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Abstract

Metabolites produced by microbial fermentation in the human intestine, especially short-chain fatty acids
(SCFAs), are known to play important roles in colonic and systemic health. Our aim here was to advance our
understanding of how and why their concentrations and proportions vary between individuals. We have
analysed faecal concentrations of microbial fermentation acids from 10 human volunteer studies, involving
163 subjects, conducted at the Rowett Institute, Aberdeen, UK over a 7-year period. In baseline samples, the
% butyrate was significantly higher, whilst % iso-butyrate and % iso-valerate were significantly lower, with
increasing total SCFA concentration. The decreasing proportions of iso-butyrate and iso-valerate, derived
from amino acid fermentation, suggest that fibre intake was mainly responsible for increased SCFA
concentrations. We propose that the increase in % butyrate among faecal SCFA is largely driven by a
decrease in colonic pH resulting from higher SCFA concentrations. Consistent with this, both total SCFA
and % butyrate increased significantly with decreasing pH across five studies for which faecal pH
measurements were available. Colonic pH influences butyrate production through altering the stoichiom-
etry of butyrate formation by butyrate-producing species, resulting in increased acetate uptake and butyrate
formation, and facilitating increased relative abundance of butyrate-producing species (notably Roseburia
and Eubacterium rectale).
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Introduction

Short-chain fatty acids (SCFA) are the major products of microbial fermentation of non-digested dietary
substrates that reach the human large intestine. They are the main metabolites of microbial fermentation
of dietary carbohydrates and fibre, while branched-chain fatty acids (BCFA) are additional products of
protein metabolism (Smith and Macfarlane, 1998; Scott et al., 2013; Yao et al., 2016). It has long been
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recognised that these acids have major impacts on the gut environment, on mucosal absorption and host
physiology (Cummings et al., 1978). In addition to supplying energy from dietary fibre via SCFA
absorption, these acids have multiple effects on host gene expression and cellular development as
inhibitors of histone de-acetylation and through signaling via G-protein coupled receptors (see recent
review by Blaak et al., 2020). The effects have been shown to include anti-inflammatory action via the
maturation of regulatory T-cells, and the production of hormones that influence satiety (Morrison and
Preston, 2016).

The three predominant SCFA products (acetate, propionate and butyrate) differ in their distribution
through the host, modes of action and consequences for health (Chambers et al., 2018). Butyrate is the
preferred energy source for colonic epithelial cells and has been particularly associated with the
maintenance of gut health because of its role in the prevention of colitis and colorectal cancer (Pryde
etal., 2002; Hamer et al., 2008; Louis et al., 2014). It is therefore important to determine to what extent,
and why, the relative production of these major SCFA in the gut varies within human populations. Since
most SCFA produced are rapidly absorbed in the colon, faecal concentrations represent a balance
between production and absorption and represent approximately 5-10 percent of the total production
(Boets et al., 2017). The higher concentrations in the proximal compared to the distal colon (Cummings
et al., 1987) reflect both greater bacterial fermentation (production) at that site and less time for
absorption. Transit rate through the colon also affects the amount of absorption and correlates with
faecal SCFA concentrations (Lewis and Heaton, 1997; Miiller et al., 2020). Nevertheless, many studies
have demonstrated diet-associated changes in faecal SCFA concentrations, indicating that they can be a
proxy for monitoring overall changes in the balance between production and absorption (Duncan et al.,
2007; Boets et al., 2015).

Although some of the earliest literature represents carbohydrate fermentation by anaerobic gut
communities as a single balanced equation (Wolin, 1960), it is now clear that fermentation stoichiometry
can vary with the species composition of the gut microbiota, with the types of substrate fermented, and
with the general gut environment (Flint and Juge, 2015; Louis and Flint, 2017; Reichardt et al., 2018).
Thus many factors can potentially influence the relative production rates of acetate, propionate and
butyrate in vivo. Added to this is the influence of metabolite cross-feeding, as many butyrate-producing
bacteria in the colon are also net consumers of acetate (Duncan et al., 2002; Louis and Flint, 2017). A
stable isotope study illustrating the systemic availability of colonically administered labelled SCFA
showed that 24 per cent of acetate was converted to butyrate (Boets et al., 2017).

