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Abstract

We present two iterative methods for computing the global and partial extinction
probability vectors for Galton–Watson processes with countably infinitely many types.
The probabilistic interpretation of these methods involves truncated Galton–Watson
processes with finite sets of types and modified progeny generating functions. In addition,
we discuss the connection of the convergence norm of the mean progeny matrix with
extinction criteria. Finally, we give a sufficient condition for a population to become
extinct almost surely even though its population size explodes on the average, which is
impossible in a branching process with finitely many types. We conclude with some
numerical illustrations for our algorithmic methods.
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1. Introduction

Branching processes are powerful mathematical tools frequently used to study the evolution
of collections of individuals over time. In particular, multitype Galton–Watson processes
represent populations in which individuals are classified into different categories and live for
one unit of time. Each individual may reproduce at the end of its lifetime, with reproduction
rules dependent on its type.

When the number of types is finite, one extinction criterion is based on the spectral radius
sp(M) of the mean progeny matrix M , the elements Mij of which are the expected number
of direct offspring with type j for a parent of type i. Moreover, the extinction probability
vector q is the minimal nonnegative solution of the fixed-point equation q = P (q), where
each component qi is the extinction probability given the initial type i, and P (·) is the progeny
generating function of the process. Harris [3] (see also the references therein) presented a
comprehensive analysis of extinction criteria and the extinction probability for Galton–Watson
processes with finitely many types.
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Branching processes with infinitely many types 1069

Allowing, as we do here, the set of types to be infinite gives rise to three main challenges.
First, as the mean progeny matrix M has infinite dimension, we have to look for a replacement
to the spectral radius as an extinction criterion. Second, we need to determine how to compute
the extinction probability vector q which now has infinitely many entries. Third, the concept
of extinction has to be defined carefully: when there are infinitely many types, it is possible
for every type to eventually disappear while the whole population itself explodes. We use the
term global extinction to indicate that the whole population becomes extinct, and represent by
q the probability vector for this event; we refer to the event that every type becomes extinct as
partial extinction, and denote its probability vector by q̃, with q ≤ q̃, naturally, and we ask the
question whether they are equal or not.

Galton–Watson processes with infinitely many types have been much investigated already.
Moyal [10] assumed that the types belong to an abstract space and proved that the extinction
probability is a solution of the fixed-point equation s = P (s). Mode [7, Theorem 7.2], for a
restricted family of progeny densities, gave an extinction criterion based on the spectral radius
of an integral operator. Focusing on denumerably infinite sets of types, Moy [8], [9] and
Spataru [14] used ergodic properties for infinite matrices, and analysed in special cases the
role of the convergence norm of M as an extinction criterion; Sagitov [12] studied properties
of Galton–Watson branching processes with countably many types where the reproduction
distributions are linear fractional. Recently, some authors in the literature of branching random
walks have defined local survival, meaning that, for every given type i and arbitrarily large
epoch T , there is at least one individual of type i alive at some time t > T , with global
survival, meaning that at least one individual is alive at any time, and strong local survival,
when the two have the same probability. We refer the reader to [1], [2], and [17].

To date however a simple extinction criteria for general Galton–Watson processes with
countably infinitely many types has yet to be found, and the question of actually computing the
extinction probability vector has received scant attention, if any.

Our main result is the development of two algorithmic methods for computing the global
and the local extinction probability vectors q and q̃. The methods, which are presented in
Section 3, have a physical interpretation based on two truncated Galton–Watson processes with
finite sets of types. They may be applied to both irreducible and reducible branching processes
with countably infinitely many types.

In Section 4 we discuss some extinction criteria expressed in terms of the convergence norm
of the mean progeny matrix M when M is irreducible, and of irreducible sub-matrices of M

when M is reducible. We also give a sufficient condition under which the population becomes
extinct almost surely (a.s.) while its expected size tends to ∞. That condition implies that the
asymptotic growth rate of the process may depend on the distribution of the initial individual’s
type.

In Section 5, we provide some numerical illustrations. Our examples are taken from two
classes of processes: the matrix M is tridiagonal (and irreducible) or superdiagonal (and
reducible).

2. Preliminaries

Consider the process {Zn = (Zn1, Zn2, . . .)}n∈N, where Zn� is the number of individuals of
type � alive at the nth generation, for � in the countably infinite set of types S = {1, 2, 3, . . .}.
Unless otherwise stated, the process starts in generation 0 with one individual.

