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ASYMPTOTIC NORMALITY FOR M-DEPENDENT AND CONSTRAINED
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Abstract

We study (asymmetric) U-statistics based on a stationary sequence of m-dependent vari-
ables; moreover, we consider constrained U-statistics, where the defining multiple sum
only includes terms satisfying some restrictions on the gaps between indices. Results
include a law of large numbers and a central limit theorem, together with results on
rate of convergence, moment convergence, functional convergence, and a renewal theory
version.

Special attention is paid to degenerate cases where, after the standard normalization,
the asymptotic variance vanishes; in these cases non-normal limits occur after a different
normalization.

The results are motivated by applications to pattern matching in random strings and
permutations. We obtain both new results and new proofs of old results.
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1. Introduction

The purpose of the present paper is to present some new results for (asymmetric) U-statistics
together with some applications. (See Section 3 for definitions.) The results include a strong
law of large numbers and a central limit theorem (asymptotic normality), together with results
on rate of convergence, moment convergence, functional convergence, and a renewal theory
version.

Many results of these types have been proved for U-statistics under different hypotheses by
a large number of authors, from Hoeffding [27] on. The new feature of the results here, which
are motivated by applications discussed below, is the combination of the following:

(i) We consider, as in e.g. [35], [37], and [26], but unlike many other authors, asymmetric
U-statistics and not just the symmetric case. (See Remark 3.3.)

(i1) We consider also constrained U-statistics, where the summations are restricted as in
(3.2) or (3.3).
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(iii) The U-statistics are based on an underlying sequence that is not necessarily i.i.d. (as
is usually assumed); we assume only that the sequence is stationary and m-dependent.
(This case has been studied earlier by e.g. [58], but not in the present asymmetric case.)

The extension to the m-dependent case might be of interest for some applications, but for
us the main motivation is that it allows us to reduce the constrained versions to ordinary U-
statistics; hence this extension is implicitly used also when we apply the results for constrained
U-statistics based on i.i.d. sequences.

Remark 1.1. The combination of the features (i)—(iii) above is new, but they have each been
considered separately earlier.

In particular, constrained U-statistics are special cases of the large class of incomplete U-
statistics [6]. These are, in turn, special cases of the even more general weighted U-statistics;
see e.g. [61], [47], [42], [55], [30], [66], and [26]. (These references show asymptotic nor-
mality under various conditions; some also study degenerate cases with non-normal limits;
[26] includes the asymmetric case.) In view of our applications, we consider here only the
constrained case instead of trying to find suitable conditions for general weights.

Similarly, U-statistics have been considered by many authors for more general weakly
dependent sequences than m-dependent ones. In particular, asymptotic normality has been
shown under various types of mixing conditions by e.g. [59], [64, 65], and [15]. We are not
aware of any paper on asymmetric U-statistics with a mixing condition on the variables. Such
results might be interesting for future research, but again in view of our applications, we have
not pursued this and consider here only the m-dependent case.

There are thus many previous results yielding asymptotic normality for U-statistics under
various conditions. One general feature, found already in the first paper [27], is that there are
degenerate cases where the asymptotic variance vanishes (typically because of some inter-
nal cancellations). In such cases, the theorems only yield convergence to O and do not imply
asymptotic normality; indeed, typically a different normalization yields a non-normal limit. It
is often difficult to calculate the asymptotic variance exactly, and it is therefore of great interest
to have simple criteria that show that the asymptotic variance is non-zero. Such a criterion is
well known for the standard case of (unconstrained) U-statistics based on i.i.d. variables [27].
We give corresponding (somewhat more complicated) criteria for the m-dependent case studied
here, in both the unconstrained and constrained cases. (This is one reason for considering only
the m-dependent case in the present paper, and not more general weakly dependent sequences.)
We show the applicability of our criteria in some examples.

Like many (but not all) of the references cited above, we base our proof of asymptotic
normality on the decomposition method of Hoeffding [27], with appropriate modifications.
As pointed out by an anonymous referee, an alternative method is to use dependency graphs
together with Stein’s method, which under an extra moment assumption yields our main results
on asymptotic normality together with an upper bound on the rate of convergence. We do not
use this method in the main parts of the paper, partly because it does not seem to yield simple
criteria for non-vanishing of the asymptotic variance; however, as a complement, we use this
method to give some results on rate of convergence.

1.1. Applications

The background motivating our general results is given by some parallel results for pattern
matching in random strings and in random permutations that have previously been shown by
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different methods, but easily follow from our results; we describe these results here and return
to them (and some new results) in Sections 13 and 14. Further applications to pattern matching
in random permutations restricted to two classes of permutations are given in [38].

First, consider a random string E, =& - - - §, consisting of n i.i.d. random letters from a
finite alphabet A (in this context, this is known as a memoryless source), and consider the
number of occurrences of a given word w=w; - - - w, as a subsequence; to be precise, an
occurrence of w in E, is an increasing sequence of indices ij < ... <igin [n]={1, ..., n}
such that

& ki, &, =W, i.e., &, = wy for every k € [£]. (1.1)

This number, N, (w) say, was studied by Flajolet, Szpankowski and Vallée [23], who proved
that N, (w) is asymptotically normal as n — oo.

Flajolet, Szpankowski and Vallée [23] also studied a constrained version, where we are
also given numbers dy, ..., dp—1 e NU{oo} ={1,2, ..., oo} and count only occurrences of
w such that

i1 — i < dj 1<j< . (1.2)

(Thus the jth gap in iy, .. ., i¢ has length strictly less than d;.) We write D := (dy, . .., de—1),
and let N,(w; D) be the number of occurrences of w that satisfy the constraints (1.2). It was
shown in [23] that, for any fixed w and D, N,(w, D) is asymptotically normal as n — co. See
also the book by [Jacquet and Szpankowski [31], Chapter 5].

Remark 1.2. Note that d; = co means no constraint for the jth gap. In particular, dy =... =
dyp—1 = 00 yields the unconstrained case; we denote this trivial (but important) constraint D

by Deo-
In the other extreme case, if d; =1, then i; and ij;1 have to be adjacent. In particular,
in the completely constrained case dy =---=dy_1 =1, Ny(w; D) counts occurrences of w

as a substring &;&;4+1 - - - &i+¢—1. Substring counts have been studied by many authors; some
references with central limit theorems or local limit theorems under varying conditions are [4],
[52], [45], and [22, Proposition IX.10, p. 660]. See also [62, Section 7.6.2 and Example 8.8]
and [31]; the latter book discusses not only substring and subsequence counts but also other
versions of substring matching problems in random strings.

Note also that the case when all d; € {1, co} means that w is a concatenation wy - - - wp, (with
w broken at positions where d; = 00), such that an occurrence now is an occurrence of each w;
as a substring, with these substrings in order and non-overlapping, and with arbitrary gaps in
between. (This is a special case of the generalized subsequence problem in [31, Section 5.6];
the general case can be regarded as a sum of such counts over a set of w.)

There are similar results for random permutations. Let G,, be the set of the n! permutations
of(nfnr=m---m,€S,andt =717 - - - 7 € Sy, then an occurrence of the pattern 7 in 7 is
an increasing sequence of indices ij < - - - < igin [n] = {1, ..., n} such that the order relations
inm;, ---m;, are the same asin 7y - - - 7y, i.e., T < Tj = T < T

Let N,(t) be the number of occurrences of 7 in & when & =™ is uniformly random in
G, Bona [7] proved that N, (7) is asymptotically normal as n — oo, for any fixed t.

Also for permutations, one can consider, and count, constrained occurrences by again
imposing the restriction (1.2) for some D =(dj, ..., d¢—1). In analogy with strings, we let
N,(z, D) be the number of constrained occurrences of t in " when 7™ is uniformly ran-
dom in &,. This random number seems to have been studied mainly in the case when each
di € {1, o0}, i.e., some j; are required to be adjacent to the next one—in the permutation
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context, such constrained patterns are known as vincular patterns. Hofer [29] proved asymp-
totic normality of N, (z, D) as n — oo, for any fixed t and vincular D. The extreme case with
dy =---=dy—1 = 1 was earlier treated by Béna [9]. Another (non-vincular) case that has been
studied is that of d-descents, given by £ =2, T =21, and D = (d); Béna [8] shows asymptotic
normality and Pike [50] gives a rate of convergence.

We unify these results by considering U-statistics. It is well known and easy to see that the
number N, (W) of unconstrained occurrences of a given subsequence w in a random string &,
can be written as an asymmetric U-statistic; see Section 13 and (13.2) for details. There are
general results on asymptotic normality of U-statistics that extend the basic result by [27] to
the asymmetric case; see e.g. [35, Corollary 11.20] and [37]. Hence, asymptotic normality of
N,(w) follows directly from these general results. Similarly, it is well known that the pattern
count N,(7) in a random permutation also can be written as a U-statistic (see Section 14 for
details), and again this can be used to prove asymptotic normality. (See [39], with an alternative
proof by this method of the result by Béna [7].)

The constrained case is different, since the constrained pattern counts are not U-statistics.
However, they can be regarded as constrained U-statistics, which we define in (3.2) below in
analogy with the constrained counts above. As stated above, in the present paper we prove
general limit theorems for such constrained U-statistics, which thus immediately apply to the
constrained pattern counts discussed above in random strings and permutations.

The basic idea in the proofs is that a constrained U-statistic based on a sequence (X;) can be
written (possibly up to a small error) as an unconstrained U-statistic based on another sequence
(Y;) of random variables, where the new sequence (Y;) is m-dependent (with a different m) if
(X;) is. (However, even if (X;) is independent, (Y;) is in general not; this is our main motivation
for considering m-dependent sequences.) The unconstrained m-dependent case then is treated
by standard methods from the independent case, with appropriate modifications.

Section 2 contains some preliminaries. The unconstrained and constrained U-statistics are
defined in Section 3, where also the main theorems are stated. The degenerate case, when
the asymptotic variance in the central limit theorem Theorem 3.3, 3.4, or 3.8 vanishes, is dis-
cussed later in Section 8, when more notation has been introduced; Theorems 8.1, 8.2, and 8.3,
respectively, give criteria that can be used to show that the asymptotic variance is non-zero in
an application. On the other hand, Example 8.1 shows that the degenerate case can occur in
new ways for constrained U-statistics.

The reduction to the unconstrained case and some other lemmas are given in Section 4, and
then the proofs of the main theorems are completed in Sections 5—7 and 9-12. Section 13 gives
applications to the problem on pattern matching in random strings discussed above. Similarly,
Section 14 gives applications to pattern matching in random permutations. Some further com-
ments and open problems are given in Section 15. The appendix contains some further results
on subsequence counts in random strings.

2. Preliminaries

2.1. Some notation

A constraint is, as in Section 1, a sequence D =(d;, ..., di—1) € (NU {oo})@’l, for some
given £ > 1. Recall that the special constraint (oo, ..., 00) is denoted by Ds. Given a
constraint D, define b = b(D) by

b=bD):=L—|{j:dj <oo}| =14 |{j:dj=00}|. 2.1

We say that b is the number of blocks defined by D; see further Section 4 below.
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For a random variable Z, and p > 0, we let || Z]|,, := (E[|1Z|P])V/P.

We use —d>, l>, and =% for convergence of random variables in distribution, in prob-
ability, and almost surely (a.s.), respectively. For a sequence of random variables (Z,), and a
sequence a, > 0, we write Z, = op(a,) when Z, /a, BN 0.

Unspecified limits are as n — oco. C denotes an unspecified constant, which may be different
at each occurrence. (C may depend on parameters that are regarded as fixed, for example the
function f below; this will be clear from the context.)

We use the convention (Z) := 0 if n < 0. (We will always have k > 0.) Some further stan-
dard notation: [n]:= {1, ..., n}, and max @ := 0. All functions are tacitly assumed to be
measurable.

2.2. m-dependent variables

For reasons mentioned in the introduction, we will consider U-statistics not only based on
sequences of independent random variables, but also based on m-dependent variables.

Recall that a (finite or infinite) sequence of random variables (X;); is m-dependent if the two
families {X;};<x and {X;};>4» of random variables are independent of each other for every k.
(Here, m > 0 is a given integer.) In particular, O-dependent is the same as independent; thus the
important independent case is included as the special case m = 0 below.

It is well known that if (X;);e is m-dependent, and /1, . . ., I, € I are sets of indices such that
dist(f;, Iy) := inf{|i — '| : i € I}, i’ € It} > m when j # k, then the families (vectors) of random
variables (X;)ier,, . . ., (Xi)ies, are mutually independent of each other. (To see this, note first

that it suffices to consider the case when each I; is an interval; then use the definition and
induction on r.) We will use this property without further comment.

In practice, m-dependent sequences usually occur as block factors; i.e. they can be
expressed as

Xi:= h(i, ..., &iym) (2.2)

for some i.i.d. sequence (&;) of random variables (in some measurable space Sp) and a fixed
function % on S(’)"H. (It is obvious that (2.2) then defines a stationary m-dependent sequence.)

3. U-statistics and main results

Let X1, Xp, ... be a sequence of random variables, taking values in some measurable space
S, and let f: St >Rbea (measurable) function of ¢ variables, for some ¢ > 1. Then the
corresponding U-statistic is the (real-valued) random variable defined for each n > 0 by

Un=UaN=Un(f;XD):= Y (Koo Xiy): 3.1

1<ij<...<ip<n

U-statistics were introduced by Hoeffding [27], who proved a general central limit theorem;
the present paper gives an extension of his result that builds on his methods.

Remark 3.1. Of course, for the definition (3.1) it suffices to have a finite sequence (X;)7, but
in the present paper we will only consider the initial segments of an infinite sequence.

Remark 3.2. Many authors, including Hoeffding [27], define U, by dividing the sum in (3.1)
by (2‘), the number of terms in it. We find it more convenient for our purposes to use the
non-normalized version above.
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Remark 3.3. Many authors, including Hoeffding [27], assume that f is a symmetric function
of its £ variables. In this case, the order of the variables does not matter, and in (3.1) we can
sum over all sequences iy, ..., i¢ of £ distinct elements of {1, ..., n}, up to an obvious factor
of £!. (Hoeffding [27] gives both versions.) Conversely, if we sum over all such sequences,
we may without loss of generality assume that f is symmetric. However, in the present paper
(as in several earlier papers by various authors) we consider the general case of (3.1) without
assuming symmetry; for emphasis, we call this an asymmetric U-statistic. (This is essential in
our applications to pattern matching.) Note that for independent (X;), the asymmetric case can
be reduced to the symmetric case by the trick in Remark 11.21, in particular (11.20), of [35];
see also [39, (15)] and (A.18) below. However, this trick does not work in the m-dependent or
constrained cases studied here, so we cannot use it here.

As stated in the introduction, we also consider constrained U-statistics. Given a constraint

D=, ...,di—1), we define the constrained U-statistic
UnsD)=Un(f;D; X)) i= Y [(Xip,.o . Xy),  n>0, (3.2)
1<ij<...<ig<n
ijy1—i<d;

where we thus impose the constraints (1.2) on the indices.
We define further the exactly constrained U-statistic

Un(f: D=) = Un(f; D=; (X)) := Yoo X X,).  n=0. (33)

1<it<...<ip<n
lj+1—ij=dj if dj<00

where we thus specify each gap either exactly or (when d; = 00) not at all. In the vincular case,
when all d; are either 1 or oo, there is no difference and we have U, (f; D) = U,(f; D=).

Note that, trivially, each constrained U-statistic can be written as a sum of exactly
constrained U-statistics:

Un(f; D)= Un(f; D'=), (3.4)

’D/

where we sum over all constraints D’ = (d}, . .., d;) with

1<d <d;, d< oo,
{ g (3.5)

d; = o0, dj = oco.

Remark 3.4. As stated in the introduction, the [exactly] constrained U-statistics thus belong
to the large class of incomplete U-statistics [6], where the summation in (3.1) is restricted to
some, in principle arbitrary, subset of the set of all £-tuples (iy, .. ., i¢) in [n].

The standard setting, in [27] and many other papers, is to assume that the underlying random
variables X; are i.i.d. In the present paper we consider a more general case, and we will assume
only that X1, X5, ... is an infinite stationary m-dependent sequence, for some fixed integer
m = 0; see Section 2.2 for the definition, and recall in particular that the special case m =0
yields the case of independent variables X;.

We will consider limits as n — oco. The sequence X1, X3, . .. (and thus the space S and the
integer m) and the function f (and thus ¢) will be fixed, and do not depend on n.
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We will throughout assume the following moment condition for p =2; in a few places
(always explicitly stated) we also assume it for some larger p:

Ap) ElfX;,....Xi)IP <oo foreveryij <---<ip.

Note that in the independent case (m = 0), it suffices to verify (A,) for a single sequence
i1, ..., 1, for example 1, ..., £. In general, it suffices to verify (A,) for all sequences with
itr=1 and ij;1 —i;<m+1 for every j< £ — 1, since the stationarity and m-dependence
imply that every larger gap can be reduced to m 4 1 without changing the distribution of
fX;,, ..., X;,). Since there is only a finite number of such sequences, it follows that (A3)
is equivalent to the uniform bound

Elf(Xi,, ..., Xi)><C  foreveryij <---<i, (3.6)
and similarly for (A,).

