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Abstract

In this paper, we consider the asymptotic behavior of stationary probability vectors of
Markov chains of GI/G/1 type. The generating function of the stationary probability
vector is explicitly expressed by the R-measure. This expression of the generating
function is more convenient for the asymptotic analysis than those in the literature.
The RG-factorization of both the repeating row and the Wiener—Hopf equations for the
boundary row are used to provide necessary spectral properties. The stationary probability
vector of a Markov chain of GI/G/1 type is shown to be light tailed if the blocks of the
repeating row and the blocks of the boundary row are light tailed. We derive two classes of
explicit expression for the asymptotic behavior, the geometric tail, and the semigeometric
tail, based on the repeating row, the boundary row, or the minimal positive solution of a
crucial equation involved in the generating function, and discuss the singularity classes
of the stationary probability vector.
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1. Introduction

Consider a Markov chain whose transition probability matrix is given by

Dy Dy Dy D3

D_1 A Al A
p=|D= A1 Ay A1 --- , 1)
D3 A, A1 Ay ---

where the matrices A;, —00 < i < 00, Do, and D; and D_j, j > 1, are of sizes m x m,
mo X mq, mo x m, and m x mq, respectively. This Markov chain is referred to as being of GI/G/1
type. Throughout the paper, the Markov chain of GI/G/1 type is assumed to be irreducible and
positive recurrent, and its stationary probability vector 7 is partitioned accordingly into vectors

(7w, w1, 2, .. ).
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Markov chains of GI/G/1 type have been extensively investigated by several researchers,
among whom are Asmussen [6], Grassmann and Heyman [14], Hgjgaard and Mgller [17],
Asmussen and Mgller [7], and Zhao et al. [31]-[33]. Readers may also refer to two overviews,
and references therein: [15] and [30]. Two important examples of Markov chains of GI/G/1
type are Markov chains of GI/M/1 type and M/G/1 type, details about which may be found
in [23], [25], and [19].

Our main focus in this paper is on the light-tailed asymptotic behavior of {7x}. A sequence
{ck} of nonnegative scalars is called light tailed if

o0
ch exp{ek} < oo for some ¢ > 0.
k=1

In analogy, a light-tailed sequence of nonnegative matrices is defined as follows.

Definition 1. A sequence {C} of nonnegative matrices of size m x n is called light tailed if,
foralli =1,2,...,mand j = 1, 2,...,n, the sequences {Ci (i, j)} of nonnegative scalars
are light-tailed, where Ci(i, j) is the (i, j)th entry of Cy.

The investigations of the light-tailed asymptotic behavior of stationary probability vectors
of block-structured Markov chains have been inspired by [28] and [26]. Neuts [23] provided
an excellent overview of the asymptotic behavior of Markov chains of GI/M/1 type. To
establish useful relations between the light-tailed asymptotics and the parameters of queueing
models, Neuts [24] discussed the caudal characteristic curves of some queues by means of
matrix-geometric solutions, and Bean et al. [9] analyzed the caudal characteristics of quasi-
birth—death processes and Markov chains of GI/M/1 type. Fujimoto et al. [13] obtained an
important result on the asymptotics of quasi-birth—death processes with both infinitely many
levels and infinitely many phases. Bean and Nielsen [8] considered the decay rate of discrete
phase-type distributions when there are a countably infinite number of phases.

However, in contrast to Markov chains of GI/M/1 type, it is more difficult to analyze the
asymptotics of stationary probability vectors of Markov chains of M/G/1 type. This difficulty
is due to two basic facts: (i) the non-matrix-geometric iterative solution of stationary probability
vectors of Markov chains of M/G/1 type makes the analysis more difficult, and (ii) the stationary
probability vectors of Markov chains of M/G/1 type can be either light tailed or heavy tailed.
The light-tailed asymptotics of stationary probability vectors of Markov chains of M/G/1 type
was studied in [11], [3], [22], [10], [18], and [27], for example. The study of heavy-tailed
asymptotics of stationary probability vectors of Markov chains of M/G/1 type is limited so far
to [7] and [20].

The main contributions of this paper are twofold. The first is to present a novel approach
to evaluating the light-tailed asymptotics of stationary probability vectors of Markov chains
of GI/G/1 type. The key idea in this approach is the RG-factorization of both the repeating
blocks and the Wiener—Hopf equations for the boundary blocks of the transition probability
matrix. As will be shown in this paper, and was seen in [20], the RG-factorization plays
a role in analyzing stationary probability vectors (including queue lengths) that is of similar
importance to that played by the Wiener—Hopf factorization in analyzing waiting times. Using
the RG-factorization and the Wiener—Hopf equations, we first express {mx} in terms of the
R-measure, and then express the R-measure in terms of the blocks in the transition probability
matrix of GI/G/1 type. This expression, together with necessary spectral properties of the
matrices involved and the important relations ¢ = ¢4+ and ¢, = ¢p (see Theorem 1 and
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Lemma 3) between certain radii of convergence, can be used to show that {r;} is light tailed if
min{ga+, ¢p} > 1.

The second contribution of the paper is to explicitly present the tail asymptotics of {my}.
By means of the RG-factorization, we first establish existence conditions for the equation
det(I — R*(z)) = 0 to have the minimal solution 5 in the range z > 1. We then show
that the light-tailed asymptotics of {m} is explicitly determined by the relations between the
three scalar parameters ¢4, ¢p, and 5. Though explicit expressions for the stationary tail
asymptotics of Markov chains of GI/G/1 type can be given in some cases, it could be very
challenging or impossible in other cases, for example for some Markov chains of GI/G/1
type with 1 < min{¢a4, ¢p} < n. In this situation, we define three classes of sequences of
nonnegative matrices (including vectors). Elements of the first two classes exhibit light-tailed
asymptotics while those of the third exhibit heavy-tailed asymptotics. The classification of
{mx} is discussed in terms of the classification of the repeating row and the boundary row. This
method of classification was first introduced by Abate et al. [4] and Abate and Whitt [1], [2] to
analyze the tail asymptotics of waiting times.

Our results are an improvement over existing ones for the asymptotic analysis of stationary
probability vectors of block-structured Markov chains.

(i) How the boundary behavior of a Markov chain of GI/G/1 type can influence the tail asymp-
totics of {m;} is analyzed in this paper in more detail and more generally. This phenomenon
was illustrated by Falkenberg [11] using examples of M/G/1 type.