We denote by pij for j = (j1, j2, . . .) the probability that an individual of type i gives birth
to j1 children of type 1, j2 children of type 2, etc., and the progeny generating function Pi(s)
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1070 S. HAUTPHENNE ET AL.

of type i ∈ S is given by

Pi(s) =
∑

j∈N∞
pij sj =

∑
j∈N∞

pij

∞∏
k=1

s
jk

k ,

with s = (s1, s2, . . .), si ∈ [0, 1] for all i. We define P (s) = (P1(s), P2(s), . . .). The mean
progeny matrix M is defined by

Mij = ∂Pi(s)

∂sj

∣∣∣∣
s=1

for i, j ∈ S,

and Mij is the expected number of direct offspring of type j born to a parent of type i. The
process {Zn} is said to be irreducible if M is irreducible, and it is reducible otherwise.

The total population size at the nth generation is |Zn| = ∑∞
�=1 Zn�, and we denote by ϕ0

the type of the first individual in generation 0. The conditional global extinction probability
vector, given the initial type, is q = (q1, q2, . . .), where

qi = P
[

lim
n→∞ |Zn| = 0

∣∣∣ ϕ0 = i
]

for i ∈ S.

This is the usual conditional probability that the whole population eventually becomes extinct,
given the type of the initial individual, and we write that q = P[limn→∞ |Zn| = 0 | ϕ0] for
short. The vector q is the minimal nonnegative solution of the fixed-point equation

P (s) = s. (2.1)

This equation has at most two distinct solutions, 1 and q ≤ 1, if M is irreducible, and potentially
infinitely many solutions otherwise (see [10] and [14]).

The conditional partial extinction probability, given the initial type, is q̃ = (q̃1, q̃2, . . .),
where

q̃i = P
[
for all � : lim

n→∞ Zn� = 0
∣∣∣ ϕ0 = i

]
for i ∈ S.

In the irreducible case, Zucca [17] observed that limn→∞ Zn� = 0 for all types � if and only if
the limit is 0 for at least one type, regardless of the initial type.

The vector q̃ is also a solution of (2.1). Indeed, by conditioning on the progeny of the initial
individual and using the independence between individuals, we readily obtain, for any i,

q̃i = P
[
for all � : lim

n→∞ Zn� = 0
∣∣∣ ϕ0 = i

]
=

∑
j=(j1,j2,...)

pij

∞∏
k=1

P
[
for all � : lim

n→∞ Zn� = 0
∣∣∣ ϕ0 = k

]jk

= Pi(q̃).

When the set of types is finite, global and partial extinction are equivalent, but this is not
necessarily the case when the set of types is infinite. By Fatou’s lemma,

lim
n→∞ |Zn| = lim

n→∞

∞∑
�=1

Zn� ≥
∞∑

�=1

lim
n→∞ Zn�,
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so that
P
[

lim
n→∞ |Zn| = 0

∣∣∣ ϕ0 = i
]

≤ P
[
for all � : lim

n→∞ Zn� = 0
∣∣∣ ϕ0 = i

]
for i, � ∈ S and 0 ≤ q ≤ q̃ ≤ 1.

As the vectors q, q̃, and 1 are all solutions of (2.1) and since there are at most two distinct
solutions in the irreducible case, the following lemma is immediate.

Lemma 2.1. If M is irreducible, and q̃ < 1, then q = q̃.

In the irreducible case, q = q̃ < 1 is equivalent to strong local survival in the terminology
of branching random walks and, although it is expressed differently, this sufficient condition
is observed in [2] with the assumption that M is tridiagonal, and in [17] for the general case.
When M is reducible, it is possible to have q < q̃ < 1, and we give an example at the end of
Section 5.

3. Computational aspects

In this section we develop iterative methods to compute the extinction probability vectors
q and q̃. The procedures apply to both irreducible and reducible processes. The underlying
idea is to compute approximations of the infinite vectors q and q̃ by solving finite systems of
equations in such a way that the successive approximations have probabilistic interpretations:
for q, we use a time-truncation argument, and, for q̃, we use a space-truncation argument.

3.1. Global extinction probability

Denote by Ne the generation number when the process becomes extinct. Clearly, q =
P[Ne < ∞ | ϕ0]. Let Tk = {k + 1, k + 2, . . .} be the set of types strictly greater than k, and
define the first passage time τk = inf{n : ∑

�∈Tk
Zn� > 0} for k ≥ 0. This is the first generation

when an individual of any type in Tk is born. Furthermore, define

q
(k)
i = P[Ne < τk | ϕ0 = i],

the conditional probability that the process eventually becomes extinct before the birth of any
individual of a type in Tk , given that the initial individual has type i, and q(k) = (q

(k)
1 , q

(k)
2 , . . .).