3.1. Expectation and law of large numbers

We first make an elementary observation on the expectations EU, (f; D) and EU,(f; D=).
These can be calculated exactly by taking the expectation inside the sums in (3.2) and (3.3).
In the independent case, all terms have the same expectation, so it remains only to count the
number of them. In general, because of the m-dependence of (X;), the expectations of the terms
in (3.3) are not all equal, but most of them coincide, and it is still easy to find the asymptotics.

Theorem 3.1. Let (X;){° be a stationary m-dependent sequence of random variables with val-
ues in a measurable space S, let £ > 1, and let f : St >R satisfy (Az). Then, as n — oo, with
u given by (5.1) below,

¢
n n
EU(f) = (£>M+O(né_1) = F,u—i—O(ne_l). (3.7)
More generally, let D= (dy, ..., di—1) be a constraint, and let b := b(D). Then, as n — 00,

for some real numbers up and up— given by (5.5) and (5.4),

b

EUL(f: D) = Z-up +0(n"™"). (3.8)
n’ b—1
EU,(f; D=) = ZHD= +0(n"™"). (3.9)

Ifm=0, i.e., the sequence (Xi)‘l><> is i.i.d., then, moreover,
u=pup==Ef(X1, ..., Xp), (3.10)

Up = [k ]_[ di= ]_[ di - Ef Xy, ..., Xp). (3.11)

jidj<oo jidj<oo

The straightforward proof is given in Section 5, where we also give formulas for up and pup—
in the general case, although in an application it might be simpler to find the leading term of
the expectation directly.
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Next, we have a corresponding strong law of large numbers, proved in Section 7. This
extends well-known results in the independent case; see [28, 37, 57].

Theorem 3.2. Let (X;){° be a stationary m-dependent sequence of random variables with val-
ues in a measurable space S, let € > 1, and let f : St >R satisfy (Az). Then, as n — oo, with
u given by (5.1),

s. 1
ntUL(f) 2> o (3.12)
More generally, let D = (dy, ..., dy—1) be a constraint, and let b := b(D). Then, as n — oo,
—b as. 1
nUn(f; D) — D (3.13)
—b as. 1
n " U(f; D=) — D= (3.14)
where wp and wp—, as in Theorem 3.1, are given by (5.5) and (5.4).
Equivalently,
n~HUn(f) — EUL(H)] =3 0, (3.15)
n=[Un(f; D) — EUL(f; D)] = 0, (3.16)
n~[Un(f; D=) — EU,(f; D=)] =5 0. (3.17)

Remark 3.5. For convenience, we assume (A) in Theorem 3.2 as in the rest of the paper,
which leads to a simple proof. We conjecture that the theorem holds assuming only (A1) (i.e.,
finite first moments) instead of (A»), as in [28, 37] for the independent case.

3.2. Asymptotic normality

We have the following theorems yielding asymptotic normality. The proofs are given in
Section 6.

The first theorem is for the unconstrained case, and extends the basic theorem by Hoeffding
[27] for symmetric U-statistics based on independent (X,-)‘fo to the asymmetric and m-
dependent case. Note that both these extensions have previously been treated, but separately.
For symmetric U-statistics in the m-dependent setting, asymptotic normality was proved by
Sen [58] (at least assuming a third moment); moreover, bounds on the rate of convergence
(assuming a moment condition) were given by Malevich and Abdalimov [43]. The asymmetric
case with independent (X,-)j’o has been treated e.g. in [35, Corollary 11.20] and [37]; further-
more, as stated in Remark 3.3, for independent (X;), the asymmetric case can be reduced to the
symmetric case by the method in [35, Remark 11.21].

Theorem 3.3. Let (X;){° be a stationary m-dependent sequence of random variables with
values in a measurable space S, let £ > 1, and let f : St >R satisfy (Az). Then, as n — 0o,

Var[Un(H)]/n* ™! — o2 (3.18)

for some o> = o%(f) € [0, 00), and

Un(f)—EUn(f) d (0 0,2).

N (3.19)
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The second theorem extends Theorem 3.3 to the constrained cases.

Theorem 3.4. Let (X;){° be a stationary m-dependent sequence of random variables with val-
ues in a measurable space S, let £ > 1, and let f - St >R satisfy (A). Let D =(dy, ..., di—1)
be a constraint, and let b := b(D). Then, as n — o0,

Var[U,(f; D) /n** ™' — o (3.20)

for some o= 02([’; D) € [0, o0), and

Un(f; D) — EU(f; D)

s ~4N(0, 0?). (3.21)
n

The same holds, with some (generally different) o> = o(f; D=), for the exactly con-
strained U, (f; D=).

Remark 3.6. It follows immediately by the Cramér—Wold device [25, Theorem 5.10.5] (i.e.,
considering linear combinations), that Theorem 3.3 extends in the obvious way to joint con-
vergence for any finite number of different f : S* — R, with 0> now a covariance matrix.
Moreover, the proof shows that this holds also for a family of different f with (possibly)
different £ > 1.

Similarly, Theorem 3.4 extends to joint convergence for any finite number of different f
(possibly with different £ and D); this follows by the proof below, which reduces the results to
Theorem 3.3.

Remark 3.7. The asymptotic variance o2 in Theorems 3.3 and 3.4 can be calculated explicitly;
see Remark 6.2.

Remark 3.8. Note that it is possible that the asymptotic variance o> = 0 in Theorems 3.3 and
3.4; in this case, (3.19) and (3.21) just give convergence in probability to 0. This degenerate
case is discussed in Section 8.

Remark 3.9. We do not consider extensions to triangular arrays where f or X; (or both) depend
on n. In the symmetric m-dependent case, such a result (with fixed £ but possibly increasing
m, under suitable conditions) has been shown by [43], with a bound on the rate of conver-
gence. In the independent case, results for triangular arrays are given by e.g. [56] and [32]; see
also [40] for the special case of substring counts N, (w) with w depending on n (and growing
in length). It seems to be an interesting (and challenging) open problem to formulate useful
general theorems for constrained U-statistics in such settings.

3.3. Rate of convergence

Under stronger moment assumptions on f, an alternative method of proof (suggested by a
referee) yields the asymptotic normality in Theorems 3.3 and 3.4 together with an upper bound
on the rate of convergence, provided o> > 0.

In the following theorem of Berry—Esseen type, we assume for simplicity that f is bounded
(as it is in our applications in Sections 13—14); see further Remark 9.1. Let dx denote the
Kolmogorov distance between distributions; recall that for two distributions £, £, with dis-
tribution functions F1(x) and F>(x), dx = dk (L1, L2) 1= sup, |F1(x) — F2(x)|; we use also the
notation dg (X, £7) := dg(L(X), L) for a random variable X.

https://doi.org/10.1017/apr.2022.51 Published online by Cambridge University Press


https://doi.org/10.1017/apr.2022.51

850 S. JANSON

Theorem 3.5. Suppose in addition to the hypotheses in Theorem 3.3 or 3.4 that 6> > 0 and
that f is bounded. Then

(U,, —EU,
K +/ Var U,

where Uy, denotes Uy(f), U, (f, D), or Uy(f; D=).

. N, 1)) =0(n 1), (3.22)

In the symmetric and unconstrained case, this (and more) was shown by Malevich and
Abdalimov [43]. The proof of Theorem 3.5 is given in Section 9, together with further remarks.

3.4. Moment convergence

Theorems 3.3 and 3.4 include convergence of the first (trivially) and second moments in
(3.19) and (3.21). This extends to higher moments under a corresponding moment condition
on f. (The unconstrained case with independent X; was shown in [37, Theorem 3.15].)

Theorem 3.6. Suppose in addition to the hypotheses in Theorems 3.3 or 3.4 that (A, ) holds for
some real p > 2. Then all absolute and ordinary moments of order up to p converge in (3.19)
or (3.21).

The proof is given in Section 10, where we also give related estimates for maximal
functions.

3.5. Functional limit theorems

We can extend Theorem 3.4 to functional convergence. For unconstrained U-statistics, this
was done by Miller and Sen [44] in the classical case of independent X; and symmetric f; the
asymmetric case is [37, Theorem 3.2]; furthermore, Yoshihara [65] proved the case of depen-
dent X; satisfying a suitable mixing condition (assuming a technical condition on f besides
symmetry).

Theorem 3.7. Suppose that (A;) holds. Then as n — oo, with b = b(D), in D[0, c0),

U ;D)—-EU ;D
ol )b—1/2 o (iD) Z(n), 120, (3.23)
n

where Z(t) is a continuous centered Gaussian process. Equivalently, in D[0, 00),

U ;D) — b! blb
Lt} )b_l(/A;D/ m —d>Z(t), £>0. (3.24)
n

The same holds for exact constraints. Moreover, the results hold jointly for any finite set of
f and D (possibly with different £ and b), with limits Z(t) depending on f and D.

The proof is given in Section 11.

Remark 3.10. A comparison between (3.23) and (3.21) yields Z(#) ~ N(0, **~15?), with o2
as in Theorem 3.4. Equivalently, Var Z(r) = **~!2, which can be calculated by Remark 6.2.
Covariances Cov(Z(s), Z(#)) can be calculated by the same method and (11.20) in the proof;
we leave the details to the reader. Note that these covariances determine the distribution of the
process Z.
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3.6. Renewal theory

Assume further that 4 : S — R is another (fixed) measurable function, with

v:= Eh(X;) > 0. (3.25)
We define
n
Su=Su(h):= Y h(Xy), (3.26)
i=1
and, for x > 0,
N_(x):= sup{n >20:5, <x}, (3.27)
Ni(x):= inf{n>0:S, > x}. (3.28)

N_(x) and N4(x) are finite a.s. by the law of large numbers for S, (12.1); see further
Lemma 12.1. We let N1 (x) denote either N_(x) or N4 (x), in statements and formulas that
are valid for both.

Remark 3.11. In [37], instead of A(x) we consider more generally a function of several vari-
ables, and we define N1 using the corresponding U-statistic instead of S,,. We believe that the
results of the present paper can be extended to that setting, but we have not pursued this, and
leave it as an open problem.

Remark 3.12. If 4(X1) >0 a.s., which is often assumed in renewal theory, then N (x) =
N_(x) + 1. However, if h may be negative (still assuming (3.25)), then N_(x) may be larger
than N, (x). Nevertheless, the difference is typically small, and we obtain the same asymptotic
results for both Ny and N_. (We can also obtain the same results if we instead use S, < x or
S, > x in the definitions.)

In this situation, we have the following limit theorems, which extend results in [37]. Proofs
are given in Section 12. For an application, see [38].

Theorem 3.8. With the assumptions and notation of Theorem 3.4, assume (A3), and suppose
also that v := Eh(X;) > 0 and Eh(X))* < 0o. Then, with notation as above, as x — 00,

Unso(f3 D) = ppv™ b7 4
T 5 N(0, ), (3.29)

for some y* = y*(f; h; D) > 0.
The same holds for exact constraints. Moreover, the results hold jointly for any finite set of
f and D (possibly with different £ and b).

Theorem 3.9. Suppose in addition to the hypotheses in Theorem 3.8 that h(Xy) is integer-
valued and that (Xi)TO are independent. Then (3.29) holds also conditioned on Sy_(x) = x for
integers x — 00O.

We consider here tacitly only x such that P(Sy_¢) =x) > 0.

Remark 3.13. We prove Theorem 3.9 only for independent X; (which, in any case, is our main
interest, as stated in the introduction). It seems likely that the result can be extended to at least
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some m-dependent (X;), using a modification of the proof below and the m-dependent renewal
theorem (under some conditions) [1, Corollary 4.2], but we have not pursued this.

Theorem 3.10. Suppose in addition to the hypotheses in Theorem 3.8 that (Ap) holds and
E[|h(X1)|P] < oo for every p < 0o. Then all moments converge in (3.29).
Under the additional hypothesis in Theorem 3.9, this holds also conditioned on Sy_(x) = x.

Remark 3.14. In Theorem 3.10, unlike Theorem 3.6, we assume pth moments for all p, and
conclude convergence of all moments. If we only want to show convergence for a given p,
some sufficient moment conditions on f and % can be derived from the proof, but we do not
know any sharp results and have not pursued this. Cf. [37, Remark 6.1] and the references
there.

4. Some lemmas

We give here some lemmas that will be used in the proofs in later sections. In particular,
they will enable us to reduce the constrained cases to the unconstrained one.

LetD=(dy, ..., d;—1) be a given constraint. Recall that b = b(D) is given by (2.1), and let
1 =p1 <...< Bpbe the indices in [£] just after the unconstrained gaps; in other words, B; are
defined by By := 1 and dg,— = oo for j=2, ..., b. For convenience we also define S :=
£ 4 1. We say that the constraint D separates the index set [£] into the b blocks By, ..., Bp,
where By := {By, ..., Br+1 — 1}. Note that the constraints (1.2) thus are constraints on i; for j
in each block separately.

Lemma 4.1. Let (X;){° be a stationary m-dependent sequence of random variables with values
inS,lett>1, andletf : St R satisfy (Ay). Let D =(d,, ..., d¢—1) be a constraint. Then

Var[Uy(f; D)] = 0(n**®P71), n>1. (4.1)
Furthermore,
Var[Un(f; D) — Up—1(f; D)] = O(n**P)72), n>1. 4.2)

Moreover, the same estimates hold for Uy(f; D=).

Proof. The definition (3.2) yields

Var[U,(f; D)= Y > Cov(f(Xips oo Xi) f(Xiys -0 X)) (43)
I<ii<..<ig<n 1j1<...<je<n
el =i Sde Jier1 e Sd

Let d, be the largest finite d; in the constraint D, i.e.,

dy == max {d; : dj < o0}. 4.4)
j

The constraints imply that for each block B, and all indices k € B, coarsely,
Oéik—iﬁq <d.l and 0 <jk —jﬂq <dy L. 4.5)

It follows that if |ig, — jg,| > dsf +m for all r, s € [b], then |iy —jg| > m for all o, B € [£].
Since (X,-)‘l’O is m-dependent, this implies that the two random vectors (X;,, ..., X;,) and

(Xj,, - .., Xj,) are independent, and thus the corresponding term in (4.3) vanishes.
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Consequently, we only have to consider terms in the sum in (4.3) such that
lig, —Jjp,| <dsl+m (4.6)

for some r, s € [b]. For each of the O(1) choices of r and s, we can choose ig,, ..., ig, in at
most n? ways; then jg in O(1) ways such that (4.6) holds; then the remaining jg, in O(nb’l)
ways; then, finally, all remaining i; and j; in O(1) ways because of (4.5). Consequently, the
number of non-vanishing terms in (4.3) is O(n?*~1). Moreover, each term is O(1) by (3.6) and
the Cauchy—Schwarz inequality, and thus (4.1) follows.

For (4.2), we note that U,(f; D) — U,—1(f; D) is the sum in (3.2) with the extra restriction
i¢ = n. Hence, its variance can be expanded as in (4.3), with the extra restrictions iy =j, = n.
We then argue as above, but note that (4.5) and iy = n imply that there are only O(1) choices
of iy, and hence O(n?~") choices of iy, . . ., ip. We thus obtain O(n**~2) non-vanishing terms
in the sum, and (4.2) follows.

The argument for the exactly constrained U,(f; D=) is the same (and slightly simpler).
(Alternatively, we could do this case first, and then use (3.4) to obtain the results for
Un(f;D).) U

The next lemma is the central step in the reduction to the unconstrained case.

Lemma 4.2. Let (X;))°, f: S > R, and D= (d,, . .., d¢_1) be as in Lemma 4.1, and let

D:= Z d;. 4.7
Jjidj<oo
Let M > D and define
Yii= (Xi, Xit1, - - - Xigm—1) € SM, i> 1 (4.8)

Then there exists a function g = gp— : (SM)? — R such that for every n >0,

Unf; D=3 = Y &Y., ¥) =Unn(g (YD), (4.9)
J1<..<jp<n—D

with U,_p(g) := 0 when n < D. Furthermore,
2
Elg(Y;,....Y;,)|" < oo, (4.10)

foreveryji <--- <jp.

