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NONLINEAR FILTERING FOR
JUMP DIFFUSION OBSERVATIONS
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Abstract

We deal with the filtering problem of a general jump diffusion process, X, when the
observation process, Y , is a correlated jump diffusion process having common jump
times with X. In this setting, at any time t the σ -algebra F Y

t provides all the available
information about Xt , and the central goal is to characterize the filter, πt , which is
the conditional distribution of Xt given observations F Y

t . To this end, we prove that
πt solves the Kushner–Stratonovich equation and, by applying the filtered martingale
problem approach (see Kurtz and Ocone (1988)), that it is the unique weak solution to
this equation. Under an additional hypothesis, we also provide a pathwise uniqueness
result.
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1. Introduction

In this paper we consider a partially observed system (or filtering model), (X, Y ), defined on
some filtered probability space (�, F , {Ft }t∈[0,T ], P), with T ∈ (0, ∞), where the dynamics
of the signal X = (Xt )t∈[0,T ] form a general jump diffusion process and the observation
Y = (Yt )t∈[0,T ] is a correlated jump diffusion process having common jump times with X.
As usual in a filtering model, the signal X cannot be observed directly, but we can observe a
stochastic process Y , related to X. At any time t , the σ -algebra F Y

t := σ {Ys, s ≤ t} generated
by Y supplies all the available information about Xt . The central goal of solving a filtering
problem is to characterize the conditional distribution of Xt given the observation F Y

t , which
provides the most detailed description of our knowledge of Xt .

The two major approaches to nonlinear filtering are the innovation method and the reference
probability method. The latter is usually employed when it is possible to find an equivalent
probability measure that makes the state X and the observations Y independent and, in such a
case, this approach is better suited for approximation results. In the partially observed model
considered in this paper, X and Y are correlated processes that may also have common jump
times, so here such a probability measure does not exist. Hence, we choose the innovation
approach as it is more appropriate to take into account these two features. This method consists
of characterizing the filter as the unique solution (in some sense) to a stochastic differential
equation, the so-called Kushner–Stratonovich equation (KS equation). The innovation approach
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has been developed by several authors in many works. For example, Lipster and Shiryaev [20,
pp. 297–380] treated the diffusive case and Bremáud [2, pp. 83–107] derived the theory in
the purely discontinuous observations setting. We also refer the reader to [8] for an extensive
analysis of the topic.

Since its origins, filtering theory has been successfully used in a great variety of engineering
problems, informational sciences, and, more recently, mathematical finance. Among all the
possible applications, we mention the application that concerns the study of partially observable
stochastic control problems, where, in particular, the KS equation plays a key role. Usually,
in these situations it is convenient to introduce an equivalent control problem with complete
observations, the so-called separated problem, in order to avoid a direct approach. In this new
problem the state is represented by the pair filter observation, whose first component satisfies the
controlled KS equation. Uniqueness for the solutions of this evolution equation is an essential
tool to prove the equivalence between the original problem and the separated problem. For a
more detailed survey on this subject, we refer the reader to [9] and [10] for the diffusive case
and [5] and [21] for counting observations.

Filtering problems have been widely investigated in the literature, mainly in the cases when
Y gives observations of X in additional Gaussian noise (see, for example, [16], [17], and [20,
pp. 297–380]) and when Y is a counting process or a marked point process (see [2, pp. 83–
107], [3], [6], [7], [11], [19], and the references therein). The case of mixed-type observations
(marked point processes and diffusions) has been studied in [4], [12], and [13]. All the papers
cited above analyze the situation in which the information flow has the structure F m

t ∨ F
η
t ,

where m(dt, dx) is a marked point process whose dynamics are influenced by a stochastic factor
X and η gives observations of X in additional Gaussian noise. This particular structure to the
information flow has a financial motivation; nevertheless, in a general framework, it may be
meaningful to consider the case where the observation flow is generated by a jump diffusion
process as in the model developed in this paper that, to the authors’ knowledge, has not been
investigated yet in the existing filtering literature.

In [12], by assuming that the additional Gaussian noise is independent from X, the authors
applied the reference probability approach even in the case of joint jumps between the state and
observations. Moreover, the above assumption and the particular structure of the information
flow allowed them to reduce the filtering problem with mixed observations to that with pure
jump observations. This technique fails in the general model of correlated jump diffusion
processes, as the one studied in this paper. Using the innovation method together with an
F Y

t -martingale representation theorem, we characterize the filter in terms of the KS equation.
Frey and Schmidt [13] studied the case where the state process X is modeled as a finite-state
Markov chain without common jump times with m(dt, dx) and Ceci [4] studied the case where
the state process X is a jump diffusion process that allows common jump times with m(dt, dx)—
as mentioned above, in both of these papers the structure of the information flow is different
from that considered herein. However, the filtering equation we obtain is quite similar to that
in [4], but we prove weak uniqueness for the solutions under weaker conditions and we also
give a pathwise uniqueness result. This kind of uniqueness was not investigated in [4].

The paper is organized as follows. The filtering model is described in Section 2. The
main result, which establishes a characterization of the filter as the unique solution to the KS
equation, is given in Section 3. The proofs of weak and strong uniqueness for this equation
are postponed to Appendix B, where we deduce these results from uniqueness for the filtered
martingale problem (see [17] and [18]).
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680 C. CECI AND K. COLANERI

2. The filtering model

A partially observed system (X, Y ), where X is the unobservable component (state process)
and Y the observable component, on a stochastic basis (�, F , (Ft )t∈[0,T ], P), is described by
the following system of stochastic differential equations:

dXt = b0(t, Xt ) dt + σ0(t, Xt ) dW 0
t +

∫
Z

K0(t, Xt− , ζ )N(dt, dζ ), X0 = x0,

dYt = b1(t, Xt , Yt ) dt + σ1(t, Yt ) dW 1
t +

∫
Z

K1(t, Xt− , Yt− , ζ )N(dt, dζ ), Y0 = y0.

