains to
determine these coefficients. We will do so by induction.

For r = 2, we compute

F 2(�
1, �2) = det

[
1 − exp(−�1) −2 exp(−�1)

−2 exp(−�2) 1 − exp(−�2)

]
= 1 − exp(−�1) − exp(−�2) − 3 exp(−�1 − �2).

This shows the proposition for r = 2.
Suppose r ≥ 3 and that the proposition holds for r − 1. That is, we assume that

cS,r−1 = 1 − 2|S| for any S ⊆ [r − 1]. Since cS,r only depends on the cardinality of S,
this implies that cS,r = 1 − 2|S| for any S ⊆ [r] where |S| < r as well. Hence it only
remains to compute c[r],r .

To compute c[r],r , we make use of Corollary 7.2. Indeed, by Example 3.3, we have
hr (log(2r − 1) · 1) = 1. Therefore, by Proposition 4.13, we obtain F r(log(2r − 1) · 1) = 0.
Hence

0 = F r(log(2r − 1) · 1)

=
∑
S⊂[r]

(1 − 2|S|) exp(−|S| log(2r − 1)) + c[r],r exp(−r log(2r − 1))

=
r−1∑
k=0

(
r

k

)
(1 − 2k)(2r − 1)−k + c[r],r (2r − 1)−r .

By Corollary 7.2, we find that c[r],r = 1 − 2r as desired.

Example 7.4. For r = 2 and r = 3, using the coordinates x = exp(−�1), y = exp(−�2)

and z = exp(−�3), we find

F 2(�
1, �2) = 1 − x − y − 3xy,

F 3(�
1, �2, �3) = 1 − x − y − z − 3xy − 3xz − 3yz − 5xyz.

Figure 5 showsM1(Rr ) as a subset ofM(Rr ) for r = 2 and r = 3.

Using Proposition 7.3, we can provide a strengthening of Proposition 4.13 for the r-rose.

PROPOSITION 7.5. For any r ≥ 2, the unit-entropy moduli spaceM1(Rr ) equals the level
set {� ∈M(Rr ) | F r(�) = 0}.
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FIGURE 5. The hypersurfacesM1(Rr ) for the roses with 2 and 3 petals.

Proof. By Proposition 4.13, we have thatM1(Rr ) ⊆ {� ∈M(Rr ) | F r(�) = 0}. Suppose
that F r(�) = 0 for some � ∈M(Rr ). Set h = hr (�). We need to show that h = 1.

Consider the function p : R>0 → R defined by p(t) = F r(t · �). We have p(1) =
F r(�) = 0. As hr (h · �) = 1, we have p(h) = F r(h · �) = 0 as well by Proposition 4.13.

Using the expression for F r(�) derived in Proposition 7.3, we compute that

p′(t) =
∑
S⊆[r]
S �=∅

(2|S| − 1)�S exp(−t · �S).

Therefore p′(t) > 0 for all t ∈ R>0. As p(h · �) = 0 = p(�), we must have that h · � = �

and hence h = 1.

7.2. Finite-length paths in M1(Rr ) for r ≥ 3. Using the computation of F r , in
Proposition 7.8 we will compute the length of the path in M1(Rr ) starting at
log(2r − 1) · 1 that blows up the length of one edge while shrinking the lengths of the
others at the same rate. As we will show, when r is at least 3, this path has finite length
and thus the moduli space (M1(Rr ), dh,Rr

) is not complete for r ≥ 3.
Before we begin, it is useful to introduce the following functions Xi , Yi : M(Rr ) → R

for each i ∈ [r]:

Xi(�) =
∑

S⊆[r]−{i}
(1 − 2|S|) exp(−�S), (7.6)

Yi(�) =
∑

S⊆[r]−{i}
(1 + 2|S|) exp(−�S). (7.7)

Both Xi and Yi are constant with respect to �i . Using these functions, we can isolate the
terms in F r(�) in which �i appears and write

F r(�) = Xi(�) − exp(−�i)Yi(�). (7.8)
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Hence for � ∈M1(Rr ), as F r(�) = 0 we can solve for �i and write

�i = log
(

Yi(�)

Xi(�)

)
. (7.9)

Further, we find the following expression for the partial derivative of F r(�) with
respect to �i :

∂iF r(�) = exp(−�i)Yi(�). (7.10)

We observe the following inequalities for any � ∈M1(Rr ).

LEMMA 7.6. Let r ≥ 2 and let � ∈M1(Rr ). Then

0 < Xi(�) < 1, (7.11)

1 < Yi(�) < 4. (7.12)

Proof. For (7.11), we first note that Xi(�) = exp(−�i)Yi(�) for all � ∈M1(Rr ) by
Proposition 4.13 and (7.8). Since every term in Yi(�) has a positive coefficient, we find
that 0 < Xi(�). As the term in Xi(�) corresponding to S = ∅ is 1 and all other terms have
negative coefficients, we find Xi(�) < 1.

For (7.12), we have that the term in Yi(�) corresponding to S = ∅ is 1 and all
other terms have positive coefficients, thus 1 < Yi(�). The terms in 1 − Xi(�) and
Yi(�) − 1 correspond to the non-empty subsets S ⊆ [r] − {i}. The coefficient for the term
corresponding to S in 1 − Xi(�) is

2|S| + 1
2|S| − 1

times the coefficient for the same term in Yi(�) − 1. As this ratio is bounded by 3, we find
that Yi(�) − 1 ≤ 3(1 − Xi(�)). Hence, as 1 − Xi(�) < 1 by (7.11), we have Yi(�) − 1 < 3
and so Yi(�) < 4.

We record the following calculation.

LEMMA 7.7. Let r ≥ 2, and let � ∈M1(Rr ) be such that �i = log(L) for i ∈ [r − 1] for
some L > 2r − 3. Then

�r = log
(

L + (2r − 1)

L − (2r − 3)

)
. (7.13)

Proof. For any S ⊆ [r − 1] we have exp(−�S) = exp(−|S| log L) = L−|S|. Hence, by
Lemma 7.1, we have that

Xr(�) =
r−1∑
k=0

(
r − 1

k

)
(1 − 2k)L−k = L−r+1(L + 1)r−2(L − (2r − 3)),

Yr(�) =
r−1∑
k=0

(
r − 1

k

)
(1 + 2k)L−k = L−r+1(L + 1)r−2(L + (2r − 1)).
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Therefore, by (7.9), we find that

�r = log
(

Yr(�)

Xr(�)

)
= log

(
L + (2r − 1)

L − (2r − 3)

)
.

For any r ≥ 3, we will construct a path �t : [0, 1) →M1(Rr ) that has finite length and
the property that �r

t → ∞ as t → 1−.

PROPOSITION 7.8. Fix r ≥ 3 and let Nt = 2(r − t) − 1. Let �t : [0, 1) →M1(Rr ) be the
smooth path where �i

t = log(Nt ) for i ∈ [r − 1]. ThenLh,r (�t |[0, 1)) is finite and �r
t → ∞

as t → 1−.

Proof. Let �t : [0, 1) →M1(Rr ) be as in the statement. Using Lemma 7.7, we find that

�r
t = log

(
2r − 1 − t

1 − t

)
.

In particular, we have �r
t → ∞ when t → 1− as claimed.

We first provide a lower bound on 〈�t , ∇F r(�t )〉. This is the denominator of the
expression for the entropy norm in Proposition 4.14. Using the expressions for the
partial derivatives for F r(�t ) in (7.10), the fact that 1 < Yi(�t ) from (7.12) and that
�r
t exp(−�r

t )Yr(�t ) > 0, we have that

〈�t , ∇F r(�t )〉 =
r∑

i=1

�i
t exp(−�i

t )Yi(�t ) >

r−1∑
i=1

�i
t exp(−�i

t ) = (r − 1)
log(Nt )

Nt

.

As log(Nt ) ≥ log(N1) and Nt ≤ N0 for all t ∈ [0, 1], we conclude that

〈�t , ∇F r(�t )〉 > (r − 1)
log(Nt )

Nt

≥ (r − 1)
log(N1)

N0
= (r − 1)

log(2r − 3)

2r − 1
. (7.14)

Next, we provide an upper bound on 〈�̈t , ∇F r(�t )〉. This is the numerator of the
expression for the entropy norm in Proposition 4.14. To do so, we compute that

�̈i
t = − 4

N2
t

, for i ∈ [r − 1], and �̈r
t = − 1

(2r − 1 − t)2 + 1
(1 − t)2 .

In particular, �̈i
t exp(−�i

t )Yi(�t ) < 0 for i ∈ [r − 1] and �̈r
t < 1/(1 − t)2. Combining these

with the expressions for the partial derivatives for F r(�t ) in (7.10) and the fact that
Yi(�t ) < 4 (7.12), we have that

〈�̈t , ∇F r(�t )〉 =
r∑

i=1

�̈i
t exp(−�i

t )Yi(�t )

< �̈r
t exp(−�r

t )Yi(�t )

<
1

(1 − t)2 · 1 − t

2r − 1 − t
· 4 ≤ 2

r − 1
· 1

1 − t
. (7.15)
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Proposition 4.14, together with the bounds appearing in (7.14) and (7.15), implies that

‖(�t , �̇t )‖2
h,Rr

= 〈�̈t , ∇F r(�t )〉
〈�t , ∇F r(�t )〉

≤ 2(2r − 1)

(r − 1)2 log(2r − 3)
· 1

1 − t
.

Therefore, the entropy length of the path �t : [0, 1) →M1(Rr ) is finite as claimed.

As a consequence, we obtain thatM1(Rr ) is not complete when r ≥ 3.

PROPOSITION 7.9. For any r ≥ 3, the moduli space (M1(Rr ), dh,Rr
) is not complete.

In §8 we will use Proposition 7.8 to show that (X1(Fr ), dh) is not complete as well
when r ≥ 3.