Proof. For each block By ={f8, ..., Bg+1 — 1} defined by D, let

Ly = |Bgl = Bg+1 — Bys (4.11)
r—1
tgri=Y _dp,1j1, r=1,..., 4, (4.12)
j=1
Bq+1—Bg—1
Ug = l‘q,gq = Z dﬁq+j_1, 4.13)
=1

<
L~y

i

<
Ll

(4.14)
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Note that 7,1 = 0 for every g and that ., u; < co. (We stop the summation in (4.13) just before
the next infinite d;, which occurs for j = 8,41 — 1 provided ¢ < b.) Note also that

up+vp =y ug=D. (4.15)
k<b

We then rewrite (3.3) as follows, letting k, := ig, and grouping the arguments of f according

to the blocks of D (using an obvious notation for this):

¢ ¢
Un(f; D=) = > ()il Ken) ) @16)
1<k <ky <...<kp<n—up,
kgv1>kg+ug

Change summation variables by k, = j, + v4. Then, recalling (4.14)—(4.15), (4.16) yields

Un(f; D=) = Z f((le-i-V|+l|r)f1:1’ cr ()(jh"l‘Vh‘Hhr)fb:])' 4.17)

1< <ja<jpsn—D

Define, for y; = (yik)ﬁ/lzl eSM,

l Ja
g(yl, ey )’b) If(()’1,v1+zlr+1),1:1, ey (yb,vb+t1,r+l)rb=1)~ (418)
(Note that v; +#;, + 1 <vj+uj + 1 <D+ 1< M.) Wehave ¥; = (X./'+k—1)£4=1’ and thus (4.18)
yields
¢ ¢
g(le, T YJb) :f((Xj1+V1+t1r)r1:1’ T (ijJer-Hbr)rb:l)' (4.19)
Consequently, (4.9) follows from (4.17) and (4.19).
Furthermore, (4.10) follows from (4.19) and (A»). O
Lemma 4.3. Let (X,-)‘l’O and D=(dy,...,di_1) be as in Lemma 4.1, and let M and Y;

be as in Lemma 4.2. For every f:S*— R such that (As) holds, there exist functions
gD, D= (SM)? — R such that (4.10) holds for both, and

Var| U (1: D: (X)) = Un(gp: (1) | = 0(n™®72), (4.20)
Var Un(f: D=: (X)) = Un (gp=: () | = 0(a72). (“21)

Proof. First, letting gp— be as in Lemma 4.2, we have by (4.9)

Un(f; D=; (Xi)) — Un(g'D:; (Yi)) = Un—D(g'D:) - Un(gD:)

=Y (Ui (6pe) ~ Unklenn)). @22)

Thus (4.21) follows by (4.2) in Lemma 4.1 applied to gp—, the trivial constraint Dy, (i.€., no
constraint), and (¥;){°.
Next, we recall (3.4) and define

D’
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again summing over all constraints D’ satisfying (3.5). This is a finite sum, and by (3.4) and
(4.23),

Un(f; D; (X)) — Un(gp; (YD) = Y _(Un(f; D'=; (X)) — Un(gpr=; (YD))); (4.24)
D/
thus (4.20) follows from (4.21). O

To avoid some of the problems caused by dependencies between the X;, we follow Sen [58]
and introduce another type of constrained U-statistics, where we require the gaps between the
summation indices to be large, instead of small as in (3.2). We need only one case, and define

Unf; >my:= Y f(Xi.....X,).,  n=0, (4.25)
1<ij<...<ip<n
ijp1—ij>m
summing only over terms where all gaps i;;1 —ij >m,j=1, ..., £ — 1. (The advantage is that
in each term in (4.25), the variables X;,, . . ., X;, are independent.)

Lemma 4.4. Let (Xi)cl’o andf: St = R be as in Lemma 4.1. Then
Var(Un(f) — Un(f; > m)) = 0(n*73). (4.26)

Proof. We can express the type of constrained U-statistic in (4.25) as a combination of
constrained U-statistics of the previous type by the following inclusion—exclusion argument:

-1
U,(f; >m)= Z f(X,'], ""Xif)nl{ij+l —ij>m}

1<it<...<ipg<n j=1
-1
= Z f(Xil, -"7Xi[)1_[(1_1{ij+1 —ijém})
1<ii<...<iy<n j=1
= ) DY T X X)) [ ] Ui — g <m)
JC[e—1] 1<ip<...<ig<n jeJ
= Y Uty (4.27)
JCe—1]

where we sum over the 261 subsets J of [¢ — 1], and use the constraints

m, jeJ,

o g (4.28)

Dy:=dpZ|  with  dj= :

We have b(Dy) =¢ — |J|, and thus b(Dj) < £ unless J = . Moreover, Dy = (00, ..., 00) =
Doo, and this means no constraint, so U,(f; Dy) = U,(f), the unconstrained U-statistic.
Consequently, by (4.27) and Lemma 4.1,

Var(Un() = Un(f: > m) = Var( 3 (=D"=10,(: D) = 0(n27?), (4.29)
TG

which proves the estimate (4.26). U
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4.1. Triangular arrays

We will also use a central limit theorem for m-dependent triangular arrays satisfying the
Lindeberg condition, which we state as Theorem 4.1 below. The theorem is implicit in Orey
[48]; it follows from his theorem there exactly as his corollary does, although the latter is
stated for a sequence and not for a triangular array. See also [Peligrad [49], Theorem 2.1],
which contains the theorem below (at least for o2 > 0; the case o2 = 0 is trivial), and is much
more general in that it only assumes strong mixing instead of m-dependence.

Recall that a triangular array is an array (£,;)1<i<n<oco Of random variables, such that the
variables (&,;);_, in a single row are defined on a common probability space. (As usual, it is
only for convenience that we require that the nth row has length n; the results extend to arbi-
trary lengths N,.) We are here mainly interested in the case when each row is an m-dependent
sequence; in this case, we say that (§,;) is an m-dependent triangular array. (We make no
assumption on the relationships between variables in different rows; these may even be defined
on different probability spaces.)

Theorem 4.1. (Orey [48].) Let (£,i)1 <i<n<go be an m-dependent triangular array of real-

valued random variables with EE,; = 0. Let S;, := Z?:l &,i. Assume that, as n — 00,
Var S, — o2 € [0, 00), (4.30)

that the &,; satisfy the Lindeberg condition

n
Z E[f;%i1{|‘§ni| > 8}] — 0, for every & > 0, (4.31)
i=1
and that
n
Z Varg,; = O(1). (4.32)
i=1
Then, as n — o0,
Sp — N(0, 7). (4.33)

Note that Theorem 4.1 extends the standard Lindeberg—Feller central limit theorem for tri-
angular arrays with row-wise independent variables (see e.g. [25, Theorem 7.2.4]), to which it
reduces when m = 0.

Remark 4.1. In fact, the assumption (4.32) is not needed in Theorem 4.1; see [63,
Theorem 2.1]. However, it is easily verified in our case (and many other applications), so
we need only this classical result.

5. The expectation

The expectation of a (constrained) U-statistic, and in particular its leading term, is eas-
ily found from the definition. Nevertheless, we give a detailed proof of Theorem 3.1, for
completeness and for later reference.

Proof of Theorem 3.1. Consider first the unconstrained case. We take expectations in
(3.1). The sum in (3.1) has (2) terms. We consider first the terms that satisfy the restriction
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ijr1 > 1+ mforevery j € [£ — 1] (i.e., the terms in (4.25)). As noted above, in each such term,
the variables Xj,, ..., Xj, are independent. Hence, let (X,-)‘]Z be an independent sequence of
random variables in S, each with the same distribution as X; (and thus as each X;), and define

wi=EfXi, ..., Xo). (5.1)
Then

n=Ef(Xi,....X) (5.2)
for every sequence of indices iy, ..., ig with ij;1 > i; +m for all j € [£ — 1]. Moreover, the

number of terms in (3.1) that do not satisfy these constraints is O(n*~1), and their expectations
are uniformly O(1) as a consequence of (3.6). Thus, (3.7) follows from (3.1).

Next, consider the exactly constrained case. We use Lemma 4.2 and then apply the
unconstrained case just treated to g and (Y;); this yields

n—D ~ ~ _
EU,(f; D=) =EU,—_p(g; (1)) :( ) )]Eg(Yl, I AR (5.3)
with ?1, . ,?;, 4 Y7 independent. Using (4.19), and the notation there, this yields (3.9)
with
¢ L
HD= = Eg(le, R Ylb) = Ef((X/|+V1+t|r)r1:1’ R (X/h+Vh+thr)rb:1)’ 54
for any sequence ji, ..., jp With jry1 —jx =m+ M for all k€ [b— 1]. (Note that (Y,-)‘l><> is

(m 4+ M — 1)-dependent.)
Finally, the constrained case (3.8) follows by (3.9) and the decomposition (3.4), with

Up = Z UD'=, (5.5
’D/

summing over all D’ satisfying (3.5).

In the independent case m = 0, the results above simplify. First, for the unconstrained case,
the formula for © in (3.10) is a special case of (5.2). Similarly, in the exactly unconstrained
case, (5.4) yields the formula for up— in (3.10). Finally, (3.10) shows that up_ does not
depend on D, and thus all terms in the sum in (5.5) are equal to w. Furthermore, it follows
from (3.5) that the number of terms in the sum is l—ldj<oo d;, and (3.11) follows.

Alternatively, in the independent case, all terms in the sums in (3.1), (3.2), and (3.3) have the
same expectation u given by (3.10), and the result follows by counting the number of terms.
In particular, exactly,

EU,(f) = (’Z)u (5.6)

and, with D given by (4.7),
EU,(f; D=) = (” B D)u. (5.7)
O
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6. Asymptotic normality

The general idea of the proof of Theorem 3.3 is to use the projection method of Hoeffding
[27], together with modifications as in [58] to treat m-dependent variables and modifications as
in e.g. [37] to treat the asymmetric case. We then obtain the constrained version, Theorem 3.4,
by reduction to the unconstrained case.

Proof of Theorem 3.3. We first note that by Lemma 4.4, it suffices to prove (3.18)—(3.19)
for U,(f; > m). (This uses standard arguments with Minkowski’s inequality and the Cramér—
Slutsky theorem [25, Theorem 5.11.4], respectively; we omit the details. The same arguments
are used several times below without comment.)

As remarked above, the variables inside each term in the sum in (4.25) are independent; this
enables us to use Hoeffding’s decomposition for the independent case, which (in the present,
asymmetric case) we define as follows.

As in Section 5, let (5(\,-)117 be an independent sequence of random variables in S, each with
the same distribution as X;. Recall i defined in (5.1), and, fori=1, ..., £, define the function
f; as the one-variable projection

S0 =Bf (Xt ..., X1, % X, -, Xe) — s ©6.1)
Equivalently,
[X)=E(fX1,....X0) | Xi) — . (6.2)

(In general, f; is defined only E(S(\i)-almost everywhere (a.e.), but it does not matter which
version we choose.) Define also the residual function

4
fo@is o xa) = fO L xa) = = Y fi). (6.3)
j=1

Note that the variables f;(X;) are centered by (5.1) and (6.2):
Efi(X)) = Efi(X;) =0. (6.4)

Furthermore, (A;) implies that f,-(?,-), and thus each f;(X}), is square integrable.
The essential property of f is that, as an immediate consequence of the definitions and
(6.4), its one-variable projections vanish:

E(feX1, ..., X) | Xi =x) =Ef (X1, .., Xim1, X, X1, - .., X¢) = 0. (6.5)

We assume from now on for simplicity that u = 0; the general case follows by replacing f
by f — w. Then (4.25) and (6.3) yield, by counting the terms where i; = k for given j and k,

L
Un(f: >m= (Zﬁ(Xij)+f*(Xi],...,Xik)>

1<ij<..<ig<n j=1

lj1—ij>m
_ Z (k -1 - (il— 1)m> <n - k; (Z._j)m>ﬁ(xk) + Up(f; >m). (6.6)
j=1 k=1 I -
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Let us first dispose of the last term in (6.6). Let ij <... <ip and j; <...<j; be two sets
of indices such that the constraints ix4+1 — iy > m and ji4+1 — jix > m in (4.25) hold. First, as
in the proof of Lemma 4.1, if also |iy —jg| > m for all «, B € [£], then all X;, and X;, are
independent; thus f.(X;,, . . ., X;,) and fx(Xj,, . .., X,) are independent, and

E[feXiys - s Xi )Xy o, Xi)] = BAKays -, XiDBA(XGy s -, Xj) =0, (6.7)

Moreover, suppose that |ii, — jg| > m for all but one pair («, ) € (€12, say for (a, B) # (0, o).
Then the pair (X,-a0 , Xjﬁo) is independent of all the variables {X;, : & # ao} and {Xj, : B # Bo},
and all these are mutually independent. Hence, recalling (6.5), a.s.

E[feXiy, - Xi )Xy o Xi) [ Xy s X ] (6.8)
= E[f*(Xl] LRI ] Xi() |Xia0]]E[f*()(j| LR ] )(][) |X]ﬁ0] = 0
Thus, taking the expectation, we find that unconditionally
E[fsXiy, - s Xi Xy, - - Xj)] = 0. (6.9)

Consequently, if we expand Var[U,(fi; > m)] in analogy with (4.3), then all terms where
liw —jg| < m for at most one pair («, B) will vanish. The number of remaining terms, i.e.,
those with at least two such pairs («, ), is O(n?t=2), and each term is O(1), by (A2) and the
Cauchy—Schwarz inequality. Consequently,

Var[Uu(fi; > m)] = 0(n**7?). (6.10)

Hence, we may ignore the final term U, (f;; > m) in (6.6).
We turn to the main terms in (6.6), i.e., the double sum; we denote it by U,, and write it as

4 n
Un=Y_ > ajanfiXe), (6.11)

j=1 k=1

where we thus define

k—1—(G—1m\/mn—k—{—j)m
a”k’”::( -1 )( t-j )

1

[ ——— Y (T S R [ (6.12)
G—=DHE=n!
where the O is uniform over all k<n and j<{. For j=1, ..., ¢, define the polynomial
functions
1 . .
e F —— Y § xeR. (6.13)
! (G — D=
Then (6.12) yields, again uniformly for all k <n and j < ¢,
@ n = 1" k/m) + O(n"72). (6.14)
The expansion (6.11) yields
14 4 n n
Var Uy =Y "3 aikntjqnCov[fi(Xe). £i(Xy)]. (6.15)
i=1 j=1 k=1 g=1
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where all terms with |k — ¢g| > m vanish because the sequence (X;) is m-dependent. Hence, with
r— := max{—r, 0} and r; := max{r, 0},

n—r4

14 l m
Var Uy =YY" 3" > GikntjictranCov[fi(Xe). fiXesr)]. (6.16)

i=1 j=1 r=—mk=1+4r_
The covariance in (6.16) is independent of k; we thus define, for any k > r_,

Vigor = Cov[fi(Xp), fi(Xksr)] (6.17)

and obtain

m n—ry

4 14
Var /Un = Z Z Z Vij.r Z i k,n k+r,n- (6.18)
i=1 j=1

r=—m k=1+r_

Furthermore, by (6.14),

n—ry n—ry

" Gign@iaira= Y (Vitk/n)+0(n™")) (witk/n) + O(n"))
k=1+4r_ k=1+4r_

n—ry

= > (Wik/myytk/m +0(n™"))

k=1+r_

= Z Vi(k/n)yi(k/n) + O(1)

k=1

_ /0 Wi/ )/ dx + O(1)

1
= n/ Yi(Oy;(t) dr + O(1). (6.19)
0
Consequently, (6.18) yields
e L m 1
n' P NVar U, =33 > i / Vi)Y dr 4+ 0(n ). (6.20)
0

i=1 j=1r=—m

Since (4.26), (6.6), and (6.10) yield
Var[U,(f) — Un] = 0(n*72), (6.21)
the result (3.18) follows from (6.20), with

o’ = Z Z Yiij.r / Vi ;1) dr. (6.22)
i=1 j=1 r=—m 0
Next, we use (6.11) and write
1 n
2= On=3_ Zin, (6.23)
k=1
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with

Ja
1_
Zin:= Y n? " aj kafj(Xp). (6.24)
j=1
Since Zy, is a function of X, it is evident that (Zy,) is an m-dependent triangular array with
centered variables. Furthermore, EZ;,, = 0 as a consequence of (6.4).

We apply Theorem 4.1 to (Zg,), so S, = n%_lﬁn by (6.23), and verify first its conditions.
The condition (4.30) holds by (6.20) and (6.22). Write Zy, = Zle Zjin with

1_
Zitn = 02" aj pnfi(Xp). (6.25)
Since (6.12) yields |aj  n| < nt=1, we have, for & >0,

E[Z W1 Zjtn| > €}] <n ™ 'E[ K0 PH{{(X0)] > en' /2. (6.26)

The distribution of f;(Xx) does not depend on k, and thus the Lindeberg condition (4.31) for
each triangular array (Zj, ), follows from (6.26). The Lindeberg condition (4.31) for (Z),»
then follows easily. Finally, taking & = 0 in (6.26) yields EZ, < Cn™', and thus EZ;, < Cn™',
which shows (4.32).

We have shown that Theorem 4.1 applies, and thus, recalling (6.23) and (6.4),

n
2! Uy —EU,) =n2 Ty = Y Ztn —> N(0, 02). (6.27)
k=1
The result (3.19) now follows from (6.27) and (6.21). U

Proof of Theorem 3.4. Lemma 4.3 implies that it suffices to consider U,(g; (Y;)) instead
of Uy,(f; D) or Uy,(f; D=). Note that the definition (4.8) implies that (¥;){° is a stationary
m’-dependent sequence, with m’ := m + M — 1. Hence, the result follows from Theorem 3.3
applied to g and (¥;){°. O

Remark 6.1. The integrals in (6.22) are standard beta integrals [46, 5.12.1]; we have
1

1
: : : : / ti+j—2(1 _ t)2(-i—j dr
—DG-—DIE=DE =N Jo
B (i4j—2) 2 —i—j)
T—-DIG=DIE—D)—pee—D

Remark 6.2. In the unconstrained case Theorem 3.3, the asymptotic variance o2 is given by
(6.22) together with (6.17), (6.1), and (6.28).