Lemma 3.1. The sequence {q(k)}k≥0 is monotonically increasing and converges pointwise to
the global extinction probability vector q.

Proof. Clearly, Tk ⊃ Tk+1 for all k, and τk ≤ τk+1, so that [Ne < τk] ⊆ [Ne < τk+1], and
q(k) ≤ q(k+1). Therefore, for any i,

lim
k→∞ q

(k)
i = lim

k→∞ P[Ne < τk | ϕ0 = i]

= P
[
Ne < lim

k→∞ τk

∣∣∣ ϕ0 = i
]

= P[Ne < ∞ | ϕ0 = i]
= qi,

which completes the proof.

By definition, q
(k)
i = 0 for all i ∈ Tk . Consequently,

q(0) = (0, 0, . . .), q(k) = (q
(k)
1 , . . . , q

(k)
k , 0, 0, . . .) for k ≥ 1.
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1072 S. HAUTPHENNE ET AL.

Thus, at the kth iteration we only need to compute the finite vector w(k) = (q
(k)
1 , . . . , q

(k)
k ),

which we do as follows. Consider a branching process {W (k)
n }n∈N which evolves like {Zn}

under taboo of the types in Tk . The taboo progeny distribution f
(k)
ij associated with types

i ∈ {1, . . . , k} in {W (k)
n } is defined as

f
(k)
i(j1,...,jk)

= pi(j1,...,jk,0,0,...).

If the process is irreducible then
∑

j∈Nk f
(k)
i(j1,...,jk)

≤ 1 for 1 ≤ i ≤ k with at least one strict
inequality, and we need to add an absorbing state � to the state space Nk of {W (k)

n } to account
for the missing probability mass. Obviously, absorption in � precludes extinction, and w(k)

is the vector of probability that {W (k)
n } becomes extinct before being absorbed in �, given the

type of the initial individual. Consequently, w(k) is the minimal nonnegative solution of the
finite system of equations

si = F
(k)
i (s1, s2, . . . , sk) for 1 ≤ i ≤ k, (3.1)

whereF
(k)
i (s) = Pi(s1, . . . , sk, 0, 0 . . .) is the probability generating function of the distribution

f
(k)
ij .

One procedure to compute w(k) is by linear functional iteration, using the fixed-point equa-
tion (3.1). In that case, we easily verify that, for any k ≥ 1, the sequence {w(k,n) = (w

(k,n)
1 , . . . ,

w
(k,n)
k )}n≥0, recursively defined as

w
(k,n)
i = F

(k)
i (w

(k,n−1)
1 , . . . , w

(k,n−1)
k ) for 1 ≤ i ≤ k, n ≥ 1,

with w(k,0) = (0, 0 . . . , 0), satisfies

w(k,n) = P[Ne < τk and Ne ≤ n | ϕ0],
and is therefore monotonically increasing to w(k). In practice, we would terminate the functional
iteration for a given k when ||w(k,n+1) − w(k,n)|| becomes sufficiently small.

3.2. Partial extinction probability

Here we associate to the branching process {Zn} a family of processes {Z(k)
n = (Z

(k)
n1 ,

Z
(k)
n2 , . . .)}n∈N for k ≥ 0 obtained as follows. For a given k, we count neither the individuals of

types in Tk , nor any of their descendants, whatever their types. It is as if all individuals of types
in Tk became sterile. Define q̃(k) to be the global extinction probability vector of the process
{Z(k)

n }.
Lemma 3.2. The sequence of vectors {q̃(k)}k≥0 is monotonically decreasing and converges
pointwise to the partial extinction probability vector q̃.

Proof. Obviously,

Z(k)
n = (Z

(k)
n1 , Z

(k)
n2 , . . . , Z

(k)
nk , 0, 0, 0, . . .)

≤ (Z
(k+1)
n1 , Z

(k+1)
n2 , . . . , Z

(k+1)
nk , Z

(k+1)
n(k+1), 0, 0, . . .) a.s.

= Z(k+1)
n ,

so that, for fixed n and k → ∞, Z(k)
n monotonically converges to Zn. Furthermore,

lim
n→∞ |Z(k)

n | ≤ lim
n→∞ |Z(k+1)

n |,

so that q̃(k) ≥ q̃(k+1) for k ≥ 0.
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Let B(k)
� = [limn→∞ Z

(k)
n� = 0] be the event that type � of {Z(k)

n } eventually becomes extinct,
and let A(k) = ⋂

�≥1 B
(k)
� be the event that all types of {Z(k)

n } eventually become extinct. We
have

q̃(k) = P
[

lim
n→∞ |Z(k)

n | = 0
∣∣∣ ϕ0

]
= P[A(k) | ϕ0],

since |Z(k)
n | = ∑

� Z
(k)
n,� contains only finitely many nonzero terms. Furthermore, B

(k+1)
� ⊆

B
(k)
� , so that A(k+1) ⊆ A(k), and

A(k) ↘ A(∞) =
⋂
�≥1

[
lim

n→∞ Zn� = 0
]
.