We report here an analysis of multiple studies conducted with human volunteers in Aberdeen, UK, in
which data are available for SCFA concentrations in human stool samples. This is a valuable dataset with
comparable information for a large number of volunteers that can provide significant insights into the
function of the human gut microbiota. The results reveal some highly significant relationships, in particular
between % butyrate and total SCFA concentrations that build on classic dietary intervention studies
involving human volunteers (Cummings et al., 1978; Stephen et al., 1987; Lewis and Heaton, 1997).

Methods
Human studies

All the human studies included (Table 1) recruited volunteers locally who did not take antibiotics in the
3 months preceding study participation, nor during the studies, and were conducted according to
guidelines laid down in the Declaration of Helsinki, with approval from the appropriate local ethical
committee (North of Scotland Research Ethics committee or internal Rowett Institute Human Studies
committee). Written consent was obtained from all participants. Samples within studies were collected at
the timepoints stated in the respective study protocol. Here, we mainly compare the baseline samples
from the volunteers entering the different studies, which represent the free-living population. Any
volunteers who participated in more than one study were only considered once by excluding them from
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Table 1. Volunteer studies included in this analysis.

Bacterial
Fully Habitual quantification pH SCFA Energy

Study ID n® Females Males controlled diet data method y/n y/n Intake y/n BMI range Reference

778 18 0 18 Yes No FISH No Yes Yes 29.6-41.5 Duncan et al. (2007)

779 17 0 17 Yes No FISH, gPCR Yes Yes Yes 27.9-48.5 Russell et al. (2011) and
Duncan et al. (2008)

780 14 0 14 Yes No qPCR No Yes Yes 27.9-51.3 Walker et al. (2011), Holtrop
et al. (2012) and Salonen
et al. (2014)

782 18 0 18 Yes No No Yes Yes Yes 27.8-52.6 Lobley et al. (2015) and
Gratz et al. (2019)

783 20 0 20 Yes No gPCR No Yes Yes 26.5-43 Neascu et al. (2014)

Plantain 17 12 5 No Yes FISH No Yes No 18.3-35.8 Scott et al. (this study)

Inulin 12 9 3 No Yes gPCR Yes Yes No 19.8-31.5 Fuller et al. (2007) and
Ramirez-Farias et al.
(2009)

FruitVeg 38 24 14 No Yes gPCR No Yes Yes 17.8-36.6 Duthie et al. (2018) and
Louis et al. (this study)

Oatibix 5 4 1 No Yes FISH Yes Yes No 17.6-26.3 Scott et al. (this study)

Timebugs 4 2 2 No Yes FISH Yes Yes Yes 20.9-26.3 Duncan et al. (this study)

Totaln = 163 51 112

?n = Number of volunteers on each study, followed by number of Females/Males.

Where recorded, energy intake was the average sum of energy (kcal) from carbohydrate, protein, fat and fiber per day based on standardised baseline diets (studies 778 - 783) or by use of a 4-day self-reported food
diary (FruitVeg) or weekly averages of daily intake records for Timebugs study.

Abbreviations: BMI, body mass index; FISH, fluorescent in situ hybridisation; gPCR, quantitative polymerase chain reaction.
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datasets in later studies. Details of the dietary regimes followed are detailed in publications relating to
individual studies, and are described in the text when appropriate (see Table 1).

Sample processing

Faecal samples were collected and the fresh samples processed within 12 h of collection following
standard protocols in place at the Rowett Institute (Duncan et al., 2007; Walker et al., 2011). The number
of samples collected varied in the different studies, and the number used in each comparison is indicated
at the appropriate point in the results section. Specific methods used for sample processing and analysis
are shown in Table S1, illustrating the consistency across all studies.

SCFA analysis

SCFA analysis was carried out using gas chromatography using derivatised samples as previously
described in Richardson et al. (1989). In brief, following derivatisation of the samples using N-tert-
butyldimethylsilyl-N-methyltrifluoroacetamide with 2-ethyl butyrate as the internal standard, the
samples were analysed using a Hewlett Packard gas chromatograph (GC) fitted with a silica capillary
column and using helium as the carrier gas.