In the constrained cases, the proof above shows that o2 is given by (6.22) applied to the
function g given by Lemma 4.3 and (Yl-)fl’o given by (4.8) (with M = D + 1 for definiteness);
note that this also entails replacing ¢ by b and m by m + M — 1 = m + D in the formulas above.
In particular, in the exactly constrained case (3.3), it follows from (6.1) and (4.18) that, with
y=(x1, ..., xy) €S and other notation as in (4.11)—(4.14) and (5.4),

1
/0 VDo) di =

(6.28)

4 0 V4
gi(xl LI XM) = Ef((}(j1+vl+llr)r]=]a cee (x1+Vi+fir)r:1’ ey ()(jb+vb+l‘br)rb:1> — UD=,
(6.29)
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where the ith group of variables consists of the given x;, the other b — 1 groups contain vari-
ables X;, and ji, ..., jp is any sequence of indices that has large enough gaps: ji11 —j; >
m+M—1=m+D.

In the constrained case (3.2), g = gp is obtained as the sum (4.23), and thus each g; is
a similar sum of functions that can be obtained as (6.29). (Note that M := D + 1 works in
Lemma 4.2 for all terms by (3.5).) Then, o?is given by (6.22) (with substitutions as above).

7. Law of large numbers

Proof of Theorem 3.2. Note first that if R, is any sequence of random variables such that
ER?=0(n?), (7.1)

then Markov’s inequality and the Borel-Cantelli lemma show that R,, 250.

We begin with the unconstrained case, D = Dy, = (00, . .., 00). We may assume, as in the
proof of Theorem 3.3, that ;# = 0. Then (6.21) holds, and thus by the argument just given, and
recalling that EU, =0 by (6.11) and (6.4),

a.s

n~ {Uu(f) = EUL(F) — U, ] = 0. (1.2)

Hence, to prove (3.15), it suffices to prove n~¢U, —=> 0.
For simplicity, we fix j € [£] and define, with f; as above given by (6.1),

n
Sin=Sin(f) = Su(f) == D>_£(Xe) (7.3)
k=1
and, using partial summation,
n n—1
Upn = Z aj knfj(Xi) = Z (@ k,n — @ k+1,0)8jk + @j.nnSjn.- (7.4)
k=1 k=1

The sequence (f;(Xy))x is m-dependent, stationary, and with E|f;(X;)| < co. As is well known,
the strong law of large numbers holds for stationary m-dependent sequences with finite
means. (This follows by considering the subsequences (X(n+1)n4¢)n>0, Which for each fixed
g € [m+ 1] is an i.i.d. sequence.) Thus, by (7.3) and (6.4),

Sin/n =25 Bfi(Xy) = 0. (7.5)
In other words, a.s. Sj, = o(n), and thus also

max |[Sjk| = o(n) a.s. (7.6)
1<k<n

Moreover, (6.12) implies aj x.n — aj,k+1,n = O(n*~2). Hence, (7.4) yields

n—1
nUp=>Y_0(n?) Si+0(n"")- S (1.7)
k=1
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and thus, using (7.6),

"™ Ujn| < Cn™ ' max Syl =o(1)  as. (7.8)
k<n
Consequently,
Z aQ
nUp=2 n T =0, (7.9)
j=1

which together with (7.2) yields the desired result (3.15).
Next, for an exact constraint D=, we use Lemma 4.2. Then (4.9) together with the result
just shown applied to g and (Y;) yields

0~ [Un(f: D=) — EUL(: D=)] =n*[U_p(e) ~ EU,_p(9)] =5 0. (7.10)

This proves (3.17), and (3.16) follows by (3.4).
Finally, using Theorem 3.1, (3.12)—(3.14) are equivalent to (3.15)—(3.17). U

8. The degenerate case

As is well known, even in the original symmetric and independent case studied in [27], the
asymptotic variance o> in Theorem 3.3 may vanish also in non-trivial cases. In such cases,
(3.19) is still valid, but says only that the left-hand side converges to O in probability. In the
present section, we characterize this degenerate case in Theorems 3.3 and 3.4. Note that in
applications, it is frequently natural to guess that o2 > 0, but this is sometimes surprisingly
difficult to prove. One purpose of the theorems below is to assist in showing o2 > 0; see the
applications in Sections 13 and 14.

For an unconstrained U-statistic and an independent sequence (Xl-)cl>o (the case m =0 of
Theorem 3.3), it is known, and not difficult to see, that o> = 0 if and only if every projection
fi(X1) defined by (6.1) vanishes a.s.; see [37, Corollary 3.5]. (This is included in the theorem
below by taking m = 0 in (iii), and it is also the correct interpretation of (vi) when m =0.) In
the m-dependent case, the situation is similar, but somewhat more complicated, as shown by
the following theorem. Note that S,(f;) defined in (8.8) below equals Sj,; for later applications
we find this change of notation convenient.

Theorem 8.1. With assumptions and notation as in Theorem 3.3, define f; by (6.1), vij , by
(6.17) and S, by (7.3). Then the following are equivalent:

()
a2 =0. (8.1)

(i)
Var U, = O(n%_z). (8.2)

(iii)
> vijr=0. Vi jell] (8.3)

r=—m
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(iv)
Cov[Sin, Sin]/n—0asn— oo Vi, je[L]. (8.4)

)
Var[Sj,|/n— 0asn— oo Vje[l]. (8.5)

(vi) For each je[L] there exists a stationary sequence (Zj,k)1in of (m — 1)-dependent
random variables such that a.s.

i X)) =2k — Zj k-1, k>1. (8.6)

Moreover, suppose that the sequence (X;){° is a block factor given by (2.2) for some
function h and i.i.d. &, and that 6> = 0. Then, in (vi), we may take Z; « as block factors

Zjk = @j(€ks1s - -+ s Ektm)s (8.7)

or some functions ¢; : S' — R. Hence, for every j €[] andn > 1,
7 0

Sn(fj) := Zﬁ(Xk) =Zin—2Zj0=9jEn+1, - Entm) — 91, - . Em), (8.8)

k=1
and thus Sy(f;) is independent of &,11, ..., &, for everyje€ [ — 1] and n > m.

To prove Theorem 8.1, we begin with a well-known algebraic lemma; for completeness we
include a proof.

Lemma 8.1. Ler A= (aij)f =1 and B = (b,-j)f =1 be symmetric real matrices such that A is
positive definite and B is positive semidefinite. Then

¢
> ayby=0 <= by=0 Vi.jelel. (8.9)
ij=1
Proof. Since A is positive definite, there exists an orthonormal basis (vk)f in R? consisting

of eigenvectors of A, in other words satisfying Avy = A, vy; furthermore, the eigenvalues A4 > 0.
Write v; = (vki)le. ‘We then have

l
ajj = Z AkVkiVi. (8.10)
k=1
Thus
l 4 4 4
Z a,-jb,;/ = Ak Z b,-jvk,-vk/ = Z Me(Vie, Bvg). (8.11)
ij=1 =1 ij=1 k=1

Since B is positive semidefinite, all terms in the last sum are > 0, so the sum is O if and only if
every term is, and thus

4
> aby=0 <= (. Bu)=0 Vkell]. (8.12)
ij=1
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By the Cauchy—Schwarz inequality for the semidefinite bilinear form (v, Bw) (or, alternatively,
by using (vi £ v, B(vi £ v,,)) = 0), it follows that this condition implies (vg, Bv,) = 0 for any
k, n € [£], and thus

14
> aghy=0 <= (. Bva) =0 Vk.ne[dl. (8.13)
ij=1

Since (vk)f is a basis, this is further equivalent to (v, Bw) =0 for any v, W € R?, and thus to
B =0. This yields (8.9). O

Proof of Theorem 8.1. The £ polynomials ¥, j=1, ..., £, of degree £ — 1 defined by
(6.13) are linearly independent (e.g., since the matrix of their coefficients in the standard basis
{1,x,..., xe_l} is upper triangular with non-zero diagonal elements). Hence, the Gram matrix
A= (aij),-,j with

1
a,;::/o Yi(Oy;(2) dt (8.14)

is positive definite.
We have by (7.3), similarly to (6.15)—(6.18),

m n—ry

Cov(Sin: Sjn) = Y _ > Cov[£i(Xu). iX)] = D > Cov[i(Xi). fiXesr)]

k=1 g=1 r=—mk=1+4r_
m m

= Y (= rDCov[fiX0). fiXir) ] = D (= |FDyiir. (8.15)

r=-—m r=—m

and thus, as n — oo,
m
CoV(Sins Sin) /n— Y Vijur =:bij. (8.16)
r=—m

Note that (6.22) can be written as

14
o?=" byay. (8.17)
ij=1

The covariance matrices (Cov(S;,, S,‘,,))f’j:1 are positive semidefinite, and thus so is the limit
B = (b;;) defined by (8.16). Hence Lemma 8.1 applies and yields, using (8.17) and the definition
of b;; in (8.16), the equivalence (i) <= (iii).

Furthermore, (8.16) yields (iii) <= (iv).

The implication (iv) = (v) is trivial, and the converse follows by the Cauchy—Schwarz
inequality.

If (iii) holds, then (6.20) yields Var ﬁn = 0(n2[_2), and (ii) follows by (6.21). Conversely,
(i) = (i) by (3.18).

Moreover, for m > 1, (v) <= (vi) holds by [36, Theorem 1], recalling Ef;(Xy) = 0 by (6.4).
(Recall also that any stationary sequence (Wk)‘fO of real random variables can be extended
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to a doubly-infinite stationary sequence (Wy)>,,.) The case m =0 is trivial, since then (v) is
equivalent to Varf;(Xy) = 0 and thus fj(X;) = 0 a.s. by (6.4), while (vi) should be interpreted to
mean that (8.6) holds for some non-random Z; ; = z;.

Finally, suppose that (Xi)j’o is a block factor. In this case, [36, Theorem 2] shows that Z; x can
be chosen as in (8.7). (Again, the case m = 0 is trivial.) Then (8.8) is an immediate consequence
of (8.6)—(8.7). O

Remark 8.1. It follows from the proof in [36] that in (vi), we can choose Zj; such that also the
random vectors (ij)le, k > 0, form a stationary (m — 1)-dependent sequence.

Theorem 8.2. With assumptions and notation as in Theorem 3.4, define also g;, i € [b], as in
Remark 6.2, i.e., by (6.29) in the exactly constrained case and otherwise as a sum of such terms
over all D' given by (3.5). Also (again as in Remark 6.2), let D be given by (4.7) and Yy by (4.8)
with M =D + 1. Then o> =0 if and only if for every j € [b), there exists a stationary sequence
(Zj,k)l(:io of (m+ D — 1)-dependent random variables such that a.s.

gY) =2k —Zjr-1, k>1. (8.18)

Moreover, if the sequence (X;){° is independent and 02 =0, then there exist functions
@ SP 5 R such that (8.18) holds with

Zjk = 0j(Xg+15 - - - » Xp+D), (8.19)

and consequently a.s.

n
Su(g) =Y gi(Ye) = @i(Xnt1. - ... Xusp) — @i(X1. ... Xp): (8.20)
k=1

thus S,,(g;) is independent of Xp11, ..., X, for everyje [ — 1] and n > D.

Proof. As in the proof of Theorem 3.4, it suffices to consider U,(g) with g given
by Lemma 4.3 (with M =D+ 1). The first part then is an immediate consequence of
Theorem 8.1(i)<>(vi) applied to g and Y;:= (X, ..., Xi+p), with appropriate substitutions
Lr—band m— m-+D.

The second part follows similarly by the last part of Theorem 8.1, with & = X;; note that
then (Y;) is a block factor as in (2.2), with m replaced by D. U

Remark 8.2. Of course, under the assumptions of Theorem 8.2, the other equivalences in
Theorem 8.1 hold as well, with the appropriate interpretations, substituting g for f and
SO on.

We give an example of a constrained U-statistic where > =0 in a somewhat non-trivial
way.

Example 8.1. Let (X;){° be an infinite i.i.d. symmetric random binary string; i.e., S = {0, 1}
and X; ~ Be(1/2) are i.i.d. Let

fx,y,2):= H{xyz=101} — 1{xyz =011} (8.21)
and consider the constrained U-statistic
UnfsD)= Y. f(Xi X1, X)), (8.22)
1<i<i+1<j<n

which thus has constraint D = (1, 0o). (In this case, U,(f, D) = U, (f; D=).) Note that (8.22)
is a difference of two constrained subsequence counts.
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Although the function (8.21) might look non-trivial and innocuous at first glance, this turns
out to be a degenerate case. In fact, it is easily verified that

fy,9=x-yz  xy2z€{0, 1} (8.23)
Hence, withm=0,D=1,and M =D + 1 =2, (5.4) yields
wp = up==Eg(Y1, ¥3) =Ef (X1, X2, X4) =0, (8.24)
while (6.29) yields
2106, ) =Ef (x, y, X4) =E[(x — »)Xa] = 5(x — ), (8.25)
g2(x, y) =Ef (X1, X2, y) = E[(X1 — X2)y] =0. (8.26)

Thus go vanishes but not g;. Nevertheless, g1(Yx) = g1 Xk, Xk41) = %(Xk — Xi+1) is of the
type in (8.18)—(8.19) (with Z; 4 := —%Xk+1)- Hence, Theorem 8.2 shows that -2 = 0, and thus

Theorem 3.4 and (3.8) yield n=3/2U,(f; D=) — 0.
In fact, in this example we have by (8.23), for n > 3,

n j—2 n
Unfs D)= D X=Xy DX = ) XX — Xj-1)
j=3 i=1 Jj=3
n n
=X Y _Xj— ) X 1X,. (8.27)
=3 =3

Hence, by the law of large numbers for stationary m-dependent sequences,
n_lU,,(f; D) A% X1 EX, — E[X2X3] = lX] — 41_& = %(X] - %) (8.28)

As a consequence, n~ ' U,(f; D) has a non-degenerate limiting distribution. Note that this
example differs in several respects from the degenerate cases that may occur for standard U-
statistics, i.e. unconstrained U-statistics based on independent (X;). In this example, (8.28)
shows that the asymptotic distribution is a linear transformation of a Bernoulli variable, and is
thus neither normal, nor of the type that appears as limits of degenerate standard U-statistics.
(The latter are polynomials in independent normal variables, in general infinitely many; see
e.g. Theorem A.2 and, in general, [56] and [35, Chapter 11].) Moreover, the a.s. convergence
to a non-degenerate limit is unheard of for standard U-statistics, where the limit is mixing.

8.1. The degenerate case in renewal theory

In the renewal theory setting in Theorem 3.8, the degenerate case is characterized by a
modified version of the conditions above.

Theorem 8.3. With the assumptions and notation of Theorem 3.8, let g;, i € [b], be as in
Theorem 8.2 and Remark 6.2. Then y* = 0 if and only if for every j € [b), the function

GOV = g0)+up = “ChoD. =01 oS, (8.29)

satisfies the condition (8.18). Moreover, if the sequence (X;){° is independent and y2 =0, then
the functions g also satisfy (8.19)—(8.20).

The proof is given in Section 12. Note that E:g?j(Yl) =0 for each j € [b] by (6.4) and (3.25).
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9. Rate of convergence
Here we use a different method from that used in the rest of the paper.

Proof of Theorem 3.5. We consider U,(f, D); the argument for U, (f; D=) is identical, and
U, (f) is a special case.

Let 7 denote the set of all indices (iy, ..., i¢) in the sum (3.2); thus (3.2) can be written
U,(f; D)= ZIGZ Z;, where Z;, ;= f(X;,, ..., Xi,). Note that the size |Z| ~ Cn? for some
C > 0, where b= b(Dl

We define a graph 7 with vertex set Z by putting an edge between I = (i1, ..., i) and I’ =
(i}, ..., i) if and only if |ij — i} | < m for some j, k € {1 ,¢}. Let A be 1 + the maximum
degree of the graph I it is easy to see that A = 0( ) Moreover it follows from the m-
dependence of (X;) that Tisa dependency graph for the random variables (Z;);, meaning that
if A and B are two disjoint subsets of Z such that there is no edge between A and B, then the
two random vectors (Zj);e4 and (Zj);ep are independent.

The result now follows from [54, Theorem 2.2], which in our notation yields the following
bound, with 0,12 = Var U, ~ oZn?~land B:= 2 sup |f|, which implies |Z; — EZ;| < B a.s. for

every [ €1:
1 1A\ /? T|A
ng—{(Zn)_l/zAB+16(| '2) A32+1o(| ' )AB3}

n n n

A
<C—<on V2, O.1)

On
since |Z|A < Cnbtb-1 < Con2 and B is a constant. (Alternatively, one could use the similar
bound in [20, Theorem 2.1].) O

Remark 9.1. The assumption in Theorem 3.5 that f is bounded can be relaxed to the 6th
moment condition (Ag) by using Theorem 2.1 instead of Theorem 2.2 of [54], together with
Holder’s inequality and straightforward estimates.

The similar bound [2, Corollary 2] gives the weaker estimate dx = o174, assuming
again that f is bounded; this can be relaxed to (A4) by instead using [2, Theorem 1].

If, instead of the Kolmogorov distance, we use the Wasserstein distance dy (see e.g. [14,
pp. 63-64] for several equivalent definitions, and for several alternative names), the estimate
dw = O(n_l/ 2) follows similarly from [3, Theorem 1], assuming only the third moment con-
dition (A3); we omit the details. (Actually, [3] does not state the result for the Wasserstein
distance but for a weaker version called bounded Wasserstein distance; however, the same
proof yields estimates for dy.) See also [51, Theorem 3 and Remark 3], which yield the same
estimate under (A3), and furthermore imply convergence in distribution assuming only (A»).
(This thus yields an alternative proof of Theorems 3.3 and 3.4.)

