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Summary

In West Africa, vast areas are being deforested; the remnant forest patches provide a wealth of
ecosystem services and biodiversity conservation potential, yet they are threatened by human
activity. Forest patches <100 ha have not been widely catalogued before; we mapped forest loss
of small forest patches outside of protected areas in the Guinean savannah and humid Guineo-
Congolian bioclimatic regions of Togo, Benin, Nigeria and Cameroon between 2000 and 2022.
Focusing on the dynamics of small patches, without considering the splitting process of larger
patches, we quantified changes in their number and area and the rate and trend of forest loss.
Small forest patches are widespread, yet their area and number have decreased, while the forest
loss rate is increasing. Primary forest patches lost almost half of their area annually – twice as
much as secondary forests, and this loss was especially pronounced across small patches (0.5 –
10 ha), suggesting deforestation preferentially occurs in the smallest patches of primary forest. If
forest loss continues at the current rate, 14% of the total forest area mapped in this study will
have disappeared by 2032, jeopardizing their potential to provide ecosystem services and
emphasizing the need for measures to counter their deforestation.

Introduction

Tropical forests play a fundamental role in the Earth system by supporting ecosystem processes
and functions and providing ecosystem services ranging from carbon sequestration and climate
and water cycle regulation for the preservation of biodiversity (Lewis 2006, Barlow et al. 2007,
Jackson et al. 2008, Naidoo et al. 2008). Indeed, both primary and secondary tropical moist
forests play particularly large roles in the provision of these services in comparison tomost other
forest biomes (Wright 2005, Gibson et al. 2011,).

Primary tropical forests harbour the highest levels of biodiversity among the world’s
terrestrial biomes and are therefore invaluable for biodiversity conservation (Gibson et al. 2011),
while being severely threatened by human exploitation (Betts et al. 2017). Tropical deforestation
accounts for 15% of anthropogenic carbon emissions (Baccini et al. 2012, Houghton 2013, Le
Quéré et al. 2018), and the subsequent land use, such as pasture or crop plantation, often results
in additional greenhouse gas emissions (Galford et al. 2010). Throughout the tropics, these
changes and pressures are largely driven by the demand for agricultural and commercial
products on the international market, resulting in urbanization, resource extraction and
conversion of forests to other land uses (Curtis et al. 2018, Seymour & Harris 2019, Akinyemi &
Ifejika Speranza 2022). Accordingly, tropical forests are the focus of international policy
initiatives and have seen the widespread establishment of protected areas (Fay & Nichols 2005,
Newmark 2008, Venter et al. 2013). However, vast tracts of tropical forests, in particular smaller
patches, have little or no protection, and tropical deforestation, degradation and fragmentation
continue at an ever-increasing rate, thereby acutely threatening the continued provisioning of
the ecosystem services (Achard et al. 2014, Food and Agriculture Organization of the United
Nations 2020).

Although deforestation is pronounced throughout the tropics, Africa saw the highest annual
rate of net forest loss from 2010 to 2020, with 3.9 million ha lost. Moreover, the rate of net forest
loss has increased in every decade since 1990, with concurrent exceptionally high rates of forest
fragmentation being measured (Food and Agriculture Organization of the United Nations 2020,
Fischer et al. 2021). Fragmentation is defined as ‘a landscape-scale process involving both
habitat loss and the breaking apart of habitat’, with negative effects on habitat quality and local
biodiversity (Fahrig 2003, Luther et al. 2020). Conservation measures have generally favoured
protecting large forest fragments over small ones, yet studies demonstrate that the conservation
value of small forest patches is sometimes remarkably high (Decocq et al. 2016, Abuhay et al.
2024). Thus, conservation measures focusing only on large forest patches may result in less than
optimal biodiversity outcomes (Riva et al. 2022). Importantly, many small forest patches have
no formal protection status. Small forest patches act as refuges between larger forest fragments,
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increasing habitat network connectivity (Volenec & Dobson 2020,
Tiang et al. 2021, Han et al. 2022). Moreover, they provide multiple
direct and indirect benefits to local communities in the
surrounding agricultural areas (Valdés et al. 2020, Baez Schon
et al. 2022). For example, on the one hand, they offer provisioning
and cultural services such as timber, food and those relating to
recreation and spirituality; on the other, their physical and
biological characteristics support ecosystem functions that
positively influence crop production in the surrounding agricul-
tural lands and increase water quality and availability (Decocq et al.
2016). Ultimately, they contribute to mitigating climate change at a
global level by providing carbon co-benefits (Matos et al. 2020).