Therefore,

lim
k→∞ q̃(k) = P[A∞ | ϕ0] = P

[
for all � : lim

n→∞ Zn� = 0
∣∣∣ ϕ0

]
= q̃,

which completes the proof.

By the definition of {Z(k)
n }, q̃

(k)
i = 1 for all i ∈ Tk , and so

q̃(0) = (1, 1, . . .), q̃(k) = (q̃
(k)
1 , . . . , q̃

(k)
k , 1, 1, . . .) for k ≥ 1.

To compute the finite vector w̃(k) = (q̃
(k)
1 , . . . , q̃

(k)
k ), we may interpret {Z(k)

n } as a Galton–
Watson process with finitely many types and progeny distribution f̃

(k)
ij defined as

f̃
(k)
i(j1,...,jk)

=
∑

jk+1,jk+2,...≥0

pi(j1,...,jk,jk+1,jk+2,...),

and w̃(k) is the minimal nonnegative solution of the finite system of equations

si = F̃
(k)
i (s1, s2, . . . , sk) for 1 ≤ i ≤ k,

where F̃
(k)
i (s) = Pi(s1, . . . , sk, 1, 1, . . .) is the probability generating function of the distri-

bution f̃
(k)
ij . This equation may be solved by functional iteration, as explained at the end of

Subsection 3.1.

4. Extinction criteria

When the number of types is finite and M is irreducible, it is well known that

q < 1 if sp(M) > 1,

q = 1 if sp(M) ≤ 1.

If M is reducible then
q � 1 if and only if sp(M) > 1,

where we write v � 1 to indicate that vi ≤ 1 for all i, with at least one strict inequality. Indeed,
if M is reducible, there may exist some type (but not all) from which partial extinction is almost
sure even if sp(M) > 1; see [4].

We expect that, in the infinite countable case, some analogue of sp(M) also plays a role
in determining if extinction occurs a.s. or not. This is the case for partial extinction, but not
necessarily for global extinction.
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4.1. Partial extinction—M irreducible

We denote by M̃(k) the mean progeny matrix of the process {Z(k)
n } defined in Section 3.2,

and by M(k) the k × k north-west truncations of the infinite matrix M . As we do not count
individuals with types in Tk , M̃(k) is given by

M̃(k) =
[

M(k) 0
0 0

]
,

and it is clear that q̃(k) = (q̃
(k)
1 , . . . , q̃

(k)
k , 1, 1, . . .) = 1 if sp(M(k)) ≤ 1; otherwise, q̃(k) � 1,

with (q̃
(k)
1 , . . . , q̃

(k)
k ) < 1 if M(k) is irreducible.

We assume in this subsection that M is irreducible. The convergence norm of M is defined
as follows. Let R be the convergence radius of the power series

∑
k≥0 rk(Mk)ij , which does

not depend on i and j . The convergence norm ν of M is

ν = R−1 = lim
k→∞{(Mk)ij }1/k;

it is also the smallest value such that there exists a nonnegative vector x satisfying xM ≤ νx;
see [13, Definition 6.3]. Note that the convergence norm of a finite matrix is equal to its spectral
radius.

If we assume that all but at most a finite number of truncations M(k) are irreducible then,
by [13, Theorem 6.8], the sequence {sp(M(k))} is nondecreasing for sufficiently large k and
limk→∞ sp(M(k)) = ν, and we can immediately show the following property.

Proposition 4.1. Assume that all but at most a finite number of truncations M(k) are irreducible.
The partial extinction probability vector q̃ is such that q̃ < 1 if and only if ν > 1.

Proof. If ν > 1, as sp(M(k)) ↗ ν, there exists some k such that sp(M(k)) > 1 and such that
M(k) is irreducible. Thus, (q̃

(k)
1 , . . . , q̃

(k)
k ) < 1 and, since q̃(k) ↘ q̃ by Proposition 3.2, q̃ < 1

in the limit.
If ν ≤ 1 then, for all k, sp(M(k)) ≤ 1 and q̃(k) = 1, which implies that q̃ = 1.

This was also observed by Gantert et al. [2] and Müller [11], who used different arguments.