Returning to the Kolmogorov distance, we do not believe that the moment assumption (Ag)
in Remark 9.1 is the best possible. For unconstrained and symmetric U-statistics, [Malevich
and Abdalimov [43], Theorem 2] have shown bounds for the Kolmogorov distance, which in
particular show that then (A3) is sufficient to yield dx = omn~V 2); we conjecture that the same
holds in our, more general, setting.

Conjecture 9.1. Theorem 3.5 holds assuming only (A3) (instead of f bounded).

Remark 9.2. If we do not care about the rate of convergence, for bounded f we can alter-
natively obtain convergence in distribution in (3.22), and thus in (3.19) and (3.21), by [34,
Theorem 2], using the dependency graph Z in the proof of Theorem 3.5. This can easily
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be extended to any f satisfying the second moment condition (Aj) by a standard truncation
argument.

10. Higher moments and maximal functions

To prove Theorem 3.6, we will show estimates for maximal functions that will also be used
in Sections 11 and 12. Let p > 2 be fixed throughout the section; explicit and implicit constants
may thus depend on p. We let

U, (f) := max |Uj(f)l, (10.1)
j<n

and use similar notation for maximal functions of other sequences of random variables.

We use another decomposition of f and U, (f) which was used in [37] for the independent
case (m = 0); unlike Hoeffding’s decomposition in Section 6, it focuses on the order of the
arguments.

Recall from Section 5 that (X’)lf are i.i.d. with the same distribution as X;. Let Fp := 7
defined in (5.1) and, for 1 <k < ¢,

Fk(xl, ey xk) = ]Ef()q, ooy Xks ?k_,_], .oy ?@), (10.2)

Fr(xt, ..., xp):= ’F\k(xl, R xk)) —/F\k_l(xl, ey Xk—1- (10.3)
(These are defined at least for £(X)-a.e. x1, . . ., xx €S, which is enough for our purposes.) In
other words, a.s.,

FeXi, .. X0 =E(f X1, ... X)) | X1, ..., X, (10.4)
and thus ’Fk(?l, - ,S(\k), k=0,...,¢, is a martingale, with the martingale differences
Fr(Xq, ..., Xk), k=1, ..., L. Hence, or directly from (10.2)—(10.3), for a.e. x1, ..., xx—1,

EFi(x1, . .., xk—1, Xx) =0. (10.5)
Furthermore, if (A,) holds, then by (10.4) and Jensen’s inequality,
IFxXi, . Xoll, < K, -, Xo)ll, < C, (10.6)
and thus by (10.3),
IFeX1. .. Xollp <20 K- Xo)ll, < C. (10.7)

Lemma 10.1. Suppose that (Ap) holds for some p > 2, and that u = 0. Then
|Us s >m), < cn 12 (10.8)

Proof. We argue as in [37, Lemmas 4.4 and 4.7] with some minor differences. By (10.2)—
(10.3), f(x1, ..., x0) =Fe(x1, ..., xe) =Y v_; Fx(x1, ..., x) for ae. xi,...,x, and thus,
a.s.,

¢

—i— (L —k
U >m=y 3 (" lkﬁ—(k )m)Fk(Xil,...,Xik)

k=1 1<ij<...<ix<n

ljy1—ij>m
L n .
—i—(C—k
:ZZ <" lzik )m)(Ui(Fk; >m) — Ui_1(F; >m)) (10.9)
k=1 i=1
{—1 n—1 Vl—i—(@—k)m_]
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using a summation by parts and the identity (/i, k) - ("/_1) ( " ) In particular,

—k l—k—1
£—1 n—1
n— 1—(2 kym —
Un(f; > m)| < |Un(F; >m)|+ZZ( O )UZ(Fk; > m)

i=1

=|Un<Fe;>m>|+Z(”_(£ o= )U:<Fk;>m)

k=1

4
<Y TR ULF: > m). (10.10)
=1

Since the right-hand side is weakly increasing in n, it follows that, a.s.,

l
Us(fs >m) < Y n"FUr(Fis > m). (10.11)
k=1

We thus may consider each Fy separately. Let 1 <k < ¢, and let
AU (Fr; >m):= Uy(Fr; >m) — Uy—1(F; > m). (10.12)

By the definition (4.25), AU,(Fi; >m) is a sum of ("_(kk:l])m_l) <nf ! terms
Fk(X,-l, . ,X,-H,X,,) that all have the same distribution as Fk()?l, . ,}?k), and thus by
Minkowski’s inequality and (10.7),

IAUFr; > m)ll, < MIFeEy, ... Xl < Cn* (10.13)

Furthermore, in each such term Fk(Xil, e Xi g, X,,) we have iy_1 <n—m — 1. Hence, if
we let F; be the o-field generated by X1, . . ., X;, then, by m-dependence, X,, is independent of
Fi,_,» whence (10.5) implies

E(Fk(Xil, LR Xik,l ’ Xl’l) | ]:nfmfl) Z]E(Fk(Xil, ] Xl.kflv Xn) |Xi19 MR} Xik,l)
=0. (10.14)
Consequently,
E(AUx(Fi; > m) | Fpm—1) =0. (10.15)

In the independent case m = O treated in [37], this means that U, (F}) is a martingale. In general,
we may as a substitute split U, (Fy; > m) as a sum of m + 1 martingales. Forj=1,...,m+1
andi> 1, let

>
S

z
i

; D AUi—1)m+1)+j(Fk; > m), (10.16)

i i
k.j j
Mz( J) = E AM(k’]) — E AUq(m+l)+j(Fk; > m). (10.17)

Then (10.15) implies that (M ) )i>0 1S a martlngale for each k and j. Hence, Burkholder’s
inequality [25, Theorem 10.9.5] yields, for the maximal function Mk

n _ 172 n
p i=1

i=1

(10.18)
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Furthermore, Minkowski’s inequality yields (since p/2 > 1), using also (10.16) and (10.13),
forn>1,

n
> A
1
i=1

Combining (10.18) and (10.19) yields

n n
. ~ 112
< H|AM§"*’)|2H =3 H AM*) ” <Cn' 26D (10.19)
r/2 = p/2 i=1 P

IMED*|, < cnk =12, (10.20)

It follows from (10.16)—(10.17) that

m+1
. _ (k)
Un(Fi: >m)=> M oty 1 (10.21)
j=1
Hence (coarsely),
m+1
Up(Fi; >m) < ) M, (10.22)
=1

and thus (10.20) and Minkowski’s inequality yield

|UsFrs > m)||, < Ca 172, (10.23)

fork=1,...,¢.
The result (10.8) now follows from (10.23) and (10.11) by a final application of
Minkowski’s inequality. U

Theorem 10.1. Suppose that (Ay) holds for some p > 2. Then, with b= b(D),

Hmax|Uj(f; D) — EU;(f: D) H =0(n""1?), (10.24)
j<n P
(max Ui(f; D) — M—Djb‘ ” =017, (10.25)
j<n b! P
|Us: D), = 0(n"). (10.26)

The same results hold for an exact constraint D=.

Proof. We use induction on b. We split the induction step into three cases.
Case 1: no constraint, i.e., D = Dy, and b =€ By (4.27)—(4.28),

Un(f) = Un(f; Dg) = Up(f; >m) — Z (_1)”' U,(f; Dy). (10.27)
J#0
Thus,
Ur() S U >m)+ Y Us(f: Dy). (10.28)
J#£0

https://doi.org/10.1017/apr.2022.51 Published online by Cambridge University Press


https://doi.org/10.1017/apr.2022.51

872 S. JANSON

Suppose first that © = 0; then Lemma 10.1 applies to U}(f; > m). Furthermore, the induc-
tion hypothesis applies to each term in the sum in (10.28), since b(Dy)=£¢ — |J| <L —1=
b — 1. Hence, Minkowski’s inequality yields

U, < 1O >ml, + Y _1Un: Do, < Cn =12 4 a1 (10.29)
J#0

When p =0, (3.7) yields
EU,(f) = 0(n""). (10.30)

Now (10.24) follows from (10.29) and (10.30), which shows (10.24) when p = 0. The general
case follows by considering f — w; this does not affect U, (f) — EU,(f).

Finally, both (10.25) and (10.26) follow from (10.24) and (3.7).
Case 2: an exact constraint D=, b <{. This is an immediate consequence of (4.9) in
Lemma 4.2 and Case 1 applied to g; note that g too satisfies (A,) by (4.19).
Case 3: a constraint D, b < £. This is a consequence of Case 2 by (3.4) and (5.5). O

Lemma 10.2. Suppose that (Ap) holds for some p > 2. Let b := b(D). Then the sequences

nl/2=b m<ax|Uj(f; D) — EU)(f; D) and  n7PUNED) (=) (10.31)
j<n

are uniformly pth-power integrable.
The same holds for an exact constraint D=.

Proof. We consider the second sequence in (10.31); the proof for the first sequence differs
only notationally.

We have so far let f be fixed, so the constants above may depend on f. However, it is easy
to see that the proof of (10.26) yields

Uz D), <Cp max [f Xy, ..., Xi)llpn”, (10.32)
i1<...<ig
with C,, independent of f (but depending on p). (Note that we only have to consider a finite set

of indices (i1, .. ., i¢), as discussed above (3.6).)
Truncate f, and for B > 0 define fp(x) := f(x)1{|f(x)| < B}. Then (10.32) yields

|~ U (F —f5: D), < Cpe(B), (10.33)
where
eB):= max [f(Xi. ... Xi) W/ K. ... Xe)l > BYllp = 0 (10.34)
1<...<lg
as B— oo.
Let g := 2p. Since fp is bounded, we may apply (10.32) (or Theorem 10.1) with p replaced
by ¢ and obtain
sup||n_€U;,k(fB;D)“2p < 00. (10.35)
n

Hence, for any B, the sequence n—‘ U} (fg; D) is uniformly pth-power integrable. Since
Uif; D)< Ui(fp; D)+ Ui(f — fp; D), the result now follows from the following simple
observation. (|
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Lemma 10.3. Let 1 < p < 00. Let (§,)n>1 be a sequence of random variables. Suppose that
for every € > 0, there exist random variables n’, and ¢, n > 1, such that

() & <mj, + &5,
(ii) the sequence (|n5|P), is uniformly integrable, and
(i) 1551, <e.

Then (1€,|P)y, is uniformly integrable.

Proof. Since (i) implies |&,[P < 27|ni|P + 27| |P, it suffices (by appropriate substitutions)
to consider the case p = 1. This is a simple exercise, using for example [25, Theorem 5.4.1]. J

Proof of Theorem 3.6. This is an immediate consequence of Theorems 3.3-3.4 and the
uniform integrability given by Lemma 10.2. O

11. Functional convergence
We begin by improving (10.8) in a special situation. (We consider only p =2.)

Lemma 11.1. Suppose that (A) holds and that u = 0 and fj(X;) =0 a.s. foreveryi=1, ..., L.
Then

Uz > my|, < cn' ' (11.1)

Proof. Note that (6.6) and (6.10) immediately give this estimate for || U,(f; > m)|». To
extend it to the maximal function U (f; > m), we reuse the proof of Lemma 10.1 (with p = 2),
and analyze the terms U} (Fy; > m) further. First, by (10.4), (6.2), and the assumptions, for
every k € [£],

E(FeXi1, ..., X0 1 X) =E(f &1, ..., Xo) | Xe) = feKe) + = 0. (11.2)
In particular, for k =1, (11.2) yields F;(X;) = 0 a.s., and thus
Ui(Fi; >m)=0 as. (11.3)

For k>2, as stated in the proof of Lemma 10.1, AU, (F; >m) is a sum of <

nk1 terms Fi(Xi), ..., X;_,,X,). Consider two such terms F(Xi,,...,X;_ ;. X,) and
Fk(Xl-/l, - ,X,-;H, X,,), and suppose that |i; — ij’.,| > m for all j, j/ € [k — 1]. Then all variables
Xl-j, Xy, and X,, are independent, and thus a.s.
J
E[Fe(Xiy. -0 Xy Xn)Fk(Xi/l, N Xn) | Xn]
=E[Fe(Xi,. ..., Xi_y . Xn) |Xn]E[Fk(X,-/1, . ,X,-;H,Xn) | X,] =0, (11.4)
by (11.2). Hence, taking the expectation,
E[Fi(Xis - Xi s Xa) Fe(Xi - Xy Xa) | =00, (11.5)
unless [ij — i]’.,l < m for some pair (j, j/). For each (i1, ..., ix—1), there are only O(n*=2) such

(i/l, AU i;c_l), and for each of these, the expectation in (11.5) is O(1) by (A>) and the
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Cauchy—Schwarz inequality. Consequently, summing over all appearing (iy, ..., ix—1) and
(/P A )
2
E[|AU(Fi; >m)|"] = > E[Fk(Xiys - Xioys Xn) Fk (X, - Xy Xn)]
il’---vik—lai/ly-wi;(,l
=0(n*" . n"2) = 0(n* ). (11.6)

We have gained a factor of n compared to (10.13). Hence, recalling (10.16) and using (11.6) in
(10.18)—(10.19) (which for p =2 is essentially Doob’s inequality), we improve (10.20) to

IMED*||, < cnk 1 (11.7)
Finally, (11.7) and (10.22) yield
|UzFi; > m)|, < 1, (11.8)

for 2 < k < ¢; this holds trivially for k =1 too by (11.3). The result follows by (10.11) and
(11.8). O

Proof of Theorem 3.7. 'We prove (3.23); then (3.24) follows by (3.8). By replacing f by
f — 1, we may assume that = 0.

Consider first the unconstrained case. We argue as in [37], with minor modifications. We
use (6.6), which we write as follows (cf. (6.11)):

£ n
Un(f; >m)=Y_" Y ajinfiX0) + Un(fs: > m), (11.9)
j=1 i=1
with, as in (6.12),
Ghinim (i— 1 —(/— 1)m> (n—i—(ﬁ.—j)m)- (11.10)
Jj—1 £—j

Lemma 11.1 applies to f; and shows that
Uz (f; > m)ll2=0(n""") =o(n""'/?), (11.11)

which implies that the last term in (11.9) is negligible, so we concentrate on the sum. Define
Adj i = aj 41,0 — aji,n and, using a summation by parts,

n n—1
Uyjo= Z aj.i nfj(Xi) = aj.n.nSn(ff) — Z Aaj i nSi(f))- (11.12)

i=1 i=1

Donsker’s theorem extends to m-dependent stationary sequences [S], and thus, as n — o0,

n Y28 e () LN Wity  in D[0, 00), (11.13)
for a continuous centered Gaussian process W; (a suitable multiple of Brownian motion);
furthermore, as is easily seen, this holds jointly forj=1, . .., £. Moreover, define

1 . .
) F—— (s Lo} (11.14)
’ G — DI -
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(Thus (s, 1) = ¥ (s) defined in (6.13); the present homogeneous version is more convenient
here.) Let wj’(s, 1= %w(s, t). Then straightforward calculations (as in [37, Lemma 4.2])
show that, extending (6.12),

aj,in = Yi(i, n) + O(n* ), (11.15)

Aajin =], n) +0(n" + n 2 i<mori = n—m}) (11.16)

uniformly for all n, j, i that are relevant; moreover, the error terms with negative powers, i.e.,
nt=2 for ¢ = 1 and n%=3 for £ < 2, vanish.

By the Skorokhod coupling theorem [41, Theorem 4.30], we may assume that the
convergences (11.13) hold a.s., and similarly (see (11.11)), a.s.

n' 27Uk (fe; > m) — 0. (11.17)

It then follows from (11.12)-(11.16) and the homogeneity of ; that a.s., uniformly for ¢ €
[0, T] for any fixed T,

|nt]—1
n' 27Uy =0 L), LW = Y 0 ]G, Lt DWiGi/m) + o(1)

i=1
lnt)—1

=Yt OWj(1) — > Wi(i/n, yWiCi/n) + o(1)
i=1

t
= (1, (1) — fo Wi(s, OW(s) ds + o(1). (11.18)

Summing over j € [£], we obtain by (11.9), (11.12), (11.18), and (11.17), a.s. uniformly for
te 0, T] forany T,

nY 27U Ly (F; > m) = Z(0) + o(1), (11.19)
where
¢ t
2= (vt oWjto) - /0 ¥j(s. OWi(s) ds), (11.20)
=1

which obviously is a centered Gaussian process. We can rewrite (11.19) as
27 U (f; > m)— Z(r) i D[0, 00). (11.21)

Finally we use (10.27), which implies

U — Ui(f; < U*(f: Dy), 11.22
5?224 () — Ur(f; > m)| #Z@ “(f; Dy) (11.22)

and thus, by Theorem 10.1, recalling b(Dj) =€ — |J| <€ — 1,

[max|Ue() = Ukt > m |, < Yui: Do), <D en” PP <ent (11.23)
S T T
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It follows that, in each D[0, T'] and thus in D[0, 00),
22U ) (F) = U (5 > m)) = 0. (11.24)
Furthermore, recalling the assumption u =0, EU,(f) = o'~ by (3.7), and thus
2 BU Ly () = 0 in D[0, 00). (11.25)

The result (3.23) in the unconstrained case follows from (11.21), (11.24), and (11.25).

Joint convergence for several f (in the unconstrained case) follows by the same proof.