7.3. The diameter ofM1(Rr ) is infinite. In this subsection we show that (M1(Rr ), dh,Rr
)

has infinite diameter by showing that any path that shrinks an edge to 0 has infinite length.
Before we begin, it is useful to introduce the following functions. For distinct i, j ∈ [r],
we define

Xij (�) =
∑

S⊆[r]−{i,j}
(1 + 2|S|) exp(−�S), (7.16)

Yij (�) =
∑

S⊆[r]−{i,j}
(3 + 2|S|) exp(−�S). (7.17)

As in Lemma 7.6, we observe that, for any � ∈M1(Rr ), we have

3 < Yij (�) < 3Yi(�) < 12. (7.18)

Notice that both Xij and Yij are constant with respect to both �i and �j . For any distinct
i, j ∈ [r], these functions allow us to write

Yi(�) = Xij (�) + exp(−�j )Yij (�). (7.19)

Using (7.19) plus the expressions for the partial derivatives for F r(�) in (7.10), we find the
following expressions for the second partial derivatives of F r(�):

∂iiF r(�) = − exp(−�i)Yi(�), (7.20)

∂ijF r(�) = − exp(−�i − �j )Yij (�) for i �= j . (7.21)

The following technical lemma is the main tool for estimating length. Intuitively, it says
that when one of the edge lengths—�r in the statement—is short, the length of a path
is bounded below by the difference in the square roots of the lengths of second shortest
edge—�1 in the statement—at the endpoints of the path. In the statement below, shortness
of �r is guaranteed by taking �1 large enough.

LEMMA 7.10. Let r ≥ 2. There is an Lr with the following property. Suppose �t : [0, 1] →
M1(Rr ) is a piecewise smooth path such that, for all t ∈ [0, 1]:
(1) �1

t = min{�i
t | i ∈ [r − 1]};

(2) �1
0 ≥ Lr ; and

(3) �̇1
t > 0.
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Then

Lh,Rr
(�t |[0, 1]) ≥ 1

2
√

2B1

(√
B1�

1
1 + B2 −

√
B1�

1
0 + B2

)
where B1 = 4(r − 1) and B2 = 2r+3(2r − 1).

Proof. Let �t : [0, 1] →M1(Rr ) be as in the statement. By (3) we may reparametrize the
path so that �1

t = t . Let Lr be large enough so that

max{2r (2r − 3) exp(−Lr), 288r exp(−Lr)} ≤ 1.

The method of proof is similar to the calculations performed in §6. Specifically, using
the expression

‖(�t , �̇t )‖2
h,Rr

= −〈�̇t , H[F r(�t )]�̇t 〉
〈�t , ∇F r(�t )〉

(7.22)

from Proposition 4.14, we show that the square of the entropy norm along this path is
bounded from below by 1/2(B1t + B2). This is done by showing that the denominator is
bounded from above by exp(−t)(B1t + B2) in (7.27), and that the numerator is bounded
from below by 1

2 exp(−t) in (7.33).
We first provide the upper bound on 〈�t , ∇F r(�t )〉.
As �i

t ≥ �1
t = t for all i ∈ [r − 1], we have that exp(−�S

t ) ≤ exp(−t) for all non-empty
subsets S ⊆ [r − 1]. Since 1 − 2|S| ≥ −(2r − 3) for any non-empty subset S ⊆ [r − 1],
using the definition of Xi(�t ) in (7.6) we have that

Xr(�t ) =
∑

S⊆[r−1]

(1 − 2|S|) exp(−�S
t ) ≥ 1 − 2r−1(2r − 3) exp(−t). (7.23)

Therefore

1 − Xr(�t ) ≤ 2r−1(2r − 3) exp(−t). (7.24)

As t ≥ Lr we additionally find that

Xr(�t ) ≥ 1
2 . (7.25)

As 0 < Xr(�t ) < 1 by (7.11) and − log(1 − x) ≤ x/(1 − x) for all 0 < x < 1, using (7.24)
and (7.25), we find that

− log(Xr(�t )) = − log(1 − (1 − Xr(�t ))) ≤ 1 − Xr(�t )

Xr(�t )
≤ 2r (2r − 3) exp(−t).

Similarly, as 1 < Yr(�t ) by (7.12) and log(x) ≤ x − 1 for all x ≥ 1, using the definition of
Yi(�t ) from (7.7), we have that

log(Yr(�t )) ≤ Yr(�t ) − 1 =
∑

S⊆[r−1]
S �=∅

(1 + 2|S|) exp(−�S
t ) ≤ 2r−1(2r − 1) exp(−t).

Thus by (7.9), we find

�r
t = log(Yr(�t )) − log(Xr(�t )) ≤ 2r+1(2r − 1) exp(−t). (7.26)
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As x exp(−x) is decreasing for x > 1, we have that �i
t exp(−�i

t ) ≤ �1
t exp(−�1

t ) =
t exp(−t) for i ∈ [r − 1]. Using the expressions for the partial derivatives of F r(�t ) in
(7.10) and the fact that Yi(�t ) < 4 from (7.12), we have that

〈�t , ∇F r(�t )〉 =
r∑

i=1

�i
t exp(−�i

t )Yi(�t )

< 4((r − 1)t exp(−t) + �r
t exp(−�r

t ))

≤ 4 exp(−t)((r − 1)t + 2r+1(2r − 1)).

As defined above, we have that B1 = 4(r − 1) and B2 = 2r+3(2r − 1). Hence

〈�t , ∇F r(�t )〉 ≤ exp(−t)(B1t + B2). (7.27)

Next we provide a lower bound on −〈�̇t , H[F r(�t )]�̇t 〉. Using the expressions for the
second partial derivatives of F r(�t ) in (7.20) and (7.21), we have that

−〈�̇t , H[F r(�t )]�̇t 〉 =
r∑

i=1

(�̇i
t )

2 exp(−�i
t )Yi(�t ) +

r−1∑
i=1

r∑
j=i+1

2�̇i
t �̇

j
t exp(−�i

t − �
j
t )Yij (�t ).

(7.28)

The following claim says that the diagonal terms in H[F r(�t )] dominate in the current
setting, that is, when one of the edge lengths is small.

CLAIM 7.11. 1
2 〈(�̇t )

2, ∇F r(�t )〉 ≤ −〈�̇t , H[F r(�t )]�̇t 〉 ≤ 3
2 〈(�̇t )

2, ∇F r(�t )〉.

Proof of Claim 7.11. We observe that the first summand in (7.28) is exactly
〈(�̇t )

2, ∇F r(�)〉. The claim is thus proved by showing that the second summand has
absolute value bounded above by 1

2 〈(�̇t )
2, ∇F r(�t )〉. We accomplish this by breaking this

summand into various pieces.
To begin, we focus on the terms in this summand where j = r .
Let Kr ⊆ [r − 1] be the set of indices where |2�̇i

t exp(−�i
t )Yir (�t )| ≤ (1/2r)|�̇r

t Yr (�t )|.
Summing over the elements in Kr , we find that∣∣∣∣∑

i∈Kr

2�̇i
t �̇

r
t exp(−�i

t − �r
t )Yir (�t )

∣∣∣∣ ≤ 1
2
(�̇r

t )
2 exp(−�r

t )Yr(�t ). (7.29)

From the definition of Lr we have 24r exp(−Lr) ≤ 1/12. Thus if i < r and i /∈ Kr as
�i
t ≥ Lr and Yir (�t ) < 3 max{Yi(�t ), Yr(�t )} from (7.18), we have that

2|�̇r
t Yir (�t )| ≤ 6|�̇r

t Yr (�t )| ≤ |24r�̇i
t exp(−�i

t )Yir (�t )| ≤ 1/12|�̇i
t Yir (�t )| ≤ 1/4|�̇i

t Yi(�t )|.
(7.30)

Thus for i < r and i /∈ Kr we have that

|2�̇i
t �̇

r
t exp(−�i

t − �r
t )Yir (�t )| ≤ |2�̇i

t �̇
r
t exp(−�i

t )Yir (�t )| ≤ 1
4 (�̇i

t )
2 exp(−�i

t )Yi(�t ).
(7.31)

Next we turn our attention to the terms where j < r .
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For i ∈ [r − 1] we let Ki ⊆ [r − 1] be the set of indices where |�̇i
t | > |�̇j

t | or
where |�̇i

t | = |�̇j
t | and j > i. We observe that for any distinct pair of indices i, j ∈

[r − 1] either j ∈ Ki and i /∈ Kj or i ∈ Kj and j /∈ Ki . From the definition of Lr

we have 2 exp(−Lr) ≤ 1/12r . Hence as Yij (�t ) < 3Yi(�t ) from (7.18), we find that
2 exp(−�

j
t )Yij (�t ) ≤ (1/4r)Yi(�t ) for j ∈ [r − 1]. Therefore, summing over the indices

in Ki we find that∣∣∣∣∑
j∈Ki

2�̇i
t �̇

j
t exp(−�i

t − �
j
t )Yij (�t )

∣∣∣∣ ≤ 1
4
(�̇i

t )
2 exp(−�i

t )Yi(�t ). (7.32)

Rearranging the terms and using (7.29), (7.31) and (7.32), we find that∣∣∣∣r−1∑
i=1

r∑
j=i+1

2�̇i
t �̇

j
t exp(−�i

t − �
j
t )Yij (�t )

∣∣∣∣ ≤ ∣∣∣∣r−1∑
i=1

∑
j∈Ki

2�̇i
t �̇

j
t exp(−�i

t − �
j
t )Yij (�t )

∣∣∣∣
+
∣∣∣∣∑
i∈Kr

2�̇i
t �̇

r
t exp(−�i

t − �r
t )Yir (�t )

∣∣∣∣
+
∣∣∣∣∑
i /∈Kr

2�̇i
t �̇

r
t exp(−�i

t − �r
t )Yir (�t )

∣∣∣∣
≤

r−1∑
i=1

1
4
(�̇i

t )
2 exp(−�i

t )Yi(�t )

+ 1
2 (�̇r

t )
2 exp(−�r

t )Yr(�t )

+
∑
i /∈Kr

1
4
(�̇i

t )
2 exp(−�i

t )Yi(�t )

≤ 1
2 〈(�̇t )

2, ∇F r(�t )〉.
As explained above, the claim now follows.

Thus, applying Claim 7.11 and by focusing on the term in 〈(�̇t )
2, ∇F r(�t )〉 corre-

sponding to �1
t and tossing out the rest—which are all non-negative—we get our desired

bound:

−〈�̇t , H[F r(�t )]�̇t 〉 ≥ 1
2 〈(�̇t )

2, ∇F r(�t )〉 ≥ 1
2 (�̇1

t )
2 exp(−�1

t )Y1(�t ) ≥ 1
2 exp(−t).