Remnant small forest patches are found extensively throughout
Africa, and they provide a wealth of ecosystem services and have
biodiversity conservation potential (Neuenschwander et al. 2011,
2015, Neuenschwander & Adomou 2017). However, they are also
experiencing high rates of land-cover and land-use change,
deforestation, forest fragmentation and degradation (Ahrends
et al. 2010, Fischer et al. 2021, Wingate et al. 2022, 2023). Indeed,
small forest fragments and remnant forest patches are dispropor-
tionately impacted by these processes (Hansen et al. 2020,Wingate
et al. 2022). Such patches present a high probability of disappearing
and therefore constitute a key research and conservation priority.
Furthermore, very small forest patches in West Africa have not
been widely mapped or catalogued before and have been largely
neglected in regional deforestation studies. Previous work has
focused on inventorying remnant forest patches 100–10 000 ha in
area (Wingate et al. 2022, 2023) and on mapping forest fragments
at continental scales (Hansen et al. 2020). Consequently, and in
response to the pressing need to identify and characterize remnant
forest patches before they disappear, this study maps the extent,
area change and count in a subset of forest patches, namely those
0.5–100 ha in area and located outside protected areas across part
of West Africa. To achieve this, we leveraged the Global Forest
Watch (GFW) tree cover dataset from 2000 to 2022 and applied an
object-based forest fragment mapping method (Wingate et al.
2022) to quantify the changes in patch number and area, forest loss
rates and trends in small forest patches.

Materials and methods

Study region

The study region spans the countries of Togo, Benin, Nigeria and
Cameroon across the sub-humid Guinean savannah (GS) and
humid Guineo-Congolian (GC) bioclimatic regions, covering an
area of 835 301 km2 (Fig. 1). It encompasses diverse vegetation
types, topographies and ecosystems, ranging frommontane forests
and savannah to mangrove (Dinerstein et al. 2017). The GS
bioclimatic region is characterized by a mean annual rainfall of
1200–2200 mm and harbours both seasonally humid and dry
deciduous or semi-deciduous forests. Although it receives
relatively high rainfall, the region has a distinct dry season of 8
months. The forest canopies are often 20 m high, dense and closed,
with a heterogeneous understory; while they are not commonly
impacted by seasonal fires, such as in other African bioclimatic
regions, they have been widely converted to urban and arable land
uses and continue to be heavily affected by land clearing. The
current extent of GS forests is very limited; they are highly
modified, comprising derived savannah, secondary forests,
agricultural and plantation mosaics and gallery forest bordering
waterways (Keay 1959a, 1959b, Cotillon & Tappan 2016). In

contrast, the GC bioclimatic region has a mean annual rainfall that
varies between 2200 and 5000 mm, which is generally distributed
throughout the year or split into two rainy seasons. The region is
divided into west and east forests by the Dahomey Gap, where the
GS reaches the coast. GC forests are frequently tall (over 60m high)
and dense. The emergent layer is often discontinuous and covers a
lower and denser canopy, while the understory holds a wide variety
of climbers, epiphytes and herbaceous areas. Historically densely
forested, at present only a fraction of the region harbours forest, yet
the remnant forest flora constitutes one of the most biodiverse in
West Africa (Harrison Church 1957, Cotillon & Tappan 2016).
Mangroves – coastal forests that grow where sea, fresh water and
land join in part of the study area – belong to the planet’s most
productive ecosystems and are widespread along the coastline, yet
they have experienced severe declines over the past four decades
(Corcoran et al. 2007, Cotillon & Tappan 2016).