4.2. Partial extinction—M reducible

Let us assume now that the matrix M is reducible. The sequence {sp(M(k))} is still
nondecreasing, but its limit might not be the convergence norm of M . Let ν̄ ∈ [0, ∞] denote
the limit. The proof of the proposition below is very similar to that of Proposition 4.1 and is
omitted.

Proposition 4.2. The partial extinction probability vector q̃ is such that q̃ = 1 if and only if
ν̄ ≤ 1, and q̃ � 1 otherwise.

In other words, there exists at least one type i such that q̃i < 1 if and only if ν̄ > 1. The
next question is, for which i does the inequality q̃i < 1 hold? We give below a necessary and
sufficient condition for q̃i to be strictly less than 1.

We write i → j when type i has a positive probability to generate an individual of type
j in a subsequent generation, that is, if there exists n ≥ 1 such that (Mn)ij > 0. We define
equivalent classes C1, C2, . . . such that, for each k, if i ∈ Ck then j ∈ Ck if and only if i → j

and j → i for all j . This induces a partition of the set of types S and we write that Ck → C�

when there exist i ∈ Ck and j ∈ C� such that i → j . We denote by Mk the irreducible mean
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progeny matrix restricted to types in Ck , that is, Mk = (Mij )i,j∈Ck
, and by νk the convergence

norm of Mk .

Proposition 4.3. If i is a type in Ck then the partial extinction probability q̃i is strictly less
than 1 if and only if νk > 1 or there exists a class C� such that Ck → C� and ν� > 1.

Proof. Let i ∈ Ck , and assume that νk > 1. Then, by Proposition 4.1, the probability that
every type in Ck eventually becomes extinct, given that the initial type is in Ck , is strictly less
than 1; hence, q̃i < 1.

Now assume that i ∈ Ck , and that there exists a class C� such that Ck → C� and ν� > 1.
Then, i → j for all j ∈ C�, that is, there is a positive probability that type i has type j ∈ C�

among its descendants; moreover, since ν� > 1, starting from any j ∈ C�, the probability that
every type in C� eventually becomes extinct is strictly less than 1 by Proposition 4.1. We thus
obtain q̃i < 1.

If νk ≤ 1 and there is no class C� such that Ck → C� and ν� > 1, then all classes C� such
that Ck → C� satisfy ν� ≤ 1. In other words, by Proposition 4.1, all the descendants of type i

will generate a process which partially becomes extinct with probability 1. So partial extinction
is almost sure if the process is initiated by type i, and we have q̃i = 1.

4.3. Global extinction—M irreducible

We assume again that M is irreducible. By Lemma 2.1 and Proposition 4.1, we know that
if ν > 1 then q = q̃ < 1, and if ν ≤ 1 then q ≤ q̃ = 1. One problem which remains is to
determine additional conditions that guarantee q = q̃ = 1.

The most precise answers are conditioned on the dichotomy property, which states that, with
probability 1, the population either becomes extinct or drifts to ∞; see [3]. In the finite case,
this follows under very mild conditions but it is more problematic if the number of types is
infinite. In particular, Tetzlaff [15, Condition 2.1 and the proof of Proposition 2.2] gave the
following sufficient condition for the dichotomy property to hold: it suffices that, for all k ≥ 1,
there exists an index mk and a real number dk > 0 such that

inf
i

P[|Zmk
| = 0 | ϕ0 = i, 1 ≤ |Z1| ≤ k] ≥ dk. (4.1)

This indicates that there is a positive, and bounded away from 0, probability for the population
to become extinct. The next property is proved in [15].

Proposition 4.4. Assume that the dichotomy property holds. If the limit lim infn→∞(Mn1) is
finite then q = 1.

A direct consequence, which brings the convergence norm back into the picture, is the
following.

Proposition 4.5. Assume that the dichotomy property holds. If there exist λ ≤ 1 and x > 0
such that x1 < ∞ and xM ≤ λx, then q = 1.

Proof. Under the assumptions of the proposition, xMn1 ≤ λnx1, which implies that
limn→∞ xMn1 < ∞. Applying Fatou’s lemma, we obtain x limn→∞(Mn1) < ∞, which
leads to limn→∞(Mn1) < ∞ since x > 0. Thus, by Proposition 4.4, the result follows.