Finally, as usual, the exactly constrained case follows by (4.9) in Lemma 4.2 and the con-
strained case then follows by (3.4), using joint convergence for all gp/—, with notation as in
(3.4) and Lemma 4.2. To obtain joint convergence for several f and D, we only have to choose
M in (4.8) large enough to work for all of them. O

12. Renewal theory

Note first that by the law of large numbers for m-dependent sequences,
Sp/n=Sa(h)/n =5 Eh(X))=v  asn— oo. (12.1)

As a simple consequence, we have the following (the case N is in [33, Theorems 2.1 and
2.2]), which extends the well-known case of independent X;; see e.g. [24, Sections 3.4 and
3.10].

Lemma 12.1. Assume that v := Eh(X;) > 0 and that E|h(X})|* < 00. As x — 00,

Ni()/x =5 1/v, (12.2)
Snso(h) = x + 0p(x'/?). (12.3)

Proof. Note that, by the definitions (3.27)—(3.28),
SN_(h) <x < Sn_n+1(h) and Snp—1(h) <x < Sy, w(h). (12.4)

Then (12.2) follows easily from (12.1). Furthermore, for any ¢ > 0,

P[ max  |Syy1(h) — Sn(h)| > sxl/z] < [2x/VIP[[R(X))] > ex'/2] = 0 (12.5)
0N <2x/v

as x — 00, and (12.3) follows from (12.4), (12.5), and (12.2). We omit the standard details. []
Moreover, still assuming E|A(X1)|> < oo, Donsker’s theorem for m-dependent sequences

[5] yields, as in (11.13),

W28 (= v) = 072 (S g (B) — Lnt]v) =S W) in DJO, 00) (12.6)

for a continuous centered Gaussian process Wp(?).

Proof of Theorem 3.8. Note that (12.6) is the special (unconstrained) case f =h, D = (),
£=>b=1 of (3.23). By joint convergence in Theorem 3.7 for (f, D) and h, we thus have (3.24)
jointly with (12.6). We use again the Skorokhod coupling theorem and assume that (3.24),
(12.6), and (12.3), as well as (12.2), hold a.s.
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Take n:= [x] and t:= Ni(x)/n, and let x — oco. Then t — 1/v a.s. by (12.2), and thus
(3.24) implies, a.s.,

Un.oo(f: D) = —Ni(x)b +Zw 72 4 o(nb~1/?)
_ IZDNi(x)b +Z 2 o(x 1), (12.7)
Similarly, (12.6) implies, a.s.,
Sne () = N + Wy~ Hx!/2 4+ o(x'/2). (12.8)
By (12.8) and (12.3), we have a.s.
VN4 (%) = Sy (v (h) — Wh(v_l))c]/2 + o(xl/z) =x— Wh(v_l))cl/2 + o(xl/z). (12.9)
Thus, by the binomial theorem, a.s.,
(WN£ ()P =22 — bWy, (v~ V2 o (xP71/2). (12.10)

Hence, (12.7) yields, a.s.,

Un,o(f; D)_ Bl (x — bW (v b 1/2)+Z(U_1)xb 1/2+0( b— 1/2) (12.11)
which yields (3.29) with
2 _ -1y_ ___MD —1
v _Var[Z(v )= iy )]. (12.12)
The exactly constrained case and joint convergence follow similarly. (|

Proof of Theorem 8.3. We may as in the proof of Theorem 3.8 assume that (3.24), (12.6),
and (12.10) hold a.s. Recall that the proofs above use the decomposition (3.4) and Lemma 4.2
applied to every D’'= there, with b := b(D), D given by (4.7), M := D + 1 (for definiteness),
and Y; defined by (4.8). Furthermore, (4.20) holds with g =gp: S’ >R given by (4.23); in
(3.23)-(3.24), we thus have the same limit Z(¢) for U,(f; D; (X;)) and U,(g; (Y;)). We may
assume that this limit holds a.s. also for g.

Recall that /: S — R. We abuse notation and extend it to SM by h(x, ..., xy) := h(x1);
thus h(Y;) = h(X;). In particular, S,(h; (X;)) = S,(h; (Y;)), so we may write S,(h) without
ambiguity. We define H : (S¥)” — R by

b
HQ1, . .oyp) = Y h()). (12.13)

j=1
Note that (5.1) and (6.1) applied to the function H yield

pp=EH(Y, ..., Y,) =bv, (12.14)
Hi(y):= h)+®—1Dv —ug =h@y)—v. (12.15)

(Since H is symmetric, H; is the same for every j.)
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In the unconstrained sum (3.1), there are (2’:}) terms that contain X;, for each i€ [n].

Applying this to H and (Y;), we obtain by (12.13)

n—1
Un(H; (Y) = (b _ 1)Sn(h)- (12.16)
Hence, for each fixed ¢ > 0, by (12.6), a.s.,
|nt] — 1
Uy (H; (Y) — BEU ) (H; (Y)) = b1 Sty (h —v)
(nn)P~! 1/2 b—1/2

== Wi () + o(n”~'/%). (12.17)

Combining (3.23) (for g and (Y;)) and (12.17), we obtain that, a.s.,

Uy (8 = “PH) — EUjy (g — “PH) ppt””!

nb71/2 —Z(t)— mWh(t)+0(l) (1218)

Taking r=v~!, we see that this converges to the random variable in (12.12). Let G:= g —
wpv~'H. Then a comparison with Theorem 3.3 (applied to G) shows that

y2 =" 16%(G) =v' %62 (G). (12.19)

In particular, y? =0 if and only if ¢2(G) =0, and the result follows by Theorem 8.2, noting
that Gj := gj — upv™'Hj = g; + up — upv~'h by (12.15). O

Proof of Theorem 3.9. This can be proved like [37, Theorem 3.13], by first stopping
at Ny (x_), with x_ := |x —Inx], and then continuing to N_(x); we therefore only sketch
the details. Let R(x) := Sy, (x) —x > 0 be the overshoot at x, and let A(x):= x-Sy, )=
x —x_ — R(x_). It is well known (see e.g. [24, Theorem 2.6.2]) that R(x) converges in distri-

bution as x — oo. In particular, A(x) LN +o00 and thus P[A(x) > 0] — 1. Since Ny(x_) is a
stopping time and (X;) are independent, the increments of the random walk S,, after N, (x_) are
independent of Up, (»_)(f), and it follows that the overshoot R(x — 1) is asymptotically inde-
pendent of Uy, (x_)(f). The event {Sy_(x) = x} equals {R(x — 1) =1}, and thus the asymptotic
distribution of Uy, (»_)(f) conditioned on Sy_(») = x is the same as without conditioning, and
given by (3.29). Finally, the difference between U, (x_)(f) and Un, (x)(f) is negligible, e.g. as
a consequence of (3.24). O

In the remainder of the section, we prove moment convergence. Since we here consider
different exponents p simultaneously, we let C,, denote constants that may depend on p. (By
our standing convention, they may also depend on e.g. f and h.)

Lemma 12.2. Assume that v := Eh(X1) > 0 and that E|h(X))|P < oo for every p < oo. Then,
foreveryp <oo, A>2/v, and x > 1, we have

P[N1(x) > Ax] < Cp(Ax) P (12.20)

Proof. We have N4 (x) < N_(x) + 1; hence it suffices to consider N_(x).
LetA >2/v. If N_(x) > Ax, then (12.4) implies

Sv_th—v)<x—=N_(x)v < (1 —Av)x < —(Av/2)x. (12.21)
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Hence, for any p > 2, using (10.24) for i (which is a well-known consequence of Doob’s and
Burkholder’s, or Rosenthal’s, inequalities),

P[Ax < N-(x) < 2Ax] < (Axv/2) PE[|Sn_v(h — )| H{N_(x) < 2Ax}]
< (Avx/2) PE[|STu, (h — )] < Cp(Ax) P 2AxY?
<

Cp(Ax)™P/2. (12.22)

We replace p by 2p and A by 2¥A in (12.22), and sum for k > 0; this yields (12.20). U

Lemma 12.3. Assume that (Ap) and E|W(X)|P < oo hold for every p < oo, and that v :=
Eh(X1) > 0. Then, for everyp > 1 and x > 1,

MDb

HUNi(x)(ﬂD) o Hp<Cpxb*‘/2. (12.23)

Proof. LetV,,:= U,(f; D) — b, BDpb let B:= 2/v, and choose ¢ := 2bp. Then the Cauchy—
Schwarz inequality, (10.25), and Lemma 12.2 yield, with V} := SUP,< [Vaul,

E|Un.o(f: D) = S2Ne(0 | = BNV, ol

o0
=E[| V0P H{N2(x) < Bx}] + Z E[|ViolP1{25'Bx < No(x) < 2°Bx}]
k=1

E[|Viep, [P 1N+ (x) > 26~ Bx}]

WK

E[|V5 "]+

=~
Il

1

1 2 1/2
B[V "] Z Vi /7] B[N () > 24 1Bx] "

oo
<Cpxp(})—l/2) Z (2k )p(b 1/2)C (Zk 1 ) q/2<C xp(b 1/2) (1224)
In other words,
H Unso(fs D) = _N:t(x)b H <G (12.25)

We may here replace U,(f; D) by S,,(h) (and thus b by 1 and pup by v). This yields
[ Snaco () = vNL )], < Cp' 2. (12.26)

By the same proof, this holds also if we replace N1 (x) by Ni(x) F 1. Using (12.4), it follows
that

Jx = v, < Cpx'/2. (12.27)
In particular, by Minkowski’s inequality,

[oNe@)], <x+ [x = vNL ), < Cpx. (12.28)
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Consequently, by Minkowski’s and Holder’s inequalities, (12.27) and (12.28),

b—1
D WNL() = X)(wN ()
k=0

b—1 '
<D IoNL@ = ] gy, [N

k=0
<CpxP12, (12.29)

JONL) =2, =

p

Combining (12.25) and (12.29), we obtain (12.23). O

Proof of Theorem 3.10. We have shown that the left-hand side of (3.29) is uniformly
bounded in L for x > 1. By replacing p with 2p, say, this implies that these left-hand sides are
uniformly pth-power integrable, for every p < oo, which implies convergence of all moments
in (3.29).

The proof of Theorem 3.9 shows that, under the assumptions there, P(Sy_(x) = x) converges
to a positive limit as x — oo; hence P(Sy_(x) =x) > ¢ for some ¢ > 0 and all large x. This
implies that the uniform pth-power integrability also holds after conditioning (for large x), and
thus all moments also converge in (3.29) after conditioning. O

13. Constrained pattern matching in words

As stated in Section 1, Flajolet, Szpankowski and Vallée [23] studied the following problem;
see also [Jacquet and Szpankowski [31], Chapter 5]. Consider a random string E, =&; - - - &,
where the letters &; are i.i.d. random elements in some finite alphabet A. (We may regard
E, as the initial part of an infinite string &4 . .. of i.i.d. letters.) Consider also a fixed word
w =w; - - - wg from the same alphabet. (Thus, £ > 1 denotes the length of w; we keep w and ¢
fixed.) Let N,(w) be the (random) number of occurrences of w in E,. More generally, for any
constraint D = (dy, ..., d¢—_1), let N,(w;D) be the number of constrained occurrences. This is
a special case of the general setting in (3.1)—(3.2), with X; = §&;, and (cf. (1.1))

f(xl, e ,xl)z l{xl, A =W} = l{xizinie [Z]} (13.1)
Consequently,
Nu(w; D) = Uy(f; D5 (§0) (13.2)

with f given by (13.1).
Denote the distribution of the individual letters by

px) = P51 =x), xe A (13.3)

We will, without loss of generality, assume p(x) > 0 for every x € A. Then (13.2) and the
general results above yield the following result from [23], with b = b(D) given by (2.1). The
unconstrained case (also in [23]) is a special case. Moreover, the theorem also holds for the
exactly constrained case, with up— =[], p(w;) and some o2(w; D=); we leave the detailed
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statement to the reader. A formula for o2 is given in [23, (14)]; we show explicitly that o> > 0
except in trivial (non-random) cases, which seems to have been omitted from [23].

Theorem 13.1. (Flajolet, Szpankowski and Vallée [23].) With notation as above, as n — oo,

Nu(w; D) — "2 n"

d 2
b—172 — N(0,07) (13.4)
for some o= O’z(W; D) >0, with
¢
po:= [T d-T]pow. (13.5)
di<oo  i=1

Furthermore, all moments converge in (13.4).
Moreover, if | A| > 2, then 6 > 0.

Proof. By (13.2), the convergence (13.4) is an instance of (3.21) in Theorem 3.4 together
with (3.8) in Theorem 3.1. The formula (13.5) follows from (3.11) since, by (13.1) and
independence,

L
pi=TEfGE, .. &) =P(E - & =wi - w) =] [PE=w). (13.6)
i=1

Moment convergence follows by Theorem 3.6; note that (A,) is trivial, since f is bounded.

Finally, assume |.A| > 2 and suppose that 0> = 0. Then Theorem 8.2 says that (8.20) holds,
and thus, for each n > D, the sum S,(g;) is independent of £py1, ..., §,. We consider only
j= 1. Choose a € A with a # wy. Consider first an exact constraint D=. Then gp_ is given by
(4.18). Since f(x1, . .., x¢) = 0 whenever x| = q, it follows from (4.18) that g(v1, ..., y,) =0
whenever y; = (ylk)y:l has y;1 = a. Hence, (6.1) shows that

8101) = —pup==—u, ify;p=a. (13.7)
Consequently, on the event £ = . .. =&, = a, recalling (4.8) and M = D + 1, we have g1 (Yy) =
g1k, ..., &p) = —u for every k € [n]. Thus,
Sn(g1)=—np if &1=---=§=a (13.8)
On the other hand, as noted above, the assumption o> = 0 implies that S,(g;) is independent
of ép+1, . . ., &,. Consequently, (13.8) implies
Sp(g)=—-npn if §=---=ép=a, (13.9)
regardless of épyg ..., &,+p. This is easily shown to lead to contradiction. For example, we
have, by (6.4),
Eg1(Yr) =Eg1(, - - -, &+p) =0, (13.10)
and thus, conditioning on &1, . . ., &p,
n
E(Su(g) |&1=--=&p=aq) =ZE(81(&, o Eip) 1= -=&p=a)
k=1
=0(1), (13.11)
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since all terms with k > D are unaffected by the conditioning and thus vanish by (13.10); this
contradicts (13.9) for large n, since n > 0. This contradiction shows that o2 > 0 for an exact
constraint D=.

Alternatively, instead of using the expectation as in (13.11), one might easily show that if
n>D+ ¢, then&p1, ..., &, can be chosen such that (13.9) does not hold.

For a constraint D, g = gp is given by a sum (4.23) of exactly constrained cases D’'=.
Hence, by summing (13.7) for these D’'=, it follows that (13.7) also holds for gp (with u
replaced by pp). This leads to a contradiction exactly as above. (]

Theorem 13.1 shows that, except in trivial cases, the asymptotic variance o> > 0 for a sub-
sequence count N,(w; D), and thus (13.4) yields a non-degenerate limit, so that it really shows
asymptotic normality. By the same proof (see also Remark 3.6), Theorem 13.1 extends to
linear combinations of different subsequence counts (in the same random string E,), but in
this case, it may happen that 0> =0, and then (13.4) has a degenerate limit and thus yields
only convergence in probability to 0. (We consider only linear combinations with coefficients
not depending on n.) One such degenerate example with constrained subsequence counts is
discussed in Example 8.1. There are also degenerate examples in the unconstrained case. In
fact, the general theory of degenerate (in this sense) U-statistics based on independent (X;)7°
is well understood; for symmetric U-statistics this case was characterized by [27] and stud-
ied in detail by [56], and their results were extended to the asymmetric case relevant here in
[35, Chapter 11.2]. In Appendix A we apply these general results to string matching and give
a rather detailed treatment of the degenerate cases of linear combinations of unconstrained
subsequence counts. See also [19] for further algebraic aspects of both non-degenerate and
degenerate cases.

Problem 13.1. Appendix A considers only the unconstrained case. Example 8.1 shows that for
linear combinations of constrained pattern counts, there are further possibilities to have 6> = 0.
It would be interesting to extend the results in Appendix A and characterize these cases, and
also to obtain limit theorems for such cases, extending Theorem A.2 (in particular the case
k = 2); note again that the limit in Example 8.1 is of a different type than the ones occurring in
unconstrained cases (Theorem A.2). We leave these as open problems.

14. Constrained pattern matching in permutations

Consider now random permutations. As usual, we generate a random permutation & =
n™ € &, by taking a sequence (X))} of i.i.d. random variables with a uniform distribution
X; ~ U(0, 1), and then replacing the values X1, . .., X;, in increasing order, by 1, . .., n. Then
the number N, (t) of occurrences of a fixed permutation T =11 --- 7 in 7 is given by the
U-statistic U, (f) defined by (3.1) with

fanox= J] U<y < u<g) (14.1)
1<i<j<t

Similarly, for any constraint D =(dy, ..., d¢—1), we have for the number of constrained
occurrences of t, with the same f as given by (14.1),

Nyu(t; D)= U,(f; D). (14.2)

Hence, Theorems 3.3 and 3.4 yield the following result showing asymptotic normality of
the number of (constrained) occurrences. As stated in the introduction, the unconstrained case
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was shown by Béna [7], the case d] =---=d;_1 =1 by Boéna [9], and the general vincular
case by Hofer [29]; we extend the result to general constrained cases. The fact that 02 > 0 was
shown in [29] (in vincular cases); we give a shorter proof based on Theorem 8.2. Again, the
theorem also holds for the exactly constrained case, with up— = 1/£! and some o2(t; D=).