(7.33)

For the last inequality, recall from (7.12) that 1 < Y1(�t ). Combining (7.33) with our
previous bound on 〈�t , ∇F r(�t )〉 from (7.27), we see that

‖(�t , �̇t )‖2
h,Rr

= −〈�̇t , H[F r(�t )]�̇t 〉
〈�t , ∇F r(�t )〉

≥ 1
2(B1t + B2)

.

Hence the length of this path in the entropy metric is at least∫ �1
1

�1
0

√
1

2(B1t + B2)
dt = 1

2
√

2B1
(

√
B1�

1
1 + B2 −

√
B1�

1
0 + B2).
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Before we can apply Lemma 7.10 to show that (M1(Rr ), dh,Rr
) has infinite diameter,

we require two more estimates. The first states that for a length function inM1(Rr ) when
�r is bounded from below, there is an upper bound on the length of the shortest edge that
is not r.

LEMMA 7.12. Let r ≥ 2. If � ∈M1(Rr ) where �r ≥ log(3), then min{�i | i ∈ [r − 1]} ≤
log(4r − 5).

Proof. We first prove the lemma under the additional assumption that �i = �1 for any
i ∈ [r − 1]. In this case, we have that �i = log(L) for i ∈ [r − 1] and some L > 2r − 3.
By Lemma 7.7, we have

log(3) ≤ �r = log
(

L + (2r − 1)

L − (2r − 3)

)
.

Hence we have that 3(L − (2r − 3)) ≤ L + (2r − 1), which implies that L ≤ 4r − 5.
Next we prove the general case. Let � ∈M1(Rr ) be such that �r ≥ log(3). Without loss

of generality, we assume that �1 = min{�i | i ∈ [r − 1]}.
If �1 ≤ log(2r − 3), then we are done.
Otherwise, we may decrease the lengths �2, . . . , �r−1 to be equal to �1 while

increasing �r to maintain the fact that the metric has unit entropy. The assumption that
�1 > log(2r − 3) ensures that �r is finite. Denote the resulting metric by �̂. Observe
that �̂r ≥ �r ≥ log(3). By the special case considered above, �̂i ≤ log(4r − 5) for each
i ∈ [r − 1]. As �1 = �̂1, this completes the proof of the lemma.

The second estimate shows that when the length of an edge is small for a length function
inM1(Rr ), the lengths of the other edges must be very large.

LEMMA 7.13. Let r ≥ 2 and let � ∈M1(Rr ). For any ε > 0, if �i ≤ ε for some i ∈ [r],
then for any j ∈ [r] − {i} we have �j > − log(exp(ε) − 1).

Proof. The subrose consisting of the edges i and j has entropy less than or equal to 1
(strictly less than 1 when r ≥ 3). By Lemma 7.7, this implies that

�j ≥ log
(

exp(�i) + 3
exp(�i) − 1

)
> − log(exp(�i) − 1) ≥ − log(exp(ε) − 1).

We can now prove the main inequality in this section that shows that any path that
shrinks the length of an edge to zero must have infinite length.

PROPOSITION 7.14. Let r ≥ 2. For any D > 0, there is an ε > 0 such that for any � ∈
M1(Rr ) with min{�i | i ∈ [r]} ≤ ε we have dh,Rr

(log(2r − 1) · 1, �) ≥ D.

Proof. Let L0 = max{log(4r − 5), Lr}, where Lr is the constant from Lemma 7.10. Fix
an ε > 0 such that

1

2
√

2B1
(
√−B1 log(exp(ε) − 1) + B2 −√B1L0 + B2) ≥ D.
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Since − log(x − 1) → ∞ as x → 1+, such an ε exists. Observe that for this ε we have
that − log(exp(ε) − 1) ≥ L0.

Let � ∈M1(Rr ) be such that min{�i | i ∈ [r]} ≤ ε and let �t : [0, 1] →M1(Rr ) be
a piecewise smooth path where �0 = log(2r − 1) · 1 and �1 = �. We will show that
the entropy length of this path is at least D. As the path is arbitrary, this shows that
dh,Rr

(log(2r − 1) · 1, �) ≥ D as desired.
Without loss of generality, assume that �r = min{�i | i ∈ [r]}. Let δ0 ∈ [0, 1] be the

minimal value so that �r
t = min{�i

t | i ∈ [r], t ∈ [δ0, 1]}. We observe that �r
δ0

≥ log(3).
Indeed, there is another index i ∈ [r − 1] such that �i

δ0
= �r

δ0
. If �r

δ0
< log(3), then the

entropy of the subgraph consisting of the ith and rth edges is greater than 1. This
contradicts the fact that the entropy of �δ0 is equal to 1.

As there is an automorphism of the r-rose permuting any two edges, by redefining �t if
necessary, we may assume that �1

t = min{�i
t | i ∈ [r − 1]} for each t ∈ [δ0, 1]. By Lemma

7.12, as �r
δ0

≥ log(3), we have that �1
δ0

≤ log(4r − 5) ≤ L0. By Lemma 7.13, as �r
1 ≤ ε, we

have that �1
1 > − log(exp(ε) − 1) ≥ L0.

Let δ1 ∈ [δ0, 1] be the minimal value so that �1
t ≥ L0 for all t ∈ [δ1, 1]. As

Lh,Rr
(�t |[0, 1]) ≥ Lh,Rr

(�t |[δ1, 1]), it suffices to show that the latter is bounded below
by D.

By only considering the portion of �t along the subintervals of [δ1, 1] with �̇1
t > 0, we

find by Lemma 7.10 that

Lh,Rr
(�t |[δ1, 1]) ≥ 1

2
√

2B1
(

√
B1�

1
1 + B2 −

√
B1�

1
δ1

+ B2).

As �r
1 ≤ ε, we have �1

1 ≥ − log(exp(ε) − 1) by Lemma 7.13. By definition �1
δ1

= L0.
Therefore

Lh,Rr
(�t |[δ1, 1]) ≥ 1

2
√

2B1
(
√−B1 log(exp(ε) − 1) + B2 −√B1L0 + B2) ≥ D.

8. Proof of Theorem 1.1
In this section we give the proof of the first main result of this paper. Theorem 1.1 states
that (X1(Fr ), dh) is complete when r = 2 and not complete if r ≥ 3.

Proof of Theorem 1.1. In §6 we showed that (X1(F2), dh) is complete (Proposition 6.8),
and so it remains to show that (X1(Fr ), dh) is not complete when r ≥ 3. This is a simple
consequence of Proposition 7.8, as we now explain.

Let r ≥ 3 and let �t : [0, 1) →M1(Rr ) be the path described in Proposition 7.8.
Using the natural homeomorphismM1(Rr ) ↔ X1(Rr , id), we can consider �t as a path in
X1(Fr ).

The sequence of length functions (�1−1/n)n∈N is a Cauchy sequence in (X1(Fr ), dh) as
the entropy distance onM1(Rr ) is an upper bound on the entropy distance on X1(Fr ).

We claim that this sequence does not have a limit. Indeed, any length function � that
does not lie in X1(Rr , id) has an open neighborhood in the weak topology that does not
intersect X1(Rr , id). As the metric topology and the weak topology agree, any possible
limit of this sequence must lie in X1(Rr , id). However, as �r

1−1/n → ∞ as n → ∞, we
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see that for any � ∈ X1(Rr , id), there is an open neighborhood of � in the weak topology
U ⊂ X1(Fr ) such that �1−1/n ∈ U for only finitely many n. Hence, again as the metric
topology and the weak topology agree, we see that this sequence does not have a limit in
X1(Rr , id).

9. The completion of (M1(Rr ), dh,Rr
)

The goal of this section is to prove Theorem 1.2 which states that the completion
of (M1(Rr ), dh,Rr

) is homeomorphic to the complement of the vertices in an
(r − 1)-simplex. Intuitively, the newly added completion points correspond to unit-entropy
metrics on the subroses of Rr consisting of at least two edges. Specifically, a face of
dimension k − 1 corresponds to unit-entropy metrics on a sub-k-rose. We observe that R1

does not possess a metric with unit entropy. This accounts for the missing vertices in the
completion.

There are two steps to the proof. First, in §9.1 we introduce a model space M̂1
(Rr )

for the completion of M1(Rr ) with respect to the entropy metric. This model considers
M(Rr ) as a subset of [0, ∞]r and adds the faces where at most r − 2 of the coordinates
are equal to ∞. It is apparent from the construction that M̂1

(Rr ) is homeomorphic to the
complement of the vertices in an (r − 1)-simplex. Proposition 9.6 shows that the distance
function dh,Rr

on M1(Rr ) extends to a distance function on M̂1
(Rr ). It is clear that

M1(Rr ) is dense in M̂1
(Rr ). In §9.2 we complete the proof of Theorem 1.2 by showing

that (M̂1
(Rr ), dh,Rr

) is complete. Example 9.7 illustrates M̂1
(R3) and contrasts this with

the closure of CV (R3, id) considered as a subset of RF3 in the axis topology.
Finally, in §9.3 we show that the diameter of cross-section of M1(Rr ) consisting of

length functions with �i = ε for some fixed i ∈ [r] and ε > 0 goes to zero as ε → 0+. This
is important for §11 where we show that X1(Rr , id) is a bounded subset of (X1(Fr ), dh).

9.1. The model space M̂1
(Rr ). In this section we introduce a model for the completion

of (M1(Rr ), dh,Rr
). As mentioned above, we add the faces toM1(Rr ) corresponding to

subroses consisting of at least two edges where the rest of the edge lengths are infinite.
Topologize [0, ∞] as a closed interval. The natural inclusion M1(Rr ) ⊂ (0, ∞)r ⊂

[0, ∞]r is an embedding. By setting x + ∞ = ∞ and exp (−∞) = 0 we get that the
functions F r from (7.5), Xi from (7.2), Yi from (7.7), Xij from (7.16) and Yij from (7.17)
extend to continuous functions on [0, ∞]r , and the entropy function hr (�) extends to
(0, ∞]r .