If such a λ exists, it is at least equal to ν, and we remember that ν ≤ 1 is a necessary
condition for q = 1. The difference between λ and ν, and the additional constraint imposed by
this proposition, is that the measure associated to λ must be convergent, which is not necessarily
the case with the measure associated with ν.
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4.4. Growth rate and extinction

When the number of types is finite and the process is irreducible, the expected total population
size increases, or decreases, asymptotically geometrically: independently of the initial type,
E[|Zn|] ∼ ρn, where ρ is the spectral radius of M . This is no longer the case when the number
of types is infinite, and the evolution of E[|Zn|] may depend on the distribution of ϕ0. Actually,
it is possible for a process to become globally extinct a.s. while the expected population size
increases without bounds. This we show below, and we give one example in the next section.

Assume that there exists a probability measure α1 such that α1M ≤ λ1α1 with λ1 < 1, and
a probability measure α2 such that α2M ≥ λ2α2 with λ2 > 1. If, in addition, the dichotomy
property holds, then q = 1 by Proposition 4.5.

If ϕ0 has distribution α1 then

E[|Zn|] = α1M
n1 ≤ λn

1,

so that limn→∞ E[|Zn|] = 0. If ϕ0 has distribution α2 then, by a similar argument,
limn→∞ E[|Zn|] = ∞ and the extinction probability is equal to α2q = 1.

5. Illustration

We illustrate the results of the previous sections with two examples, one for which M is
tridiagonal (and the process is irreducible) and one for which M is superdiagonal (and the
process is reducible).

5.1. Two-sided branching random walk

This example corresponds to a homogeneous branching random walk on the positive integers
with a reflecting wall at z = 1. The mean progeny matrix is

M =

⎡⎢⎢⎢⎣
b c

a b c

a b c

. . .
. . .

. . .

⎤⎥⎥⎥⎦ , (5.1)

where a and c are strictly positive, and b is nonnegative.

Proposition 5.1. Assume that M is as given in (5.1). Then, its convergence norm is ν =
b + 2

√
ac, and there exists x ≡ x(λ) > 0 such that xM = λx for all λ ≥ ν. In addition,

x1 < ∞ if and only if λ ∈ [ν, a + b + c) and a > c.
The strictly positive and convergent invariant measure x is given by

xk =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ηk

(√
ac

a

)k

if λ = ν,

η

{(
λ − b + √

�

2a

)k

−
(

λ − b − √
�

2a

)k}
if λ > ν,

(5.2)

(5.3)

for k ≥ 1, where η is an arbitrary constant and � = (b − λ)2 − 4ac.

Proof. Let M(k) denote the k × k north-west truncations of M . Then, by a modification of
[16, Theorem 1, Equation (9)] we obtain

sp(M(k)) = min
u≥0

max
1≤i≤k

{
b + ui+1 + ac

ui

}
.
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Then, by [13, Theorem 6.8],

ν = lim
k→∞ sp(M(k)) = min

u≥0
sup

i

{
b + ui+1 + ac

ui

}
= b + 2

√
ac,

with the last equality following from arguments analogous to those in the proof of [6, Theo-
rem 3.2].

Now, for any x to satisfy xM = λx, its elements have to satisfy the constraints

bx1 + ax2 = λx1, (5.4)

axk+1 + (b − λ)xk + cxk−1 = 0 for k ≥ 2.

Let � = (b − λ)2 − 4ac. There are three cases, for each of which x takes a specific form
(see [5, Chapter 20, Section 4.5]).

Case (i): � = 0. Then λ = b ± 2
√

ac and, for k ≥ 1,

xk = c1

(
λ − b

2a

)k

+ c2k

(
λ − b

2a

)k

, (5.5)

where c1 and c2 are constants. Substituting (5.5) into (5.4) gives c1 = 0. To ensure that xk > 0
for all k, it is necessary that λ > b. Consequently, λ = b + 2

√
ac, and we obtain (5.2). For x

to be convergent, we require that
√

ac/a < 1 and, thus, a > c.
Case (ii): � > 0. Then λ < b − 2

√
ac or λ > b + 2

√
ac and, for k ≥ 1,

xk = c3

(
λ − b + √

�

2a

)k

+ c4

(
λ − b − √

�

2a

)k

, (5.6)

where c3 and c4 are constants. Substituting (5.6) into (5.4) gives us c3 = −c4, and (5.6)
simplifies to (5.3). It is clear from (5.3) that x > 0 if and only if λ > b. Thus, λ > b + 2

√
ac.

Finally, x1 < ∞ if and only if (λ − b + √
�)/(2a) < 1; the latter being equivalent to

λ < 2a + b and λ < a + b + c. As b + 2
√

ac < λ < 2a + b, both a < c and a = c lead to a
contradiction. Consequently, a > c.