(i1) The method employed in this paper avoids the imposition of a condition usually assumed in
other analyses; see, for example, Condition (A.2) of [22], Theorem 3.5 of [11], or Theorem 5
of [3]. We also demonstrate that the condition is not necessary.

(iii) The analysis in this paper is based on an expression for the generating function of {m} in
terms of the R-measure, which is a more convenient form than those used by other researchers.
This allows us to analyze a more general type of Markov chain, i.e. GI/G/1 type, and provide
sharper results than those in the current literature.

The remainder of the paper is organized as follows. In Section 2, the stationary probability
vector {m;} is expressed in terms of the R-measure and a condition on light-tailed asymptotics
is given. In Section 3, existence conditions on the minimal solution 1, n > 1, to the equation
det(I — R*(z)) = 0 are discussed. In Section 4, asymptotic expressions for {7y } are derived for
1 < n < max{¢a+, ¢p}. In Section 5, conditions on the repeating row and on the boundary
row under which {m;} can be classified into three singularity classes are studied. In this section,
we also comment on some special cases for which explicit expressions for tail asymptotics can
be derived when the boundary matrices determine the tail asymptotics. Finally, an example,
involving a batch Markov arrival process (BMAP), and concluding remarks are provided in
Section 6. Throughout the paper, matrix inequalities are evaluated entrywise.

2. A condition on light-tailed asymptotics

In this section, we provide a condition under which {m} is light tailed. As we expect, the
condition is in terms of the tails of both the repeating blocks and the boundary blocks.

Consider an arbitrary discrete-time Markov chain {X,, n = 1,2, ...} whose state space
S is partitioned as S = U?io L;, where L; = {(i, j), j = 1,2,...,m;}. Inastate (i, j), i
is referred to as the level and j the phase. We also write L<; = Uf(:() Ly and L>; for the
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complement of L<;_1). We partition the transition probability matrix of the Markov chain
according to level as P = (P; ), where P; ; is a matrix of size m; x m.

We now define the R- and G-measures. For 0 <i < j, R; ; is defined as a matrix of size
m; X m; whose (r, s)th entry is the expected number of visits of the Markov chain to state (j, s)
before it hits any state in L<(;_1), given that the process starts in state (i, 7). Fori > j > 0,
G;,j is defined as a matrix of size m; x m; whose (r, s)th entry is the probability of hitting
state (j, s) when the process enters L<(;—1) for the first time, given that the process starts in
state (i, r). The sets of the matrices {R; ;} and {G; ;} are referred to as the R-measure and the
G-measure, respectively.

For the transition probability matrix of GI/G/1 type, R; ; and G; ; depend only on the
difference between i and j, except for Ry j, j = 1,2,..., and G;o, i = 1,2,.... Thus,
we candefine Ry = R; j, k= j—i,j>i>0,and Gy = G; j,k=i—j,i > j>0.
References on the R- and G-measures, which are closely related to this study, include [14],
[16], [31], [32], [33], [30], and [20].

Remark 1. For a Markov chain of GI/G/1 type, the R- and G-measures can be given by an
algebraic method. Let

_Lfn QO U
P = (V 0 ) forn > 1,

and let Pl"l = Qo + U@lV, where @1 = ZZO:O Q’f. We denote by Pi[_’;.] the (7, j)th block

of P, partitioned according to level. It was shown in [14] that P,k’,!, Pyi]l.yn, and P,m_ j are
independent of n > 1. Let
®o =P, =P, ad ®;=P" .
forn>1and1 <i,j <n—1. Then
Ri=®(I—-®)"', Gi=0-0) 'y, izl )

Note that @ is a matrix of size m x m whose (7, s)th entry is the probability of hitting state
(i, s) when the process enters L<; for the first time, given that the process starts in state (i, r).

Define the generating functions of the sequences {Ax}, { R}, and {G} by

oo o o
A= ) FA, R@=) R, and G*@) =) "Gy
k=—00 k=1 k=1

respectively. Note that A*(z) is a Laurent series, which is not usually the case in the standard
matrix-analytic treatment; see, for example, [23], [25], or [19]. A more detailed discussion is
provided in Section 6.

The following RG-factorization will be used in our study; see [30] or [33] for details:

I =A%) =[I = R*"(1U — P9l — G*(2)]. 3)

By ¢r., #G, pa+, and ¢p4_ we denote the radii of convergence of R*(z), G*(2), Y oy * Ay,
and Y ;2 72 % A_y, respectively. The following theorem provides important relations between
the radii of convergence.
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Theorem 1. The radii of convergence satisfy pr = ¢pa+ and ¢c = $a_.

Proof. Since Y ;o A_x and Y -, Ax are substochastic, we have 0 < ¢4 < 1 < ¢ay
< oo. In addition, that R = > 72| Ry and G = Y ;2| Gy are finite (see Theorem 4 of [31])
shows that 0 < ¢ < 1 < ¢ < oco. Note that R*(z) is a power series, G*(z) is a Laurent
series with only negative powers of z, R*(z) is analytic for |z| < ¢, and G*(z) is analytic for
|z] > ¢G. Thus, it is easy to see from (3) that ¢ = ¢4+ and g = ¢4_, using the facts that
0<pa_ <1 =<¢at <00and0 < g <1 =< ¢pg < 0.

Lemma 1. If ¢pa+ > 1 then {Ry} is light tailed.

The proof is obvious from Theorem 1. The following spectral properties of the matrices
G*(z) and R*(z), which were given in Corollary 30 of [33], are important for us.

Lemma 2. [f the Markov chain of GI/G/1 type is irreducible and positive recurrent, then all
the solutions, if any, to det(I — R*(z)) = O lie in the region |z| > 1, and all the solutions, if
any, to det(I — G*(2)) = 0 lie in the region |z| < 1.