Given a subset S ⊆ [r], we identify the subsets

MS = {� ∈ (0, ∞]r | �i < ∞ if i ∈ S and �i = ∞ if i /∈ S}, and

M1
S = {� ∈MS | F r(�) = 0}.

Notice that M[r] =M(Rr ) and that MS ∩MS′ = ∅ if S �= S′. We further observe that
M1

∅ = ∅ andM1{i} = ∅ for any i ∈ [r]. For the latter, note that Xi(�) = 1 and Yi(�) = 1
for any � ∈M{i}. Thus for � ∈M{i} we have that F r(�) = 1 − exp(−�i) > 0.
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Fix S ⊆ [r] with |S| > 1 and let ιS : S → {1, 2, . . . , |S|} be the order-preserving
bijection and let εS : [0, ∞]|S| → [0, ∞]r be the embedding defined by

εS(�1, . . . , �|S|)i =
{

�ιS(i) if i ∈ S,

∞ otherwise.

The function εS allows us to consider a length function on R|S| as a length function on
Rr where the edges not in S have infinite length. Indeed, with these definitions we have
εS(M(R|S|)) =MS . The following lemma is immediate from Proposition 7.3 and the
definitions.

LEMMA 9.1. Let r ≥ 2 and let S ⊆ [r] have |S| > 1. Then the following statements are
true.
(1) F r ◦ εS = F |S|.
(2) For � ∈M(R|S|), we have hr (εS(�)) = h|S|(�).
(3) εS restricts to a homeomorphismM1(R|S|) →M1

S .

Next we define the sets

M̂(Rr ) = (0, ∞]r =
⋃

S⊆[r]

MS ,

M̂1
(Rr ) = {� ∈ M̂(Rr ) | F r(�) = 0} =

⋃
S⊆[r]

M1
S .

The set M̂1
(Rr ) is homeomorphic to the complement of the set of vertices in an

(r − 1)-simplex. Applying Proposition 7.5, Lemma 9.1, and the above definitions, we get
the following result.

PROPOSITION 9.2. Let r ≥ 2. A length function � ∈ M̂(Rr ) lies in M̂1
(Rr ) if and only if

it has entropy equal to 1.

As Yi(�) and Yij (�) extend to continuous functions on M̂(Rr ), using the expressions for
the partial derivatives of F r(�) in (7.10), (7.20) and (7.21), we see that ∂iF r(�), ∂iiF r(�)

and ∂ijF r(�) extend to continuous functions on M̂(Rr ). Using these formulas, we see that
extensions satisfy the following properties.

LEMMA 9.3. Let r ≥ 2, let S ⊆ [r] have |S| > 1 and fix � ∈M(R|S|). Then for i, j ∈ [r]
the following hold:

∂iF r(εS(�)) =
{

∂ιS(i)F |S|(�) if i ∈ S,

0 otherwise;

∂ijF r(εS(�)) =
{

∂ιS(i)ιS (j)F |S|(�) if i, j ∈ S,

0 otherwise.

Hence both ∇F r(�) and H[F r(�)] are well defined for � ∈ M̂(Rr ). Additionally, the
inner product 〈�, ∇F r(�)〉 extends continuously as we next show.
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LEMMA 9.4. Let r ≥ 2. The function � �→ 〈�, ∇F r(�)〉 has a continuous extension to
M̂1

(Rr ). Moreover, if S ⊆ [r] has |S| > 1 and � ∈M|S|, then

〈εS(�), ∇F r(εS(�))〉 = 〈�, ∇F |S|(�)〉.
Proof. Both of these statements follow from the expressions for the partial derivatives of
F r(�) in (7.10) as x exp(−x) → 0 when x → ∞.

We define the tangent bundle T M̂1
(Rr ) as the subspace of (�, v) ∈ M̂1

(Rr ) × R
r

where 〈v, ∇F r(�)〉 = 0. The subset of (�, v) ∈ T M̂1
(Rr ) where � ∈M1

S is denoted
by TM1

S . For consistency, we denote TM1
[r] by TM1(Rr ). There is an embedding

εS : R
|S| → R

r defined by

εS(v1, . . . , v|S|)i =
{

vιS (i) if i ∈ S,

0 otherwise.

This allows us to define an embedding TS : TM1(R|S|) → T M̂1
(Rr ) whose image is

contained in TM1
S by TS(�, v) = (εS(�), εS(v)). Proposition 4.14, together with Lemmas

9.3 and 9.4, has the following implication.

PROPOSITION 9.5. Let r ≥ 2. The entropy norm ‖�‖h,Rr
: TM1(Rr ) → R extends

to a continuous semi-norm ‖�‖h,Rr
: T M̂1

(Rr ) → R. Moreover, the embedding maps

TS : TM1(R|S|) → T M̂1
(Rr ) are norm-preserving. Specifically, if S ⊆ [r] has |S| > 1,

and (�, v) = TS(�S , vS), then the extension satisfies

‖(�, v)‖h,Rr
= ‖(�S , vS)‖h,R|S| . (9.1)

The reason why the extension fails to be a norm is as follows. If (�, v) ∈M1
S × R

r and
vi = 0 for i ∈ S, then (�, v) ∈ TM1

S as ∂iF r(�) = 0 whenever i /∈ S. Further, ∂ijF r(�) = 0
whenever i /∈ S or j /∈ S. Thus −〈v, H[F r ](�)v〉 = 0 and hence ‖(�, v)‖h,Rr

= 0 for such
points.

The following proposition is the main result of this section. It shows that M̂1
(Rr ) is

contained in the completion of (M1(Rr ), dh,Rr
).

PROPOSITION 9.6. Let r ≥ 2. The following statements hold.

(1) The extension of the entropy norm defines a distance function dh,Rr
on M̂1

(Rr ).

(2) The inclusion (M1(Rr ), dh,Rr
) → (M̂1

(Rr ), dh,Rr
) is an isometric embedding.

(3) The topology induced by dh,Rr
equals the subspace topology M̂1

(Rr ) ⊆ [0, ∞]r .

Proof. By definition M̂1
(R2) =M1(R2). Hence the proposition is obvious for r = 2. We

assume from now on that r ≥ 3.
First we need to show that for each �, �′ ∈ M̂1

(Rr ) there is a path �t : [0, 1] → M̂1
(Rr )

with �0 = � and �1 = �′ that has finite length so that dh,Rr
(�, �′) is defined. Notice that by

Proposition 9.5 for each S ⊆ [r] with |S| > 1, any two points in M1
S can be joined by a

path of finite length. Hence it suffices to show that, for any S ⊆ [r] with |S| > 1, there is
a path of finite length joining log(2r − 1) · 1 ∈M1(Rr ) to εS(log(2|S| − 1) · 1) ∈M1

S .
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Recall that in Proposition 7.8 we showed that there is a path �t : [0, 1] → M̂1
(Rr )

where �0 = log(2r − 1) · 1 and �1 = ε[r−1](log(2r − 3) · 1) ∈M1
[r−1] that has finite

length.
Now, given S ⊆ [r] with |S| > 1, we inductively define subsets Si for i = 0, . . . , r −

|S| by S0 = [r], and Si+1 = Si − {max(Si − S)} so that Sr−|S| = S. The calculation

in Proposition 7.8 shows that there is a finite-length path (�i)t : [0, 1] → M̂1
(Rr )

with (�i)0 = εSi
(log(2(r − i) − 1) · 1) ∈M1

Si
and (�i)1 = εSi+1(log(2(r − (i + 1)) −

1) · 1) ∈M1
Si+1

. The concatenation of these paths is a path with finite length from
log(2r − 1) · 1 ∈M1(Rr ) to εS(log(2|S| − 1) · 1) ∈M1

S . Therefore dh,Rr
(�, �′) is defined

for all �, �′ ∈ M̂1
(Rr ).

Next, we show that dh,Rr
defines a distance function on M̂1

(Rr ). Symmetry and the
triangle inequality obviously hold. What needs to be checked is that if � and �′ are
distinct points in M̂1

(Rr ), then there is an ε such that any path from � to �′ has length at
least ε.

This is clear if at least one of � and �′ lie in M1(Rr ). Indeed, say � lies in
M1(Rr ). Then there is an open set U ⊂M1(Rr ) containing � with compact closure U

such that �′ /∈ U . Further, there is an ε > 0 such that if dh,Rr
(�, �′′) < ε then �′′ ∈ U .

Hence any path from � to �′ must have length at least ε and therefore dh,Rr
(�, �′) ≥

ε > 0.
It remains to consider the case where neither � nor �′ lies inM1(Rr ). Suppose that there

is a sequence of paths (�n)t : [0, 1] → M̂1
(Rr ) from �, �′ ∈ M̂1

(Rr ) −M1(Rr ) where
Lh,Rr

((�n)t |[0, 1]) → 0. As the lengths of the paths (�n)t go to 0, by Proposition 7.14,
there is an ε > 0 such that ((�n)t )

i ≥ ε for all t ∈ [0, 1] and all n. Hence the images of the
paths lie in a compact set of M̂1

(Rr ) and, by the Arzelà–Ascoli theorem, there is a path
�t : [0, 1] → M̂1

(Rr ) from � to �′ with length 0.
The image of such a path must be contained in M̂1

(Rr ) −M1(Rr ). As

M̂1
(Rr ) −M1(Rr ) =

⋃
S⊂[r]

MS ,

we must have that �̇t = 0 since the semi-norm is non-degenerate on any TM1
S by

Proposition 9.5 and hence � = �′.
This shows (1).
Item (2) follows as any path in M̂1

(Rr ) with endpoints in M1(Rr ) is close to a path
entirely contained inM1(Rr ) by continuity of the semi-norm.

Item (3) now follows by continuity of the semi-norm.

9.2. Proof of Theorem 1.2. We can now complete the proof of Theorem 1.2 which states
that the completion of M1(Rr ) with respect to the entropy metric is homeomorphic to
the complement of the vertices of an (r − 1)-simplex. We accomplish this by showing
that (M̂1

(Rr ), dh,Rr
) is the completion as we have already observed that this space is

homeomorphic to the complement of the vertices of an (r − 1)-simplex.
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Proof of Theorem 1.2. As the inclusion map (M1(Rr ), dh,Rr
) → (M̂1

(Rr ), dh,Rr
) is an

isometric embedding by Proposition 9.6(2) and the image is clearly dense, it remains to
show that (M̂1

(Rr ), dh,Rr
) is complete.

