
Robotica (2024), 42, pp. 457–481
doi:10.1017/S0263574723001546

RESEARCH ARTICLE

Obstacle avoidance path planning of 6-DOF robotic arm
based on improved A∗ algorithm and artificial potential
field method
Xianxing Tang1,2 , Haibo Zhou1,2 and Tianying Xu1,2

1School of Mechanical and Electrical Engineering, Central South University, Changsha, Hunan, China and 2State Key
Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, Hunan, China
Corresponding author: Haibo Zhou; Email: zhouhaibo@csu.edu.cn

Received: 17 May 2023; Revised: 19 October 2023; Accepted: 22 October 2023; First published online: 29 November 2023

Keywords: 6-DOF robotic arm; obstacle avoidance; path optimization; artificial potential field method

Abstract
Most studies on path planning of robotic arm focus on obstacle avoidance at the end position of robotic arm, while
ignoring the obstacle avoidance of robotic arm joint linkage, and the obstacle avoidance method has low flexibility
and adaptability. This paper proposes a path obstacle avoidance algorithm for the overall 6-DOF robotic arm that
is based on the improved A∗ algorithm and the artificial potential field method. In the first place, an improved A∗

algorithm is proposed to address the deficiencies of the conventional A∗ algorithm, such as a large number of search
nodes and low computational efficiency, in robotic arm end path planning. The enhanced A∗ algorithm proposes
a new node search strategy and local path optimization method, which significantly reduces the number of search
nodes and enhances search efficiency. To achieve the manipulator joint rod avoiding obstacles, a method of robotic
arm posture adjustment based on the artificial potential field method is proposed. The efficiency and environmental
adaptability of the robotic arm path planning algorithm proposed in this paper are validated through three types
of simulation analysis conducted in different environments. Finally, the AUBO-i10 robotic arm is used to conduct
path avoidance tests. Experimental results demonstrate that the proposed method can make the manipulator move
smoothly and effectively plan an obstacle-free path, proving the method’s viability.

1. Introduction
Collision avoidance path planning is a fundamental technology in robotics and the foundation for robotic
arm to complete complex work goals [1–3]. In recent years, a large number of heuristic algorithms [4–6]
such as the genetic algorithm, neural network algorithm, particle swarm algorithm, and A∗ algorithm
have been implemented. The genetic algorithm is an algorithm based on the evolution of biological pop-
ulations that are widely used in path planning problems [7, 8] due to its excellent real-time performance
and global search capability. However, the genetic algorithm suffers from a slow convergence rate and
a propensity to settle on local optimal solutions [9, 10]. The particle swarm algorithm is an optimiza-
tion algorithm that simulates the flight of birds, with the benefits of fast convergence speed and simple
implementation [11, 12]. However, the particle swarm algorithm is prone to premature and inaccurate
convergence [13, 14]. Neural network algorithm is an algorithm that mimics animal neural networks
for distributed parallel information processing, which has the advantage of strong learning ability and
robustness [15]. Nevertheless, the neural network algorithm has complex parameters, long running time,
and slow convergence speed [16, 17]. The artificial potential field method proposed by Khatib is also
utilized extensively in the field of obstacle avoidance in mobile robots and manipulators [18]. Ge [19]
proposed a new potential field method to apply mobile robots to path planning in dynamic environments.
However, the artificial potential field method is prone to local optimization, making it challenging to

C© Central South University, 2023. Published by Cambridge University Press.

https://doi.org/10.1017/S0263574723001546 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001546
https://orcid.org/0000-0003-0998-1952
mailto:zhouhaibo@csu.edu.cn
https://doi.org/10.1017/S0263574723001546

458 Xianxing Tang et al.

apply broadly to the joint obstacle avoidance of multi-degree-of-freedom robotic arms. Hart [20] pro-
posed the A∗ algorithm in 1968 by designing a heuristic function, which has been widely utilized in path
planning due to its low complexity, high search efficiency, and global optimality. Anshika [21] proposed
a modified A∗ algorithm applied to path planning for multi-robot systems that achieves the shortest route
with the least amount of energy and generates the smoothest paths. Ren [22] proposed an A∗ algorithm
based on the combination of the static weight method and jump point search, which decreases the num-
ber of visited nodes and improves the search efficiency. Guruji [23] proposes an improved A∗ algorithm
to determine the heuristic function before the collision phase, thereby reducing the search time enhanc-
ing the effectiveness of path planning. Li [24] incorporated the two-way alternating classification search
strategy into the A∗ algorithm, which makes mobile robot path planning more efficient and smoother
than the conventional A∗ algorithm. Zuo [25] proposed a hierarchical path planning method combining
the A∗ algorithm and the least squares policy iteration algorithm for mobile robot navigation in complex
environments. The algorithm suffers from computational complexity and low environmental adaptabil-
ity. Wang et al. [26] proposed an A∗ algorithm with variable-step segment search, which can guarantee
that the intermediate point is the optimal path. This algorithm is applied in obstacle avoidance path
planning for a six-degree-of-freedom robotic arm, but it is less suitable for environments with complex
obstacles. Bing et al. [27] proposed a local path planning method that applies the A∗ algorithm, which
first reduces the local path length by straightening the local path to achieve collision-free path planning
for industrial robotic arms, but the algorithm does not take the obstacle avoidance method of the robotic
arm linkage into account.

In addition to the need for a comprehensive approach to obstacle avoidance that takes into account
the robotic arms’ end position and robotic arm linkage, the methods proposed in the literature [22–27]
frequently only improve the path search efficiency and path smoothing of the A∗ algorithm. For the end
position and joint overall obstacle avoidance problem of a robotic arm, the majority of studies employ
path planning algorithms for obstacle avoidance [28–30]. However, these research methods are typically
employed in simple obstacle avoidance environments, and only a few joint motions are considered to
reduce the algorithmic complexity. In Section 4.2, a comparison between the approach proposed in
this paper and the aforementioned concepts will be presented. The primary contribution of this paper
is to propose a path planning method for overall 6-DOF robotic arms for obstacle avoidance in 3D
environment based on an improved A∗ algorithm and artificial potential field method. First, an enhanced
A∗ algorithm is proposed for robotic arm end path obstacle avoidance, followed by the development of
a node collision detection method. The enhanced A∗ algorithm redefines the node search direction and
proposes a local path optimization technique. Finally, the path nodes are smoothed by the cubic spline
B-curve to enable the robotic arm to achieve continuous smooth path planning in the obstacle avoidance
process. Notably, this paper is a continuation of previous research [1]. This method does not account for
the obstacle avoidance of the robotic arm linkage. In this paper, the authors consider both end trajectory
obstacle avoidance and robotic arm rod obstacle avoidance. Our main objective is to enable efficient
path planning of a 6-DOF robotic arm in 3D environment to meet its obstacle avoidance requirements
in certain motion environments.