Microbiota analysis

Fluorescent in situ hybridisation (FISH) and quantitative polymerase chain reaction (QPCR) analyses
were carried out as detailed in Walker et al. (2005) and Ramirez-Farias et al. (2009), respectively. Any
variations on standard protocols are detailed in publications relating to specific individual studies.

Statistical analysis

Associations between individual SCFA ratios and total SCFA were examined via Pearson’s correlation.
All statistical tests were performed using R 3.6.0 (R Foundation for Statistical Computing, Vienna), with
significance limits set at p < 0.05. Significance of correlations based on multiple observations per
volunteer was assessed using a linear mixed model with volunteer as a random effect. Figures were
prepared using R version 3.6.3 (R foundation for Statistical Computing, Vienna).

Results

Data on the concentrations of SCFA in faecal samples were compiled from 10 studies conducted in
Aberdeen, UK, between 2006 and 2012. Five of these studies involved obese or overweight male
volunteers who were enrolled onto carefully controlled dietary intervention trials looking at the impact
of diet upon weight loss. The remaining five studies involved healthy volunteers from the general
population who received different supplements to their habitual diets (four studies), while Timebugs was
a longitudinal study with no dietary intervention (see Table 1 and previous publications, references
provided in Table 1, for details).

We first examined data from baseline samples provided by each volunteer before any major
dietary intervention. These corresponded to the subjects’ habitual diets in the five ‘normal weight’
studies, or following a balanced weight maintenance diet for 1-3 days in the case of the five obesity
studies. Results from these single samples from 158 different volunteers are shown in Figure 1, in
which the percentage of each fermentation acid within the total SCFA pool was plotted against
absolute total faecal SCFA concentrations. Three relationships were highly significant (p < 0.001).
The % butyrate increased with increasing total SCFA concentration (correlation r = 0.627, p < 0.001)
while % iso-butyrate and % iso-valerate decreased with increasing total SCFA concentration
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Figure 1. Relationship between total faecal short-chain fatty acid (SCFA) concentrations and proportional abundance (%) of
individual fermentation acids for single baseline samples from 158 of the 163 volunteers. Excludes five volunteers with no samples
for SCFA analysis. The sum of all SCFA concentrations (Total SCFA, mM) is on the x-axis while the percentage of each respective SCFA
(individual mM divided by total SCFA concentration in mM) is on the y-axis. Pearson’s correlation and linear mixed model analysis gave
the following values. Acetate: r = —0.247, p = 0.002; Propionate: r = 0.042, p = 0.602; Iso-butyrate: r = —0.492, p < 0.001; Butyrate:
r=0.627, p < 0.001; Valerate: r = —0.126, p = 0.116; Iso-valerate: r = —0.373, p < 0.001.

(r=—0.492 and r = —0.373 respectively, p < 0.001). There was also a significant negative correlation
between the % acetate and total SCFA concentration (r = —0.247, p = 0.002). The same relationships
were also observed when all datapoints (n = 502) across the time courses of the various dietary
interventions were included (Figure S1), again with the strongest positive correlation between %
butyrate and total SCFA (r = 0.597, p < 0.001). Across the entire dataset, as the total SCFA
concentration increased, percentages of acetate, valerate, iso-valerate and iso-butyrate all decreased
significantly (p < 0.001; Figure S1).
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Figure 2. Correlation between faecal pH, short-chain fatty acid (SCFA) and SCFA proportions in baseline samples collected from five
volunteer studies (n = 51). The pH is on the x-axis while total SCFA concentration (mM) or the individual SCFA percentage is on the y-
axis. Pearson’s correlation and linear mixed model analysis gave the following values. Total SCFA: r = —0.425, p = 0.002; Propionate:
r = 0.058, p = 0.686; Iso-butyrate: r = 0.415, p = 0.002; Butyrate: r = —0.588, p < 0.001; Acetate: r = 0.198, p = 0.164; Iso-valerate:
r=0.377, p = 0.006.