Approach

Mapping and change detection
We focused on forest patches 0.5–100 ha in area using the method
ofWingate et al. (2022), which is based on forest-cover data for the
year 2000 and the forest loss data between 2001 and 2022 provided
by GFW (Hansen et al. 2013). We differentiated forest patches
between primary and secondary forests based on the classification
of Turubanova et al. (2018), and we excluded forests inside
protected areas using the World Database on Protected Areas
(UNEP-WCMC 2019). Forest loss area was estimated per year for
each forest patch by intersecting the GFW band ‘lossyear’ (2001–
2022) with our forest patch map of the year 2000. Then, we
mapped small forest patches for 2012 and 2022 by subtracting all
changes between 2001 and 2012/2022 from the forest patch map of
2000, and we calculated the number, total area and mean area of
small forest patches in 2000, 2012 and 2022. We specifically
assessed the forest loss and gain associated with a subset of forest
patches – namely those outside of protected areas and with an area
ranging from 0.5 to 100 ha. In this subset, we found forest gain
occurring immediately adjacent to the said forest patches to be
negligible (5628 ha, or 0.2% of the total mapped area) – as opposed
to forest loss (165 306 ha, or 6% of total mapped area), which was
the primary land change; hence, we focus on forest loss. In
addition, since the period for which forest gain data exist covers
only a fraction of our study period (2000–2012), we opted to
refrain from a detailed forest gain analysis. Furthermore, we have
specifically not attempted to map new patches that appeared in the
landscape between 2000 and 2012 and instead focus on forest loss
that occurred in patches that we initially mapped in 2000. The
percentage of total forest loss per country and bioclimatic region
differentiating between primary and secondary forests was
calculated according to Equation 1:

Percentage forest loss ¼ forest patch loss 2000� 2022ð Þ hað Þ
sum forest patch area in 2000ð Þ � 100

(1)

Validation
We validated the small forest fragments map for the year 2022 by
comparing it to the Phased Array L-band Synthetic Aperture Radar
(PALSAR) Forest/Non-Forest (FNF) dataset produced for the
period 2017–2021 (accuracy: 92.3%; Koyama et al. 2022). First, we
resampled the FNF dataset (25 m resolution) to the spatial
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resolution of the GFW dataset (30 m), then we merged the classes
’dense forest’ and ’non-dense forest’ into a single class ’forest’, as
well as the classes ’non-forest’ and ’water’ into a single ’non-forest’
class. Lastly, we overlaid the small forest fragments map of the year
2022 on the FNF raster and sampled the mode (most frequent)
pixel class value. Thus, a given forest patch polygon is assigned to
either ’forest’ or ’non-forest’ classes based on the most frequent
pixel value. An error matrix compared reference (FNF) and
predicted (forest patch map) class values.

Analyses
To identify effects of forest patch size on forest loss and to reduce
the spread of the data, we aggregated patches of similar area into
size classes, disregarding geographical location and the possible
impact of distinct drivers (e.g., distance to roads), as these were
already analysed by Wingate et al. (2022). Since the forest patch
area varies from 0.5 to 100 ha, we created 10–ha size classes (i.e., 0–
10 ha, 10–20 ha, etc.). The total forest patch area and absolute and
relative forest loss area were calculated within these size classes.
Then, we fitted linear regressions with the percentage (relative) and
absolute (cumulative) areas of forest change, per size class, as the
dependent variables and the mean forest patch area as the
independent variable to identify statistical relationships between
forest patch size and forest loss. To quantify the variation in the
relative forest loss, we computed the 95% confidence interval (CI)
for each size class and forest type. Cumulative forest loss and rate of
change for each forest type (primary/secondary) and each size class
were assessed, and the rate of change was calculated as per
Equation 2:

rate ¼ 100� L � lag Lð Þð Þ
lag Lð Þ (2)

where L is loss of area given as a percentage of total forest patch
area and lag is the previous value (Crawley 2012). Finally, a Mann–
Kendall trend analysis was applied to evaluate the trend rate and
significance (Hipel & McLeod 1994), and an autoregressive
integrated moving average (ARIMA) forecast model was used to
estimate the loss rate expected over the next 10 years and so
provide estimates of the possible future extent of very small forest
patches (Hyndman & Khandakar 2008).