The structure of the article is as follows: In Section 2, an enhanced A∗ algorithm for robotic arm end
path planning is proposed. Based on this, a joint rod obstacle avoidance strategy for a 6-DOF robotic
arm is designed in Section 3. In Section 4, simulations and experimentation are performed in detail. The
final section provides a summary of the paper and its conclusions.

2. Improved A∗ algorithm for robotic arm end path planning
2.1. Traditional A∗ algorithm
The A∗ algorithm is a heuristic global optimal path planning algorithm that enables efficient path
planning in an obstacle-aware environment [31]. The direction of the A∗ algorithm’s path search is
determined by the cost function. In each round of path search, the cost function value of each child node
in the vicinity of the parent node is calculated, and the child node with the smallest cost function value

https://doi.org/10.1017/S0263574723001546 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001546

Robotica 459

front area front area

node
front area reverse area

node(a) (b)

Figure 1. Discrimination of obstacle planes.

is chosen as the parent node in the next round. The final path result is then searched in this cycle. The
cost function is typically expressed as follows:

F(n) = G(n) + H(n) (1)

where G(n) is the current path cost, which represents the cost of moving from the starting point to the
child node, and H(n) is the heuristic function known as the estimated cost, which represents the cost of
moving from the child node to the target point.

However, if the traditional A∗ algorithm is directly applied to the path planning of the robotic arm
in 3D environment, the following three issues will arise: (1) The A∗ algorithm’s calculation speed in
3D environment will be drastically reduced; (2) when a node encounters obstacles, the A∗ algorithm’s
search efficiency is drastically reduced; (3) the traditional A∗ algorithm treats the moving subject as
a point and only considers whether the moving point collides with environmental obstacles. However,
the position relationship between the robotic arm’s rod, the end position of the robotic arm, and the
obstacles must be carefully considered when planning the robotic arm’s path.

Due to the above-mentioned shortcomings of the traditional A∗ algorithm in practical applications,
this paper proposes an enhanced A∗ algorithm to apply the motion planning of the robotic arm to the
known obstacle environment model. The enhanced A∗ algorithm first proposes a node collision detection
method and then improves the efficiency of obstacle avoidance by refining the node search direction and
enhancing the local path optimization.

2.2. Path nodes collision detection
An important factor for ensuring that nodes can search the environment without colliding with obsta-
cles is the collision detection [32, 33]. In this paper, all environmental obstacles are viewed as convex
polyhedrons that undergo a particular expansion process, and the proposed algorithm can perceive the
obstacles after the expansion. Since the search step size is relatively small compared to the polyhedral
size of the obstacle, the essence of node and obstacle collision detection is to determine whether the node
is located within this polyhedron. The plane �j of the convex polyhedron � is arbitrarily extracted; the
outward normal vector of the extracted plane �j is the vector −→n , and the point p belongs to the plane
�j. The subsequent definitions are provided first:

T
(
�j, x

) = −→n ·(x − p) (2)

where x is the coordinate position of the current node.
If T > 0, it is defined that the node x is located in the front area of the plane �j. If T = 0, it is defined

that point x is located on the plane �j. If T < 0, it is defined that point x is located in the reverse area of
the plane �j. For a clear illustration of the above definition, see Fig. 1. The node x is located in the front
area of the plane �1 and plane �2 in Fig. 1(a), and the node x is located in the front area of the plane �1

and the reverse area of plane �2 in Fig. 1(b).

https://doi.org/10.1017/S0263574723001546 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001546

460 Xianxing Tang et al.

front area

reverse area

j

1n

x

'q
sx

gx

kq

kl

v

''q

Figure 2. Schematic diagram of node search.

If for any plane �i of the convex polyhedron �, the following equation exists:

T(�i, x) < 0 (3)

Therefore, it means that the node x is in the obstacle.

2.3. Improved A∗ algorithm
When no obstacles are encountered, the search direction of the enhanced A∗ algorithm is the vector
direction of the current node pointing to the goal point. The current node’s search direction is v, the
current node is x, and the search step is d. Then, the search is performed on the child node x′:

x′ = x + −→v · d (4)

If the child node x′ interferes with the obstacle, the search cannot continue along the direction −→v at
the node x. Therefore, the search direction of the child nodes needs to be redefined. The front area plane
of the current node x is first selected from the obstacle Oi. Arbitrarily select a front area plane �j of the
obstacle Oi, take any edge lk from the plane �j, and take any point q on lk, then the cost value of the
point q can be expressed as follows:

F(q) = g(x) + h(q) +‖x − q‖ (5)

where h(q) is the estimated cost value from the point q to the goal point, g(x) is the current cost value
of the node x, and ‖x − q‖ is the path length value from node x to point q.

Then, the point on lk where the smallest value of F(q) exists is noted as qk. qk is denoted as a key
node of the local path. Figure. 2 shows the search schematic.

The node x̂ will traverse all the edges on the frontal area plane �j, and each edge will generate a key
node, as shown in Fig. 3. If there are n boundaries on the front area plane �j, n alternative directions
will be generated, denoted by {τ x1

ij1 , τ x1
ij2 · · · τ x1

ijn}. The path cost values of n directions are put into the set
cx1

ij1, and the minimum cost value in the set cx1
ij1 is selected as the movement direction.

After locating the key node, the enhanced A∗ algorithm optimizes the local path based
on the path nodes and the key node. The local path before the optimization is denoted by
{Ks, P1, P2, P3 · · · Pn−1, Pn, Kg}, Ks, Kg denote the start point and goal point of the local path, respec-
tively, and P1, P2, P3 · · · Pn−1, Pn denote the nodes of the path. The local path optimization process is
as follows: Starting from the starting point Ks, connect Ks to P1. If Ks and P1 do not interfere with the
obstacle, connect Ks and P2 until Ks and Pm(k = 3, 4 · · · , m) interfere with the obstacle. Connect Ks to
Pm−1 and clear all path nodes between the starting point Ks and node Pm−1 and update the path. Repeat
this operation from the node Pm until the key node Ks is searched. Figure 4 compares the situation before
and following path optimization. Local path optimization can effectively reduce the path’s length and
number of turns.

https://doi.org/10.1017/S0263574723001546 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001546

Robotica 461

Figure 3. Key nodes for the current node.

Figure 4. Comparison of paths before and after optimization.

3. Joint rod obstacle avoidance technique based on enhanced A∗ algorithm and artificial
potential field method

During the process of path planning, the improved A∗ algorithm proposed above only modifies the posi-
tion of the robotic arm’s end, while the robot arm posture is ignored. In this paper, the local optimization
property of the artificial potential field method is used to ensure that the robotic arm rods do not collide
with environmental obstacles by adjusting the robotic arm’s attitude.