Theorem 14.1. (Largely Béna [7, 9] and Hofer [29].) For any fixed permutation v € &, and

constraint D=(d,, ...,d¢_1), as n — oo,
N, (t:D) — LD yb
% 4 N(0, 0?) (14.3)
for some o= 02(1:; D) >0and
1
o= 4 ]‘[ d;. (14.4)
" dj<oo

Furthermore, all moments converge in (14.3).
Moreover, if £ 2> 2, then o2 >0.

Proof. This is similar to the proof of Theorem 13.1. By (14.2), the convergence (14.3) is
an instance of (3.21) together with (3.8). The formula (14.4) follows from (3.11), since u :=
Ef(Xi, ..., X¢) by (14.1) is the probability that X1, . .., X, have the same order as 71, . .., T¢,
i.e., 1/£!. Moment convergence follows by Theorem 3.6.

Finally, suppose that £ > 2 but > = 0. Then Theorem 8.2 says that (8.20) holds, and thus,
for each j and each n > D, the sum S,(g;) is independent of Xp 1, . .., X;;; we want to show that
this leads to a contradiction. We again choose j = 1, but we now consider two cases separately.

Case 1: di < oo Recall the notation in (4.11)—(4.14), and note that in this case

01 >1, t11 =0, tip =dj, v =0. (14.5)

Assume for definiteness that 71 > 15. (Otherwise, we may exchange < and > in the argument
below.) Then (14.1) implies that

fx1,...,x)=0 if x; <xp. (14.6)
Consider first the exact constraint D=. Then gp—_ is given by (4.18). Hence, (14.6) and (14.5)
imply that
gD=(1. ... yp) =0 if yi =i, with yi.1 <1144, (14.7)
In particular,
gp=01, ..., yp)=0 if yri<yi2<---<yim. (14.8)

By (4.23), the same holds for the constraint D. Hence, (6.1) shows that, for g = gp,

g11) =—up if yii<yi2<---<yiLm. (14.9)

Consequently, on the event X| < - - - < X,,1p, recalling (4.8) and M = D + 1, we have g(Yx) =
81Xk, . .., Xkyp) = —up for every k € [n], and thus

Su(g1) =—nup if X1 <---<Xu4p. (14.10)
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On the other hand, as noted above, the assumption o> = 0 implies that S,(g1) is independent
of Xp41, ..., X,. Consequently, (14.10) implies that a.s.

Su(g1) =—nup if Xj<---<Xp<Xyt1<-<XutbD- (14.11)
However, in analogy with (13.10)—(13.11), we have Eg{(Yx) =0 by (6.4), and thus

E(Sx(g1) | X1 <+ <Xp <Xps1 <+ <Xp4D)
n
ZZE(gl(Xk,n.,XkJrD)IXl < <Xp<Xpy1 <+ <Xn4D)
k=1

=0(1), (14.12)

since all terms with D < k < n — D are unaffected by the conditioning and thus vanish. But
(14.12) contradicts (14.11) for large n, since up > 0. This contradiction shows that 02>0
when £ > 2 and d| < oo.

Case 2: di = oo In this case, £; = 1. Consider again first D=. Since (X;) are i.i.d., (4.18)
and (6.1) yield, choosing j; := (D + 1)i, say,

i) =Egy1, Yy, ..., V) = =Ef (y11, X2, ..., X¢e) — w =fi011) (14.13)

(with p = 1/£!). Thus, recalling (4.8), we have

Sa(gn) =) _ a1V =Y _ fi(Xp). (14.14)

k=1 k=1

By Theorem 8.2, the assumption o2 =0 thus implies that the final sum in (14.14) is inde-
pendent of Xpyi, for any n> D+ 1. Since (X;) are independent, this is possible only if
fiXp+1) = c a.s. for some constant c, i.e., if fj(x) = ¢ for a.e. x € (0, 1).

However, by (14.1), f(x, X2, ..., X¢) = 1 if and only if 71 — 1 prescribed X; are in (0, x) and
in a specific order, and the remaining ¢ — t; ones are in (x, 1) and in a specific order. Hence,
(6.1) yields

1 71—1 0—
=" - — . 14.15
A= e =0 T (14.15)
Since € > 2, f1(x) is a non-constant polynomial in x.
This is a contradiction, and shows that 02 > 0 also when d; = co. [l

Remark 14.1. Although o2 > 0 for each pattern count N, (t; D) with £ > 1, non-trivial linear
combinations might have o2 =0, and thus variance of lower order, even in the unconstrained
case. (This is similar to the case of patterns in strings in Section 13 and Appendix A.) In
fact, for the unconstrained case, it is shown in [39] that for permutations t of a given length
£, the £! counts N,(t) converge jointly, after normalization as above, to a multivariate nor-
mal distribution of dimension only (£ — 1)?, meaning that there is a linear space of dimension
2! — (¢ — 1)? of linear combinations that have o2 = 0. This is further analyzed in [18], where
the spaces of linear combinations of N,(t) having variance O(nze”) are characterized for
each r=1,..., £ — 1, using the representation theory of the symmetric group. In particu-
lar, the highest degeneracy, with variance ®(n‘*1), is obtained for the sign statistic U, (sgn),
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where sgn(xy, ..., x¢) is the sign of the permutation defined by the order of (xi, ..., x,); in
other words, U, (sgn) is the sum of the signs of the (’g) subsequences of length ¢ of a random
permutation 7 € &,,. For £ =3, the asymptotic distribution of n~¢*t1/2, (sgn) is of the
type in (A.19); see [21] and [39, Remark 2.7]. For larger ¢, using the methods in Appendix
A, the asymptotic distribution can be expressed as a polynomial of degree £ — 1 in infinitely
many independent normal variables, as in (A.17); however, we do not know any concrete such
representation.

We expect that, in analogy with Example 8.1, for linear combinations of constrained pat-
tern counts, there are further possibilities to have o> = 0. We have not pursued this, and we
leave it as an open problem to characterize these cases with o> = 0; moreover, it would also
be interesting to extend the results of [18] characterizing cases with higher degeneracies to
constrained cases.

15. Further comments

We discuss here briefly some possible extensions of the present work. We have not pursued
them, and they are left as open problems.

15.1. Mixing and Markov input

We have in this paper studied U-statistics based on a sequence (X;) that is allowed to be
dependent, but only under the rather strong assumption of m-dependence (partly motivated
by our application to constrained U-statistics). It would be interesting to extend the results
to weaker assumptions on (X;), for example that it is stationary with some type of mixing
property. (See e.g. [12] for various mixing conditions and central limit theorems under some
of them.)

Alternatively (or possibly as a special case of mixing conditions), it would be interesting to
consider (X;) that form a stationary Markov chain (under suitable assumptions).

In particular, it seems interesting to study constrained U-statistics under such assump-
tions, since the mixing or Markov assumptions typically imply strong dependence for sets
of variables X; with small gaps between the indices, but not if the gaps are large.

Markov models are popular models for random strings. Substring counts, i.e., the com-
pletely constrained case of subsequence counts (see Remark 1.2), have been treated for Markov
sources by e.g. [52], [45], and [31].

A related model for random strings is a probabilistic dynamic source; see e.g. [31,
Section 1.1]. For substring counts, asymptotic normality has been shown by [11]. For (uncon-
strained or constrained) subsequence counts, asymptotic results on mean and variance are
special cases of [10] and [31, Theorem 5.6.1]; we are not aware of any results on asymptotic
normality in this setting.

15.2. Generalized U-statistics

Generalized U-statistics (also called multi-sample U-statistics) are defined similarly to
(3.1), but are based on two (for simplicity) sequences (Xi)'fl and (Yj)’ll2 of random variables,
with the sum in (3.1) replaced by asum overall iy < - -- <ip, <njandj| <--- <jg, <ng,and
f now a function of £1 4 ¢, variables. Limit theorems, including asymptotic normality, under
suitable conditions are shown in [60], and extensions to asymmetric cases are sketched in [35,
Example 11.24]. We do not know any extensions to m-dependent or constrained cases, but we

expect that such extensions are straightforward.
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Appendix A. Linear combinations for unconstrained subsequence counts

As promised in Section 13, we consider here unconstrained subsequence counts in a random
string E, with i.i.d. letters, normalized as in Theorem 13.1, and study further the case of linear
combinations of such normalized counts (with coefficients not depending on n); in particular,
we study in some detail such linear combinations that are degenerate in the sense that the
asymptotic variance o2 = 0.

The results are based on the orthogonal decomposition introduced in the symmetric case
by Hoeffding [28] (see also Rubin and Vitale [56]); this is extended to the asymmetric case
in [35, Chapter 11.2], but the treatment there uses a rather heavy formalism, and we therefore
give here a direct treatment in the present special case. (This case is somewhat simpler than
the general case since we only have to consider finite-dimensional vector spaces below, but
otherwise the general case is similar.) See also [19], which contains a much deeper algebraic
study of the asymptotic variance o 2(f) and the vector spaces below, and in particular a spectral
decomposition that refines (A.9).

Fix A and the random string (§;)7°. Assume, as in Section 13, that p(x) > 0 for every x € A.
Let A := | A|, the number of different letters.

We fix also £ > 1 and consider all unconstrained subsequence counts N,(w) with |w| = £.
There are A¢ such words w, and it follows from (13.2) and (13.1) that the linear combina-
tions of these counts are precisely the asymmetric U-statistics (3.1) for all f : A* — R, by the
relation

> FWNa(W) = Un(f). (A1)
we Al
Note that Theorem 3.3 applies to every U,(f), and thus (3.18) and (3.19) hold for some o=
az(f) > 0. (As stated above, this case of Theorem 3.3 with i.i.d. Xj, i.e., the case m = 0, is also
treated in [35, Corollary 11.20] and [37].)
Let V be the linear space of all functions f : A* — R. Thus dim V = A®. Similarly, let W be

the linear space of all functions h: A — R, i.e., all functions of a single letter; thus dim W = A.
Then V can be identified with the tensor product W®¢, with the identification

l
M- Qhe(xg, ...,xg)=l_[hi(xi)' (A2)
1

We regard V as a (finite-dimensional) Hilbert space with inner product
(f, &)v = E[f(Eng(En)], (A.3)
and, similarly, W as a Hilbert space with inner product
(h, Kyw := E[h(ED)k(1)]. (A.4)
Let Wy be the subspace of W defined by
Wo:= (1}t ={he W:(h, 1)y =0} = {h € W:Eh(&) = 0}. (A.5)

Thus, dim W =A — 1.
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For a subset B C A, let V3 be the subspace of V spanned by all functions 41 ® - - - @ hy as
in (A.2) such that h; € Wy if i € BB, and h; = 1 if i ¢ B. In other words, if for a given B we define
W'i:= Wy whenie€Band W; =R when i ¢ B, then

VE=W® - @W,=wdP (A.6)
It is easily seen that these 24 subspaces of V are orthogonal, and that we have an orthogonal
decomposition
V= EB V. (A7)
BcA

Furthermore, for k=0, ..., £, define

Vi:= @ Vg. (A.8)
|Bl=k

Thus, we also have an orthogonal decomposition (as in [28] and [56])

V=i (A.9)
k=0
Note that, by (A.6) and (A.8),
dimVz =@ — 18, dim Vi = (i)(A— D~ (A.10)

Let I and I1; = ZI B|=« 11 be the orthogonal projections of V onto V3 and Vi. Then, for
any f € V, we may consider its components ITif € Vi.

First, Vp is the 1-dimensional space of constant functions in V. Trivially, if f € Vj, then
U, (f) is non-random, so Var U, (f) = 0 for every n, and oz(f) = 0. More interesting is that for
any f € V, we have

Mof =Ef 1, ..., 60) = (A.11)

Next, it is easy to see that taking B = {i} yields the projection f; defined by (6.1), except that
ITy;)f is defined as a function on Al to be precise,

Mpf(xr, - .., xe) =fix)). (A.12)

Recalling (A.1), this leads to the following characterization of degenerate linear combinations
of unconstrained subsequence counts.

Theorem A.1. With notation and assumptions as above, if f : A* — R, then the following are
equivalent:

(1) o%(f)=0.
(i) fi=0foreveryi=1,...,4¢.
(iii) TTIf =0.
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Proof. The equivalence (i) < (ii) is a special case of Theorem 8.1; as stated above, this
special case is also given in [37, Corollary 3.5].
The equivalence (ii) <= (iii) follows by (A.8) and (A.12), which give
Mif =0 < M;f =0Vi < f;=0Vi. (A.13)
O

Note that (A.8) and (A.12) also yield

¢ ¢

MfGer . x) =Y Mpf@, ... x) =Y fix). (A.14)
i=1 i=1

Corollary A.1. The At different unconstrained subsequence counts N,(w) with w € At con-

verge jointly, after normalization as in (13.4), to a centered multivariate normal distribution

in RA" whose support is a subspace of dimension £(A — 1).

Proof. By Remark 3.6, we have joint convergence in Theorem 13.1 to some centered mul-
tivariate normal distribution in V = RA". Let L be the support of this distribution; then L is a
subspace of V. Let f € V. Then, by Theorems 13.1 and A.1,

frLes Y B 4 g 02 =0

we At
< Iif=0<«<= fLV]. (A.15)
Hence L =V, and the result follows by (A.10). O

What happens in the degenerate case when IT;f =0 and thus o2(f) =0? For symmet-
ric U-statistics, this was considered by Hoeffding [27] (variance) and Rubin and Vitale [56]
(asymptotic distribution); see also Dynkin and Mandelbaum [16]. Their results extend to the
present asymmetric situation as follows. We make a final definition of a special subspace
of V: let

4
v>k:=EBV[:{fev:an:omri:o,...,k—1}. (A.16)
i=k

In particular, V> consists of all f with Ef(E,) =0. Note also that f; in (6.3), by (A.11) and
(A.14), equals f — ITof — IT1f € V).

Lemma A.1. Ler 0 <k </ If f S V}k; then EUn(f)Z — O(nzg_k). Moreover lf f . V>k \
V>kt1, then ]EUn(f)2 — ®(n2’3—k)_

Proof. This is easily seen using the expansion (4.3) without the constraint D, and is similar
to the symmetric case in [27]; cf. also (in the more complicated m-dependent case) the cases
k=1in (4.1) and k =2 in (6.10). We omit the details. U

We can now state a general limit theorem that also includes degenerate cases.
Theorem A.2. Let k > 1 and suppose that f € V. Then
2t U) - 7, (A17)

where Z is some polynomial of degree k in independent normal variables (possibly infinitely
many). Moreover, Z is not degenerate unless f € V1.
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Proof. This follows by [35, Theorem 11.19]. As noted in [35, Remark 11.21], it can also be
reduced to the symmetric case in [56] by the following trick. Let (n;){° be an i.i.d. sequence,
independent of (£,)7°, with n; ~ U(0, 1); then

U ) S > flEn o &)l <. <mi), (A.18)

i1, ig KN

where Z* denotes summation over all distinct iy, ..., iy € [n], and the sum in (A.18) can
be regarded as a symmetric U-statistic based on (&;, ni)fo. The result (A.17) then follows
by [56]. O

Remark A.1. The case k =1 in Theorem A.2 is just a combination of Theorem 13.1 (in the
unconstrained case) and Theorem A.1; then Z is simply a normal variable. When k = 2, there
is a canonical representation (where the number of terms is finite or infinite)

LN w Pt
Z_2(£—2)!;W" D, (A.19)

where ¢; are i.i.d. N(O, 1) random variables and A; are the non-zero eigenvalues (counted
with multiplicity) of a compact self-adjoint integral operator on L>(A x [0, 1], v x df), where
v:= L(&1) is the distribution of a single letter and dz is Lebesgue measure; the kernel K of this
integral operator can be constructed from f by applying [35, Corollary 11.5(iii)] to the sym-
metric U-statistic in (A.18). We omit the details, but note that in the particular case k = ¢ =2,
this kernel K is given by

K(Ce, 0, (v, w) =f0e, DU < u} + £, 0t > ul, (A.20)

and thus the integral operator is

t 1
h> Thix, f) = E / FE OhEn W du+E / Fx, EDRE ) du (A21)
0 t

When k>3, the limit Z can be represented as a multiple stochastic integral [35,
Theorem 11.19], but we do not know any canonical representation of it. See also [56] and
[16].

We give two simple examples of limits in degenerate cases; in both cases k = 2. The second
example shows that although the space V has finite dimension, the representation (A.19) might
require infinitely many terms. (Note that the operator 7 in (A.21) acts in an infinite-dimensional
space.)