To this end, let (�n)n∈N ⊂ M̂1
(Rr ) be a Cauchy sequence. Then for each 1 ≤ i ≤ r , we

have that (�i)n limits to some �i∞ ∈ [0, ∞]r where F r(�
1∞, . . . , �r∞) = 0. What remains

to be shown is that such a limiting length function �∞ belongs to M̂1
(Rr ).

Let S = {i ∈ [r] | �i∞ �= ∞}. If �i �= 0 for all i ∈ [r], then � ∈M1
S ⊂ M̂1

(Rr ) and we
are done. This is indeed always the case as by Proposition 7.14, the limiting length �i∞ is
bounded away from zero for all i since the sequence is Cauchy.

Example 9.7. In this example, we compare the completion M̂1
(R3) with the closure of

CV (R3, id) considered as a subset of RF3 . Recall that CV (R3, id) ⊂ CV (F3) is the space
of length functions on R3 with unit volume, that is, the sum of the lengths of the edges
is equal to 1. For the current discussion, the marking is irrelevant. For more information
about the closure of CV (Fr ) in R

Fr we refer the reader to the papers by Bestvina and
Feighn [7] and Cohen and Lustig [12].

We again consider Figure 5 in §7.1, which showsM1(Rr ) for r = 2 and r = 3. These
images suggest that as the length of one of the edges goes to infinity, the moduli space
M1(R3) limits to the moduli spaceM1(R2) for the subgraph consisting of the other two
edges. There are three such R2 subgraphs in R3, each contributing a one-dimensional
face to M̂1

(R3). Figure 6 shows a schematic of M̂1
(R3) contrasted with CV (R3, id),

the closure of CV (R3, id) considered as a subset of R
F3 . The spaces are not homeo-

morphic; M̂1
(R3) is a 2-simplex without vertices, whereas CV (R3, id) is a 2-simplex.

A more striking difference comes from the duality between the newly added edges and
vertices.
• In M̂1

(R3), as c → ∞ we obtain a copy ofM1(R2) for the subgraph on a and b. In
CV (R3, id), the corresponding sequence would send a, b → 0, c → 1 and the result
is a single point corresponding to the graph of groups decomposition of 〈a, b, c〉
with underlying graph R1 where 〈a, b〉 is the vertex group and the edge group is
trivial.

• In M̂1
(R3), as b, c → ∞ there is no limit. This is a missing vertex of the 2-simplex;

this stems from the fact that R1 cannot be scaled to have unit entropy. In CV (R3, id),
the corresponding sequence would send a → 0 and we obtain a one-dimensional face
in the closure corresponding to unit-volume length functions on the graph of groups
decomposition of 〈a, b, c〉 with underlying graph R2 where 〈a〉 is the vertex group and
both edge groups are trivial.

9.3. The thin part ofM1(Rr ). For ε > 0 and i ∈ [r], we define

Si
ε = {� ∈M1(Rr ) | �i = ε}.

We use the letter ‘S’ as we think of this subset as a slice of the moduli space. The goal of
this section is to prove the following proposition.
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a b
c = ∞

b c
a = ∞

a c

b = ∞

〈b, c〉 〈a, b〉

〈a, c〉

b c

〈a〉
a b

〈c〉

a c

〈b〉

FIGURE 6. The completion of entropy normalization M̂1
(R3) contrasted with the closure of the volume

normalization CV (R3, id) in R
F3 .

PROPOSITION 9.8. Let r ≥ 2 and let i ∈ [r]. Then

lim
ε→0+ diam(Si

ε) = 0.

Topologically, we have seen that M̂1
(Rr ) is homeomorphic to a simplex with its

vertices removed. Proposition 9.8 shows that geometrically M̂1
(Rr ) is similar to an ideal

hyperbolic simplex, with cross-sections whose diameter shrinks to zero as we move toward
an ideal vertex.

Given distinct i, j ∈ [r] and ε > 0, we let �i,j (ε) denote the length function inM1{i,j}
where (�i,j (ε))

i = ε. As a result, we get that

(�i,j (ε))
j = log

(
exp(−ε) + 3
exp(−ε) − 1

)
(9.2)

by Lemma 7.7.
We begin with a technical lemma that bounds the length of a path in Si

ε to such a point.

LEMMA 9.9. Let r ≥ 2. There is a constant D with the following property. Let 0 < ε <

log(2) and let i ∈ [r]. Suppose � ∈ Si
ε and that j ∈ [r] − {i} is such that �j = min{�k |

k ∈ [r] − {i}}. Then

dh,Rr
(�, �i,j (ε)) ≤ D

− log(exp(ε) − 1)
.

Proof. Using the notation of the lemma, we consider the path �t : [0, ∞) → Si
ε defined

by

�k
t = �k + t , k �= i, j ; �i

t = ε. (9.3)

Note that �
j
t is not specified; its value is determined by the constraint that hr (�t ) = 1.

Notice that �t extends to a path �t : [0, ∞] → M̂1
(Rr ) and �∞ = �i,j (ε) ∈M1{i,j}. We
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observe that since the length of �k
t is increasing for k �= i, j and as �i

t is constant, we have
�
j
t ≤ �j for all t.

Given a subset S ⊆ [r], let |S|i = |S| − 1 if i ∈ S and let |S|i = |S| otherwise. With
this definition, for a subset S ⊆ [r] − {j} we have that �S

t = �S + |S|i t . Therefore, using
the definition of Xj(�t ) from (7.6) and Yj (�t ) from (7.7), we find that

Xj(�t ) =
∑

S⊆[r]−{j}
(1 − 2|S|) exp(−�S − |S|i t), (9.4)

Yj (�t ) =
∑

S⊆[r]−{j}
(1 + 2|S|) exp(−�S − |S|i t). (9.5)

Let p(t) = log(Yj (�t )) and q(t) = − log(Xj (�t )), and so �j (t) = p(t) + q(t) by (7.9).
The next two claims establish bounds on the second derivatives of p(t) and q(t).

CLAIM 9.10. There is a constant C1 such that |p̈(t)| ≤ C1 exp(−t).

Proof of Claim 9.10. Using that fact that 1 < Yj (�t ) from (7.12), we have

|p̈(t)| =
∣∣∣∣ Ÿj (�t )Yj (�t ) − Ẏj (�t )

2

Yj (�t )2

∣∣∣∣ ≤ ∣∣∣∣ Ÿj (�t )

Yj (�t )

∣∣∣∣+ ∣∣∣∣ Ẏj (�t )

Yj (�t )

∣∣∣∣2 ≤ |Ÿj (�t )| + |Ẏj (�t )|2.

The summands in |Ÿj (�t )| have the form

|S|2i (1 + 2|S|) exp(−�S − |S|i t). (9.6)

The summands in |Ẏj (�t )|2 have the form

|S|i |S′|i (1 + 2|S|)(1 + 2|S′|) exp(−�S − �S′ − (|S|i + |S′|i )t). (9.7)

Each non-zero term in (9.6) and (9.7) has the form A exp(−B − Ct) where A, B ≥ 0 and
C ≥ 1. Hence each term is bounded by A exp(−t) for some A ≥ 0. The existence of C1 is
now clear.

CLAIM 9.11. There is a constant C2 such that |q̈(t)| ≤ C2 exp(−t).

Proof of Claim 9.11. Using the facts that 1 < Yj (�t ) from (7.12) and exp(−�
j
t )Yj (�t ) =

Xj(�t ) from (7.8), we find that exp(−�
j
t ) ≤ exp(−�

j
t )Yj (�t ) = Xj(�t ). Hence

|q̈(t)| =
∣∣∣∣ Ẍj (�

j
t )Xj (�t ) − Ẋj (�t )

2

Xj(�t )2

∣∣∣∣ ≤ ∣∣∣∣ Ẍj (�t )

Xj (�t )

∣∣∣∣+ ∣∣∣∣ Ẋj (�t )

Xj (�t )

∣∣∣∣2
≤ exp(�

j
t )|Ẍj (�t )| + exp(2�

j
t )|Ẋj (�t )|2.

The summands in exp(�
j
t )|Ẍj (�t )| have the form

|S|2i (1 + 2|S|) exp(�
j
t − �S − |S|i t). (9.8)

The summands in exp(2�
j
t )|Ẋj (�t )|2 have the form

|S|i |S′|i (1 + 2|S|)(1 + 2|S′|) exp(2�
j
t − �S − �S′ − (|S|i + |S′|i )t). (9.9)
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As �
j
t ≤ min{�k | k ∈ [r] − {i}}, we find that �

j
t − �S ≤ 0 for all S ⊆ [r] − {j} when

|S|i �= 0. Hence, as above, each non-zero term in (9.8) and (9.9) has the form A exp(−B −
Ct) where A, B ≥ 0 and C ≥ 1. The existence of C2 is now clear.

We can now bound the entropy norm of (�t , �̇t ) using Proposition 4.14. As �̈k
t = 0 for

k �= j and �k
t ∂kF r(�t ) = �k

t exp(−�k
t )Yk(�t ) > 0 for all k from (7.10), we find that

‖(�t , �̇t )‖2
h,Rr

= 〈�̈t , ∇F r(�t )〉
〈�t , ∇F r(�t )〉

≤ �̈
j
t ∂jF r(�t )

�
j
t ∂jF r(�t )

= �̈
j
t

�
j
t

≤ �̈
j
t

�j
.

Thus we can bound the length of the path �t by

Lh,Rr
(�t |[0, ∞)) =

∫ ∞

0
‖(�t , �̇t )‖h,Rr

dt ≤ 1
�j

∫ ∞

0

√
�̈
j
t dt

≤
√

C1 + C2

�j

∫ ∞

0
exp(−t/2) dt = 2

√
C1 + C2

�j
.

As �j ≥ − log(exp(ε) − 1) (9.2), setting D = 2
√

C1 + C2 we complete the proof of the
lemma.