(2.1)

Here x0, y0 ∈ R, N(dt, dζ ) is a Poisson random measure on R+ × Z, and ν(dζ ) dt represents
its intensity. We denote by Ñ(dt, dζ ) the compound Poisson measure, i.e. Ñ(dt, dζ ) :=
N(dt, dζ ) − ν(dζ ) dt . Note that ν(dζ ) is a σ -finite measure on a measurable space (Z, Z).
The processes W 0 and W 1 are correlated (P, Ft )-standard Brownian motions with correla-
tion coefficient ρ ∈ [−1, 1]. The R-valued functions b0(t, x), b1(t, x, y), σ0(t, x) > 0,
σ1(t, y) > 0, K0(t, x, ζ ), and K1(t, x, y, ζ ) are measurable functions of their arguments. Let
us remark that in the dynamics of the observation process Y , the diffusive coefficient does not
depend on the state process X, although the drift does.

From now on we will write bi(t), σi(t), Ki(t, ζ ), i = 0, 1, for b0(t, Xt ), b1(t, Xt , Yt ),
σ0(t, Xt ), σ1(t, Yt ), K0(t, Xt− , ζ ), and K1(t, Xt− , Yt− , ζ ), respectively, unless it is necessary
to underline the dependence on the processes involved.

We assume some requirements for (2.1) to be well defined: for i = 0, 1,

E
∫ T

0

∫
Z

|Ki(t, ζ )|ν(dζ ) dt < ∞, E
∫ T

0
|bi(t)| dt < ∞, E

∫ T

0
σ 2

i (t) dt < ∞. (2.2)

Under these constraints, both the processes X and Y have finite first moments.
We also assume strong existence and uniqueness for the system (2.1). Sufficient conditions

are summarized in Appendix A. In particular, these assumptions imply that the pair (X, Y ) is
a (P, Ft )-Markov process.

Denote by (F Y
t )t∈[0,T ] the filtration generated by the observation process Y until time t . In

the partially observed system considered in this paper, at any time t , the σ -algebra F Y
t provides

all the available information about the signal Xt .
By defining P (R) to be the space of the probability measures over R, it is known that there

exists a P (R)-valued F Y
t -adapted process, πt , such that

πt (f ) = E[f (t, Xt ) | F Y
t ] (2.3)

for any measurable function f (t, x) on [0, T ] × R such that f (t, X) is integrable. Since X is
a càdlàg process, there exists a version of π with càdlàg paths (see, for instance, [17]).

Throughout the rest of the paper, we will write R̂ for the (P, F Y
t )-optional projection of

a progressively measurable process R, satisfying E |Rt | < ∞ for all t ∈ [0, T ], defined as
the unique optional process such that, for any F Y

t -stopping time τ , R̂τ = E[Rτ | F Y
τ ] almost

surely (a.s.) on {τ < ∞}. With this notation we can write the F Y
t -optional projection of a

process f (t, Xt ) as
̂f (t, Xt ) = πt (f ).

In this case ̂f (t, Xt ) has càdlàg trajectories (we will use both the notation ̂f (t, Xt ) and πt (f )

in the following).
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Remark 2.1. In the sequel we will use two well-known facts: for every (P, Ft )-martingale m,
the projection m̂ is a (P, F Y

t )-martingale, and, for any progressively measurable process 	

with E
∫ T

0 |	t | dt < ∞,
̂∫ T

0
	t dt −

∫ T

0
	̂t dt

is a (P, F Y
t )-martingale. Note that this implies that E

∫ T

0 	t dt = E
∫ T

0 	̂t dt .

We will also need the following result.

Proposition 2.1. Let (mt )t≥0 be a (P, Ft )-local martingale. If there exists a localizing
sequence (τn)n∈N of F Y

t -stopping times for m, then m̂ is a (P, F Y
t )-local martingale.

Proof. By a standard calculation we obtain, for all 0 ≤ s < t ≤ T < ∞,

E[m̂t∧τn | F Y
s ] = E[E[mt∧τn | F Y

t∧τn
] | F Y

s ]
= E[E[mt∧τn | F Y

t∧τn
] 1{τn>s} | F Y

s ] + E[E[mt∧τn | F Y
t∧τn

] 1{τn≤s} | F Y
s ]

= E[E[mt∧τn | Fs] | F Y
s ] 1{τn>s} + E[mτn | F Y

τn
] 1{τn≤s}

= m̂s∧τn .

Hence, m̂t∧τn is a (P, F Y
t )-martingale and this proves the statement.

The integer-valued random measure associated to the jumps of the process Y is given by

m(dt, dx) =
∑

{s : 
Ys �=0}
δ{s,
Ys }(dt, dx),

where δa denotes the Dirac measure at point a. Note that the equality∫ t

0

∫
R

xm(ds, dx) =
∫ t

0

∫
Z

K1(s, ζ )N(ds, dζ )

holds, and, in general, for any measurable function g : R → R,∫ t

0

∫
R

g(x)m(ds, dx) =
∫ t

0

∫
Z

1{K1(s,ζ )�=0} g(K1(s, ζ ))N(ds, dζ ). (2.4)

For all t ∈ [0, T ] and all A ∈ B(R), we define

d0(t, x) := {ζ ∈ Z : K0(t, x, ζ ) �= 0},
d1(t, x, y) := {ζ ∈ Z : K1(t, x, y, ζ ) �= 0},
dA(t, x, y) := {ζ ∈ Z : K1(t, x, y, ζ ) ∈ A \ {0}} ⊆ d1(t, x, y), (2.5)

and, finally,

DA
t = dA(t, Xt− , Yt−) ⊆ Dt = d1(t, Xt− , Yt−), D0

t = d0(t, Xt−).

Normally, D0
t ∩ Dt �= ∅, P-a.s. and this models the fact that the state process and the observa-

tion may have common jump times.
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Under the assumption that

E
∫ T

0
ν(Ds) ds < ∞, (2.6)

in [3, Proposition 2.2] it was proved that the (P, Ft )-predictable projection (see [2] and [15]),
mp(dt, dx), of the integer-valued measure m(dt, dx) can be written as

mp(dt, dx) = λtφt (dx) dt, (2.7)

where, for all A ∈ B(R),

mp(dt, A) = λtφt (A) dt = ν(DA
t ) dt.