3.1. Rod collision detection of the 6-DOF robotic arm
The robotic arm bars can be viewed as cylindrical features; therefore, it is necessary to determine if each
cylindrical feature of the robotic arm bars collides with each environmental obstacle. The position of the
robotic arm rod in space can be determined based on the robotic arm’s current pose. The current pose
of the robot arm is X = (x, y, z, α, β, γ), and the joint angle QX = (q1, q2, q3, q4, q5, q6) can be obtained
from the inverse kinematic model of the robot arm. As shown in Fig. 5(a), for the ith rod of the robot
arm, the rod axis line segment is li, the rod radius is ri, and the shortest distance from the line segment
li to the obstacle Oj is denoted by D(li, Oj). Then, the distance dij between the ith rod of the robot arm

https://doi.org/10.1017/S0263574723001546 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001546

462 Xianxing Tang et al.

Figure 5. Distance between the robotic arm joint rod and the obstacle.

and the jth obstacle Oj is expressed as follows:

dij =
{

D
(
li, Oj

) − ri D
(
li, Oj

)
> ri

0 D
(
li, Oj

) ≤ r
(6)

In this study, the distance between the robotic arm and the obstacle is calculated as follows: first,
the linkage is simplified into spatial line segments, and then, the obstacle is inflated, as depicted in
Fig. 5(b). Determine if there is a point of intersection between each linkage segment and the obstacle
plane region. If an intersection point exists, the robotic arm will collide with the obstruction. Obtain the
distance between the line segments of each link and the line segments comprising the obstacle plane
if there is no intersection point. An illustration is provided below. Suppose that the endpoints of the
ith link of the robot arm are qi

1 = (xi
1, yi

1, zi
1) and qi

2 = (xi
2, yi

2, zi
2). Then, ith link can be regarded as a

line segment qi
1qi

2. Assume that the plane region is enclosed by points −→p1
−→p2 · · · −→pn

−→p1 connected in
counterclockwise order. Suppose the normal vector of the plane is vector (A, B, C), the equation of the
plane is given below:

Ax + By + Cz + D = 0 (7)

Substitution of the coordinates qi
1 = (xi

1, yi
1, zi

1) and qi
2 = (xi

2, yi
2, zi

2) of the endpoints of the segment
into the above equation yields:

di
1 = Axi

1 + Byi
1 + Czi

1 + D (8)

di
2 = Axi

2 + Byi
2 + Czi

2 + D (9)

If di
1 and di

2 have the same sign, then there is no intersection of line qi
1qi

2 with the plane, and there
is no collision between that line and the obstacle. If di

1 and di
2 have opposite signs, then there is an

intersection of line qi
1qi

2 with the plane, and it is easy to solve for the location of the intersection. Since
the plane region −→p1

−→p2 · · · −→p n
−→p1 mentioned in this study is only a small part of the whole plane, when

there is an intersection of the line segment with the whole plane, there may be a situation where the
line segment qi

1qi
2 does not intersect with the plane region −→p1

−→p2 · · · −→p n
−→p1. Therefore, it is necessary to

determine whether the intersection point is in the plane area. To better illustrate the judgment of whether
the intersection point is in the plane region −→p1

−→p2 · · · −→p n
−→p1, Fig. 6 is depicted below.

Assume that the intersection point is o. The points p1p2 · · · pn are forming the planar region form the
vectors −−→p1p2, −−→p2p3, −−→p3p4 and −−→p4p5 in order, and the vertices form the vectors −→p1o, −→p2o, −→p3o, −→p4o and −→p4o

https://doi.org/10.1017/S0263574723001546 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001546

Robotica 463

Figure 6. Schematic diagram for judging the intersection point.

Figure 7. The shortest distance between a line segment and a planar region.

with the point o, respectively, and satisfy the following equation:
−−→pipi+1 × −→pio = mi , i = 1 ∼ n (10)

According to the above equation, the vector −−→pipi+1, formed between the vertices of the plane region
and the vector −→pio (formed by the vertices and the intersection point) is multiplied.

If the sign of the results of the calculation is the same, then the intersection point is in the plane
region, and line segment qi

1qi
2, must collide with the obstacle region. On the contrary, the intersec-

tion point is outside the plane region, then the line segment qi
1qi

2 will not collide with the obstacle
region. When no collision occurs, solve for the distance between line segment qi

1qi
2 and line segment

p1p2, p2p3, p3p4, p4p5, p1p3, p1p4, p2p4 and p2p5, respectively. The line segments of each link of the robot
arm and the obstacle plane are evaluated sequentially to determine if an intersection point exists. If there
is no intersection point, calculate the distance between the arm and the obstacle and take the smallest
value as the shortest distance.

The detailed calculation of the shortest distance between the rod of the robotic arm and the obsta-
cle is provided below. The shortest distance between the line segment qi

1qi
2 and each planar region

of the obstacle is solved separately. An example of the shortest distance between the line segment
qi

1qi
2 and the plane region −→p1

−→p2
−→p3

−→p4
−→p5

−→p1 is shown in Fig. 7. In essence, the goal is to find the
minimum value of the shortest distance between the line segment qi

1qi
2 and each of line segments

p1p2, p2p3, p3p4, p4p5, p5p1, p1p3, p1p4, p2p4 and p2p5 on the plane region −→p1
−→p2

−→p3
−→p4

−→p5
−→p1 as the short-

est distance between the line segment and the plane region. It is noteworthy that the shortest distance
between line segment qi

1qi
2 and line segments p1p3, p1p4, p2p4 and p2p5 is necessary for this calculation.

In general, the obstacle is relatively small compared to the rod of the robotic arm. Consequently, the

https://doi.org/10.1017/S0263574723001546 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001546

464 Xianxing Tang et al.

shortest distance between the line segment of the rod of the robotic arm and the plane region of the
obstacle often falls on the line segment that encloses the flat plane region, such as the shortest distance
|pq| in Fig. 7(a). However, under certain conditions, the shortest distance between the line segment of
the rod and the plane region of the obstacle can lie within the plane region of the obstacle, such as the
shortest distance |pq| in Fig. 7(b). Therefore, solving for the shortest distance between rod segment qi

1qi
2

and line segments p1p3, p1p4 and p2p4 can help reduce the calculation errors in a few cases.
Here is an example of solving for the shortest distance between line segment qi

1qi
2 and line seg-

ment p1p2. The coordinates of points qi
1, qi

2, p1 and p2 are (xq1 , yq1 , zq1), (xq2 , yq2 , zq2), (xp1 , yp1 , zp1) and
(xp2 , yp2 , zp2), respectively. Assuming q is a point on the line qi

1qi
2; then, the coordinates of point q can be

described as follows: ⎧⎪⎨
⎪⎩

xq = xq1 + s
(
xq2 − xq1

)
yq = yq1 + s

(
yq2 − yq1

)
zq = zq1 + s

(
zq2 − zq1

) (11)

When there exists 0 ≤ s ≤ 1, q is a point on line segment qi
1qi

2. Conversely, q is a point on the extension
of the line segment qi

1qi
2.

Similarly, letting p be a point on the line p1p2, the coordinates of the point p can be described as
follows: ⎧⎪⎨

⎪⎩
xp = xp1 + t

(
xp2 − xp1

)
yp = yp1 + t

(
yp2 − yp1

)
zp = zp1 + t

(
zp2 − zp1

) (12)

When there exists 0 ≤ t ≤ 1, p is a point on line segment p1p2. Conversely, p is a point on the extension
of line segment p1p2.