Proof of Proposition 9.8. Let r ≥ 2 and let D be the constant from Lemma 9.9. Fix i ∈ [r]
and let �ε ∈ Si

ε , defined by �i
ε = ε and such that all other �

j
ε are equal. By Lemma 9.9, we

have that

dh,Rr
(�ε , �i,j (ε)) ≤ D

− log(exp(ε) − 1)

for all j ∈ [r] − {i}. In particular, the set {�i,j (ε) | j ∈ [r] − {i}} has diameter at most
2D/(− log(exp(ε) − 1)).

Again, by Lemma 9.9, each � ∈ Si
ε has distance at most D/(− log(exp(ε) − 1)) from

some point in {�i,j (ε) | j ∈ [r] − {i}}. Hence

diam(Si
ε) ≤ 3D

− log(exp(ε) − 1)
.

As − log(exp(ε) − 1) → ∞ as ε → 0+, the proof of the proposition is complete.

10. The moduli space of a graph with a separating edge
The purpose of this section is to introduce tools to analyze the entropy metric on the moduli
space of a graph with a separating edge. Throughout this section, let G = (V , E, o, τ , ¯)
be a finite connected graph which consists of two disjoint connected subgraphs G1, with
edges e1

1, . . . , e1
n1

, and G2, with edges e2
1, . . . , e2

n2
connected by an edge e0. We assume

that both G1 and G2 have rank at least 2. We begin our analysis in §10.1 by showing that
there exist paths of finite length limiting to any unit-entropy metric on either G1 or G2.
Using this, in §10.2 we construct a space M̂1

(G) that is similar to the construction of
M̂1

(Rr ) from §9. The main difference is that in this section, we do not bother to construct
the entire completion of (M1(G), dh,G), rather we just add the points that correspond to a
length function of entropy 1 on G1 ∪ e0 or G2 ∪ e0 or G1 ∪ G2. This is sufficient for our
purposes. Proposition 10.6 is the culmination of this analysis where we show that there is
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a map from M̂1
(G) to the completion of (M1(G), dh,G) that collapses these newly added

length functions to a single point.

10.1. Finite-length paths inM1(G). We seek to show that there is a finite-length path in
(M1(G), dh,G) that limits onto an arbitrary unit-entropy metric on either G1 or G2. This
calculation appears in Proposition 10.2. Given a length function � ∈M(G) we denote
�0 = �(e0), �1 = (�(e1

1), . . . , �(e1
n1

)) and �2 = (�(e2
1), . . . , �(e2

n2
)).

Given a simplex � ∈ CG and an edge e ∈ E of G, we recall that �(e) denotes the
number of times e or ē appears as a vertex in a simple cycle contained in �. By the
construction of CG we have that �(e) ∈ {0, 1, 2} for any edge. Further, �(e0) ∈ {0, 2}
as e0 is separating.

Analogous to the functions Yi defined in §7.2 that allowed us to isolate the variable �i

for the r-rose, we define a function Y : M(G) → R by

Y (�) = −
∑

�∈CG
�(e0)=2

(−1)|�| exp(−�(�) + 2�0).

Notice that this function is constant with respect to �0 as we may write

�(�) =
∑
e∈E+

�(e)�(e).

Hence if �(e0) = 2, then �(�) − 2�0 has no dependence on �0. Also we remark that the
function Y : M(G) → R has a continuous extension to [0, ∞]|E+| and is bounded on
[0, ∞]|E+|. With this notation we have the following expression for FG.

LEMMA 10.1. Let � ∈M(G). Then FG(�) = FG1(�
1)FG2(�

2) − exp(−2�0)Y (�).

Proof. Let � be a simplex in CG. If �(e0) = 0, then � is the join of two (possibly
empty) simplices �1 ∈ CG1 and �2 ∈ CG2 . Indeed, if � = {γ 1

1 , . . . , γ 1
m1

, γ 2
1 , . . . , γ 2

m2
},

then � = �1 ∗ �2 where �i = {γ i
1 , . . . , γ i

mi
} for i = 1, 2. We have |�| = m1 + m2 =

|�1| + |�2| and thus

(−1)|�| exp(−�(�)) = ((−1)|�1| exp(−�1(�1)))((−1)|�2| exp(−�2(�2))).

Therefore, by Theorem 4.2, we find that∑
�∈CG

�(e0)=0

(−1)|�| exp(−�(�)) =
( ∑

�1∈CG1

(−1)|�1| exp(−�1(�1))

)

×
( ∑

�2∈CG2

(−1)|�2| exp(−�2(�2))

)
= FG1(�

1)FG2(�
2).

If �(e0) = 2, then

(−1)|�| exp(−�(�)) = exp(−2�0)(−1)|�| exp(−�(�) + 2�0).
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Hence, by the definition of Y (�), we have∑
�∈CG

�(e0)=2

(−1)|�| exp(−�(�)) = − exp(−2�0)Y (�).

As e0 is separating, there are no simplices in CG for which �(e0) = 1. By Theorem 4.2
again, the lemma follows.

In particular, for � ∈M1(G) we have FG(�) = 0 by Lemma 4.4, and thus

�0 = 1
2

log
(

Y (�)

FG1(�
1)FG2(�

2)

)
. (10.1)

Using the above expression for FG and �0, we will give a method of a finite-length path in
G for which �0 → ∞.

PROPOSITION 10.2. Fix a length function �′ ∈M1(G1) and let 1 < x1, . . . , xn1 < ∞ be
such that �′(e1

i ) = log(xi) for 1 ≤ i ≤ n1. Let � ∈M1(G) be such that �(e1
i ) = log(xi + 1)

for 1 ≤ i ≤ n1 and let �t : [0, 1) → M̂1
(G) be the path defined by �t (e

1
i ) = log(xi +

1 − t), �2
t = �2 and

�0
t = 1

2
log
(

Y (�t )

FG1(�
1
t )FG2(�

2
t )

)
. (10.2)

Then Lh,G(�t |[0, 1)) is finite and �0
t → ∞ as t → 1−.

Proof. We will use the notation as in the statement of the proposition. As hG1(�
′) = 1,

we must have that �0
t → ∞ at t → 1−. Indeed, if not then the limiting length function has

unit entropy, and with this length function the subgraph G1 also has unit entropy.
Notice that since �t (e)∂eFG(�t ) > 0 for all e ∈ E+ by Lemma 4.4(3), we have that

〈�t , ∇FG(�t )〉 =
∑
e∈E+

�t (e)∂eFG(�t ) ≥
n1∑
i=1

�t (e
1
i )∂e1

i
FG(�t ). (10.3)

By Lemma 10.1, we compute that

∂e1
i
FG(�t ) = FG2(�

2
t )∂e1

i
FG1(�

1
t ) − exp(−2�0

t )∂e1
i
Y (�t ). (10.4)

Thus since ∂e1
i
Y (�) is bounded onM(G), we see that 〈�t , ∇FG(�t )〉 has a limit, as t → 1−,

that is bounded below by FG2(�
2)〈�′, ∇FG1(�

′)〉, which is positive by Lemma 4.4(3) and
Lemma 4.9. (We will see in Lemma 10.4(2) that the limit is in fact exactly equal to
FG2(�

2)〈�′, ∇FG1(�
′)〉.) Hence there is an ε > 0 such that

〈�t , ∇FG(�t )〉 ≥ ε (10.5)

for all t ∈ [0, 1).
We compute that �̈t (e

1
i ) = (−1)/(xi + 1 − t) < 0, hence �̈t (e

1
i )∂e1

i
FG(�t ) < 0 for all

0 < t < 1 and 1 ≤ i ≤ n1. Clearly �̈t (e
2
i )∂e2

i
FG(�t ) = 0 for all 1 ≤ i ≤ n2 and 0 < t < 1.
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Thus

〈�̈t , ∇FG(�t )〉 ≤ �̈0
t ∂e0FG(�t ). (10.6)

To deal with this term, we need the following claim.

CLAIM 10.3. There are polynomials p, q ∈ R[t] where p(t), q(t) �= 0 for t ∈ [0, 1] such
that

exp(−2�0
t ) = (1 − t)p(t)

q(t)
.

Proof of Claim 10.3. As FG(�t ) = 0, we have that

exp(−2�0
t ) = FG1(�

1
t )FG2(�

2
t )

Y (�t )
.

Let �(Ei) =∑ni

j=1 �(ei
j ) for i = 1, 2. Notice that we can write FG1(�

1
t ) as

FG1(�
1
t ) =

∑
�∈CG1

(−1)|�|
n1∏
i=1

(xi + 1 − t)−�(e1
i ).

Hence exp(2�t (E1))FG1(�
1
t ) is a polynomial in t with real coefficients. Also, we observe

that exp(2�t (E2))FG2(�
2
t ) is a non-zero constant with respect to t. By the definition of �t

we have that FG1(�
1
1) = 0. Hence we can write

exp(2�t (E1) + 2�t (E2))FG1(�
1
t )FG2(�

2
t ) = (1 − t)p(t)

where p(t) ∈ R[t]. As the left-hand side of this equation does not vanish for t ∈ [0, 1) by
Lemma 4.9, we see that p(t) �= 0 for t ∈ [0, 1). To show that p(1) �= 0, we see that

p(1) = d

dt
(exp(2�t (E1) + 2�t (E2))FG1(�

1
t )FG2(�

2
t ))
∣∣
t=1

= exp(2�1(E1) + 2�1(E2))FG2(�
2
1)〈�̇1

1, ∇FG1(�
1
1)〉.

As �1
1 ∈M1(G1), we have that ∇FG1(�

1
1) is non-zero and parallel to ∇hG1(�

1
1) by

Lemma 4.4. Since hG1(�
1
t ) is increasing with respect to t as every edge length is decreasing

(past t = 1 as well), we have that 〈�̇1
1, ∇hG1(�

1
1)〉 �= 0. Hence p(1) �= 0 as well.

In a similar way, we observe that we can write

exp(2�t (E1) + 2�t (E2))Y (�t ) = q(t)

for some q(t) ∈ R[t]. As Y (�t ) = exp(2�0)FG1(�
1
t )FG2(�

2
t ) by Lemma 10.1, we see that

Y (�t ) �= 0 for t ∈ [0, 1) by Lemma 4.9 and hence q(t) �= 0 for t ∈ [0, 1) as well. As t →
1−, we have that �0

t → ∞ and thus (1 − t)p(t)/q(t) → 0 as t → 1−. As p(1) �= 0, we
must have that q(1) �= 0 as well.