For the boundary blocks, we have the Wiener—Hopf equations as shown in [30], one of which
is given by

o0
Rox(I = ®0) = Dx + Y Roipx(I —®0)Gi, k= 1. )
i=1

Define the generating functions of the sequences {Dx} and {Ro x} by D*(z) = Z,fil zF Dy and
RS‘(Z) = Z,fi] Z* Ry k., respectively. It follows from (4) that

R3@)(I — ®0) = D*@) + Y 2" > " Roipx(I — ©0)Gi. )
k=1 i=1

The second term on the right-hand side in the above equation is nonnegative for z > 0, since,
from (2), (I — ®o)G; can be interpreted as a transition probability block ®_; in a censored
transition probability matrix P"l. Under the assumption that P is irreducible, the inverse of
(I — ®) exists. Noting that (I — &)~ = ZZ‘;O(CDO)]‘ > 0, we have

Ri(z) = D*(2)(I — ®g)~" forz > 0. (©)
However,
sz Z Ro,itk (I — Po)Gi = ZZ” (Z Zl+kR0,i+k)(1 — ®0)G;
k=1 i=1 i=1 k=1
< Ry — ®9)G*(z) forz >0,

which leads to Rjj(z) (I — ®o)[I — G*(2)] < D*(z). Under the assumption of the irreducibility
and positive recurrence of P, by Lemma 2 I — G*(z) is invertible for any z > 1. Since G*(z)
is nonincreasing for z € (1, o0), we can choose a § > 0 small enough that G*(z) < G*(1 4 8)
forz > 1+6. Then I — G*(z) > I — G*(1 +6) forz > 1+ 6. Since Rj(z)(I — Pp) > 0,
from (5), we obtain

Ry (U — D)l = G*(1 + )] = RG()U — Po)[l — G*(2)] < D*(z) forz > 1+36.
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Noting that [I — G*(1 4+ 8)]"! = Y e olG*(1 + 8)1F > 0, we find that
R}(z) < D*()U — G*(1+ 817" — dg)™' forz > 1+35,
which, together with (6), implies that
D*()(I — ®0) ' < Ri(x) < D*@QU — G* A+ 8] — D)™ forz> 148 (7

The following lemma follows from (7).

Lemma 3. Let ¢, and ¢p be the radii of convergence of Rj(z) and D*(z), respectively. Then
@Ry = ¢p. Furthermore, { Ry} is light tailed if and only if ¢p > 1.

According to Equation (28) of [14], the stationary probability vectors {r;} can be expressed

in terms of the R-measure:
k—1

7 = moRox + ZmRk—i, k>1.
i=1

The generating function IT*(z), defined by IT*(z) = Y o, ZF 7k, is then
M*(2) = MRy (D)1 — R*()]7", ®)

given that both sides are defined.

Remark 2. If det(/ — R*(z)) = 0 has a solution z such that |z| > 1, then, by the continuity of
an implicit function, there exists a solution zg such that

n = |zo| = min{|z|: det({ — R*(z)) =0} > 1,
since det(I — R*(1)) # 0, by Lemma 2. Furthermore, in the next section we shall show that
such a zg can be positive.

The following theorem provides a condition sufficient (and in fact also necessary, as shown
in [20]) for {7y} to be light tailed.

Theorem 2. Ifthe Markov chain of GI/G/1 type is irreducible and positive recurrent and both
{Dy} and { Ay} are light tailed, then {m}} is light tailed.

Proof. We denote by ¢ the radius of convergence of IT*(z). If the Markov chain of GI/G/1
type is irreducible and positive recurrent, then it follows from (8) that

¢n = min{g,, dr, 1}, 9

where
n = lzol = min{|z|: 1 < |z| < ¢ay, det(/ — R*(z)) = 0}

if det(/ — R*(z)) = 0 has a solution, and 1 = 0o otherwise.

If both {Dy} and {A;} are light tailed, then min{¢ 4+, ¢p} > 1. It follows from Theorem 1
that ¢g, = ¢p > 1 and ¢ = pa+ > 1. Since Lemma 2 implies that either 1 < n < oo or
n = 0o, we obtain ¢ = min{¢g,, ¢, n} > 1 and, hence, {7;} is light tailed. This completes
the proof.
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3. Conditions on the existence of the minimal solution

As discussed in Section 2, the minimal positive solution to det(/ — R(z)) = 0 plays an
important role in evaluating the tail asymptotic behavior of {m}. In this section, we discuss
conditions on the existence of a minimal positive solution.

Theorem 3. Suppose that the Markov chain of GI/G/1 type is irreducible and positive recur-
rent, and that the matrix A = Z,fi Ay is irreducible. If the set

={z:1 < |z| < ¢pay, det(I — R*(2)) = 0}

is not empty, then there must exist a solution n > 1 to det(I — R*(z)) = 0 such that n < |zo|
for any zp € .

Proof. To prove this theorem, we construct a new Markov chain,

D 1 Ay Al A
Prow = | D2 At do A (10)
D3 A, A1 Ay ---

Here the matricesND,k, k> 1,and A;, —0o <[ < 00, are the same as that of P given in (1)
and the matrices Dy, k > 0, are given by

~ I _, ~ rk _r
Dy= —e "E, Dy=—e "E, k>1,
m mk!
where E is the m x m matrix of Is and 7 is a positive scalar.

Since every entry of Dk, k > 0, is positive and the Markov chain P in (1) is irreducible, it
s obvious that Ppey i 18 irreducible. Let D*(z) Zk 12 Dk It is easy to check that ¢ = oo.
Therefore, Z,fi 1 k Dy is finite, which, since ¢44 > 1 and the Markov chain P in (1) is positive
recurrent, implies that Ppey, is positive recurrent.

Let {7;.} be the stationary probability vector of Prews which can be explicitly expressed in
terms of the R-measure of Ppey. Let {Ro x} and {Rk} comprise the R- -measure ¢ of Ppew. It
is easy to see, from (10) and (1), that Rk = Ry forall k > 1. Let H*(z) and R*(z) be the
generating functions of {7;} and {Royk}, respectively. It follows from (8) that

M*(z) = FoRE () — R* ()] FoRy(2) adj(I — R*(2)),

1

"~ det(I — R*(2))
where adj(I — R*(z)) denotes the adjoint of  — R*(z). It follows from Lemma 3 and Theorem 1
that ¢ 3 Ry = =¢p =00 > ¢at and g = ¢ A+. Let ¢z be the radius of convergence of the vector
generating function m* (2) =Y 1y zK5y. Then, it follows from a standard result in complex
analysis (see Theorem 17.13 of [21, pp. 389-390]) that z = ¢ is a singular point of H*(z)
Since €2 is not empty, there exists a solution zy, with 1 < |z1| < ¢4+, to det(/ — R*(z)) = 0.
This shows that z = z; is a singular point of the complex vector function

MFORO(Z) adi(I — R*(2)).

Therefore, we have 1 < ¢7 < |z1| < ¢4+, according to (9).
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If it were the case that det(I — R*(¢%)) # 0, then

1 ~ Tk . "
mﬂoRo(Z) adj(/ — R*(2))

would be analytic at z = ¢z, since 1 < ¢z < min{¢a, #5}. Hence, ﬁ*(z) also would be
analytic at z = ¢%. This contradicts z = ¢z being a singular point of IT*(z) and, so, cannot be
true. This completes the proof.