Thus, the distance between points p and q can be expressed as:

|pq| =
√(

xq − xp

)2 +(
yq − yp

)2 +(
zq − zp

)2 (13)

Solving for the shortest distance between line segment qi
1qi

2 and line segment p1p2 is equivalent to
solving for the shortest distance between the points p and q. The function can be set up as follows:

f (s, t) =|pq|2 =(
xq − xp

)2 +(
yq − yp

)2 +(
zq − zp

)2 (14)

Calculate the partial derivative of the function f (s, t) and compute the following equation:⎧⎪⎪⎨
⎪⎪⎩

∂f (s, t)

∂s
= 0

∂f (s, t)

∂t
= 0

(15)

If the solutions s and t of the above equation satisfy the following equation:{
0 ≤ s ≤ 1

0 ≤ t ≤ 1
(16)

It can be determined that p is on line segment p1p2 and q is on line segment q. The distance |pq| can
be obtained by solving the equations mentioned above.

If Eq. (16) is not satisfied, then it is calculated as follows: If s > 1, then the value of s is 1, and the value
of point p is p2. If s < 0, then the value of s is 0, and the value of point p is p1. The problem mentioned
above can be transformed into the shortest distance from point p to line segment qi

1qi
2. Consequently,

Eq. (4) is transformed into the following function:

f (t) =|pq|2 =(
xq − xp

)2 +(
yq − yp

)2 +(
zq − zp

)2 (17)

https://doi.org/10.1017/S0263574723001546 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001546

Robotica 465

Solve for the derivative of the function f (t) and compute the following equation:
df (t)

dt
= 0 (18)

If t > 1, then the value of t is 1, and the value of point q is qi
1. If t < 0, then the value of t is 0 and the

value of point q is qi
2. The distance between points p and q can be calculated by Eq. (13), which is also

the shortest distance between line segments p1p2 and qi
1qi

2.
Finally, the method outlined above is applied to calculate the shortest distance between the line

segment qi
1q

i
2 and each line segment of the plane region −→p 1

−→p 2
−→p 3

−→p 4
−→p 5

−→p 1. The smallest of these
distances is then considered the shortest distance between the line segment qi

1qi
2 and the plane region−→p 1

−→p 2
−→p 3

−→p 4
−→p 5

−→p 1. Following the same procedure, the shortest distance between the line segment qi
1qi

2

and each plane of the obstacle is calculated, and the smallest value among these distances represents the
shortest distance between the line segment qi

1qi
2 and the obstacle.

Therefore, if the robot arm pose is X, the distance between the robot arm and the obstacle Oj can be
described as follows:

dX
j = min

(
dij|i ∈(1, 2, . . . , n)

)
(19)

If the robotic arm rod does not collide with the obstacle, then the following equation exists.

dX
j ≥ 0 (20)

3.2. Principle of robotic arm posture adjustment based on artificial potential field method
The artificial potential field method with local optimization properties is employed to adjust the robot
arm’s posture and find the local optimal posture at the current position. As posture adjustment is a
locally optimal solution procedure, only the repulsive potential energy of the robotic arm rods is taken
into account. It is expressed as:

UX
j =

⎧⎪⎨
⎪⎩

1

2
kr

(
1

dX
j

− 1

d0

)2

, dX
j ≤ d0

0, dX
j > d0

(21)

where dX
j is the distance between the robot arm bar and the obstacle Oj, d0 is the repulsive range of the

obstacle Oj, and kr is the gain factor.

UX =
n∑

j=1

UX
j (22)

Adjusting the posture of the robotic arm yields the minimum value of UX to find the optimal solution.
The robotic arm’s repulsive force is calculated as follows:

f X = ∂UX

∂X
=

n∑
j=1

∂UX
j

∂X
(23)

where

∂UX
j

∂X
=

⎧⎪⎨
⎪⎩

kr

(
1

d0

− 1

dX
j

)
1(

dX
j

)2

∂dX
j

∂X
, dX

j ≤ d0

0, dX
j > d0

(24)

where the nearest point of the robot arm to the obstacle Oj is xj and the nearest point on the obstacle
is xo

j .
The following equation can be obtained:

dX
j =

√(
xj − xo

j

)T ·(xj − xo
j

)
(25)

https://doi.org/10.1017/S0263574723001546 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001546

466 Xianxing Tang et al.

Start

Initial the OPEN list ,ClOSE list and
search direction;add the staring point to

the OPEN list

Take the highest priority node
from OPEN list and put the node
into CLOSE list

OPEN list is empty?

Check whether the manipulator
link can avoid obstacles

Failed

Expand the children of the current
node along the search direction

Node is the target？

YesYes

NNoNo

Generate all the key nodes of ，
optimize the local path and put the key

nodes into OPEN list

Adjust the posture of the 6-DOF
robotic arm at the current node

YesYes

NoNo

NoNo

Succeeded
YesYes

Create the environment model, initial
pose and algotithm parameters

x
x

ix
x

ix

Check whether the manipulator can
avoid obstacles at node

ix

ix
NNoNo

YeesYes

Let node be
the current node

ix
x

Figure 8. Overall obstacle avoidance strategy of the robotic arm.

Thus, the following equation can be derived:

∂dX
j

∂X
=

(
xj − xo

j

)
√(

xj − xo
j

)T ·(xj − xo
j

) ∂xj

∂X

=
(
xj − xo

j

)
∥∥(xj − xo

j

)∥∥ J∗
j ∂q

∂X
=

(
xj − xo

j

)
∥∥(xj − xo

j

)∥∥J∗
j (JX)

−1

(26)

where J∗
j denotes the Jacobi matrix of the point xj on the robotic arm considering only small

displacements and not the pose. JX stands for the Jacobi matrix at the end of the robotic arm.

https://doi.org/10.1017/S0263574723001546 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001546

Robotica 467

Figure 9. Path planning in Environment 1. (a) Traditional A∗, (b) improved A∗

Figure 10. Path planning in Environment 2. (a) Traditional A∗, (b) improved A∗

Figure 11. Path planning in Environment 3. (a) Traditional A∗, (b) improved A∗

https://doi.org/10.1017/S0263574723001546 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001546

468 Xianxing Tang et al.

Figure 12. Path planning in Environment 4. (a) Traditional A∗, (b) improved A∗

Therefore, it can be easily obtained that f X is a 6 × 1 vector. The repulsive potential energy of the
robot arm will decrease when its attitude changes in the direction of f X , and only the attitude component
of f X needs to be considered to adjust the robotic arm in this paper.

3.3. Overall obstacle avoidance strategy for 6-DOF robotic arm
The robotic arm bars can be viewed as cylindrical features; therefore, it is necessary to determine if each
cylindrical feature of the robotic arm bars collides with each environmental obstacle. The position of
the robotic arm rod in space can be determined based on the robotic arm’s current pose. To elucidate
the overall obstacle avoidance strategy of the robotic arm, the working process of the improved A∗

algorithm and the artificial potential field method are analyzed in depth. Figure 8 depicts the overall
obstacle avoidance strategy.