Faecal pH measurements were available for samples from five of the studies listed in Table 1. Figure 2
shows the relationship between SCFA concentrations and pH in the baseline samples (n = 51). This
reveals a significant inverse correlation between total SCFA concentration and faecal pH (r = —0.425,
p=0.002, and specifically between high % butyrate and low faecal pH (r = —0.588, p <0.001). In contrast,
there was a significant positive correlation between % iso-butyrate (r = 0.415, p = 0.002) and % iso-
valerate (r = 0.377, p = 0.006) and faecal pH. There was no significant correlation between the % acetate,
or % propionate and faecal pH (Figure 2). The strong correlations between decreasing total SCFA
concentrations and decreasing % butyrate with increasing pH were also observed when data for all
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Figure 3. Relationship between faecal pH and proportional abundance (%) of butyrate-producing bacterial groups (Roseburia/
E. rectale and F. prausnitzii) within faecal microbiota. Data are based on FISH microscopy counts (Oatibix, Timebugs and 779 study) or
quantitative polymerase chain reaction (qPCR) analysis (Inulin study) of all samples from volunteers in four studies (n = 130) in the
case of Roseburia, and three studies (n = 109) in the case of F. prausntizii (F. prausnitzii data were not obtained from the Oatibix study).
Pearson’s correlation and linear mixed model analysis gave values of: Roseburia % r = —0.239, p = 0.017; F. prausnitzii % r = —0.010,
p = 0.829.

available timepoints (n = 198; including dietary intervention periods) were plotted against pH
(Figure S2, r = —0.503, p < 0.001; r = —0.602, p < 0.001, respectively). Across the full dataset, weak
positive correlations were observed between pH and the % propionate (r = 0.142, p = 0.049) and %
acetate (r = 0.163, p = 0.022), while the strong positive correlation for % iso-butyrate (r = 0.245,
p < 0.001) and pH was still present.

Populations of butyrate-producing bacteria related to Roseburia spp. (including Eubacterium rectale)
were previously shown to decrease in parallel with % butyrate in faecal samples in dietary interventions
(Duncan et al., 2007). Here, data from all timepoints for four studies in which pH and microbial
composition was measured (n = 130; Table 1) showed a significant inverse relationship (r = —0.239,
p = 0.017) between pH and the relative abundance of the Roseburia group within the faecal microbiota
(Figure 3). No such relationship was found between pH and Faecalibacterium prausnitzii, which is
another commonly abundant butyrate producing taxon in the human gut, after combining data from
three studies (n = 109; Figure 3).

In order to specifically investigate links between dietary carbohydrate consumption and butyrate-
producing bacteria, for one of the longitudinal studies (study 779), we followed changes in the population
of the Roseburia group (as measured by qPCR) over time following the switch from maintenance to a low
carbohydrate diet in eight volunteers. These data demonstrate a rapid response to the dietary interven-
tion, with numbers of the Roseburia group declining markedly (p = 0.008) from 5 days of the shift to the
low carbohydrate diet in all volunteers (Figure 4).

Across volunteers from all 10 studies, total faecal SCFA concentrations in baseline samples
increased significantly with body mass index (BMI) (p < 0.001, Figure 5). We should note that the
5 studies, 778-783, involved only male volunteers who were overweight or obese, while the other
studies involved volunteers of both sexes, of mixed BMI (n = 145; Table 1). Increased faecal SCFA
have been reported previously in obese subjects of both sexes (Schwiertz et al., 2010). Plots of
individual SCFAs against BMI showed that concentrations of each of the three major SCFAs
(butyrate, acetate and propionate) also all increased significantly with increasing BMI (p < 0.001).
These significant increases in SCFA concentrations converted into significant positive correlations
between increased proportional abundance of butyrate and propionate (p = 0.001 and p = 0.023
respectively, Figure 5) with increased BMI. Although the mean concentrations of butyrate and total
SCFA were significantly lower in females than males (p < 0.001; Figure S3A), this appears to reflect the
higher mean body mass and energy intakes of male compared to female volunteers involved in these
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Figure 4. Change in the proportion of Roseburia/E. rectale 16S rRNA gene amplicons in faecal samples from overweight volunteers
following switch from a maintenance diet to a decreased carbohydrate, weight loss diet. Estimates are from quantitative polymerase
chain reaction (qPCR) data from study 779, analysed as described in Hamer et al. (2008) and Ramirez-Farias et al. (2009). The number
of days after the diet shift is on the x-axis while the % of Roseburia/E. rectale group 16S rRNA gene calculated as a % of total bacterial
16S rRNA genes is on the y-axis. The proportional representation of the Roseburia group declined significantly (p = 0.008) from five
days after the diet shift (non-parametric test of means before and after day 5).

studies (Figure S3B). Total food intake and intake of dietary fibre were highly correlated in these
studies (data not shown), making it impossible to distinguish separate relationships between fibre
intake and SCFAs.