By Claim 10.3, we compute that

�̈0
t = 1

2

(
1

(1 − t)2 − p̈(t)p(t) + (ṗ(t))2

(p(t))2 + q̈(t)q(t) + (q̇(t))2

(q(t))2

)
.
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Using Lemma 10.1 and Claim 10.3, we find that

∂e0FG(�) = 2 exp(−2�0)Y (�) = 2Y (�)
(1 − t)p(t)

q(t)
.

Hence we see that there exists a constant C > 0 such that

�̈0
t ∂e0FG(�t ) ≤ C

1 − t
. (10.7)

Therefore, by combining Proposition 4.6 with (10.5), (10.6) and (10.7), we have that

‖(�t , �̇t )‖2
h,G = 〈�̈t , ∇FG(�t )〉

〈�t , ∇FG(�t )〉 ≤ �̈0
t ∂e0FG(�t )

〈�t , ∇FG(�t )〉 ≤ C

ε(1 − t)
.

Hence the length of �t is finite.

10.2. The model space M̂1
(G). The previous example shows that we should expect

some points in the completion of (M1(G), dh,G) to correspond to unit-entropy metrics on
G1 or G2. For the model, we add these points toM1(G) as well as points that correspond
to unit-entropy metrics on G1 ∪ G2. To this end, we set

M1 = {� ∈ (0, ∞]|E+| | �1 ∈M(G1) and �2 = ∞ · 1},
M2 = {� ∈ (0, ∞]|E+| | �1 = ∞ · 1 and �2 ∈M(G2)},
M1,2 = {� ∈ (0, ∞]|E+| | �0 = ∞, �1 ∈M(G1) and �2 ∈M(G2)}.

We consider their union M̂(G) =M(G) ∪M1 ∪M2 ∪M1,2 as a subset of (0, ∞]|E+|,
endowed with the subspace topology as in §9. There are obvious embeddings
εi : M(Gi) →Mi for i = 1, 2 where we set εi(�)

0 = ∞, and an obvious embedding
ε1,2 : M(G1) ×M(G2) →M1,2 as well. Next, we define

M1
1 = {� ∈M1 | hG1(�

1) = 1},
M1

2 = {� ∈M2 | hG2(�
2) = 1},

M1
1,2 = {� ∈M1,2 | max{hG1(�

1), hG2(�
2)} = 1}.

Our model space is the union of these sets. Specifically, we define

M̂1
(G) =M1(G) ∪M1

1 ∪M1
2 ∪M1

1,2. (10.8)

Using (4.2), we see that each partial derivative of FG extends to a bounded continuous
function on M̂(G). The naturality of these extensions is the same as in Lemma 9.3.
Even more, the inner product 〈�, ∇FG(�)〉 has a continuous extension as was the case
in Lemma 9.4.

LEMMA 10.4. The function � �→ 〈�, ∇FG(�)〉 has a continuous extension to M̂(G). This
extension is such that the following statements hold.
(1) If i ∈ {1, 2} and � ∈Mi , then

〈�, ∇FG(�)〉 = 〈�i , ∇FGi
(�i)〉.
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(2) If � ∈M1,2, then

〈�, ∇FG(�)〉 = FG2(�
2)〈�1, ∇FG1(�

1)〉 + FG1(�
1)〈�2, ∇FG2(�

2)〉.
(3) For all � ∈ M̂(G), we have 〈�, ∇FG(�)〉 ≥ 0 with equality if and only if hG1(�

1) =
hG2(�

2) = 1.

Proof. From Lemma 4.4(3) and the expression for ∂eFG(�) in (4.2), we see that there
is a constant A > 0 such that 0 < ∂eFG(�) ≤ A exp(−�(e)) for any edge e ∈ E+. The
existence of the continuous extension now follows for the same reason as for Lemma 9.4.

If �1 = ∞ · 1, then Y (�) = 0. Indeed, this follows as every simple cycle in G that
contains e0 must also contain an edge in G1 as e0 is separating. Likewise, if �2 = ∞ · 1,
then Y (�) = 0 as well. Hence ∂e0FG(�) = 2 exp(−2�0)Y (�) = 0 for � ∈Mi when i =
1, 2. This, together with the paragraph above, shows (1).

Using Lemma 10.1, we compute the following expression for 〈�, ∇FG(�)〉:
〈�, ∇FG(�)〉 = FG2(�

2)〈�1, ∇FG1(�
1)〉 + FG1(�

1)〈�2, ∇FG2(�
2)〉

− exp(−2�0)(〈�̂, ∇Y (�̂)〉 − 2�0Y (�̂))

From this (2) is apparent.
As 〈�, ∇FG(�)〉 > 0 for all � ∈M1(G) by Lemma 4.4(3), the extension is clearly

non-negative. Statement (3) now follows from (1) and (2) as 〈�, ∇FGi
(�)〉 > 0 for any

� ∈M1(Gi) again by Lemma 4.4(3) and FGi
(�) > 0 for any � ∈M1(Gi) if h(Gi)(�) < 1

by Lemma 4.9.

Next we partition M̂1
(G) into two subsets that we call the singular points and regular

points, respectively:

M̂1
(G)sing = {� ∈ M̂1

(G) | hG1(�
1) = hG2(�

2) = 1},
M̂1

(G)reg = M̂1
(G) − M̂1

(G)sing.

Notice that M̂1
(G)sing is a subset ofM1

1,2.

As in §9.1, we also define the tangent bundle T M̂1
(G) to be the subspace

of (�, v) ∈ M̂1
(G) × R

|E+| where 〈v, ∇FG(�)〉 = 0. There are obvious embeddings
T εi : TM1(Gi) → T M̂1

(G) for i = 1, 2 defined using εi : M1(Gi) →Mi as in
§9.1. We define T M̂1

reg(G) to be the subset of (�, v) ∈ T M̂1
(G) where � ∈ M̂1

(G)reg.
Proposition 4.6 together with Lemma 10.4 implies the following proposition.

PROPOSITION 10.5. The entropy norm ‖�‖h,G : TM1(G) → R extends to a continuous

semi-norm ‖�‖h,G : T M̂1
(G)reg → R. Moreover, the embedding maps T εi : TM1(Gi)→

T M̂1
(G) are norm-preserving.

As in §9.1, we have the following proposition that shows us that there is a map from
M̂1

(G) to the completion ofM1(G) with respect to the entropy metric.
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PROPOSITION 10.6. The following statements hold.

(1) The entropy norm defines a pseudo-metric dh,G on M̂1
(G).

(2) We have diam(M1
1 ∪M1

2 ∪M1
1,2) = 0.

(3) The inclusion (M1(G), dh,G) → (M̂1
(G), dh,G) is an isometric embedding.

Proof. As in Proposition 9.6, we need to show that for any �, �′ ∈ M̂1
(G) there is a path

�t : [0, 1] → M̂(G) with �0 = � and �1 = �′ that has finite length.
To this end, fix a point � ∈M1(G). There are several cases depending on whether �′ ∈

M1
1, �′ ∈M1

2 or �′ ∈M1
1,2.

We first deal with the case that �′ ∈M1
1,2. Without loss of generality we assume that

hG1((�
′)1) = 1. In Proposition 10.2 we produced a path �t : [0, 1] → M̂1

(G) where �0 ∈
M1(G) and �1 ∈M1,2 is such that �1

1 = (�′)1. We can concatenate the path �t with a path
�̃t : [0, 1] →M1

1,2 from �1 to �′ inM1
1,2 as follows. We define the path by

�̃t = (∞, �1
1, (1 − t) · �2

1 + t · (�′)2)

and we observe that �̃0 = �1 to �̃1 = �′. Note that by the convexity of entropy we have that

hG2((1 − t) · �2
1 + t · (�′)2) ≤ 1

with equality only possible at the endpoints. Hence the interior of the path �̃t lies in
M̂1

(G)reg. Further,

‖(�̃t ,
˙̃
�t )‖h,G = 0

as the length of edges in G2 is changing linearly. Hence there is a path of finite length from
a length function inM1(G) to any length function inM1

1,2.
Next, we deal with the case that �′ ∈M1; the case of �′ ∈M2 is symmetric. We will

show that we can connect �′ to a length function in M1,2 with a concatenation of two
paths that have finite length—in fact each has length 0. Let �′′ ∈M(G2) have entropy less
than 1. The paths (�1)t and (�2)t are as follows:

(�1)t : [0, ∞] → M̂1
(G) (�1)t = ((�′)0 + t , (�′)1, ∞ · 1),

(�2)t : [0, ∞] → M̂1
(G) (�2)t = (∞, (�′)1, (�′)2 + t · 1).

The concatenation of (�1)t |[0, ∞] and (�2)t |[∞, 0] is a path from �′ to �′′. We observe
that (�̈1)t = 0 and (�̈2)t = 0 as edge lengths are changing linearly. Also, we observe that
the interiors of these paths lie in M̂1

(G)reg. Hence ‖((�k)t , (�̇k)t )‖h,G = 0 for k = 1, 2
showing that the paths have finite—in fact zero—length.

This shows (10.6).
The previous argument shows that for any � ∈M1

1, there is an �′ ∈M1
1,2 such that

dh,G(�, �′) = 0. Likewise the analogous statement holds for � ∈M1
2. Given, �, �′ ∈M1,2,

we will show that dh,G(�, �′) = 0, completing the proof of (10.6). There are four cases
depending on the entropies of the length functions �1, �2, (�′)1 and (�′)2.
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The first case we consider is when hG1(�
1) = 1 and hG2((�

′)2) = 1. In this case we
consider the concatenation of the two paths (�1)t and (�2)t that are defined as follows:

(�1)t : [0, 1] → M̂1
(G) (�1)t = (∞, �1, (1 − t) · �2 + t · (�′)2),

(�2)t : [0, 1] → M̂1
(G) (�2)t = (∞, (1 − t) · �1 + t · (�′)1, (�′)2).

As above, the interiors of these paths lie in M̂1
(G)reg and they have length 0 since the

lengths of edges are changing linearly. This completes this case.
The case where hG2(�

2) = 1 and hG1((�
′)1) = 1 is similar.