First, an optimal robotic arm end planning path is determined using the enhanced A∗ algorithm in
the environment model, followed by the determination of the initial pose and search direction. The robot
arm begins to move when the joint rod is about to collide with an impediment. If the pose of the robot
arm at the node of collision is X0 = (x0, y0, z0, α0, β0, γ0), only the posture of the robot arm is changed to
adjust the spatial position of each bar to avoid the obstacle.

The direction of the robotic arm posture change is described in section 3.2, and its magnitude is as
follows:

δX =(0, 0, 0, δα, δβ, δγ) (27)

The position of the robot arm after the modification is as follows:

Xδ =(x0, y0, z0, α0 + δα, β0 + δβ, γ0 + δγ) (28)

Using the robotic arm’s Jacobi matrix, the relationship between the change in arm pose and the
change in joint angle is determined and expressed as:

δX = J · δQ (29)

Consequently, the following equation can be derived:

δQ = J−1 · δX (30)

The shortest distance dX
j between the robot arm and the obstacle can be solved using the changed

joint angle Q. If dX
j > 0, it is easy to obtain that the robotic arm can avoid the obstacle according to the

changed pose. If dX
j ≤ 0, it indicates that the obstacle cannot be avoided regardless of the robot arm’s

orientation. Since excessive posture adjustment of the robotic arm can result in vibrations and abrupt
changes, it is necessary to impose certain limits on the amount of attitude adjustment.

https://doi.org/10.1017/S0263574723001546 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001546

Robotica 469

Table I. Parameters set for obstacle avoidance environment

Environment Parameters Value (Length × Width × Height)
Environment 1 Start point; Goal point (30,15,34); (30,35,34)

Size of obstacle 1 19 × 3 × 11
Environment 2 Start point; Goal point (30,15,34); (30,42,35)

Size of obstacles 1, 2 19 × 3 × 11, 19 × 3 × 11
Environment 3 Start point; Goal point (30,15,34); (28,50,34)

Size of obstacles 1, 2, 3 19 × 3 × 11, 19 × 3 × 11,
11 × 3 × 9

Environment 4 Start point; Goal point (30,15,34); (31,50,32)
Size of obstacles 1, 2, 3, 4 19 × 3 × 11, 19 × 3 × 11,

11 × 3 × 9, 15 × 3 × 15

Table II. Comparison of search parameters before and after the development of the A∗ algorithm

Environment Algorithm Nodes searched Path length Time(s)
Environment 1 Traditional A∗ 690 21 0.272

Improved A∗ 40 20 0.175
Environment 2 Traditional A∗ 2484 28 1.162

Improved A∗ 82 30 0.223
Environment 3 Traditional A∗ 5035 36 1.558

Improved A∗ 89 34 0.241
Environment 4 Traditional A∗ 5357 36 2.006

Improved A∗ 138 38 0.485

Figure 13. Improved A∗ in case 1. (a) Front view, (b) side view.

The constraints are as follows: ⎧⎪⎨
⎪⎩

|δα| ≤ εα

|δβ| ≤ εβ

|δγ | ≤ εγ

(31)

where εα, εβ and εγ are the constraint values of posture change respectively. The values of εα, εβ , and εγ

are 0.2, 0.2, and 0.1, respectively in the obstacle avoidance algorithm of this study.

https://doi.org/10.1017/S0263574723001546 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001546

470 Xianxing Tang et al.

Figure 14. Traditional A∗ in case 1. (a) Front view, (b) side view.

Figure 15. Improved A∗ in case 2. (a) Front view, (b) side view.

Figure 16. Traditional A∗ in case 2. (a) Front view, (b) side view.

https://doi.org/10.1017/S0263574723001546 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001546

Robotica 471

Figure 17. Improved A∗ in case 3. (a) Front view, (b) side view.

Figure 18. Traditional A∗ in case 3. (a) Front view, (b) side view.

Figure 19. Traditional A∗ in case 4. (a) Front view, (b) side view.

https://doi.org/10.1017/S0263574723001546 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001546

472 Xianxing Tang et al.

Figure 20. Traditional A∗ in case 4. (a) Front view, (b) side view.

4. Experiments and results
Simulation and experimental analysis are conducted in this section to verify the feasibility, effectiveness,
and environmental adaptability of the robotic arm path planning algorithm proposed in this paper. The
simulation and experimental analysis focus primarily on the search efficiency of the improved A∗ algo-
rithm, the improved A∗ algorithm’s adaptability in a multi-obstacle environment, and the practicability
of the robotic arm pose adjustment strategy based on the artificial potential field method.

4.1. Simulation and analysis
4.1.1. Comparison of the improved A∗ algorithm and the traditional A∗ algorithm
The traditional A∗ algorithm has many problems in the path planning of 3D environment, including a
large number of search nodes, a lengthy search, and a decrease in computational efficiency as the number
of obstacles in the environment increases. To verify the benefits of the improved A∗ algorithm proposed
in this paper for path planning, the improved algorithm and the traditional A∗ algorithm are simulated and
analyzed in four map environments, respectively. As illustrated in Figs. 9, 10, 11 and 12. The coordinates
of the path’s start and goal points and the parameters of the obstacles in the environment are displayed
in Table I. The search step size of the improved A∗ algorithm is set to 1. The search terminates when the
spatial distance between the search node and the goal point is less than 1.

From the simulation results of the four environments listed above, it can be concluded that the
improved A∗ algorithm proposed in this paper can effectively reduce the number of search nodes in
path planning when compared to the traditional A∗ algorithm. Table II displays the search results of the
enhanced A∗ algorithm and the traditional A∗ algorithm in four environments. It can be observed that the
number of search nodes utilized by the enhanced A∗ algorithm in various environments has decreased
considerably. The proportion of search nodes decreased significantly as the number of obstacles in the
environment increased, but the final search path length remained essentially the same. Therefore, the
enhanced A∗ algorithm can effectively improve the search efficiency in 3D environment and significantly
reduce the defects of the conventional A∗ algorithm.