We now discuss the existence of a positive solution to det(/ — R*(z)) = 0, allowing for the
fact that ¢ 4 itself can be such a solution.

Let r(z) be the maximal eigenvalue of R*(z) for z € [1, ¢p4+). We can extend the domain
of r(z) to include z = ¢4 by defining r(pay) = lim; g, r(z). Clearly, r(z) > 0 for
1 <z < ¢ay,since R*(z) > 0.

Theorem 4. Suppose that the Markov chain of GI/G/1 type is irreducible and positive recur-
rent. The equation det(I — R(z)) = 0 has

(1) a positive solution n, satisfying 1 < n < ¢+, if r(dPas) > 1;
(ii) positive solution ¢y if r(Ppa+) = 1 and a4+ < oo, and
(iii) no positive solution if r(pa+) < 1.

Proof. Let f(z) =1 — r(z). It follows from Theorem 23 of [33] that (1) < 1 and, hence,
f()=1-r() > 0.

(1) If r(9a+) > 1 then there are two possible cases.

Case I: r(¢pa+) = oo. In this case, there always exists a &, 1 < & < ¢4+, such that
1 < r(€§) < oo, since r(z) is continuous at z for 1 < z < ¢44. Thus, we have f(§) = 1—
r(&) < 0. Since f(z) is continuouson [1, £], f(1) > 0,and f(§) < 0, there must exist a point
n € (1, &) such that f(n) = 0.

Casell: 1 < r(¢a+) < oo. In this case, an analysis similar to that in case I shows that there
always exists a point 1 € (1, ¢pa4) satisfying f(n) = 0.

(1) If r(pa+) = 1 and P44+ < 00, it is obvious that z = ¢4+ is a solution to f(z) = 0.

(i) If r(pa+) < 1, since f(1) > f(z2) = f(¢da+) > O there exists no positive solution to
det(/l — R(z)) =0, forz > 1.

Remark 3. The only case missing from Theorem 4 is thatin which (iv) 7 (¢pa+) = l and pa4 =
oo. In this case, it is possible that there does not exist any positive solution to det(/ — R(z)) = 0,
for z > 1, for example if the Markov chain of GI/G/1 type satisfies the condition that r(z) is
strictly increasing for z € (a, 00), witha > 1.

4. The asymptotics based on the solution 5

In this section, we assume that €2 is not empty. Then, according to Theorem 3, there exists
a positive solution n > 1 to det(I — R*(z)) = 0 that is minimal in the sense that n < |z| for
any z € Q. We further assume that n < ¢p, which, together with the fact that n € 2, implies
1 < n < min{eay, ¢p}. In this case, it is clear that the tail asymptotics of {r;} is determined
by 1 only. We will derive explicit asymptotic expressions for {7} } based on 7.
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4.1. A is irreducible

In this subsection, we assume that the matrix A is irreducible. If 1 < n < min{¢4+, ¢p},
it follows from (8) that, for any z with 1 < |z| < n,

IM*(z) = mm&’;(z) adj(I — R*(2)). (11)
The analysis of the singularity of IT*(z) depends on that of the three functions [det(/ —
R*(z)]~ L, R;(z), and adj(I — R*(z)). Since R;(z) and adj(/ — R*(z)) are analytic for
|z < min{¢a+, ¢p}, they are analytic at z = n. Since z = n is a singular point of
[det(I — R*(z))]™", it is thus also a singular point of IT*(z). With the aid of several lemmas,
we will show that z = 7 is a pole of IT*(z) of order 1, and is the only singular point.
It follows from (3) that

{z: 0 <z < @pay, det(] — A%(2)) =0} ={z: 0 < z < Ppay, det(I — R*(z)) =0}
Ufz:0 <z < ¢as, det(I — G*(2)) =0}, (12)

since I — Py is invertible. If the Markov chain of GI/G/1 type is irreducible and positive
recurrent, it follows from (12) and Lemma 2 that

{z: 1 <z <@ay, detd — A*(2) =0} ={z: 1 <z < ¢as, det( — R*(2)) =0} (13)
and
{z:0<z<1,det(l —A*() =0}={z: 0 <z <1, detd — G*(2)) =0}.

For z > 0, we denote by x(z), r(z), and g(z) the maximal eigenvalues of the matrices
A*(z), R*(z), and G*(z), respectively. Let r;(z), 2 < i < m, denote all other eigenvalues of
R*(z). We denote by u(z) and v(z) the left and right eigenvectors of R*(z) corresponding to
the eigenvalue r(z), respectively. In a similar fashion, s(z) and 7 (z) are defined for A*(z).

To characterize the function [det( — R*(z))]~!, we introduce the following lemma, which
relates the singularities of [det(/ — R*(z))]™! to the roots of det(I — A*(z)) = 0.

Lemma 4. Suppose that the Markov chain of GI/G/1 type is irreducible and positive recurrent.
Then,

(i) min{z: 1 <z < ¢ay, det(Il — R*(z)) =0} =min{z: 1 <z < ¢pay, r(z) =1}, (14)

(i) min{z: 1 <z < ¢ay, det(/ — A*(z)) =0} =min{z: | <z < Pay, x(@) =1},
(1) min{z: 1 <z < pa+, r(2) =1} =min{z: 1 <z < Pay, x(2) = 1}.

Proof. (i) Let Qp = {z: 1 < z < ¢a4, r(z) = 1}. It is clear that Qp C €2, since
det( — R*(2)) = [1 — r(D1[]jL,[1 — ri(x)] forz > 1.
There are two possible cases for the set €2.
Case I: Q is not empty. In this case, it follows from Theorem 3 that there exists an 7 such
that
n=min{z: 1 <z < ¢pay, det(/ — R*(z)) = 0} = min Q.

Suppose that ¢ 2, i.e. 7(n) # 1. Since det(/ — R*(n)) = 0, there must exist an r;, (1), 2 <
ip < m,suchthatr;,(n) = 1. Noting that r (1) is the maximal eigenvalue of R* (1), we therefore
have () > ri,(n) = 1. By the assumption that r(n) # 1, we should have r () > r;,(n) = 1.
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Let f(z) = 1 —r(z). Then f(z) is continuous for z € [1,n], f(1) > 0, and f(nn) < O;
hence, there exists a point £ € (1, n) such that f(&§) = 0, i.e. r(§) = 1. Clearly, £ € Q. This
contradicts 1 being the minimum in 2. Therefore, 7(n) = 1 or n € Q.