Case (iii): � < 0. Then b − 2
√

ac < λ < b + 2
√

ac and

xk =
(

c

a

)k

(c5 cos(kφ) + c6 sin(kφ)), (5.7)

where φ = arccos(b/(2
√

ac)), 0 < φ < π , and c5 and c6 are constants.
Since we are looking for x > 0, case (iii) is not feasible. Indeed, we can rewrite (5.7) as,

for k ≥ 1, xk = c7(c/a)k cos(c8 + kφ), where 0 ≤ c8 < 2π and c7 is arbitrary. It can be
easily shown that there exists k0 such that cos c8 and cos(c8 + k0φ) have different signs. This
completes the proof of the proposition.

Among the progeny distributions that may be associated with the mean progeny matrix given
in (5.1), we choose

Pi(s) =

⎧⎪⎨⎪⎩
b

t
st
i + c

t
st
i+1 + 1 − b + c

t
for i = 1,

a

u
su
i−1 + b

u
su
i + c

u
su
i+1 + 1 − a + b + c

u
for i ≥ 2,
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Figure 1: Case (i) with a = b = 1
2 and c = 1

3 . Left: the values of q
(k)
1 (solid line) and of q̃

(k)
1 (dashed

line). Right: the first entries of q(20) (solid line) and q̃(20) (dashed line).

where t = �b + c� + 1 and u = �a + b + c� + 1. By varying a, b, and c, we shall cover the
three possible cases q = q̃ < 1, q = q̃ = 1, and q < q̃ = 1.

Case (i): q = q̃ < 1. Take a = b = 1
2 and c = 1

3 . With these values, ν = 1.28 > 1 and
q = q̃ < 1 by Lemma 2.1 and Proposition 4.1.

We illustrate in Figure 1 the convergence of the sequences {q(k)} and {q̃(k)}. In the left-hand
diagram, we plot q(k)

1 and q̃
(k)
1 for k = 1 to 20; the two sequences rapidly converge to a common

value approximately equal to 0.89. In the right-hand diagram, we plot q
(20)
i and q̃

(20)
i for i = 1

to 20; we observe that the first 15 entries are well approximated after 20 iterations but the next
entries require more iterations because, for high values of i, the approximation process for qi

and q̃i starts with a higher value of k.

A sequence {xk}k≥0 converges linearly to x if there exists 0 < μ < 1 such that limk→∞ |x −
xk+1|/|x−xk| = μ, and μ is called the convergence rate. Our numerical investigations indicate
that the convergence of q

(k)
i , as well as that of q̃

(k)
i , is linear for fixed i. We give an example

in Figure 2, where we plot the ratios |q1 − q
(k+1)
1 |/|q1 − q

(k)
1 | and |q̃1 − q̃

(k+1)
1 |/|q̃1 − q̃

(k)
1 |;

not knowing the value of either q1 or q̃1, we have used the values at the 20th iteration. The two
sequences are seen to converge linearly at the same rate μ = 0.26 approximately.

Case (ii): q = q̃ = 1. Take a = b = 1
2 and c = 1

25 . Here a > c and, for any individual,
the type of its descendants drifts over successive generations toward type 1, the least prolific of
types. The convergence norm is ν = 0.78 < 1, which implies that q̃ = 1. We shall conclude,
from Proposition 5.1 and Proposition 4.5 (with λ = ν), that q = 1 as well, once we show that
the dichotomy property holds. The progeny generating function is given by

Pi(s) =
{

1
4 s2

i + 1
50 s2

i+1 + 73
100 for i = 1,

1
6 s3

i−1 + 1
6 s3

i + 1
75 s3

i+1 + 49
75 for i ≥ 2.

(5.8)

(5.9)

To verify that the dichotomy property holds, we use the sufficient condition (4.1). In view
of (5.8) and (5.9), we observe that, for all i, P[|Z2| = 0 | ϕ0 = i, 1 ≤ |Z1| ≤ k] ≥
(min( 73

100 , 49
75 ))k, and we conclude that (4.1) is satisfied with mk = 2 and dk = ( 49

75 )k .
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Figure 2: Case (i) with a = b = 1
2 and c = 1

3 . Convergence rates of the sequences q
(k)
1 (solid line) and

q̃
(k)
1 (dashed line).
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Figure 3: Case (ii) with a = b = 1
2 and c = 1

25 . The first 50 components of the initial type distribution
vector α1, for which limn E[|Zn|] = 0, and of α2, for which limn E[|Zn|] = ∞.

To illustrate the observation made in Subsection 4.4 about the effects of the initial type’s
distribution, we take the parameters

λ1 = ν = 0.78 < 1 and λ2 = 1.02 < 1.04(= a + b + c).