This means that ν(DA
t )provides the (P, Ft )-intensity of the point processNt(A) = m((0, t]×A)

that counts the jumps of the process Y until time t , whose widths belong to A. In particular,
λt = ν(Dt ) is the (P, Ft )-predictable intensity of the point process Nt = m((0, t] × R) which
counts the jumps of the process Y until time t .

Remark 2.2. Equation (2.7) can also be written as

mp(dt, dx) = λtφt (dx) dt =
∫

Dt

δK1(t,ζ )(dx)ν(dζ ) dt. (2.8)

We finally denote by νp(dt, dx) the (P, F Y
t )-predictable projection of the integer-valued

measure m(dt, dx). The following proposition, proved in [3], gives a representation of νp(dt,

dx) in terms of the filter.

Proposition 2.2. The (P, F Y
t )-predictable projection of the integer-valued measure m(dt, dx)

is given by
νp(dt, dx) = λ̂tφt (dx)|t=t− dt = πt−(λtφt (dx)) dt,

that is, for any A ∈ B(R),

νp((0, t], A) =
∫ t

0
πs−(λsφs(A)) ds =

∫ t

0
πs−(ν(dA(·, Ys−))) ds,

where πt− denotes the left version of the process πt .

The last part of this section focuses on finding a martingale representation theorem for
(P, F Y

t )-martingales which is an essential tool to derive the filtering equation. To this end, we
introduce the F Y

t -compensated martingale random measure

mπ(dt, dx) = m(dt, dx) − νp(dt, dx) = m(dt, dx) − πt−(λtφt (dx)) dt,

and, assuming that

E
∫ T

0

b2
1(t)

σ 2
1 (t)

dt < ∞, (2.9)

we define the innovation process

It = W 1
t +

∫ t

0

[
b1(s)

σ1(s)
− πs

(
b1

σ1

)]
ds. (2.10)
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Note that, by Remark 2.1 and assumption (2.9),

E
∫ T

0

∣∣∣∣πt

(
b1

σ1

)∣∣∣∣ dt ≤ E
∫ T

0
πt

∣∣∣∣b1

σ1

∣∣∣∣ dt = E
∫ T

0

|b1(t)|
σ1(t)

dt < ∞.

By extending classical results from filtering theory (see [20]) to our setting we obtain the
following result.

Proposition 2.3. The random process {It }t∈[0,T ] is a (P, F Y
t )-Wiener process.

We write F m
t for the filtration generated by the random measure m(dt, dx). Since the

innovation process I and the random measure m(dt, dx) are F Y
t -adapted, then F m

t ∨
F I

t ⊆ F Y
t . In general, the inclusion is strict; however, we will prove a representation

theorem for (P, F Y
t )-martingales in terms of the F Y

t -compensated random martingale measure
mπ(dt, dx) and the innovation process I .

For this purpose, let us now consider the positive local martingale defined by

Lt = E

(
−

∫ t

0

b1(s)

σ1(s)
dW 1

s

)
= exp

{
−

∫ t

0

b1(s)

σ1(s)
dW 1

s − 1

2

∫ t

0

b2
1(s)

σ 2
1 (s)

ds

}
,

where E denotes the Doléans-Dade exponential and we will make the following usual standing
assumption.

Assumption A. L is a (P, Ft )-martingale, that is, E[LT ] = 1.

Under Assumption A, we define a probability measure Q on FT equivalent to P such that

dQ

dP

∣∣∣∣
FT

= LT . (2.11)

By Girsanov’s theorem, the process

W̃ 1
t = W 1

t +
∫ t

0

b1(s)

σ1(s)
ds

is a (Q, Ft )-Wiener process and, by (2.10),

W̃ 1
t = It +

∫ t

0
πs

(
b1

σ1

)
ds; (2.12)

hence, W̃ 1 is a (Q, F Y
t )-Wiener process, which in turn implies that

L̂t = E[Lt | F Y
t ] = dQ

dP

∣∣∣∣
F Y

t

= E

(
−

∫ t

0
πs

(
b1

σ1

)
dIs

)
. (2.13)

Note that, by Jensen’s inequality, π2
t (b1/σ1) ≤ πt (b

2
1/σ

2
1 ) and, by Remark 2.1, the following

integrability condition holds:

E
∫ T

0
πt

(
b2

1

σ 2
1

)
dt = E

∫ T

0

b2
1(t)

σ 2
1 (t)

dt < ∞.
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Before giving the claimed result, we want to underline the (P, F Y
t )-semimartingale repre-

sentation of Y :

dYt = σ1(t) dIt +
(

πt (b1) +
∫

R

xλ̂tφt (dx)

)
dt +

∫
R

xmπ(dt, dx).

We can observe that, again by Remark 2.1 and the assumptions in (2.2),

E
∫ T

0
|πt (b1)| dt ≤ E

∫ T

0
πt |b1| dt = E

∫ T

0
|b1(t)| dt < ∞;

furthermore, taking into account (2.8),

E
∫ T

0

∫
R

|x|λ̂tφt (dx) dt = E
∫ T

0

∫
R

|x|λtφt (dx) dt = E
∫ T

0

∫
Z

|K1(t, ζ )|ν(dζ ) dt < ∞.

Proposition 2.4. Under (2.2), (2.6), (2.9), and Assumption A, every (P, F Y
t )-local martingale

M admits the decomposition

M = M0 +
∫ t

0

∫
R

w(s, x)mπ(ds, dx) +
∫ t

0
h(s) dIs,

where w(t, x) is an F Y
t -predictable process and h(t) is an F Y

t -adapted process such that∫ T

0

∫
R

|w(t, x)|πt−(λtφt (dx)) dt < ∞ and
∫ T

0
h(t)2 dt < ∞ P -a.s.