Since ¢ C €2, we have min Q2 < min Q. Clearly, = min ©( follows from n = min 2
and n € Q. Therefore, n = min 2 = min © implies that (14) is true.

Case II: Q2 is empty. In this case, 2 also is empty, since 29 C €2. Hence, (14) is true in
the sense that both sides are infinite.

(ii) The proof is slightly different from that in (i). In this case, let f(z) = 1 — x(z). Since
x (1) = 1, in order to make the argument used in (i) we must find a zg > 1 such that x (zg) < 1.

Since the Markov chain of GI/G/1 type is assumed to be both irreducible and positive
recurrent and ¢4+ > 1, it follows from Proposition 3.1 of [6, p. 318] that

o0
ka(Ak —A_pe <0,
k=1

where o is the stationary probability vector of the matrix A and e is a column vector of ones.
Let u(z) be the left Perron—Frobenius eigenvector of A*(z). By differentiating s(z)A*(z) =
x (2)s(z2), we immediately obtain

o0
X'() =) k(A —A_pe < 0.
k=1

Hence, there exists a § > 0 small enough that x (1 + ) < x(1) = 1. Let zo = 1 + §; then
f(zo) > 0. The rest of the proof is similar to that in (i).

(iii) Noting that, from (13),
min{z: 1 <z < ¢as, det(l — R*(z)) =0} =min{z: 1 <z < Ppa, det(I — A*(z)) = 0},
the proof follows from (i) and (ii).
This completes the proof.

The following lemma characterizes u(n) and v(n) using the left and right Perron—-Frobenius
eigenvectors of A*(n). The proof is obvious and is omitted here.

Lemma 5. If s(n) and t(n) are the left and right Perron—Frobenius eigenvectors of A*(n),
respectively, then

1) u(n) = as(n) and v(n) = b(I — ®o)[I — G*(n)]t(n), where a and b are two arbitrary
positive factors;

>ii) u(n) > 0 ifand only if s(n) > 0; v(n) > 0 but v(n) # 0 if and only if t(n) > 0, and
u(z)e =u(z)v(z) = 1.

To describe IT*(z) in (11) in detail, we must express the adjoint matrix of I — R*(n) more
explicitly.

Lemma 6. If the Markov chain of GI/G/1 type is irreducible and positive recurrent, then

adj(I — R*(n)) = [ [11 = ri (v (mun).

i=2
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Proof. Note that the adjoint matrix of any singular matrix has rank one whenever 0 has
algebraic multiplicity one, which holds for I — R*(n). Some simple computations lead to the
desired result.

Using the above lemmas, we can easily show the following corollary.
Corollary 1. The only singular point of T1*(z) on |z| = n is z = n, and it is a pole of order 1.

Proof. Since A*(n) isirreducible, 1 — x () = Ois a simple eigenvalue of I — A*(n) and, for
any other eigenvalue 1 — y(n) of I — A*(n), we have |1— y(n)| > |1 — x ()| = 0. Therefore,
on |z| = n, z = n is the only root of det(/ — R*(n)) = 0.

Let

1—-r(@)=0—2h(). (15)

To prove that z = 5 is a pole of order 1, it is sufficient to show that /() > 0. This can be done
by noting that 4(n) = r’(n), which follows from elementary calculations.

Remark 4. At this point, we have proved the Perron—Frobenius property for R*(n): the
eigenvalue of R*(n) with maximal real part is real and unique with corresponding left and
right eigenvectors u(n) > 0 and v(n) > 0, but v(n) # 0.

We now provide an expression for I1*(z) by means of Lemmas 5 and 6. According to
Lemma 6, we can write

m
adj(I — R*(2)) = [ [l = i lwGum) + (0 — D H (),
i=2
where H (z) is an analytic function for z, 1 < |z| < 5. It follows from (11) and (15) that

1 1
n—zh@ [0l —ri(2)]

M (z) = moR;(2) [l—[[l —rimJv(mu(n) + 0 — z)H(z)}. (16)
i=2

Let
o R (2)v(n) [T, 11 — ri ()]

h(2) [T = ri(2)]

Since /(z) is continuous at z = n and h(n) > 0, there existsac > 0 small enough that 2(z) > 0
forall z € (n — 0,7 + o). Noting that h(z), [[/L,[1 — ri(z)], and R{(z) are all analytic at
z = n, it is obvious that L(z) is analytic at z = 5. Thus, a power expansion of L(z) at z = n is

L(z) =

given by
Ry = L
L(z) = 20V 2((:17))1)(77) +y —k‘(") -2, 17)
k=1 :

where L® (1) = (d*/dzF)L(2)|,=. It follows from (16) and (17) that

M*(z) = u(n) + g(2), (18)
n—z
where
_ mo R (v (n)
h(n)
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is a constant and

TR} (2) = LO @)
H
Ol =] 1@ T 2~

g(2) = (i — 2 u@m).

k=1

This vector is analytic at z = n, since

TR (2) 0 LO @) .
MO —n@ 1@ @ e

are all analytic at z = 7.

The following lemma introduces a useful property of the R-measure. The proof is based
on standard probabilistic arguments and the irreducibility of P; see, for example, the proof of
Lemma 1.2.4 of [23].

Lemma 7. If the Markov chain is irreducible then each column vector of the matrix Rj(1) is
nonzero.

Theorem 5. Suppose that the Markov chain of GI/G/1 type is irreducible and positive recur-
rent. If 1 < n < min{ga+, ¢p} and the matrix A is irreducible, then the tail asymptotics of
{mi} is geometric, i.e.

i = Kn~ T Dum) + 0+ ) e, (19)

where ¢ is a small positive number.

Proof. Using (18), we first need to check that K > 0. Then (19) is obviously true, according
to a standard result on the asymptotics of complex functions (see, for example, Theorem 5.2.1
of [29]).

According to the assumptions made on the Markov chain, every ;. is positive. It is clear
that JTOR(’;(n) > noR(*)‘(l) > 0, because mp > 0 and, according to Lemma 7, no column vector
of RS(I) is identically zero. Noting that v(n) > 0 and v(n) # 0, we obtain JTORE;(U)U(ﬂ) >
moR;(1)v(n) > 0. That K > 0 now follows from /(n) > 0. This completes the proof.