Results

Validation and change detection

The validation method resulted in an overall accuracy of 94%,
suggesting that the GFW dataset accurately maps forest fragments
of 0.5–100 ha in the study area when compared to the FNF
reference dataset (Hansen et al. 2013, Shimada et al. 2014,
Congalton & Green 2019).

In 2000, we identified a total of 425 100 patches of continuous
forest (tree cover >30%; tree height >5 m) of 0.5–100 ha in area
(Fig. 2). This number decreased to 423 163 in 2012 and
416 522 in 2022 (Fig. 2b). Additionally, we found that 2% of
patches lost 100% of their area, 6% lost 50% and 70% lost less than
1%. Moreover, the total forest patch area decreased from 1 600 834
ha in 2000 to 1 592 510 ha in 2022, accounting for a total forest loss
of 8324 ha, while mean forest patch area increased from 3.76 to
3.82 ha (Fig. 2b).

Figure 1. The study area spanning the West African countries of Togo, Benin, Nigeria and Cameroon within the Guinean savannah and humid Guineo-Congolian bioclimatic
regions and encompassing primary and secondary forests outside of protected areas (Hansen et al. 2013, UNEP-WCMC 2019).
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Forest patches classed as primary forest constitute only 2% of
the total mapped area, with a total number of 5889 fragments
(33 710 ha). In contrast, secondary forest patches comprise 98% of
the mapped forest patches, with a total of 419 211 in number
(1 567 123 ha). Forest loss across both primary and secondary
forests showed a significant positive trend (tau= 0.7, p< 0.01;
tau= 0.6, p< 0.01, respectively). Secondary forest patches have
cumulatively undergone more forest loss (158 661 ha) than
primary forest patches (7462 ha).

A total of almost 8% of the mapped forest patch area was lost
during 2000–2022, with an annual deforestation rate of 0.34%
(including both primary and secondary forests). Of this loss, 7.10%
comprised secondary forests, and nearly half of the forest loss area
(3.44%) occurred in the 3-year period between 2020 and 2022
(Fig. 3a). Thus, for secondary forests during the 2020–2022 period,
a more than sixfold increase in mean forest loss compared to the
period 2000–2019 was observed: from 2904 ha (0.18% of mean
deforestation rate for the period 2000–2019) to 18 307 ha (0.90% of
mean deforestation rate for the period 2020–2022; Fig. 3a).

Primary forest patches lost on average a greater proportion of
their area (47% yearly average) compared to secondary forest
patches (23%; Fig. 3b). The areal loss of secondary forest patches
was not proportionately equal in the four countries studied;
patches in Benin experienced the highest relative forest loss,
followed by Togo. Primary forest loss was less and occurred mainly
in Cameroon, constituting 2% of the mapped forest patch area
within the country (Fig. 3c).

Applying the forecast model, we found that the rate of annual
loss may increase from 1.2% in 2022 to 1.7% in 2032, resulting in a
loss of 14% (227 519 ha) of the total mapped forest patch area
(2 739 542 ha; Fig. 4).

Forest patch loss and area

Forest patches in the smallest size class (0.5–10 ha) were the most
common, with a total of 387 222 secondary patches (90% of all
patches) and 5079 primary patches (1% of all patches). Of these,
secondary forest patches spanned 728 938 ha or 26% of the total
area, while primary forest patches spanned 10 252 ha or 0.4% of the
total area. This smallest size class also showed the highest mean
forest loss per patch, both for primary (36%) and secondary (9%)
forest types (Fig. 5a). Mean forest loss per patch was inversely
correlated with patch size; with increasing patch size both in
primary (R2 = 0.50, p= 0.02) and secondary (R2= 0.47, p= 0.03)
forests, a decrease in the mean forest loss per patch was
observed (Fig. 5a).

The total area of forest loss was also highest in the smallest
forest patch size classes andwas inversely correlated with patch size
for both primary (R2= 0.49, p= 0.025) and secondary (R2 = 0.51,
p= 0.021) forests (Fig. 5b). Forest loss was exceptionally high in
secondary forests of 0.5–10 ha (59 694 ha or 48% of the total loss
area); in comparison, primary forests lost comparatively less
(3096 ha or 2.5% of total loss area). Lastly, the number and area of
patches for each size class declined slightly, with the largest decrease
occurring in the smallest class, which lost 8096 ha and 8568 patches
over the 2000–2022 period (see Supplementary Materials).