Proof. Let Q be the probability measure defined in (2.11). Then W̃ 1 is a (Q, F Y
t )-Brownian

motion. Note that the following equality of σ -algebras holds:

F Y
t = F m

t ∨ F W̃ 1

t . (2.14)

As a matter of fact, recalling (2.12), we obtain the inclusion F Y
t ⊇ F m

t ∨ F W̃ 1

t , while the
other inclusion follows from the fact that Y solves the stochastic differential equation driven
by m(dt, dx) and W given by

dYt =
∫

R

xm(dt, dx) + σ1(t, Yt ) dW̃ 1
t .

Let us note that the Q-distribution of the pair (m, W̃ 1
t ) is uniquely determined by its (Q, F m

t ∨
F W̃ 1

t )-predictable characteristics (see Remark 3.2 of [1]), and, therefore, by the (Q, F Y
t )-

predictable characteristics because of equality (2.14).
By applying Corollary III.4.31 of [15], every (Q, F Y

t )-local martingale, M̃ , has the repre-
sentation property with respect to (m, W̃ 1), which means that there exist two processes, h̃(t),
F Y

t -adapted, and w̃(t, x), F Y
t -predictable, satisfying∫ T

0
h̃2(t) dt < ∞ and

∫ T

0

∫
R

|w̃(t, x)|πt−(λtφt (dx)) dt < ∞ Q -a.s.

such that

M̃t = M̃0 +
∫ t

0
h̃(s) dW̃ 1

s +
∫ t

0

∫
R

w̃(s, x)mπ(ds, dx). (2.15)
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Let M be a (P, F Y
t )-local martingale. By the Kallianpur–Striebel formula, M̃t = MtL̂

−1
t is a

(Q, F Y
t )-local martingale, where L̂ is defined in (2.13). Thus, Mt = M̃t L̂t can be computed

by the product formula:

dMt = M̃t− dL̂t + L̂t− dM̃t + d〈M̃c, L̂c〉t + d

(∑
s≤t


M̃s
L̂s

)
.

Note that dL̂t = −L̂tπt (b1/σ1) dIt . Then

dMt = −M̃t L̂tπt

(
b1

σ1

)
dIt + L̂t−

(∫
R

w̃(t, x)mπ(dt, dx) + h̃(t) dW̃ 1
t

)

+ d

〈∫ ·

0
h̃(s) dW̃ 1

s , −
∫ ·

0
L̂sπs

(
b1

σ1

)
dIs

〉
t

= −Mtπt

(
b1

σ1

)
dIt + L̂t h̃(t)

(
dIt + πt

(
b1

σ1

)
dt

)
− h̃(t)L̂tπt

(
b1

σ1

)
dt

+
∫

R

L̂t−w̃(t, x)mπ(dt, dx)

=
(

−Mtπt

(
b1

σ1

)
+ L̂t h̃(t)

)
dIt +

∫
R

L̂t−w̃(t, x)mπ(dt, dx).

Finally, we need to only define

w(t, x) = L̂t−w̃(t, x) and h(t) = −Mtπt

(
b1

σ1

)
+ L̂t h̃(t).

3. The filtering equation

Our purpose in this section is to characterize the filter that is the conditional distribution of
the signal X given the observation F Y

t , which provides, as already stated, the most detailed
description of our knowledge of Xt .

The literature concerning the filtering problem in the case of diffusion observations is quite
rich: for textbook treatments, see, for instance, [16] and [20]. More recently, results for pure
jump observations have been obtained (see [2], [3], [7], [11], and the references therein), while
few results can be found for mixed-type information which involves pure jump processes and
diffusions (see [4], [12], and [13]). To the authors’ knowledge, this is the first time that the
filtering problem is studied for the general jump diffusion system defined in (2.1).

First we want to recall a result proved in [7, Corollary 2.2].
Let us denote by C1,2

b ([0, T ] × R) and C1,2,2
b ([0, T ] × R × R) the sets of functions f

respectively defined on [0, T ]×R and [0, T ]×R×R such that f, ∂f /∂t, ∂f /∂x, and ∂2f /∂x2

and f, ∂f /∂t , and all the first and second derivatives with respect to (x, y), respectively, are
bounded continuous functions.

Lemma 3.1. Under the assumptions in (2.2) for i = 0 and

E
∫ T

0
ν(D0

t ) dt < ∞, (3.1)

X is a (P, Ft )-Markov process with generator

LXf (t, x) = ∂f

∂t
+ b0(t, x)

∂f

∂x
+ 1

2
σ 2

0 (t, x)
∂2f

∂x2 +
∫

Z

{f (t, x + K0(t, x, ζ )) − f (t, x)}ν(dζ ).

https://doi.org/10.1239/aap/1346955260 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1346955260


686 C. CECI AND K. COLANERI

More precisely, for any function f (t, x) ∈ C1,2
b ([0, T ] × R), the semimartingale decomposition

f (t, Xt ) = f (0, x0) +
∫ t

0
LXf (s, Xs) ds + m

f
t

holds, where mf is the (P, Ft )-martingale given by

m
f
t =

∫ t

0

∂f

∂x
(s, Xs)σ0(s, Xs) dW 0

s

+
∫ t

0

∫
Z

{f (s, Xs− + K0(s, Xs− , ζ )) − f (s, Xs−)}Ñ(ds, dζ ). (3.2)

The next theorem establishes the main result of this paper.