4.2. A is reducible

In this subsection, we assume that the matrix A is reducible. In this case, it is possible that
the tail asymptotics of {m} is not geometric when 1 < n < min{¢ 4, ¢p}.
After reordering the states, we assume that A*(z) is written in the normal form

a1(z)

ap(Z)
A*(z) = ap+1(z) ,

ap+q(2)
c1(@) - cp@) cpr1(@) - Cpiqg(@) Cpig+1(2)

where p +¢g > 1,the a;(z), 1 <i < p + g, are irreducible and stochastic, and the missing
entries are all 0. Assume that n > 1 is a solution to det(/ — ¢;(z)) = 0, 1 <i < p, and
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that I — cpyg+1(m) and I —apyj(m), 1 < j < g, are all invertible. It follows from (3) and
Lemma 2 that, for 1 < z < n,

I —R*z)=1[ — A*@II — G*@)]17'(I — o)~

Thus, we obtain

p q
det(/ — R*(2) = (n — 27 [ [ 5@ [ [ det — ap+j(2)) det = cprg1(2)
i=1 j=1

x [det(I — G*(2))]”'[det(I — &)™,

where det(I — a;(z)) = (n — 2)bi(z), 1 < i < p. It follows from Lemma 5 that b; () #
0, 1 <i < p. Thus, it follows from (11) and (15) that

oo 1
" (z) = = K(2),
where
P q ~1
K@) = {1‘[ bi(2) [ [ det(I — apy(2)) det(I — Cp+q+1(Z))}
i=1 j=1
x [det(I — G*(2))1[det(I — ®o)ImoR;(2) adj(I — R*(z))

is analytic at z = 7. Let

© K&
Z (’7) — )k, WhereK(k)(n) ¢* K(z)
k=0 !

7=n
Then

K=D
o=y r()”) 4 Z KD () (n — 2)7.
i=1

By a standard result on the asymptotics of complex functions (see, for example, Theorem 5.2.1
of [29]), we obtain

: I—n (K HT=1\ pop 4
”k:l;:(—l)" < -1 )K” (m + O0((n+¢e)"e. (20)

Remark 5. If 1 < n < min{¢ 4+, ¢p} then (20) provides a more general result on the light
tail of {mx}. Let det(/ — A*(z)) = (n — 2)P T (z), where T (n) # 0. Then the tail of {my} is
geometric if p = 1 and nongeometric if p > 2.

5. Three classes of {mr;}

In this section, we discuss Markov chains of GI/G/1 type under the condition that
min{¢ay, dp} > 1, or {m;} is light tailed. Frequently, it is very difficult or impossible to
find an explicit asymptotic expression for the tail. In this case, we classify {my} into three
classes according to the characteristics of its singularities. We are able to use the classes of
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singularity of {Dy} and/or {A;} to characterize these classes. This method was first used by
Abate et al. [4] and Abate and Whitt [1], [2] to discuss the tail of the waiting time.

First, we define a collection of matrix sequences consisting of all nonnegative matrix
sequences (not necessarily of square matrices) whose sum is convergent. Let

o
R = {{Bk}: By > 0, ZBk < oo}.
k=0

We classify the matrices in R into three classes that are closely related to the standard notions
of a-recurrence and a-transience; for example, see [5].

Definition 2. For {B;} € R, let ¢p be the radius of convergence of B*(z) = Z](:o:() Z*By.
Then,

(1) {By} is said to be of class I if ¢ > 1 and B*(¢p) is infinite,
(ii) {By} is said to be of class I if ¢ > 1 and B*(¢p) is finite, and
(iii) {By} is said to be of class IIT if ¢pp = 1.

It is obvious that if {By} is class I or II then it is light tailed, while if it is class III then it is
heavy tailed. Therefore, both { Dy} and {Ay} are either class I or class Il if min{¢ 4, pp} > 1.

Recall that n = oo if det(I — R*(z)) # O for all |z| < ¢a. For the matrix sequence {Ry},
we define its convolution as R?* = Zl;zl R Ri_ ;. We further define

k
. *(n—1)
Ri* =Y R" VR
j=1

for n > 3, with R,i* = Ry and R,?* =1.

Lemma 8. Suppose that the Markov chain of GI/G/1 type is irreducible and positive recur-
rent.

(i) If1 <n<ooandn < ¢y then {Y ;2 R}*} is class I.
(i) If n = oo then {) o2, R}*} is class 1if {Ag} is class I and class I if {Ay} is class II.

(iii) If ¢p > 1 then {Ro x} is class I if {Di} is class I and class 11 if { Dy} is class I1.

Proof. We will prove parts (i) and (ii); part (iii) can be proved similarly.
To prove part (i), assume that | < n < oo and n < ¢a4+. In this case, the radius of
convergence of

oo 00 1
k nkx __ _ ' ~ .
ZZ nX:(:)Rk = det(l — R*(2)) adj(I — R*(2))

k=1

is 7. When z = 7, det(/ — R*(n)) = O and adj({ — R*(n)) # 0 according to Lemma 6. Thus,
{3y R} is class 1.
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We now prove part (ii). Since ¢pg = ¢4+ from Theorem 1, it follows from (3) that

D EY RF=U-R @I = -l - G — A* @)™
k=1 n=0

= (I — @)l — G*(2)] )_[A*()]".

n=0

Thus, the radius of convergence of Y 72 | z* >"°° ) R{* is ¢pa. Clearly, if {Ay} is class I then
A*(¢a4+) is infinite and, hence, > oo ([A*(¢4+)]" is infinite. Since I — ®p and I — G*(Ppa+)
are invertible, Y 22, ¢4 | >°°° ) R* is infinite. Therefore, {d_nc Ry*} is class L.

If {Ag} is class II then ¢4+ < 0o and A*(¢pa4) < oo. Since n = oo, it follows from (3)
that I — A*(¢ 44 ) is invertible. Thus,

DS D R = =) — G*(pap)lll — A*(pa)] ! < 0.
k=1 n=0

Therefore, {}_,~, R}*} is class IL

Theorem 6. Suppose that the Markov chain of GI/G/1 type is irreducible and positive recur-
rent.

1) If1 <n<ooandn < min{eay, ¢p} then {my} is class L.

(i) Ifn =o00and 1 < ¢pay < @p, then {my} is class I if {Ax} is class I and class Il if {Ax}
is class II.

(i) If n = oo and ¢pa+ = ¢p, then {my} is class 1 if at least one of {Ay} and { Dy} is class 1
and class Il when both { Ay} and { Dy} are class 1.

v) Ifl < n<oocandl < ¢p < n < payorn=o00and 1 < ¢p < Pay, then {m} is
class I when { Dy} is class I and class Il when { Dy} is class I1.