Discussion

The overall accuracy statistic suggests that forest patches are
accurately mapped when compared to the FNF dataset (Hansen
et al. 2013, Shimada et al. 2014). No attempt was made to
distinguish natural forests from plantations or agroforestry;

Figure 2. Results of the forest change analysis showing remaining forest patches (0.5–100 ha) in 2022. (a) A sample of forest patches (green) that have undergone forest loss
during the periods 2000–2012 (red) and 2012–2021 (orange). (b) The change in number, total area and mean fragment area of forest patches at three time steps.
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however, agroforestry could represent a portion of the total
number of patches (Mbow et al. 2014). Agroforestry areas are
recognized as biodiversity reservoirs supporting tree biodiversity
richness and climate change mitigation (Fifanou et al. 2011, Mbow
et al. 2014). Hence, agroforestry is assumed to provide similar
ecosystem services and functions as natural forests and to
contribute to improving biodiversity in agricultural landscapes
(Udawatta et al. 2019).

Smallholder palm oil plantations (sometimes managed as
agroforestry) could also represent a portion of the total number of
the patches mapped. In West Africa, almost 70% of palm oil
production stems from smallholder farming (parcels <50 ha),
which are partly deforestation-free (Meijaard et al. 2018, Descals

et al. 2021). Several studies suggest that palm oil smallholdingsmay
harbour more species diversity than large-scale palm oil holdings
(but still less than natural forests), and their species diversity may
be enhanced by neighbouring forests (Azhar et al. 2015, Meijaard
et al. 2018).

The annual forest loss associated with small forest patches
mapped in this study was disproportionally high in the last 3 years.
It accounted for over a third of the deforestation in the past
22 years. This period coincides with the possible effects of the
COVID-19 pandemic (2020–2022) and the consequent global
financial crisis, which may have indirectly driven more deforest-
ation. Indeed, Antonarakis et al. (2022) concluded that financial
crises lead to important changes in forest dynamics. Brancalion

Figure 3. (a) Annual forest loss (in ha and %);
blue dashed lines indicate the mean forest patch
loss during the period 2001–2019 (2904 ha,
0.18%) and the annual mean forest patch loss
during the period 2020–2022 (18 307 ha, 0.90%).
(b) Annual mean forest loss per patch (in ha and
%); the blue dashed lines show that, per patch,
primary forest patches lose on average more of
their area (47%) compared to secondary forests
(23%). (c) Forest loss across small forest patches
per country and forest type relative to the
country’s forest patch area in 2000.
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et al. (2020) examined GFW deforestation alerts the month after
confinement measures were implemented all over the tropics in
2020 and found them to be two times more frequent than in the
same months in 2019 before the pandemic. Similarly, in
Cameroon, Indonesia and Ecuador, elevated deforestation during
periods of financial crisis has been attributed to the need for
increased food and income security (Mertens et al. 2000,
Sunderlin et al. 2000, Curatola Fernández et al. 2015).
Moreover, Nolte et al. (2022) found increased expansion of
agriculture, which may signify more deforestation occurring,
across eight African countries (2020–2021) (Nolte et al. 2022).
When comparing our results to national deforestation rates
(including all of the forested area and not only the small forest
patches) from the GFW (Fig. S1), we find that deforestation has
increased annually, although there is not an exceptionally high
peak in the 2020–2022 period, as with our small forest patch

dataset. Therefore, our results suggest that the cause of this
disproportional deforestation rate may lie in the increased
agricultural expansion and deforestation by smallholders during
the pandemic; however, these results require further research.