Theorem 3.1. Under the assumptions of Proposition 2.4 and (3.1), the filter (2.3) is a solution
of the KS equation, which is given for any function f (t, x) ∈ C1,2

b ([0, T ] × R) by

πt (f ) = f (0, x0) +
∫ t

0
πs(L

Xf ) ds +
∫ t

0

∫
R

wπ
s (f, x)mπ(ds, dx) +

∫ t

0
hπ

s (f ) dIs, (3.3)

where

wπ
t (f, x) = dπt−(λφf )

dπt−(λφ)
(x) − πt−(f ) + dπt−(L̄f )

dπt−(λφ)
(x), (3.4)

hπ
t (f ) = σ−1

1 (t)[πt (b1f ) − πt (b1)πt (f )] + ρπt

(
σ0

∂f

∂x

)
. (3.5)

Here, by
dπt−(λφf )

dπt−(λφ)
(x) and

dπt−(L̄f )

dπt−(λφ)
(x)

we mean the Radon–Nikodym derivatives of the measures πt−(λφf ) and πt−(L̄f ) with respect
to πt−(λφ), and the operator L̄f is defined as

L̄f = L̄f (·, Yt− , dz),

L̄f (t, x, y, A) =
∫

dA(t,x,y)

{f (t, x + K0(t, x, ζ )) − f (t, x)}ν(dζ ) for all A ∈ B(R).

Remark 3.1. Recall that dA(t, x, y) is defined in (2.5); hence, the operator L̄ takes into account
common jump times between the state X and the observations Y .

Remark 3.2. Let us observe that (3.3) is similar to the filtering equation derived in [4], even if a
different partially observed system was considered there. More precisely, in [4], the information
flow has the structure F m

t ∨ F
η
t , where m(dt, dx) is a marked point process with dynamics

affected by a stochastic factor X (whose dynamics are described by the first equation of (2.1)),
and ηt = ∫ t

0 γ (Xs) ds + W 1
t for any bounded measurable function γ (x). Nevertheless, let us

point out that in [4] the derivation of the filtering equation required boundness on λt = ν(Dt )

and σ0(t, x).

Before giving the proof of Theorem 3.1, we ought to check that all the terms in (3.3) are
well defined.
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Remark 3.3. Since∫
R

|wπ
s (f, x)|πs−(λsφs(dx)) ≤ |πs−(λf )| + |πs−(λ)πs−(f )| + |πs−(L̄f )(R)|

≤ 4‖f ‖πs−|λ|,
assumption (2.6) and Remark 2.1 imply that

E
∫ T

0

∫
R

|wπ
s (f, x)|πs−(λsφs(dx)) ds ≤ 4‖f ‖ E

∫ T

0
|λs | ds < ∞. (3.6)

Moreover, since, for any f (t, x) ∈ C1,2
b ([0, T ] × R),

(hπ
t (f ))2 ≤ Bf {(σ−1

1 (t))2π2
t (b1) + π2

t (σ0)}
with Bf a suitable positive constant, by Jensen’s inequality and again by Remark 2.1, we obtain

E
∫ T

0
(hπ

t (f ))2 dt ≤ Bf E
∫ T

0

(
b2

1(t)

σ 2
1 (t)

+ σ 2
0 (t)

)
dt < ∞. (3.7)

Thus, taking into account (3.6) and (3.7), the integrals in (3.3) with respect to the compensated
martingale measure mπ(dt, dx) and the innovation process I are (P, F Y

t )-martingales. Finally,
note that

|LXf (t, Xt )| ≤ B̃f (1 + |b0(t)| + |σ0(t)|2 + ν(D0
t ))

for a suitable positive constant B̃f . Then

E
∫ T

0
|πt (L

Xf )| dt ≤ E
∫ T

0
|LXf (t, Xt )| dt < ∞.

Proof of Theorem 3.1. We will consider the semimartingale

Zt = f (t, Xt ) = f (0, X0) +
∫ t

0
LXf (s, Xs) ds + m

f
t ,

where m
f
t is given in (3.2). To keep the formulae simple, we will leave out the dependence

from the process X unless it is necessary, that is, ft = f (t, Xt ), LXft = LXf (t, Xt ), and
∂f (t)/∂x = ∂f (t, Xt )/∂x.

Now we project the semimartingale Z onto F Y
t :

Ẑt = Ẑ0 +
̂∫ t

0
LXfs ds + m̂

f
t = Ẑ0 +

∫ t

0
L̂Xfs ds −

∫ t

0
L̂Xfs ds +

̂∫ t

0
LXfs ds + m̂

f
t .

By Remark 2.1, Ẑt − Ẑ0 − ∫ t

0 L̂Xfs ds is an F Y
t -martingale. Proposition 2.4 ensures the

existence of two processes hπ and wπ such that

Ẑt − Ẑ0 −
∫ t

0
L̂Xf (s, Xs) ds =

∫ t

0

∫
R

wπ
s (f, x)mπ(ds, dx) +

∫ t

0
hπ

s (f ) dIs

with E
∫ T

0

∫
R

|wπ
s (f, x)|πs(λsφs(dx)) ds < ∞ and E

∫ T

0 (hπ
s (f ))2 ds < ∞.
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Now the strategy for proving the thesis consists of two steps. We will consider theF Y
t -adapted

process W̃ 1, given by

W̃ 1
t = W 1

t +
∫ t

0

b1(s)

σ1(s)
ds = It +

∫ t

0
πs

(
b1

σ1

)
ds,

and a bounded process U of the form

Ut =
∫ t

0

∫
R

�(s, x)m(ds, dx),

where � is a bounded, F Y
t -predictable process.

Step 1. We will compute ̂ZtW̃
1
t and Ẑt W̃

1
t separately; since W̃ 1

t is F Y
t -adapted, the equality

̂ZtW̃
1
t = Ẑt W̃

1
t holds.

Step 2. We will compute ẐtUt and ẐtUt , and, again, since Ut is F Y
t -adapted, the equality

ẐtUt = ẐtUt holds.