Next we consider the case where hG1(�
1) = 1 and hG1((�

′)1) = 1. Fix a length function
�′′ ∈M1

1,2 with hG2((�
′′)2) = 1. By the first argument, we can connect both � and �′ to �′′

with paths of length 0. Concatenating these two paths shows that this case holds as well.
The case where hG2(�

2) = 1 and hG2((�
′)2) = 1 is similar.

This completes the proof of (10.6).
We observe that any path in M̂1

(G) is close to a path inM1(G). Thus by Proposition
10.5, we have that the inclusion (M1(G), dh,G) → (M̂1

(G), dh,G) is an isometric embed-
ding, hence (10.6) holds.

11. X1(Rr , id) has bounded diameter in X1(Fr )

In this section we make use of the collapsing phenomena witnessed in the previous section
to show that even though (M1(Rr ), dh,Rr

) has infinite diameter (Proposition 7.14), the
subspace (X1(Rr , id), dh) ⊂ (X1(Fr ), dh) has bounded diameter. The idea is as follows.

Using the natural bijection M1(Rr ) ↔ X1(Rr , id), since M̂1
(Rr ) is the completion

of (M1(Rr ), dh,Rr
) (§9) there is a map � : M̂1

(Rr ) → X̂1
(Fr ) where X̂1

(Fr ) is the
completion of (X1(Fr ), dh). Indeed, if a sequence (�n) ⊂ (M1(Rr ), dh,Rr

) is Cauchy, then

so is its image under � in (X1(Fr ), dh) as � is 1-Lipschitz. As M̂1
(Rr ) is homeomorphic

to the complement of the vertices of an (r − 1)-simplex, we can consider � as the map
� : �r−1 − V → X̂1

(Fr ) where �r−1 is the standard (r − 1)-dimensional simplex and
V ⊂ �r−1 is the set of vertices. We will show that the map � extends to the vertex
set V. Since the image �(�r−1) is compact and contains X1(Rr , id), it follows that
(X1(Rr , id), dh) has bounded diameter.

This is accomplished by considering M1(Rr ) as the face of M1(G) for a particular
graph G that has a separating edge and using the tools developed in §10. Lemma 11.1
establishes that the subset

⋃{MS | 1 < |S| < r − 1} ⊂ M̂1
(Rr ) is collapsed to a single

point in the completion of (X1(Fr ), dh). We recall that M1
S ⊂ M̂1

(Rr ) is the subset of
unit-entropy length functions on the subrose R|S| ⊆ Rr utilizing the edges in S ⊆ [r]; the
length of an edge in [r] − S is ∞. The subsetM1

S corresponds to an (|S| − 1)-dimensional
face of �r−1. Thus Lemma 11.1 shows that the entire (r − 3)-skeleton of �r−1 is collapsed
to a point by � in X̂1

(Fr ).

LEMMA 11.1. For r ≥ 4, � maps the subset
⋃{MS | 1 < |S| < r − 1} ⊂ M̂1

(Rr ) to a
single point in X̂1

(Fr ).
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e1
1

e1
2

e1
n1

e2
1

e2
2

e2
n2

e0v1 v2

FIGURE 7. The graph Gn1,n2 : there are n1 loop edges attached to v1 and n2 loop edges attached to v2.

Proof. Fix r ≥ 4 and let S be a subset of [r] with 1 < |S| < r − 1. To begin, we claim that
the image ofM1

S is a single point in X̂1
(Fr ). To this end, we set n1 = |S| and n2 = r − |S|.

Notice that n1, n2 ≥ 2. Let Gn1,n2 be the graph that consists of two vertices v1 and v2, and
edges e0, e1

1, . . . , e1
n1

and e2
1, . . . , e2

n2
. The edges are attached via the following table.

o τ

e0 v1 v2

e1
i v1 v1

e2
i v2 v2

See Figure 7. We adopt the notation introduced in §10 for Gn1,n2 .
Let c : Gn1,n2 → Rr be the map induced by collapsing the edge e0 and let ρ : Rr →

Gn1,n2 be a map so that c ◦ ρ is homotopic to id : Rr → Rr . Thus

X1(Rr , id) ⊂ X1
(Gn1,n2 , ρ) = {[(G, ρ′, �)] ∈ X(Gn1,n2 , ρ) | hG(�) = 1}.

Specifically, viewing X1
(Gn1,n2 , ρ) as a subset of [0, ∞)1+n1+n2 , we see that X1(Rr , id)

is the image of the embedding ε : M1(Rr ) → [0, ∞)1+n1+n2 where ε(�)0 = 0.
Moreover, ε extends to an embedding M̂1

(Rr ) → [0, ∞]1+n1+n2 in the same way.
Under this embedding, ε(M1

S) is the face ofM1
1 ⊂ M̂1

(Gn1,n2) ⊂ [0, ∞]1+n1+n2 . Indeed,
the setM1

1 is homeomorphic to (0, ∞] ×M1
S . By Proposition 10.6(2), the setM1

1 maps
to a single point in X̂1

(Fr ). Hence so doesM1
S , completing the proof of our claim.

As the diameter of the thin part goes to zero as the short edge goes to zero
(Proposition 9.8), the point thatM1

S is sent to is independent of S.

The main result of this section now follows easily.

PROPOSITION 11.2. For r ≥ 4, the subspace (X1(Rr , id), dh) ⊂ (X1(Fr ), dh) has
bounded diameter.

Proof. As explained above in the introduction to this section, by Theorem 1.2, there is a
map � : �r−1 − V → X̂1

(Fr ). By Lemma 11.1, the map � extends to V and the entire
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Γr

e1
1

e1
2

e1
r−2

e2
0

e2
1

e2
2

v
w

̂Γr

e1
1

e1
2

e1
r−2

e2
0

e2
1

e2
2

e0

v1 v2 w

FIGURE 8. The graphs �r and �̂r . In �r there are r − 2 loop edges attached to v and three edges connecting
v to w. In �̂r , there are r − 2 loop edges attached to v1, three edges connecting v2 to w and a separating edge

connecting v1 to v2.

(r − 3)-skeleton of �r−1 is mapped to a single point. As �r−1 is compact, �(�r−1)

is compact and hence has bounded diameter. Thus X1(Rr , id) ⊂ �(�r−1) ⊂ X1(F) has
bounded diameter too.

12. Proof of Theorem 1.3
The goal of this final section is the proof of the last of the main results. Theorem 1.3 states
that the Out(Fr )-invariant subcomplex (X1(Rr , id) · Out(Fr ), dh) has bounded diameter
and, moreover, that the action of Out(Fr ) on the completion of (X1(Fr ), dh) has a global
fixed point. This point is the image of

⋃{MS | 1 < |S| < r − 1} for any marking of the
rose. We show that the image of this point in the completion is independent of the marking.
This is done by showing that it is independent for markings that differ by a single simple
move—we call such markings Nielsen adjacent. This is accomplished again by making
use of a graph with a separating edge and the analysis in §10. This simple move suffices to
connect any two markings and the theorem easily follows.

Proof of Theorem 1.3. Given a marked rose (Rr , ρ), there is an embedding �ρ : M1

(Rr )→X1(Fr ) whose image isX1(Rr , ρ). As in §11, this map extends to �ρ : M̂1
(Rr ) →

X̂1
(Fr ) where X̂1

(Fr ) is the completion of X1(Fr ) with the entropy metric. By
Lemma 11.1, �ρ maps

⋃{M1
S | 1 < |S| < r − 1} to a single point in X̂1

(Fr ). Let xρ

denote this point in X(F).
Given an integer r > 2, we define a graph �r that has two vertices v and w, and edges

e1
1, . . . , e1

r−2 and e2
0, e2

1, e2
3. The edges are attached via the following table.

o τ

e1
i v v

e2
i v w

See Figure 8. We call such a graph a rose-theta graph.
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Given i ∈ {0, 1, 2}, collapsing the edge e2
i induces a map ci : �r → Rr . We say two

marked roses (Rr , ρ1) and (Rr , ρ2) are Nielsen adjacent if there is a marked rose-theta
graph (�r , ρ) such that ρi � ci ◦ ρ for i = 1, 2 for some collapses ci : �r → Rr . Given
any two marked roses, (Rr , ρ) and (Rr , ρ′), it is well known that there is a sequence of
markings ρ = ρ1, . . . , ρn = ρ′ such that (Rr , ρi−1) and (Rr , ρi) are Nielsen adjacent for
i = 2, . . . , n. For instance, see [14].

We will prove the theorem by showing that if (Rr , ρ1) and (Rr , ρ2) are Nielsen adjacent,
then xρ1 = xρ2 . Notice that the collection {xid·φ} is invariant under the action by Out(Fr ).
Hence this also shows that the action of Out(Fr ) on X̂1

(Fr ) has a global fixed point.
To this end, let (�r , ρ) be the marked rose-theta graph such that ρi � ci ◦ ρ. We need

to introduce a separating edge to take advantage of the shortcuts utilized in §10. Let �̂r be
the graph obtained from blowing up the vertex v in �r . Specifically, in �̂r there are three
vertices v1, v2 and w, and edges e0, e1

1, . . . , e1
r−2 and e2

0, e2
1, e2

3. The edges are attached
via the following table.

o τ

e0 v1 v2

e1
i v1 v1

e2
i v2 w

See Figure 8. We adopt the notation from §10 for �̂r .
Let c : �̂r → �r be the map that collapses the edge e0. There is a marking ρ̂ : Rr →

�̂r such that c ◦ ρ̂ � ρ. Viewing X1
(�̂r , ρ̂) as a subset of [0, ∞]r+2, there are two

embeddings corresponding to ρ1 and ρ2 denoted ε1, ε2 : M̂1
(Rr ) → [0, ∞]r+2 where

εi(�)
0 = εi(�)(e

2
i ) = 0 for i = 1, 2.

Let S ⊂ [r] denote the set of edges {ci(e
1
1), . . . , ci(e

1
r−2)} in Rr . Notice that this set

is independent of i. Both ε1(M1
S) and ε2(M1

S) are faces of M1
1,2 ⊂ M̂1

(�̂r ). Hence by
Proposition 10.6(2), we have that xρ1 = xρ2 .
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