Proof. We will prove part (i); parts (ii), (iii), and (iv) can be proved similarly.
Assume that 1 < n < oo and n < min{¢a+, ¢p}. Since the radius of convergence of
M*(z) = ;”OR*(Z) adj(I — R*(2))
det(/ — R*(z)) " *

is n, det(/ — R*(n)) =0, and

moRG(n) adj(! — R* () = mo Ry (mv(mu(m) [ [T = ri(m] = 0
i=2

(but not a zero vector, according to Lemma 6 and Lemma 7), [1*(n) is infinite. Therefore, {7}
is class I.

We now discuss the impact of the boundary matrices on the tail asymptotics. It is important
to note that the R-measure expression (8) shows a subtle interaction between {A;} and {Dy}
that has a nontrivial influence on the tail behavior of {m;}. In general, it is possible for {my} to
have the tail behavior of any discrete distribution when the boundary matrices determine its tail
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asymptotics, for example under the condition that 1 < ¢p < 1 < ¢44. This phenomenon was
also observed by Bean and Nielsen [8] in the tail of the first passage time distribution. Under
this condition, explicit tail asymptotics expressions in some special cases can be derived. For
example,

(1) if ¢p < nand z = ¢p is a pole of order d of D*(z), then, for some small ¢ > 0,

d 4 D(k+j—1
= Z(—l)%“‘*”( il )Ld_,,- +0((¢p +2) e,

j=1
where

1 dJ ¥ yq—1
Lj=EEJMﬁ@ML—R@H }

3

z=¢p

with S(z) analytic in z, |z| < ¢p + o for some ¢ > 0, such that S(¢p) # 0 and
R}(2) = S(2)/(¢p — 2)%; and

(i) if p = n, z = ¢p is a pole of D*(z) of order d, and the matrix A is irreducible, then,
for some small ¢ > O,

d+1 . ket -1
= Z(—l)w;“‘*”( il )Ld+l j+0(@p +6) e

j=1

It is also possible to obtain expressions for the tail asymptotics of {7} when A*(z) and/or
D*(z) have algebraic singular points; for example according to the Heaviside operational
principle of [29] or to [12].

6. Concluding remarks

In this section, we provide an example and some remarks to conclude the paper. In the
example, the BMAP/BMAP/1 queue is considered. We show how the tail behavior of the
distribution of stationary queue length relates to the tail behavior of the arrival and service
processes. In this model, we make the following assumptions.

(1) There is a single server with a waiting room of infinite capacity. Arrivals and service
occur in batches. Customers that arrive in different batches are served according to
the first-come—first-served discipline, while customers that arrive in the same batch are
served with equal probability.

(i) The arrival process is a BMAP with matrix descriptor {7}, where T = Z,fio Ty is an
irreducible infinitesimal generator of size m x m, 1 < m < oo. Let wa be the stationary
probability vector of 7. Then the stationary arrival rate is A = 7a Y _po; kTge.

(iii) The service process is a BMAP with matrix descriptor {S}, where S = Z](:O:O Sy is an
irreducible infinitesimal generator of size n x n, 1 < n < oco. Let g be the stationary
probability vector of S. Then the stationary service rate is u = 75 Y e kSke.

We are interested in the tail asymptotics of the stationary distribution of the queue length. We
denote by (g(¢), 1(t), J (1)) the state of the system at time 7, where, attime ¢, ¢ (¢), I (¢), and J (¢)
are the number of customers in the system, the arrival phase, and the service phase, respectively.
The infinitesimal generator of the continuous-time Markov process {q(¢), I (t), J(t), t > 0} is
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GI/G/1 type with repeating and boundary matrix sequences {Ay} and { Dy} respectively given
by
Ao =To @ So, A=Ti®I, i>1, A =1®S;, j=>1,

and
]
Di=T,®l iz0, D ;=1®) 5 j=zLl
I=j

Note that

o]

(Ta ®ns)[2i(Ai - A,-)]e =p—h>0

i=1

is a stability condition for the system.
Let

00 )
T*(Z) = szTk and S*(Z) = ZZ_kSk,
k=1 k=1

and let ¢7 and ¢ be the radii of convergence of 7*(z) and S*(z), respectively. By Theorem 1
and Lemma 3, we have ¢r, = ¢r = ¢7. Theorem 2 shows thatif p = A/ < 1 and ¢7 > 1,
then {qgy} is light tailed, where

qr = lim P{g(¢) = k} = mye, k>0
11— 00

According to Theorems 3, 4, and 5, we obtain the following corollary.

Corollary 2. () If p = A/ < 1, ¢7 > 1, and the set
Q={z:1<zl <7, det(TH® So+T " 2) QI + 1 ® $*(z)) =0}

is not empty, then the tail asymptotics of {qi} is geometric.

) Ifp = A/u < 1, ¢ > 1, and r(¢p7) > 1, where r(¢1) is the maximal eigenvalue of
Ye, d)]; Ry, then the asymptotics of {qi} is geometric.

Remark 6. If {7} is light tailed then {g} is light tailed. In this case, an asymptotic expression
of {gx} depends on both {7} and {Si}.

Finally, we remark that expressions for the generating function of {gx} for the matrices of
M/G/1 type used in the literature (see, for example, Equation (2.1) of [11] or Equation (3.3.2)
of [25]) are not in forms convenient to generalize to the study of the asymptotic behavior of
Markov chains of GI/G/1 type.

Following [11], the generating function for Markov chains of GI/G/1 type can be written
as oo oo
M* @) — A*()] = mD* @) — ) 'm Y 2774

i=1 j=—i
For a Markov chain of M/G/1 type, this becomes

oo o0

Zzim Z AL =mAL

i=1 j=—i
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Q.-L.LIANDY. Q. ZHAO

*(z) = [moD*(z) — m A1 1[I — A*(2)]7},

which has been used in [11] and elsewhere to study the asymptotic behavior of the chain.
However, for the Markov chain of GI/G/1 type, it is very difficult to express

]

oo
Zzini Z z_/A,j

i=1 j=—i

explicitly. Thisis why the R-measure is effective in explicitly expressing the generating function
IT*(z) in this paper.

Acknowledgements

The authors thank the referee for valuable comments and remarks, and acknowledge that
this work was partly supported through two research grants from the Natural Sciences and En-
gineering Research Council of Canada (NSERC) and the National Natural Science Foundation
of China (grant no. 90412012).