By Proposition 5.1, there exist α1 > 0 and α2 > 0 such that α1M = λ1α1 and α11 = 1, and
such that α2M = λ2α2 and α21 = 1.

If ϕ0 has the distribution α1 then limn E[|Zn|] = 0; while if it has the distribution α2 then
limn E[|Zn|] = ∞. In both cases, extinction is with probability 1. We plot in Figure 3 the
first 50 components of α1 and α2. The difference between the two is that the distribution α1 is
concentrated on small types, so that the process has less chance of building a high population
before its eventual extinction.

Case (iii): q ≤ q̃ = 1. Take a = 1
25 and b = c = 1

2 . Here, a < c and ν = 0.78 < 1 <

a + b + c; thus, q ≤ q̃ = 1, but we do not know whether or not q = 1.
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2 . Left: the values of q
(k)
1 (solid line) and of q̃

(k)
1 (dashed

line). Right: the first entries of q(60) (solid line) and q̃(60) (dashed line).
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Figure 5: Case (iii) with a = 1
25 and b = c = 1

2 . Simulation of the evolution of the population size in
different types and of the total population size.

We show in the left-hand diagram of Figure 4 the values of q
(k)
1 and q̃

(k)
1 for k = 1 to 60.

Judging from this, we conclude that q1 < 1 = q̃1. In the right-hand diagram of that figure, we
give q

(60)
i and q̃

(60)
i for i = 1 to 60.

To confirm that q < q̃ = 1, we have simulated the branching process and we give one partic-
ular sample path in Figure 5: the whole population |Zn| seems to grow without bounds, while
individual types appear, grow in importance, and eventually disappear from the population.

5.2. One-sided branching random walk

Consider the mean progeny matrix with the structure

M =

⎡⎢⎢⎢⎣
b1 c1

b2 c2
b3 c3

. . .
. . .

⎤⎥⎥⎥⎦ ,

where bi ≥ 0 and ci > 0 for all i.
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Figure 6: Left: the values of q
(k)
8 (solid line) and of q̃

(k)
8 (dashed line). Right: the first entries of q(30)

(solid line) and q̃(30) (dashed line).

In this special case of a reducible mean progeny matrix we may associate another
interpretation to the sequence {q̃(k)}. Let us define the local extinction of a specific type.
This event is Ek = [limn→∞ Znk = 0], independently of the other types.

A moment of reflection shows that Ek ≡ ⋂
�≤k E� and, furthermore, that q̃(k)

i is the probabil-
ity that type k eventually becomes extinct, given that the process starts with a first individual of
type i. This allows us to give another proof that q̃(k) ≥ q̃(k+1) and that the sequence converges
to q̃:

lim
k→∞ q̃(k) = lim

k→∞ P[Ek | ϕ0] = lim
k→∞ P

[⋂
�≤k

E�

∣∣∣∣ ϕ0

]
= P

[ ⋂
�≤∞

E�

∣∣∣∣ ϕ0

]
= q̃.

In the reducible case, the equation s = P (s) may have more than two distinct solutions and, in
particular, it is possible that q < q̃ < 1, as we show with an example.

Take bi = 0 and ci = 1.9 for every i except for i = 10, where b10 = 1.6 and c10 = 0.8.
That is, in general, type-i (i �= 10) individuals have only children of the next type and slightly
less than two on average, while a type-10 individual is different. If it were not for type 10,
the whole population would behave as a supercritical process, with each type becoming extinct
after one generation. Individuals of type 10 do reproduce themselves, in a supercritical fashion.

Assume that the progeny generating function is

Pi(s) =
{

19
30 s3

i+1 + 11
30 for i �= 10,

2
5 s4

i + 1
5 s4

i+1 + 2
5 for i = 10.

As the sequence {sp(M(k))} converges to ν̄ = 1.6 > 1, we know by Proposition 4.2 that q̃ � 1.
Furthermore, Proposition 4.3 implies that q̃i < 1 for 1 ≤ i ≤ 10, and q̃i = 1 for i ≥ 11.

We show {q(k)
8 } and {q̃(k)

8 } in the left-hand diagram of Figure 6 and the plot clearly makes

it appear that q8 < q̃8 < 1. In the right-hand diagram, we give the values of q
(30)
i and q̃

(30)
i

for 1 ≤ i ≤ 30. For i ≥ 11, local extinction has probability 1 since every type exists for one
generation only, and the global extinction probability, at least if i is sufficiently smaller than
30, is close to 0.41, the extinction probability of a single-type branching process with progeny
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generating function
P(s) = 19

30 s3 + 11
30 .

We thus see that if extinction happens in the single-type process, then it does so in a few
generations.
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