The two equalities in steps 1 and 2 will give us the structure of the processes hπ and wπ .
Step 1. By applying the product rule,

d(ZtW̃
1
t ) = Zt− dW̃ 1

t + W̃ 1
t− dZt + d〈Zc, W̃ 1〉t

= Zt dW 1
t + Zt−

b1(t)

σ1(t)
dt + W̃ 1

t LXft dt + ∂f

∂x
(t)σ0(t)ρ dt + dm1

t ,

where m1
t = ∫ t

0 W̃ 1
s dm

f
s is a (P, Ft )-local martingale, and ρ is the correlation coefficient

between the Brownian motions W 1 and W 0. Note that we can introduce an F Y
t -localizing

sequence for m1 as
τ̃n = T ∧ inf{t : |W̃ 1

t | ≥ n}.
If we project ZtW̃

1
t onto F Y

t , we will obtain, on {t ≤ τ̃n},

d(̂ZtW̃
1
t ) =

{
̂

Zt

b1(t)

σ1(t)
+ ˜̂W 1

t LXft + ̂∂f (t)

∂x
σ0(t)ρ

}
dt + Ẑt dW 1

t + dm̂1
t + dm̃1

t ,

where m̃1 is a (P, F Y
t )-martingale and, by Proposition 2.1, m̂1

t∧τ̃n
is a (P, F Y

t )-martingale. On
the other hand,

d(Ẑt W̃
1
t ) =

{
Ẑtπt

(
b1

σ1

)
+ W̃ 1

t L̂Xft + hπ
t (f )

}
dt + dm2

t ,

where m2
t = ∫ t

0 {W̃ 1
s hπ

s (f ) + Ẑs} dIs + ∫ t

0 W̃ 1
s

∫
R

wπ
s (f, x)mπ(ds, dx) is a (P, F Y

t )-local mar-
tingale.

Since ̂ZtW̃
1
t = Ẑt W̃

1
t , they have the same limited variation parts, which means that

̂
Zt

b1(t)

σ1(t)
+ W̃ 1

t L̂Xft + ̂∂f (t)

∂x
σ0(t)ρ = Ẑtπt

(
b1

σ1

)
+ W̃ 1

t L̂Xft + hπ
t (f ) on {t ≤ τ̃n}.

Equivalently,

hπ
t (f ) = πt

(
f

b1

σ1

)
− πt (f )πt

(
b1

σ1

)
+ πt

(
σ0

∂f

∂x

)
ρ on {t ≤ τ̃n}.

Now, when n → ∞, τ̃n goes to T , P-a.s. and so the process hπ(f ) is completely defined.
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Step 2. We now choose the bounded process

Ut :=
∫ t

0

∫
R

�(s, x)m(ds, dx) =
∫ t

0

∫
Z

1Ds (ζ )�(s, K1(s, ζ ))N(ds, dζ )

(see (2.4) for the last equality). Then

d(ZtUt ) = Zt− dUt + Ut− dZt + d[Z, U ]t
=

{
UtL

Xft + Vt + Zt

∫
R

�(t, x)λtφt (dx)

}
dt + dm3

t , (3.8)

where Vt := ∫
Z

1Dt (ζ ){f (t, Xt− + K0(t, ζ )) − f (t, Xt−)}�(t, K1(t, ζ ))ν(dζ ) and

m3
t =

∫ t

0

∫
R

Zs−�(s, x)(m(ds, dx) − λsφs(dx) ds) +
∫ t

0

∂f

∂x
(s)σ0(s)Us dW 0

s

+
∫ t

0

∫
Z

{f (s, Xs− + K0(s, ζ )) − f (s, Xs−)}{1Ds (ζ )�(s, K1(s, ζ )) + Us−}Ñ(ds, dζ )

is a (P, Ft )-martingale. By projecting onto F Y
t , (3.8) becomes

d(ẐtUt ) =
{
ÛtLXft + V̂t +

∫
R

�(t, x)Ẑtλtφt (dx)

}
dt + dm̃3

t (3.9)

with m̃3 a (P, F Y
t )-martingale.

On the other hand,

d(ẐtUt ) = Ẑt− dUt + Ut− dẐt + d[Ẑ, U ]t
=

{∫
R

(Ẑt + wπ
t (f, x))�(t, x) ̂λtφt (dx) + UtL̂Xft

}
dt + dm4

t , (3.10)

where m4 is the (P, F Y
t )-martingale given by

m4
t =

∫ t

0
Ush

π
s (f ) dIs +

∫ t

0
{Ẑs−�(s, x) + Us−wπ

s (f, x)}mπ(ds, dx).

As in step 1, the finite-variation parts in (3.9) and (3.10) must be equal, so∫
R

wπ
t (f, x)�(t, x) ̂λtφt (dx) =

∫
R

�(t, x)Ẑtλtφt (dx) + V̂t −
∫

R

Ẑt�(t, x) ̂λtφt (dx). (3.11)

Now we look for wπ(f, x) having the following structure:

wπ
t (f, x) = w1(t, f, x) − w2(t, f, x) + w3(t, f, x).

We can always choose w2(t, f, x) = Ẑt− , and, by equality (3.11), w1 and w3 need to satisfy∫
R

w1(t, f, x)�(t, x)λ̂tφt (dx) =
∫

R

�(t, x)Ẑt−λtφt (dx),∫
R

w3(t, f, x)�(t, x)λ̂tφt (dx) = V̂t .
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Denoting by {Tn} the sequence of jump times of Y (i.e. of Nt = m([0, t) × R)), we select
�(t, x) of the form �(t, x) = Ct 1A(x) 1{t≤Tn∧T } with C any bounded, F Y

t -predictable, positive
process and A ∈ B(R).

With this choice, the process Ut := ∫ t

0

∫
R

�(s, x)m(ds, dx) is bounded since |Ut | ≤∫ T ∧Tn

0 |Cs | dNs ≤ Dn, where D is a suitable positive constant. Then, on {t ≤ Tn ∧ T },

Vt =
∫

Z

Ct 1DA
t
(ζ ){f (t, Xt− + K0(t, Xt− , ζ )) − f (t, Xt−)}ν(dζ )

= Ct

∫
DA

t

{f (t, Xt− + K0(t, Xt− , ζ )) − f (t, Xt−)}ν(dζ ).

If we let
∫
dA(t,x,y)

{f (t, x + K0(t, x, ζ )) − f (t, x)}ν(dζ ) =: L̄f (t, x, y, A) then we obtain,
for all A ∈ B(R) on {t ≤ Tn ∧ T },∫

A

w3(t, f, x)λ̂tφt (dx) =
∫

A

̂̄Lf (Xt− , Yt− , dx),∫
A

w1(t, f, x)λ̂tφt (dx) =
∫

A

Ẑt−λtφt (dx).