4.1.2. Analysis of the environmental adaptability of the enhanced A∗ algorithm
The improved A∗ algorithm can remedy the traditional A∗ algorithm’s low search efficiency, but the
algorithm’s adaptability to complex environments with multiple obstacles requires further investigation.
Two distinct complex environment maps are constructed, and different starting and ending points are

https://doi.org/10.1017/S0263574723001546 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001546

Robotica 473

Table III. Environmental parameter

Environment Case Start point Goal point
Environment 1 Case 1 (−2, 0, 7) (5, 28, −1)

Case 2 (14, 1, −1) (−8, 25, 8)
Environment 2 Case 3 (−3, 0, 7) (5, 28, −1)

Case 4 (15, 5, 0) (−7, 25, 8)

Table IV. Parameters set for obstacle avoidance environment

Environment Parameters Value (Length × Width × Height)
Environment 1 Size of obstacles 1, 2, 3, 4, 5, 6, 7,

8, 9, 10, 11, 12, 13
3 × 3 × 3, 5 × 3 × 7, 11 × 11 × 3, 9 ×
3 × 7, 9 × 3 × 7, 7 × 7 × 11, 9 × 5 ×

7, 3 × 5 × 5, 9 × 7 × 13, 7 × 7 × 13, 3 ×
3 × 5, 9 × 1 × 9, 3 × 3 × 7

Center points of obstacles 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 13

(0,0,0), (13,18,0), (3,7,10), (0,11,3),
(7,3,10), (10,15,5), (−3,18,6), (−5,0,4),
(11,5,2), (5,20,2), (15,11,2), (5,24,2),

(−5,22,6)

Environment 2 Size of obstacles 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12

11 × 3 × 9, 3 × 11 × 7, 11 × 11 × 3, 3 ×
9 × 713 × 1 × 7, 7 × 3 × 7, 9 × 1 ×

9, 3 × 9 × 7, 7 × 1 × 11, 7 × 7 × 13, 1 ×
5 × 5, 9 × 9 × 1

Center points of 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12

(−5,5,0), (10,10,0), (−5,10,8),
(−10,15,1), (5,22,5), (15,11,2), (0,15,2),
(5,22,2), (11,24,3), (5,20,−2), (−7,26,4),

(−3,22,−2)

Table V. Comparing the two algorithms in four distinct situations

Environment Algorithm Nodes searched Path length Time (s)
Case 1 Traditional A∗ 3242 30 9.193

Improved A∗ 137 32 1.402
Case 2 Traditional A∗ 2514 26 8.024

Improved A∗ 107 32 1.263
Case 3 Traditional A∗ 3280 29 9.231

Improved A∗ 314 36 2.130
Case 4 Traditional A∗ 1589 24 7.781

Improved A∗ 330 30 2.202

chosen for simulation in each map. The outcomes of the simulation are depicted in Figs. 13, 14, 15,
16, 17, 18, 19, and 20. Table III compares the outcomes of the two search algorithms in four distinct
instances. The planned routes are displayed from two distinct angles. The beginning and end parameters
of the environment-selected path are displayed in Table III. The parameters of the environment obstacles
are shown in Table IV, and the improved A∗ algorithm employs a search step size of 1. The search
terminates when the spatial distance between the search node and the goal point is less than 1.

From the simulation results of two distinct complex environments, it is evident that the proposed
improved A∗ algorithm can effectively perform obstacle avoidance planning and that the planned path
in a complex environment with numerous obstacles is relatively short. Consequently, the enhanced A∗

https://doi.org/10.1017/S0263574723001546 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001546

474 Xianxing Tang et al.

Figure 21. Path planning in Case 1. (a) Front view, (b) side view.

Figure 22. Path planning in Case 2. (a) Front view, (b) side view.

algorithm has enhanced adaptability to complex environments and a degree of generality in path plan-
ning. The search time experiences an increase in both the enhanced A∗ algorithm and the conventional
A∗ algorithm when operating within a complex environment, as opposed to the simpler obstacle avoid-
ance environment previously discussed. Although the simple obstacle avoidance environment exhibits
a higher number of nodes and path length compared to the complex environment, the search time in the
former remains lower than that in the latter. This phenomenon arises due to the algorithm’s requirement
for increased computational time to assess collisions with obstacles and identify viable pathways within
intricate environments. Furthermore, the enhanced A∗ algorithm exhibits significantly reduced search
time compared to the conventional A∗ algorithm, irrespective of the prevailing obstacle environment
conditions (Table V).

4.1.3. Simulation of 6-DOF robot arm posture adjustment strategy
The preceding simulation is limited to the path planning of the robotic arm end by the enhanced A∗ algo-
rithm and does not account for the possibility that the robotic arm’s joint rod will collide with the obsta-
cle. To improve the 6-DOF robotic arm’s overall obstacle avoidance strategy, simulation analysis is per-
formed in the obstacle environment. The simulation is depicted in Figs. 21 and 22, which depict the path
planning results of the robot arm with different starting and endpoints. A blue line segment represents
the joint rod of the 6-DOF robotic arm, and the environment’s obstacles have been enlarged to be larger
than the manipulator’s radius. The parameters of the simulation are presented in Table VI. Following this

https://doi.org/10.1017/S0263574723001546 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001546

Robotica 475

Table VI. Two simulation conditions

Case Start point Goal point
Case 1 (−500, −250, 250) (−900, 450, 550)
Case 2 (−200, 370, 290) (−900, 0, 200)

Table VII. Comparison of the three algorithms in three different cases

Environment Algorithm Success rates Mean time(s)
Case 1 Traditional A∗ for end position obstacle

avoidance
100% 10.856

Improved A∗ for end position obstacle
avoidance

100% 3.346

Posture adjustment for overall obstacle
avoidance

99.2% 8.142

Case 2 Traditional A∗ for end position obstacle
avoidance

100% 11.321

Improved A∗ for end position obstacle
avoidance

100% 3.125

Posture adjustment for overall obstacle
avoidance

99.3% 7.781

premise, a total of 1000 starting points and goal points are randomly generated within a space charac-
terized by a radius of 5 units. The coordinates of these points are determined such that the starting point
corresponds to the center of the sphere mentioned in Table V, while the goal point corresponds to the
center of the sphere as well. The path planning is executed following the proposed overarching obstacle
avoidance strategy in two distinct scenarios, and the outcomes are presented in Table VII.

In the above simulation, both the traditional A∗ algorithm and the improved A∗ algorithm proposed
in this paper are used for end position obstacle avoidance, achieving a 100% success rate of obstacle
avoidance. However, when the posture adjustment method proposed in this paper is used for the over-
all obstacle avoidance of the robotic arm, there is a slight reduction in the success rate. This decrease
primarily stems from the fact that the traditional and improved A∗ algorithms for end position obstacle
avoidance do not consider collisions between the individual links of the robotic arm and the obsta-
cles. However, when the posture adjustment method is employed for the overall obstacle avoidance of
the robotic arm, the posture adjustment strategy, based on the artificial potential field, may lead to the
local optimum in certain extreme cases. This can, to some extent, reduce the success rate of the search.
The path results of the posture adjustment strategy for a 6-DOF robotic arm based on the improved
A∗ algorithm and the artificial potential field method differ from the path results planned by the improved
A∗ algorithm alone, and the path length and cost time have increased significantly. This is due to the pos-
ture adjustment strategy determining whether the obstacle collides with the joint rod and adjusting the
original path result to accommodate the manipulator’s movement. The attitude adjustment strategy does
not guarantee complete obstacle avoidance as the A∗ and improved A∗ algorithms do, but its obstacle
avoidance success rate is still quite high. It can be seen that the algorithmically planned path has poor
smoothness, and jitter may occur in the manipulator’s trajectory motion. Finally, cubic spline processing
is applied to the planned path to increase the stability of the manipulator’s motion.