Discussion

We reported previously that % butyrate decreased and % iso-valerate and iso-butyrate increased in faecal
SCFA in response to reduced carbohydrate intake in small groups of overweight volunteers (Duncan
etal,, 2007; Russell et al., 2011). The wider analysis presented here of samples donated by 163 individuals
from 10 human volunteer studies reveals significant changes in the ratios of different SCFA with
increasing total faecal SCFA concentration. Specifically, as the total SCFA concentration increases,
the proportion (%) of butyrate increases and % iso-valerate and % iso-butyrate decreases. These
relationships were significant both across the baseline samples, and when complete longitudinal data
from the full dietary intervention periods were included. The simplest interpretation is that inter-
individual variation in the volunteers’ habitual dietary intake results in variation in the delivery of
fermentable fibre to the large intestine, which is reflected in the bacterial fermentation products detected
in faecal samples.

There are two distinct mechanisms involving colonic pH that could explain the increase in % butyrate
with increasing total faecal SCFA concentration. The first is that the stoichiometry of butyrate formation
by dominant butyrate-producing bacteria, including Roseburia spp. and Faecalibacterium prausnitzii,
changes with gut luminal pH. These species rely on the butyryl-CoA:acetate CoA-transferase reaction for
the final step in butyrate formation that can involve the net uptake of acetate (Duncan et al., 2002). More
butyrate is formed, and more acetate taken up, per mol of hexose fermented by pure cultures when the
pH is slightly acidic than when it is closer to neutrality (Kettle et al., 2015; Louis and Flint, 2017). This
effect appears to account for a 25-50 per cent higher proportion of butyrate among the SCFA products of
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Figure 5. Relationship between total faecal short-chain fatty acid (SCFA) or concentrations of individual SCFA in baseline samples
versus body mass index in nine studies where body mass index (BMI) was specifically recorded (n = 145). Pearson’s correlation and
linear mixed model analysis gave the following values. Total SCFA: r = 0.369, p < 0.001; Butyrate: r = 0.308, p < 0.001; % Butyrate:
r =0.266, p = 0.001; Propionate: r = 0.393, p < 0.001; % Propionate: r = 0.188, p = 0.023; Acetate: r = 0.369, p < 0.001; % Acetate:
r=—0.112, p = 0.179.
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in vitro batch incubations with mixed faecal bacteria observed when the initial pH was 5.5 compared to
6.5 (Reichardt et al., 2018). This effect occurred across a wide range of microbial community compos-
ition and was not observed for propionate formation in the same incubations (Reichardt et al., 2018).
Since there is evidence that higher SCFA concentrations result in lower pH values in the colon in vivo
(Bown et al,, 1974; Cummings et al., 1978) this stoichiometric shift would increase the % butyrate
produced as total SCFA concentrations increase.

pH may also play a crucial role in determining the competition for carbohydrates in the colon.
Chemostat studies with human colonic microbiota have shown that major butyrate-producing species
compete better for soluble carbohydrates when the pH is slightly acidic than when it is close to neutrality.
This is explained by decreased competition between these butyrate-producers and Bacteroides species
that are more sensitive to acidic pH (Walker et al., 2005; Duncan et al., 2009; Chung et al., 2016).
Theoretical modelling was used to demonstrate that the experimental changes in community compos-
ition and butyrate formation were consistent and predictable from the behaviour of cultured human
colonic bacteria (Duncan et al., 2009; Kettle et al., 2015).