Thus, on {t ≤ Tn ∧ T },

w1(t, f, x) − w2(t, f, x) + w3(t, f, x) = dπt−(λφf )

dπt−(λφ)
(x) − πt−(f ) + dπt−(L̄f )

dπt−(λφ)
(x).

Now, since the counting process Nt = m((0, t] × R) is nonexplosive, Tn goes to ∞ with n and
this concludes the proof.

It can be observed that the KS equation (3.3) can also be written as

πt (f ) = f (0, x0) +
∫ t

0
{πs(L

X
0 f ) + πs(f )πs(λs) − πs(f λs)} ds

+
∫ t

0

∫
R

wπ
s (f, x)m(ds, dx) +

∫ t

0
hπ

s (f ) dIs,

where
LX

0 f (t, x, y) = LXf (t, x) − L̄f (t, x, y, R)

= ∂f

∂t
(t, x) + b0(t, x)

∂f

∂x
+ 1

2
σ 2

0 (t, x)
∂2f

∂x2

+
∫

d1c
(t,x,y)

{f (t, x + K0(t, x, ζ )) − f (t, x)}ν(dζ )

and d1c
(t, x, y) = {ζ ∈ Z : K1(t, x, y, ζ ) = 0}, and it has a natural recursive structure. It is

easier to see it by writing the equation at jump times and between two consecutive jump times
of Y . Indeed, if Tn is a jump time for the process Y that occurs before time T ,

πTn(f ) = dπT −
n

(λTnφTnf )

dπT −
n

(λTnφTn)
(Zn) + dπT −

n
(L̄Tnf )

dπT −
n

(λTnφTn)
(Zn), Zn = YTn − YTn−1 .

Hence, πTn(f ) is completely determined by the observed data (Tn, Zn) and by the knowledge
of πt (f ) for all t ∈ [Tn−1, Tn), since πT −

n
(f ) = limt→T −

n
πt (f ).
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Then, for t ∈ [Tn, Tn+1 ∧ T ),

πt (f ) = πTn(f ) +
∫ t

Tn

{πs(L
X
0 f ) + πs(f )πs(λs) − πs(f λs)} ds +

∫ t

Tn

hπ
s (f ) dIs .

To show uniqueness for the solution to the KS equation, we want to proceed as in [17], but
we need to know exactly the shape of the generator of the pair (X, Y ). To this end, we give the
following lemma.

Lemma 3.2. Under (2.2), (2.6), and (3.1), (X, Y ) is a (P, Ft )-Markov process with generator
LX,Y defined by, for all f ∈ C1,2,2

b ([0, T ] × R × R),

LX,Y f (t, x, y) = ∂f

∂t
+ b0(t, x)

∂f

∂x
+ b1(t, x, y)

∂f

∂y
+ ρσ0(t, x)σ1(t, y)

∂2f

∂x∂y

+ 1

2
σ 2

0 (t, x)
∂2f

∂x2 + 1

2
σ 2

1 (t, y)
∂2f

∂y2

+
∫

Z

{f (t, x + K0(t, x, ζ ), y + K1(t, x, y, ζ )) − f (t, x, y)}ν(dζ ).

Proof. By the assumptions of existence and uniqueness for the solution of system (2.1),
the martingale problem for the operator LX,Y is well posed and this implies that the pair
(X, Y ) is a (P, Ft )-Markov process. Then the proof consists of applying Itô’s formula to a
C1,2,2

b ([0, T ] × R × R) function f (t, x, y):

df (t, Xt , Yt ) = LX,Y f (t, Xt , Yt ) dt + σ0(t)
∂f (t, Xt , Yt )

∂x
dW 0

t + σ1(t)
∂f (t, Xt , Yt )

∂y
dW 1

t

+
∫

Z

{f (t, Xt− + K0(t, ζ ), Yt− + K1(t, ζ )) − f (t, Xt− , Yt−)}Ñ(dt, dζ )

= LX,Y f (t, Xt , Yt ) dt + dM
f
t . (3.12)

Finally, by (2.2), (2.6), and (3.1), since

E
∫ T

0

∫
Z

|f (t, Xt− + K0(t, ζ ), Yt− + K1(t, ζ )) − f (t, Xt− , Yt−)|ν(dζ ) dt

≤ 2‖f ‖ E
∫ T

0
{ν(D0

t ) + ν(Dt )} dt

< ∞,

Mf is a (P, Ft )-martingale.

Remark 3.4. By projecting (3.12) onto F Y
t we can state that

πt (f (·, Yt )) −
∫ t

0
πs(L

X,Y f (·, Ys)) ds

is a (P, F Y
t )-martingale for each f ∈ C1,2,2

b ([0, T ] × R × R).

We want to use this martingale property to characterize the distribution of the pair (π, Y ) by
exploiting the idea given in [17]; therefore, we introduce the notion of the filtered martingale
problem.
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Definition 3.1. A process (µ, U) defined on a probability space (�̃, F̃t , P̃), with càdlàg
trajectories and taking values in P (R) × R, is a solution of the filtered martingale problem
FMP(LX,Y , x0, y0) if µ is F U

t -adapted and, for all f ∈ C1,2,2
b ([0, T ] × R × R),

µt(f (·, Ut )) −
∫ t

0
µs(L

X,Y f (·, Us)) ds

is a (̃P, F U
t )-martingale and EP̃[µ0f (·, U0)] = f (0, x0, y0).

Now we are ready to give the definition of a weak solution of the filtering equation.

Definition 3.2. A weak solution to the KS equation (3.3) is a process (µ, Ỹ ) defined on
a probability space (�̃, F̃t , P̃) with càdlàg trajectories, taking values on P (R) × R, such
that Ỹ0 = y0, P̃-a.s., EP̃[µ0(f )] = f (0, x0) for all f ∈ C1,2

b ([0, T ] × R), and the following
statements hold.

(i) µ is F Ỹ
t -adapted.