Forest patches decreased in number (loss of 2%) and area (loss
of 1%) over the 22 years, and predictions for 2032 estimate a loss of
14% from the initial cover in 2000. This could result in substantial
negative impacts on biodiversity and climate. Norris et al. (2010)
have related a reduction in plant, invertebrate and vertebrate
species to a decrease in forest cover in West Africa; correspond-
ingly, the region is particularly susceptible to changing rainfall
patterns – with a decline of 30% of its forest cover, the consequent
reduction in precipitation could drastically impact agriculture
(Duku & Hein 2021). What is more, smaller forests are more
impacted by edge effects and loss of connectivity (Marjakangas
et al. 2020, Hending et al. 2023).

Figure 4. Annual small forest patch loss rate in the study area may increase from 1.2% to 1.7% in the coming decade, resulting in a 14% loss of forest cover in the small forest
patches (0.5–100 ha) of the study area.

Figure 5. (a) Mean relative (%) forest patch loss between 2000 and 2022 in relation tomean patch area (ha) per size class; on average, the smallest primary forest patches (0.5–10
ha) have lost almost 40% of their area. (b) Similarly, cumulative forest patch loss (ha) is greatest for the smallest secondary forest patch class.
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We show that the main change dynamic occurring as a result of
continuing forest loss is the disappearance of small patches and the
persistence of large ones, thereby decreasing the total area of forest
but concurrently increasing the average patch area. However, large
forest patches might also fragment into smaller ones, hence
increasing the number of patches and simultaneously decreasing
the total size of the forested area. Furthermore, we found that
secondary forest patches accounted for 98% of all the fragments;
the smallest class (0.5–10 ha) was the most common and
underwent the most significant mean relative forest loss for
primary (36%) and secondary (9%) forest types. Moreover,
deforestation was inversely correlated with the patch size.
Wingate et al. (2022) and Hansen et al. (2020) similarly identified
greater proportional change occurring in smaller forest fragments.
Forest loss associated with small patches was not similar in the
different countries; Benin and, to a lesser extent, Togo were the
most impacted by forest patch loss. We tentatively attribute this to
these countries having fewer forest resources and higher
population densities, and therefore we assume that their forest
patches are under greater extractive pressures (Nagel et al. 2004,
Cotillon & Tappan 2016).

Primary forest patches underwent proportionally more forest
loss, losing almost half of their area annually. These results imply
that primary forest patches are preferentially deforested compared
to those of secondary forests, possibly because they provide more
forest and timber resources (Turubanova et al. 2018). However,
only a spatiotemporal analysis of possible driving forces could
reveal whether the geographical setting of the primary forests and
their deforestation history are capable of explaining the higher
deforestation rates. These results are in contrast to those of Wang
et al. (2020), who found that for the Brazilian Amazon secondary
forests were more deforested than primary forests; they concluded
that the stronger protection of primary forests possibly explained
these results. Since in our study area there is no formal protection
of forest patches, our results serve to highlight that small primary
forest patches should be prioritized for conservation as they are
more threatened by deforestation and harbour higher levels of
biodiversity (Turubanova et al. 2018). Importantly, our results
demonstrate that the deforestation of small forest patches is
accelerating and particularly impacting very small patches. We
found that forest loss associated with forest patches increases with
decreasing patch size. Hence, given the importance of small forest
patches for conservation (Wintle et al. 2019), these results
underline the urgent need to implement sustainable management
and conservation strategies to preserve the remaining small forest
fragments before they entirely disappear.

Conclusion

We found that forest patches of 0.5–100 ha in area outside of
protected areas in part of West Africa are widespread and have
been heavily impacted by deforestation over the 2000–2022 period.
Their total number and area decreased concurrently with an
increased rate of forest loss, with 8% of the total forest patch area
lost to deforestation during the study period and almost half of this
occurring in the last 3 years, coinciding with the COVID-19
pandemic period. Moreover, we establish that forest loss
particularly impacted the smaller forest patches, with 2% losing
100% of their area. Importantly, primary forest patches lost on
average almost half of their area – twice as much as secondary
forests – implying that deforestation preferentially occurs in
primary forest patches. Our results highlight that if forest loss

continues to increase, 14% of forest patch area may have
disappeared by the next decade, stressing the need for measures
to ensure their conservation.

Supplementary material. For supplementary material accompanying this
paper, visit https://doi.org/10.1017/S0376892924000171.
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