Another possible mechanism is that an increased supply of dietary fibre to the proximal colon
promotes the growth and activity of butyrate-producing species, thereby increasing their represen-
tation within the microbial community. Evidence for this in vivo comes from carefully controlled
dietary intervention studies that show a significantly higher proportional representation (and
absolute numbers) of butyrate-producing bacteria related to Roseburia (including Eubacterium
rectale) in faecal microbiota from individuals when consuming diets high in fibre compared with
diets low in total carbohydrate and fibre (Duncan et al., 2007; Russell et al., 2011). Indeed, a fourfold
decrease in the Roseburia population was associated with fourfold lower % butyrate (and butyrate
concentration) among faecal SCFAs (Duncan et al., 2007). The link between high fibre consumption
and higher abundance of the Roseburia group has also been reported in other studies (Adamberg
etal., 2020), and there is evidence that some of these bacteria specialise in the utilisation of insoluble
fibres (Duncan et al., 2016). Fermentable carbohydrates also tend to favour lactate-producing
Bifidobacterium species. Since several species of colonic bacteria are known to produce butyrate
from lactate (Louis and Flint, 2017) this could stimulate butyrate formation indirectly via metabolite
cross-feeding.

Iso-butyrate and iso-valerate are products of the fermentation of branched chain amino acids,
mainly by Bacteroides and Clostridia species (Aguirre et al., 2016; Rios-Covian et al., 2020). The % iso-
butyrate and iso-valerate among total SCFA is reported to increase with high protein, low carbohydrate
diets (Russell et al, 2011; Gratz et al., 2019), while BCFA levels are inversely correlated with
consumption of dietary fibre (Rios-Covian et al., 2020). The decrease in % BCFA with increasing total
SCFA therefore suggests that high faecal SCFA concentrations are largely attributable to increased
carbohydrate fermentation that does not yield BCFA. If we assume that dietary protein is largely
digestible (Cummings and Macfarlane, 1997; Van der Wielen et al., 2017), then the delivery of
‘resistant’ dietary protein to the colon is not likely to increase greatly, if at all, on high-fibre diets,
while endogenous sources of protein should be largely independent of fibre intake. Therefore,
increased fibre intake is expected to lead to fermentation of more non-digestible carbohydrate relative
to protein in the large intestine.

Another potential contributor to the observed correlations between higher % butyrate, higher total
faecal SCFAs and lower faecal pH is gut transit time. Several studies have shown that gut transit rate
can play a major role in determining metabolite concentrations and microbiota profiles. In early
studies that used drug or fibre intake to vary gut transit, generally in small groups of volunteers,
more rapid whole gut transit was associated with increased faecal SCFA concentrations, increased %
butyrate and decreased colonic pH (Cummings et al., 1978; Stephen et al., 1987; El Oufir et al., 1996;
Lewis and Heaton, 1997; Abell et al., 2006). More recently, longer gut transit times correlated with
higher microbial diversity and species richness (Roager et al., 2016; Vandeputte et al., 2016).
Constipated patients across different age-groups appear to have lower total SCFA concentrations,
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much lower concentrations of butyrate and lower numbers of butyrate-producing bacteria than age-
matched healthy controls (Zhuang et al., 2019).

Increased gut transit rate is considered to lead to increased faecal SCFA concentrations for two main
reasons (Stephen et al., 1987; Flint, 2011). First, there is evidence that an increase in transit rate through
the upper gut may result in less complete digestion of food components, thus increasing the amount of
digestive residue arriving in the large intestine and increasing the rate of microbial fermentation (Holgate
and Read, 1983; Chapman et al., 1985). Second, more rapid transit is expected to decrease the proportion
of SCFA produced by microbial fermentation that is subsequently absorbed across the colonic mucosa.
Individuals with slow colonic transit tend to show lower faecal concentrations of SCFA (Miiller et al.,
2020), and longer average colonic transit times are reported in healthy females than in healthy males
(Rao et al., 2009; Wang et al., 2015). The present study was not designed to examine the influence of
gender, but we can note that gender-associated differences in the microbiota composition have been
linked to BMI (Haro et al., 2016).

In conclusion, inter-individual variation in habitual dietary intakes, in particular fibre intake, are
likely to be the main factors accounting for the systematic variation in microbial fermentation and SCFA
concentrations observed among human volunteers. The stimulation of butyrate, the main energy source
for colonocytes, by decreased colonic pH associated with high microbial SCFA production, noted here, is
likely to be a significant factor in the protective effect of fibre consumption against colorectal cancer and
certain other bowel diseases.
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