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Ferroelectric and multiferroic materials are among the most fascinating materials classes, due to both 
broad spectrum of applications and dazzling array of physical phenomena they exhibit. For over 70 
years, ferroelectric structure and the nature of the order parameter were explored using the macroscopic 
scattering methods, providing the information on the average structure and symmetries, as well as 
correlate disorder. In the last decade, multiple studies of polarization behavior in ferroelectrics were 
reported using the direct imaging of atomic coordinates via the (Scanning) Transmission Electron 
Microscopy ((S)TEM), where atomic coordinates were used to map polarization field. However, implied 
in the analyses to date were the existence of macroscopically-defined polarization field as a (single) 
order parameter in the system and the relationship between the mesoscopic polarization and local atomic 
coordinates was postulated based on macroscopic models. In more complex analyses, the bulk form of 
the Ginzburg Landau free energy was additionally adopted as determined from macroscopic 
thermodynamic and scattering studies. However, in many materials systems such as morphotropic and 
relaxor ferroelectrics, the nature of the order parameter itself and hence corresponding free energy 
expansions are actively debated. Correspondingly, of interest is the question whether these descriptors 
can be obtained from the experimental data, as opposed to being postulated. 

Here we explore the nature of the building blocks in the morphotropic ferroelectric systems using the 
statistical analysis of the atomically-resolved STEM data. Using the deep-learning analysis, we identify 
the localization of atomic columns from noisy experimental data in the form of the probability density 
field. We further explore the use of several linear and non-linear statistical unmixing techniques 
including Gaussian mixture models and independent component analysis to build the library of 
structural distortions and the associated domain structures.  

As a first step of the analysis, we adopted the deep learning neural network analysis to convert noisy 
experimental data into atomic coordinates of different atomic species. We used a U-net-like fully 
convolutional neural network (FCNN) supplemented by the dilated convolutions in the bottleneck layer, 
which allows to perform the simultaneous mixed-scale de-noising of the atomic image and separation of 
atomic columns with different intensities into different “channels” (classes). This approach allows rapid 
identification of atomic positions based on local contrast. The output of the FCNN is a probability 
density field, which shows a probability of each pixel belonging to a given type of atomic column.  

To get fundamental insight into nature of the elementary building block in the material, we generated the 
local neighborhoods of size d from the output of FCNN for each site in the lattice, as shown in Fig. 1 (a). 
These sub-images are centered at the center of mass of each individual column, and hence are robust 
with respect to intrinsic factors such as large scale strains and distortions, and extrinsic factors such as 
microscope drift. On this stage, the image is transformed from 2D object to the set of sub-images cn, 
where n = i,j defines the lattice site at which sub-image is centered. 

Based on the initial analysis of information content in the system (set of sub-images cn) via principal 
component analysis (Fig. 1), we further implemented the set of linear (non-negative matrix factorization 
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(NMF), independent component analysis (ICA), Gaussian Mixture model (GMM)) and non-linear 
(manifold learning) methods for the analysis of the data, all of which allow for a certain form of physical 
constraints. Of these, NMF separates the mixture in non-negative components, corresponding to positive 
intensities for the image. ICA operates to “decrease the Gaussianity” and maximize the variability 
between components. GMM seeks to represent the data as probability to belong to a specific component 
of the model mixture. The best results for the linear clustering/decomposition analysis on our data were 
obtained using the NMF, which clearly showed presence of different domain structures. We emphasize 
that our approach works in the presence of high levels of noise and large image distortions where the 
“standard” methods may fail. 

The analysis is implemented in the form of Google Colaboratory notebook [1] and is fully available to 
the STEM community [2]. 
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Figure 1. Analysis of ferroelectric distortions in LaxBi1-xFeO3. (a) Principal component analysis (PCA) 
scree plot corresponding to different size of local descriptors (set of sub-images) extracted from the 
neural network output (see the insets; “red” and “green” are the two sublattice classes, “blue” is a 
background class). (b, c) PCA decomposition of the local image descriptors extracted from the neural 
network output into three components with the associated eigenmodes (b) and loading maps for each 
eigenmode (c) , which are consistent with the projected [101] axis A-site displacements characteristic of 
BiFeO3. 
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