4.2. Experiment in a real environment
To demonstrate the efficacy of the comprehensive obstacle avoidance strategy, an experimental evalu-
ation is conducted to compare the performance of the six-degree-of-freedom joint obstacle avoidance

https://doi.org/10.1017/S0263574723001546 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001546

476 Xianxing Tang et al.

Figure 23. Obstacle avoidance algorithm proposed by Jia.

algorithm, which is based on the A∗ algorithm proposed by Jia [29], with the algorithm proposed in
this study. The primary concept of the algorithm presented by Jia involves mapping the search for the
position of the robotic arm in 3D space to the search for angles in joint space. The prescribed proce-
dure is outlined as follows: the six joint angles of the robotic arm are designated to be documented as a
six-dimensional array. Subsequently, the initial and target positions in three-dimensional space are deter-
mined through inverse kinematics, thereby facilitating the computation of the corresponding initial and

target joint angles. In Eq. (1), define Gi(q) =
i∑

m=1

‖qi[6] − qi−1[6]‖, and Hi(q) = max
m=1,2···6

|qi[m] − qdes[m]|.
The flowchart of the six-degree-of-freedom obstacle avoidance algorithm proposed by Jia is shown in
Fig. 23.

https://doi.org/10.1017/S0263574723001546 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001546

Robotica 477

T =1.25sT =0s T =2.5s T =3.75s

T =5s T =6.25s T =8.5s T =10s
Figure 24. Robotic arm obstacle avoidance experiment.

Figure 25. Obstacle avoidance environment. (a) Path trajectory in Jia’s method, (b) path trajectory in
this study.

The algorithm proposed in this study is used to conduct experiments on the AUBO-i10 robotic
arm, and the arm’s position at multiple points during its movement is recorded, as shown in Fig. 24.
Figure 25(a) depicts the trajectory of the algorithm proposed in this study, while Fig. 25(b) depicts the
trajectory of the algorithm proposed by Jia. Compared to the obstacle avoidance algorithm proposed by
Jia, this study’s algorithm has a significantly shorter path length in real 3D space.

https://doi.org/10.1017/S0263574723001546 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001546

478 Xianxing Tang et al.

Figure 26. Comparison of changes in end position. (a) The algorithm proposed in this paper, (b) the
algorithm proposed by Jia.

Figure 27. Comparison of end-pose changes. (a) The algorithm proposed in this paper, (b) the
algorithm proposed by Jia.

Figure 28. Joint angle changes in the algorithm proposed in this study.

https://doi.org/10.1017/S0263574723001546 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001546

Robotica 479

Figure 29. Joint angle changes in the algorithm proposed by Jia.

In this simulation, the search time for Jia’s proposed algorithm is 35.386 s, while the search time for
this study’s algorithm is. 9.426 s. The primary reason for this is that the proposed method of this study
is based on a three-dimensional positional space, and only three spatial positions must be altered during
each search. However, Jia’s method is based on six joint spaces, and each search requires changing six
joint angles, which significantly increases the search algorithm’s complexity. Under the same motion
time, the search trajectories of the two algorithms are compared, and the changes in the end position,
end pose, and joint angle are depicted in Figs. 26, 27, 28, and 29, respectively. According to Figs. 26
and 27, it can be determined that, compared to the algorithm proposed by Jia, the algorithm in this study
has a smoother position change and posture change of the robotic arm in the three-dimensional space,
resulting in less jitter at the end of the robotic arm in the actual motion space. According to Figs. 28 and
29, it can be determined that, compared to the algorithm proposed by Jia, the joint variation range of the
algorithm proposed in this study is greater, and the joints in motion exhibit some jitter. This is because
the algorithm in this paper searches in the 3D position space and solves the joint angles using inverse
kinematics. In conclusion, the algorithm proposed in this study has superior performance in terms of
search time, path length, and end position; however, the smoothing of joint angle changes should be
enhanced.

5. Conclusion
When operating in three-dimensional environments, 6-DOF robotic arms commonly suffer from the
time-consuming computation of obstacle avoidance algorithms, low flexibility of algorithms, and low
adaptability to the environment. In this paper, a 6-DOF robotic arm obstacle avoidance path planning
algorithm based on the improved A∗ algorithm and the artificial potential field method is proposed.
The proposed improved A∗ algorithm is used for the path planning of the manipulator’s end, which sig-
nificantly improves the problems of numerous search nodes and low search efficiency that arise when
the traditional A∗ algorithm is applied to 3D environment path planning. And the enhanced A∗ algo-
rithm proposes a method for detecting node collisions and local path optimization. Then, based on the

https://doi.org/10.1017/S0263574723001546 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001546

480 Xianxing Tang et al.

improved A∗ algorithm, a method for adjusting the manipulator’s attitude using the artificial poten-
tial field method is proposed to prevent collisions between the robotic arm link and obstacles during
movement. Simulation and experiments both validate the algorithm’s practicability as described in the
paper.

This paper proposes a 6-DOF robotic arm obstacle avoidance algorithm that is primarily used in static
environments where obstacles are known and fixed. Nonetheless, the 6-DOF robotic arm must perform
path planning in dynamic scenarios where the obstacles are not fully known. Future research will extend
the obstacle avoidance method described in this paper to dynamic environments.

Author contributions. Xianxing Tang established the obstacle avoidance model and designed the path planning algorithm; he
also drafted the manuscript. Tianying Xu carried out relevant experiments and data processing, and Haibo Zhou made suggestions
and reviewed the manuscript.

Financial support. The authors would like to thank the National Natural Science Foundation of China for its financial support
for research project No. 51975590.

Competing interests. All authors disclosed no relevant relationships.

Ethical approval. Not applicable.

References
[1] T. Xu, H. Zhou, S. Tan, Z. Li, X. Ju and Y. Peng, Mechanical arm obstacle avoidance path planning based on improved

artificial potential field method,” Ind. Robot. 2, 49 (2022).
[2] C. kheireddine, A. Yassine, S. Fawzi and M. Khalil, “A robust synergetic controller for Quadrotor obstacle avoidance using