Example A.1. Let &, be a symmetric binary string, i.e., A= {0, 1} and p(0) =p(1)=1/2.
Consider

N»(00) + N, (11) — N,(01) — N, (10) = U, (f), (A.22)
with

1{xy =00} + 1{xy =11} — 1{xy =01} — 1{xy = 10}
(Hx=1}—1{x=0})(1{y=1} —1{y=0}). (A.23)

[, y):
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For convenience, we change notation and consider instead the letters §,~ = 2&; — 1 € {1}; then
f corresponds to

FG )= 35. (A24)

Thus

=
u.;
~~
o
p—
SN—"
Il
=
Q. >
~~
>
-
SN—"
Il
e
>
Il
| =
Y
[+
>
S~—
[\
|
[+
v
[§)

2
1 ", n
=5 (Z §i> — 5 (A.25)
By the central limit theorem, n~/2 Y| & —%> ¢ ~N(0, 1), and thus (A.25) implies

U, -5 Lt - 1. (A.26)

This is an example of (A.17), with k=¢ =2 and limit given by (A.19), in this case with a
single term in the sum and A; = 1.

Note that in this example, the function f is symmetric, so (A.22) is an example of a
symmetric U-statistic, and thus the result (A.26) is also an example of the limit result in [56].

Example A.2. Let A= {a, b, ¢, d}, with & having the symmetric distribution p(x) = 1/4 for
each x € A. Consider

Ny(ac) — Np(ad) — Nu(bc) + Ny(bd) = Uy(f), (A.27)
with, writing 1,(x) := 1{x =y},
oy = (1a(0) = 1,0) (Le(x) — 14(x)). (A.28)

Then Iof = I1;f = 0 by symmetry, so f € V>, = V; (since £ =2).

Consider the integral operator T on L>(A x [0, 1]) defined by (A.21). Let & be an eigen-
function with eigenvalue A # 0, and write h,(f) := h(x, t). The eigenvalue equation Th = \h
then is equivalent to the following, using (A.21) and (A.28):

(1) = % /t 1 (he(u) — ha(u)) du, (A.29)
Ahp(1) = i /t 1 (—he() + ha(w)) du, (A.30)
Mhe(t) = % /0 t(ha(u) — hp(w)) du, (A.31)
Mha(1) = % /O t(—ha(u) + hp(u)) du. (A.32)

These equations hold a.e., but we can redefine /,(7) by these equations so that they hold for
every ¢ € [0, 1]. Moreover, although originally we assume only A, € L?[0, 1], it follows from
(A.29)—(A.32) that the functions /,(¢) are continuous in ¢, and then by induction that they are
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infinitely differentiable on [0, 1]. Note also that (A.29) and (A.30) yield hy(f) = —hy(t), and
similarly hy(¢) = —h.(¢). Hence, we may reduce the system to

1 1
Mg (1) = E/ he(u) du, (A.33)
1 t’
Mho(t) = 3 / hy(u) du. (A.34)
0
By differentiation, for ¢ € (0, 1),
1
hd'(t) = _ﬁhc(t)v (A.35)
1
he'(f) = ﬁha(t). (A.36)
Hence, with w := 1/(2A),
h''(t) = = he(0). (A.37)

Furthermore, (A.34) yields 4.(0) = 0, and thus (A.37) has the solution (up to a constant factor
that we may ignore)

t
h(t) = sin wt = sin TR (A.38)
By (A.36), we then obtain
t
h,(t) = cos wt = cos T (A.39)

However, (A.33) also yields /,(1) = 0 and thus we must have cos (1/21) = 0; hence
1
A= ———,
2N+ Dr
Conversely, for every A of the form (A.40), the argument can be reversed to find an eigenfunc-

tion h with eigenvalue A. It follows also that all these eigenvalues are simple. Consequently,
Theorem A.2 and (A.19) yield

NeZ. (A.40)

o0 o
-1 a 1 1 2 ! 1 2 .2
U —H=—3 - , A4l
nUD = s NZ N1 =g N_02N+1(§N £on-1) (A41)

=—00

where, as above, ¢y are i.i.d. and N(0, 1). A simple calculation, using the product formula for
cosine (see [17, Section 12], [46, 4.22.2]), shows that the moment generating function of the
limit distribution Z in (A.41) is

1

E sZ — ,
¢ T sl 2 (s)2)

IRe s| <. (A.42)

It can be shown that Z 4 % fol B1(t) dBy(?) if B1(¢) and B, () are two independent standard
Brownian motions; this is, for example, a consequence of (A.42) and the following calculation,
using [13] or [53, p. 445] for the final equality:

Bt Jo BIOdBa(1) _ EE[¢* Jo Bi(@) dBa(0) 18] Eos i Biw? dr

=cos™ /2 (s), |Re s| < m/2. (A.43)
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We omit the details, but note that this representation of the limit Z is related to the special form
(A.28) of f; we may, intuitively at least, interpret B; and B, as limits (by Donsker’s theorem)
of partial sums of 1,(&;) — 15(&;) and 1.(&;) — 14(&;). In fact, in this example it is possible to

give a rigorous proof of n~ U, (f) 4z by this approach; again we omit the details.

Funding information

This work was supported by the Knut and Alice Wallenberg Foundation.

Competing interests

There were no competing interests to declare which arose during the preparation or
publication process of this article.

Acknowledgements

I thank Wojciech Szpankowski for stimulating discussions on patterns in random strings
over the last 20 years. Furthermore, I thank Andrew Barbour and Nathan Ross for help with ref-
erences, and the anonymous referees for helpful comments and further references; in particular,
Theorem 3.5 is based on suggestions from a referee.

References

[1] ALSMEYER, G. AND HOEFS, V. (2001). Markov renewal theory for stationary m-block factors. Markov
Process. Relat. Fields 7, 325-348.

[2] BALDI, P. AND RINOTT, Y. (1989). On normal approximations of distributions in terms of dependency graphs.
Ann. Prob. 17, 1646-1650.

[3] BARBOUR, A. D., KARONSKI, M. AND RUCINSKI, A. (1989). A central limit theorem for decomposable
random variables with applications to random graphs. J. Combinatorial Theory B 47, 125-145.

[4] BENDER, E. A. AND KOCHMAN, F. (1993). The distribution of subword counts is usually normal. Europ. J.
Combinatorics 14, 265-275.

[5] BILLINGSLEY, P. (1956). The invariance principle for dependent random variables. Trans. Amer. Math. Soc.
83, 250-268.

[6] BLOM, G. (1976). Some properties of incomplete U-statistics. Biometrika 63, 573-580.

[7] BONA, M. (2007). The copies of any permutation pattern are asymptotically normal. Preprint. Available at
https://arxiv.org/0712.2792.

[8] BONA, M. (2008). Generalized descents and normality. Electron. J. Combinatorics 15, paper no. 21, 8 pp.

[9] BONA, M. (2010). On three different notions of monotone subsequences. In Permutation Patterns, Cambridge
University Press, pp. 89-114.

[10] BOURDON, J. AND VALLEE, B. (2002). Generalized pattern matching statistics. In Mathematics and Computer
Science I1: Algorithms, Trees, Combinatorics and Probabilities, Birkhduser, Basel, pp. 249-265.

[11] BOURDON, J. AND VALLEE, B. (2006). Pattern matching statistics on correlated sources. In LATIN 2006:
Theoretical Informatics, Springer, Berlin, pp. 224-237.

[12] BRADLEY, R. C. (2007). Introduction to Strong Mixing Conditions, Vol. 1-3. Kendrick Press, Heber City, UT.

[13] CAMERON, R. H. AND MARTIN, W. T. (1945). Transformations of Wiener integrals under a general class of
linear transformations. Trans. Amer. Math. Soc. 58, 184-219.

[14] CHEN, L. H. Y., GOLDSTEIN, L. AND SHAO, Q.-M. (2011). Normal Approximation by Stein’s Method.
Springer, Berlin.

[15] DEHLING, H. AND WENDLER, M. (2010). Central limit theorem and the bootstrap for U-statistics of strongly
mixing data. J. Multivariate Anal. 101, 126-137.

[16] DYNKIN, E. B. AND MANDELBAUM, A. (1983). Symmetric statistics, Poisson point processes, and multiple
Wiener integrals. Ann. Statist. 11, 739-745.

[17] EULER, L. (1743). De summis serierum reciprocarum ex potestatibus numerorum naturalium ortarum dis-
sertatio altera, in qua eaedem summationes ex fonte maxime diverso derivantur. Miscellanea Berolinensia 7,
172-192. Reprinted in Opera Omnia, Ser. 1, Vol. 14, Teubner, Leipzig, 1925, pp. 138-155.

[18] EVEN-ZOHAR, C. (2020). Patterns in random permutations. Combinatorica 40, 775-804.

https://doi.org/10.1017/apr.2022.51 Published online by Cambridge University Press


https://arxiv.org/0712.2792
https://doi.org/10.1017/apr.2022.51

Constrained U-statistics, random strings and permutations 893

[19]
[20]
[21]

[22]
[23]

[24]
[25]
[26]
[27]

[28]

[29]
[30]
[31]
[32]

[33]
[34]

[35]
[36]

(371
[38]

[44]

[45]
[40]

[47]

[48]
[49]

[50]
[51]
[52]

[53]

EVEN-ZOHAR, C., LAKREC, T. AND TESSLER, R. J. (2021). Spectral analysis of word statistics. Sém. Lothar.
Combin. 85B, paper no. 81, 12 pp.

FANG, X. (2016). A multivariate CLT for bounded decomposable random vectors with the best known rate. J.
Theoret. Prob. 29, 1510-1523.

FISHER, N. I. AND LEE, A. J. (1982). Nonparametric measures of angular—angular association. Biometrika
69, 315-321.

FLAJOLET, P. AND SEDGEWICK, R. (2009). Analytic Combinatorics. Cambridge University Press.
FLAJOLET, P., SZPANKOWSKI, W. AND VALLEE, B. (2006). Hidden word statistics. J. Assoc. Comput. Mach.
53, 147-183.

GUT, A. (2009). Stopped Random Walks, 2nd edn. Springer, New York.

GUT, A. (2013). Probability: A Graduate Course, 2nd edn. Springer, New York.

HAN, F. AND QIAN, T. (2018). On inference validity of weighted U-statistics under data heterogeneity.
Electron. J. Statist. 12, 2637-2708.

HOEFFDING, W. (1948). A class of statistics with asymptotically normal distribution. Ann. Math. Statist. 19,
293-325.

HOEFFDING, W. (1961). The strong law of large numbers for U-statistics. Tech. Rep., University of North
Carolina, Institute of Statistics, Mimeograph Series No. 302. Available at https://repository.lib.ncsu.edu/
handle/1840.4/2128.

HOFER, L. (2018). A central limit theorem for vincular permutation patterns. Discrete Math. Theoret. Comput.
Sci. 19, paper no. 9, 26 pp.

HSING, T. AND WU, W. B. (2004). On weighted U-statistics for stationary processes. Ann. Prob. 32,
1600-1631.

JACQUET, P. AND SZPANKOWSKI, W. (2015). Analytic Pattern Matching: From DNA to Twitter. Cambridge
University Press.

JAMMALAMADAKA, S. R. AND JANSON, S. (1986). Limit theorems for a triangular scheme of U-statistics
with applications to inter-point distances. Ann. Prob. 14, 1347-1358.

JANSON, S. (1983). Renewal theory for M-dependent variables. Ann. Prob. 11, 558-568.

JANSON, S. (1988). Normal convergence by higher semi-invariants with applications to sums of dependent
random variables and random graphs. Ann. Prob. 16, 305-312.

JANSON, S. (1997). Gaussian Hilbert Spaces. Cambridge University Press.

JANSON, S. (2015). On degenerate sums of m-dependent variables. J. Appl. Prob. 52, 1146-1155.

JANSON, S. (2018). Renewal theory for asymmetric U-statistics. Electron. J. Prob. 23, paper no. 129, 27 pp.
JANSON, S. (2022). The number of occurrences of patterns in a random tree or forest permutation. Preprint.
Available at https://arxiv.org/2203.04182.

JANSON, S., NAKAMURA, B. AND ZEILBERGER, D. (2015). On the asymptotic statistics of the number of
occurrences of multiple permutation patterns. J. Combinatorics 6, 117-143.

JANSON, S. AND SZPANKOWSKI, W. (2021). Hidden words statistics for large patterns. Electron. J.
Combinatorics 28, paper no. P2.36, 26 pp.

KALLENBERG, O. (2002). Foundations of Modern Probability, 2nd edn. Springer, New York.

MAIOR, P. (1994). Asymptotic distributions for weighted U-statistics. Ann. Prob. 22, 1514-1535.
MALEVICH, T. L. AND ABDALIMOV, B. (1982). Refinement of the central limit theorem for U-statistics of
m-dependent variables. Teor. Veroyat. Primen. 27, 369-373 (in Russian). English translation: Theory Prob.
Appl. 27, 391-396.

MILLER, R. G., Jr. AND SEN, P. K. (1972). Weak convergence of U-statistics and von Mises’ differentiable
statistical functions. Ann. Math. Statist. 43, 31-41.

NICODEME, P., SALVY, B. AND FLAJOLET, P. (2002). Motif statistics. Theoret. Comput. Sci. 287, 593-617.
OLVER, F. W. J., LOZIER, D. W., BOISVERT, R. F. AND CLARK, C. W. (eds) (2010). NIST Handbook of
Mathematical Functions. Cambridge University Press.

O’NEIL, K. A. AND REDNER, R. A. (1993). Asymptotic distributions of weighted U-statistics of degree 2.
Ann. Prob. 21, 1159-1169.

OREY, S. (1958). A central limit theorem for m-dependent random variables. Duke Math. J. 25, 543-546.
PELIGRAD, M. (1996). On the asymptotic normality of sequences of weak dependent random variables. J.
Theoret. Prob. 9, 703-715.

PIKE, J. (2011). Convergence rates for generalized descents. Electron. J. Combinatorics 18, paper no. 236,
14 pp.

RAIC, M. (2004). A multivariate CLT for decomposable random vectors with finite second moments. J. Theoret.
Prob. 17, 573-603.

REGNIER, M. AND SZPANKOWSKI, W. (1998). On pattern frequency occurrences in a Markovian sequence.
Algorithmica 22, 631-649.

REVUZ, D. AND YOR, M. (1999). Continuous Martingales and Brownian Motion, 3rd edn. Springer, Berlin.

https://doi.org/10.1017/apr.2022.51 Published online by Cambridge University Press


https://repository.lib.ncsu.edu/handle/1840.4/2128
https://repository.lib.ncsu.edu/handle/1840.4/2128
https://arxiv.org/2203.04182
https://doi.org/10.1017/apr.2022.51

894

[54]
[55]
[56]

(571
[58]

[591

[60]
[61]

[62]
[63]
[64]
[65]

[66]

S. JANSON

RINOTT, Y. (1994). On normal approximation rates for certain sums of dependent random variables. J. Comput.
Appl. Math. 55, 135-143.

RINOTT, Y. AND ROTAR, V. (1997). On coupling constructions and rates in the CLT for dependent summands
with applications to the antivoter model and weighted U-statistics. Ann. Appl. Prob. 7, 1080-1105.

RUBIN, H. AND VITALE, R. A. (1980). Asymptotic distribution of symmetric statistics. Ann. Statist. 8,
165-170.

SEN, P. K. (1960). On some convergence properties of U-statistics. Calcutta Statist. Assoc. Bull. 10, 1-18.
SEN, P. K. (1963). On the properties of U-statistics when the observations are not independent. 1. Estimation
of non-serial parameters in some stationary stochastic process. Calcutta Statist. Assoc. Bull. 12, 69-92.

SEN, P. K. (1972). Limiting behavior of regular functionals of empirical distributions for stationary mixing
processes. Z. Wahrscheinlichkeitsth. 25, 71-82.

SEN, P. K. (1974). Weak convergence of generalized U-statistics. Ann. Prob. 2, 90-102.

SHAPIRO, C. P. AND HUBERT, L. (1979). Asymptotic normality of permutation statistics derived from
weighted sums of bivariate functions. Ann. Statist. 7, 788-794.

SZPANKOWSKI, W. (2001). Average Case Analysis of Algorithms on Sequences. John Wiley, New York.
UTEV, S. A. (1990). Central limit theorem for dependent random variables. In Probability Theory and
Mathematical Statistics: Proc. Fifth Vilnius Conference, June 25—July 1, 1990, Vol. 11, Mokslas, Vilnius, pp.
519-528.

YOSHIHARA, K. (1976). Limiting behavior of U-statistics for stationary, absolutely regular processes. Z.
Wahrscheinlichkeitsth. 35, 237-252.

YOSHIHARA, K. (1992). Limiting behavior of U-statistics for strongly mixing sequences. Yokohama Math. J.
39, 107-113.

ZHOoU, Z. (2014). Inference of weighted V-statistics for nonstationary time series and its applications. Ann.
Statist. 42, 87-114.

https://doi.org/10.1017/apr.2022.51 Published online by Cambridge University Press


https://doi.org/10.1017/apr.2022.51

	Introduction
	Applications

	Preliminaries
	Some notation
	m-dependent variables

	U-statistics and main results
	Expectation and law of large numbers
	Asymptotic normality
	Rate of convergence
	Moment convergence
	Functional limit theorems
	Renewal theory

	Some lemmas
	Triangular arrays

	The expectation
	Asymptotic normality
	Law of large numbers
	The degenerate case
	The degenerate case in renewal theory

	Rate of convergence
	Higher moments and maximal functions
	Functional convergence
	Renewal theory
	Constrained pattern matching in words
	Constrained pattern matching in permutations
	Further comments
	Mixing and Markov input
	Generalized U-statistics

	Linear combinations for unconstrained subsequence counts
	Funding information
	Competing interests
	Acknowledgements
	References