[1]

[2

—

[3

=

[4

=

[5

[6]
[7]

[8]
[9]

[10]
[11]
[12]
[13]
[14]
[15]

[16]
[17]

[18]

References

ABATE, J. AND WHITT, W. (1997). Asymptotics for M/G/ 1 low-priority waiting-time tail probabilities. Queueing
Systems 25, 173-223.

ABATE, J. AND WHITT, W. (1999). Modeling service-time distributions with non-exponential tails: beta mixtures
of exponentials. Stoch. Models 15, 517-546.

ABATE, J., CHOUDHURY, G. AND WHITT, W. (1994). Asymptotics for steady-state tail probabilities in structured
Markov queueing models. Stoch. Models 10, 99-143.

ABATE, J., CHOUDHURY, G. AND WHITT, W. (1994). Waiting-time tail probabilities in queues with long-tailed
service-time distributions. Queueing Systems 16, 311-338.

ANDERSON, W.J. (1991). Continuous-Time Markov Chains. An Applications-Oriented Approach. Springer, New
York.

ASMUSSEN, S. (2003). Applied Probability and Queues, 2nd edn. Springer, New York.

ASMUSSEN, S. AND M@LLER, J. R. (1999). Tail asymptotics for M/G/1 type queueing processes with
subexponential increments. Queueing Systems 33, 153—176.

BEAN, N. G. AND NIELSEN, B. F. (2002). Decay rates of discrete phase-type distributions with infinitely-many
phases. In Matrix-Analytic Methods, eds G. Latouche and P. Taylor, World Scientific, River Edge, NJ, pp. 17-38.
BEAN, N. G,, L1, J. M. AND TAYLOR, P. G. (2000). Caudal characteristics of QBDs with decomposable phase
spaces. In Advances in Algorithmic Methods for Stochastic Models, eds G. Latouche and P. Taylor, Notable
Publications, NJ, pp. 37-55.

CHOUDHURY, G. AND WHITT, W. (1994). Heavy-traffic asymptotic expansions for the asymptotic decay rates in
the BMAP/G/1 queue. Stoch. Models 10, 453—498.

FALKENBERG, E. (1994). On the asymptotic behavior of the stationary distribution of Markov chains of M/G/1
type. Stoch. Models 10, 75-97.

FLAJOLET, P. AND ODLYZKO, A. (1990). Singularity analysis of generating functions. SIAM J. Discrete Math. 3,
216-240.

Fusmmoro, K., TAKAHASHL, Y. AND MaKIMOTO, N. (1998). Asymptotic properties of stationary distributions in
two-stage tandem queueing systems. J. Operat. Res. Soc. Japan 41, 118-141.

GRrASSMANN, W. K. AND HEYMAN, D. P. (1990). Equilibrium distribution of block-structured Markov chains
with repeating rows. J. Appl. Prob. 27, 557-576.

GRASSMANN, W. K. AND STANFORD, D. A. (1999). Matrix-analytic methods. In Computing Probability, ed. W.
K. Grassmann, Kluwer, Boston, MA, Chapter 6.

HEYMAN, D. P. (1995). A decomposition theorem for infinite stochastic matrices. J. Appl. Prob. 32, 893-901.
H@iGaARD, B. AND M@LLER, J. R. (1996). Convergence rates in matrix analytic models. Stoch. Models 12,
265-284.

IsHizAK1, F. AND TAKINE, T. (2000). Bounds for the tail distribution in a queue with a superposition of general
periodic Markov sources: theory and application. Queueing Systems 34, 67-100.

https://doi.org/10.1239/aap/1134587754 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1134587754

Light-tailed asymptotics 1093

[19]
[20]

[21]
[22]

[23]

[24]
[25]

[26]
[27]
[28]

[29]
(30]

[31]
[32]

[33]

LATOUCHE, G. AND RamMaswawMl, V. (1999). Introduction to Matrix Analytic Methods in Stochastic Modeling.
SIAM, Philadelphia, PA.

L1, Q.-L. AND ZHAO0, Y. Q. (2005). Heavy-tailed asymptotics of stationary probability vectors of Markov chains
of GI/G/1 type. Adv. Appl. Prob. 37, 482-509.

MARKUSHEVICH, A. 1. (1965). Theory of Functions of a Complex Variable. Prentice-Hall, Englewood Cliffs, NJ.
M@LLER, J. R. (2001). Tail asymptotics for M/G/ 1 type queueing processes with light-tailed increments. Operat.
Res. Lett. 28, 181-185.

Neuts, M. E. (1981). Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach. Johns
Hopkins University Press, Baltimore, MD.

NEuTS, M. F. (1986). The caudal characteristic curve of queues. Adv. Appl. Prob. 18, 221-254.

NEuUTs, M. F. (1989). Structured Stochastic Matrices of M/G/1 Type and Their Applications. Marcel Dekker,
New York.

NEUTS, M. F. AND TAKAHASHIL, Y. (1981). Asymptotic behavior of the stationary distributions in the GI/PH/c
queue with heterogeneous servers. Z. Wahrscheinlichkeitsth. 57, 441-452.

SUBRAMANIAN, V. AND SRIKANT, R. (2000). Tail probabilities of low-priority waiting times and queue lengths
in MAP/GI/1 queues. Queueing Systems 34, 215-236.

TAkAHASHI, Y. (1981). Asymptotic exponentiality of the tail of the waiting-time distribution in a PH/PH/c
queue. Adv. Appl. Prob. 13, 619-630.

WILF, H. S. (1994). Generatingfunctionology, 2nd edn. Academic Press, Boston, MA.

ZHAO0, Y. Q. (2000). Censoring technique in studying block-structured Markov chains. InAdvances in Algorithmic
Methods for Stochastic Models, eds G. Latouche and P. Taylor, Notable Publications, NJ, pp. 417-433.

ZHAO, Y. Q., L1, W. AND ALFA, A. S. (1999). Duality results for block-structured transition matrices. J. Appl.
Prob. 36, 1045-1057.

ZHAO, Y. Q., L1, W. AND BRAUN, W. J. (1998). Infinite block-structured transition matrices and their properties.
Adv. Appl. Prob. 30, 365-384.

ZHAO, Y. Q., L1, W. AND BRAUN, W. J. (2003). Censoring, factorizations, and spectral analysis for transition
matrices with block-repeating entries. Method. Comput. Appl. Prob. 5, 35-58.

https://doi.org/10.1239/aap/1134587754 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1134587754