Bézier curve versus B-spline trajectory generation,” Intel. Serv. Robot. 15(1), 143–15227 (2022).
[3] L. A. Trinh, M. Ekström and B. Cürüklü, “Dependable navigation for multiple autonomous robots with petri nets based

congestion control and dynamic obstacle avoidance,” J. Intell. Robot. Syst. 104(4), 69 (2022).
[4] Z. He, C. Liu, X. Chu, R. R. Negenborn and Q. Wu, “Dynamic anti-collision A-star algorithm for multi-ship encounter

situations,” Appl. Ocean. Res. 118, 102995 (2022).
[5] J. Ou, S. H. Hong, P. Ziehl and Y. Wang, “GPU-based global path planning using genetic algorithm with near corner

initialization,” J. Intell. Robot. Syst. 104(2), 34 (2022).
[6] Z. Fang and X. Liang, “Intelligent obstacle avoidance path planning method for picking manipulator combined with artificial

potential field method,” Ind. Robot. 49(5), 835–850 (2022).
[7] W. Lei, L. Ming, T. Dunbing and C. Jingcao, “Dynamic path planning for mobile robot based on improved genetic

algorithm,” J. Nanjing Univ. Aeronaut. Astronaut. 48(06), 841–846 (2016).
[8] M. Elhoseny, A. Tharwat and A. E. Hassanien, “Bezier curve based path planning in a dynamic field using modified genetic

algorithm,” J. Comput. Sci. 25, 339–350 (2018).
[9] A. Rs, B. Db and A. Nc, “Domain knowledge based genetic algorithms for mobile robot path planning having single and

multiple targets,” J. King Saud Univ. Comput. Inf. Sci. 34(7), 4269–4283 (2022).
[10] K. S. Suresh, R. Venkatesan and S. Venugopal, “Mobile robot path planning using multi-objective genetic algorithm in

industrial automation,” Soft Comput. 26(15), 7387–7400 (2022).
[11] J. Kennedy and R. Eberhart. Particle swarm optimization. In: Proceedings of ICNN International Conference on Neural

Networks, 4, (1995) pp. 1942–1948.
[12] B. Tang, Z. Zhu and J. Luo, “A convergence-guaranteed particle swarm optimization method for mobile robot global path

planning,” Assembly Autom. 37(1), 114–129 (2017).
[13] H. Q. Jia, Z. Wei, X. He and L. Zhang, “Path planning based on improved particle swarm optimization algorithm,” Trans.

Chin. Soc. Agric. Machin. 49(12), 371–377 (2018).
[14] B. Song, Z. Wang and L. Zou, “An improved pso algorithm for smooth path planning of mobile robots using continuous

high-degree bezier curve,” Appl. Soft Comput. 100(1), 106960 (2021).
[15] L. K. Hansen and P. Salamon, “Neural network ensembles,” IEEE Trans. Pattern Anal. Mach. Intell. 12(10), 993–1001

(2002).
[16] C. Miao, G. Chen, C. Yan and Y. Wu, “Path planning optimization of indoor mobile robot based on adaptive ant colony

algorithm,” Comput. Ind. Eng. 156, 107230 (2021).
[17] M. A. Pérez-Cutiño, F. Rodríguez, L. D. Pascual and J. M. Díaz-Báñez, “Ornithopter trajectory optimization with neural

networks and random forest,” J. Intell. Robot. Syst. 105(1), 17 (2022).
[18] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” IEEE Int. Conf. Robot. Autom. 2, 500–505

(1985).

https://doi.org/10.1017/S0263574723001546 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001546

Robotica 481

[19] S. S. Ge and Y. J. Cui, “Dynamic motion planning for mobile robots using potential field method,” Auton. Robot. 13(3),
207–222 (2002).

[20] P. E. Hart, N. J. Nilsson and B. Raphael, “A formal basis for the heuristic determination of minimum cost paths,” IEEE
Trans. Syst. Sci. Cyb. 4(2), 100–107 (1968).

[21] A. Pal, R. Tiwari and A. Shukla. Multi Robot Exploration Using a Modified A∗ Algorithm. In: International Conference
on Intelligent Information & Database Systems, Springer-Verlag (2011).

[22] Y. Y. Ren, X. R. Song and G. Song. Research on Path Planning of Mobile Robot Based on Improved A∗ in Special
Environment. In: IEEE International Symposium on Autonomous Systems, Shanghai, China (2019) pp. 12–16.

[23] A. K. Guruji, H. Agarwal and D. K. Parsediya, “Time-efficient A∗ algorithm for robot path planning,” Proced. Technol. 23,
144–149 (2016).

[24] C. Li, X. Huang, J. Ding, K. Song and S. Lu, “Global path planning based on a bidirectional alternating search A∗ algorithm
for mobile robots,” Comput. Ind. Eng. (168-), 168 (2022).

[25] L. Zuo, Q. Guo, X. Xu and H. Fu, “A hierarchical path planning approach based on A∗ and least-squares policy iteration
for mobile robots,” Neurocomputing 170(dec.25), 257–266 (2015).

[26] S. K. Wang and L. Zhu, “Motion planning method for obstacle avoidance of 6-DOF manipulator based on improved A∗
algorithm,” J. Donghua Univ. (Eng. Ed.) 32(1), 7 (2015).

[27] F. Bing, C. Lin, Y. Zhou, D. Zheng, Z. Wei, J. Dai and H. Pan, “An improved A∗ algorithm for the industrial robot path
planning with high success rate and short length,” Robot. Auton. Syst. 106, 26–37 (2018).

[28] W. S. Newman and M. S. Branicky, “Real-time configurations for space transforms for obstacle avoidance,” Int. J. Robot.
Res. 10(6), 650–667 (1991).

[29] Q. Jia, “Path planning for space manipulator to avoid obstacle based on A∗ algorithm,” J. Mech. Eng. 46(13), 109 (2010).
[30] N. Zhang, Y. Zhang, C. Ma and B. Wang. Path planning of six-DOF serial robots based on improved artificial potential field

method. In: 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2017).
[31] L. Zhang, Y. Zhang, M. Zeng and Y. Li, “Robot navigation based on improved A∗ algorithm in dynamic environment,”

Assembly Autom. 41(4), 419–430 (2021).
[32] X. Wang, M. Tang, M. Dinesh and R. Tong, “Efficient BVH-based collision detection scheme with ordering and

restructuring,” Comput. Graph. Forum 37(2), 227–237 (2018).
[33] H. Liu, D. Qu, F. Xu, Z. Du, K. Jia, J. Song and M. Liu, “Real-time and efficient collision avoidance planning approach for

safe human-robot interaction,” J. Intell. Robot. Syst. 105(4), 93 (2022).

Cite this article: X. Tang, H. Zhou and T. Xu (2024). “Obstacle avoidance path planning of 6-DOF robotic arm based on improved
A∗ algorithm and artificial potential field method”, Robotica 42, 457–481. https://doi.org/10.1017/S0263574723001546

https://doi.org/10.1017/S0263574723001546 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001546
https://doi.org/10.1017/S0263574723001546

	Obstacle avoidance path planning of 6-DOF robotic arm based on improved A* algorithm and artificial potential field method
	Introduction
	Improved A algorithm for robotic arm end path planning
	Traditional A* algorithm
	Path nodes collision detection
	Improved A* algorithm

	Joint rod obstacle avoidance technique based on enhanced A* algorithm and artificial potential field method
	Rod collision detection of the 6-DOF robotic arm
	Principle of robotic arm posture adjustment based on artificial potential field method
	Overall obstacle avoidance strategy for 6-DOF robotic arm

	Experiments and results
	Simulation and analysis
	Comparison of the improved A* algorithm and the traditional A* algorithm
	Analysis of the environmental adaptability of the enhanced A* algorithm
	Simulation of 6-DOF robot arm posture adjustment strategy

	Experiment in a real environment

	Conclusion