(ii) The (̃P, F Ỹ
t ) -predictable projection of the counting measure associated to the jumps of

Ỹ , m̃(dt, dx), is given by µt−(λtφt (dx)) dt .

(iii) Ĩt = ∫ t

0 (1/σ1(s))(dỸs − ∫
R

xm̃(ds, dx)) is a (̃P, F Ỹ
t )-Brownian motion.

(iv) The pair (µ, Ỹ ) solves the KS equation (3.3), with mπ(dt, dx), It , wπ
t (f, x), and hπ

t (f )

replaced by mµ(dt, dx) = m̃(dt, dx) − µt−(λtφt (dx)) dt , I
µ
t = Ĩt − ∫ t

0 µs(b1/σ1) ds,
w

µ
t (f, x), and h

µ
t (f ), respectively.

(v)
∫ T

0 µt(b2(·, Ỹt )) dt < ∞, P̃-a.s., with

b2(t, x, y) = λ(t, x, y) + |b0(t, x)| + σ 2
0 (t, x) + ν(d0(t, x)) + b2

1(t, x, y)

σ 2
1 (t, y)

.

Remark 3.5. In Definition 3.2(ii) we mean that, for all A ∈ B(R),

µt−(λtφt (A)) = µt−(ν(dA(·, Ỹt−)))

is the (̃P, F Ỹ
t )-intensity of the counting process m̃((0, t] × A). In particular,

µt−(λtφt (R)) = µt−(ν(d1(·, Ỹt−))) = µt−(λ(·, Ỹt−)) = µt−(λ)

is the (̃P, F Ỹ
t )-intensity of the point process m̃((0, t] × R), where we have used the notation

λ(t, x, y) = ν(d1(t, x, y)).

Remark 3.6. Taking into account Definition 3.2(v) we can prove that, for allf ∈ C1,2,2
b ([0,T ]×

R × R), ∫ T

0

∫
R

|wµ
t (f, x)|µt−(λtφt (dx)) dt ≤ 4‖f ‖

∫ T

0
µt(λ) dt

≤ 4‖f ‖
∫ T

0
µt(b2) dt

< ∞ P̃-a.s.,
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∫ T

0
h

µ
t (f )2 dt ≤ Bf

∫ T

0

{
µt(σ

2
0 ) + µt(b

2
1(·, Ỹt ))

σ 2
1 (t, Ỹt )

}
dt

≤ Bf

∫ T

0
µt(b2) dt

< ∞ P̃-a.s.,∫ T

0
|µt(L

Xf )| dt ≤ B̃f

∫ T

0
{1 + |µt(b0)| + µt(σ0)

2 + µt(ν(d0))} dt

≤ B̃f

∫ T

0
µt(b2) dt

< ∞ P̃-a.s.,

with Bf and B̃f suitable positive constants. Thus, all the stochastic integrals in the KS equation
considered in Definition 3.2(iv) are well defined, and those driven by Iµ and by mµ(dt, dx) =
m̃(dt, dx) − µt−(λtφt (dx)) dt are (̃P, F Ỹ

t )-local martingales.

Remark 3.7. Note that the pair filter observation, (π, Y ), is a weak solution to (3.3). As a
matter of fact, Definition 3.2(i), (ii), (iv), and (v) are trivially verified. For Definition 3.2(iii),
consider the probability measure Q defined in (2.11); then, by Girsanov’s theorem, the process

W̃ 1
t = W 1

t +
∫ t

0

b1(s)

σ1(s)
ds = It +

∫ t

0
πs

(
b1

σ1

)
ds =

∫ t

0

1

σ1(s)

(
dYs −

∫
R

xm(ds, dx)

)

is a (Q, F Y
t )-Wiener process.

Now we can state a weak uniqueness result for the solution of the KS equation whose proof
is postponed to Appendix B.

Theorem 3.2. Under the hypotheses of Theorem 3.1, uniqueness for the solutions to FMP(LX,Y,

x0, y0) implies that all weak solutions (µ, Ỹ )of the KS equation have the same law. In particular,
µt and πt have the same law.

InAppendix B we give a class of sufficient conditions that ensures uniqueness for the solution
to the filtered martingale problem for LX,Y (see Proposition B.1).

In the remaining part of this section we discuss pathwise uniqueness for the solution of the
KS equation. We start by giving the definition of the strong solution.

Definition 3.3. A strong solution for the KS equation is a (P, F Y
t )-adapted, càdlàg, P (R)-

valued process {µt }t∈[0,T ] such that
∫ T

0 µs(b2) ds < ∞, P-a.s. (b2 is defined in Definition 3.2(v))
solves the KS equation, that is, for all f ∈ C1,2,2

b ([0, T ] × R × R) and all t ≤ T ,

µt(f ) = π0(f ) +
∫ t

0
µs(L

Xf ) ds +
∫ t

0

∫
R

wµ
s (f, x)mµ(ds, dx) +

∫ t

0
hµ

s (f ) dIµ
s , (3.13)

where

dI
µ
t = dW 1

t +
{

b1(t)

σ1(t)
− µt

(
b1

σ1

)}
dt, mµ(dt, dx) = m(dt, dx) − µt−(λtφt (dx)) dt,

and wµ(f, x) and hµ(f ) are defined respectively in (3.4) and (3.5), replacing π with µ.

Note that the condition
∫ T

0 µs(b2) ds < ∞, P-a.s. makes the integrals in (3.13) well defined.
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Theorem 3.3. Let (X, Y ) be defined as in (2.1), and assume that uniqueness holds for the
FMP(LX,Y , x0, y0). Let {µt }t∈[0,T ] be a strong solution of the KS equation such that
µt−(λtφt (dx)) dt and πt−(λtφt (dx)) dt are equivalent measures over [0, T ]×R. Then µt = πt ,
P-a.s. for all t ≤ T .

Proof. See Appendix B.

We conclude this section by considering a simplified model and giving a sufficient condition
which implies that the additional hypothesis in Theorem 3.3 is satisfied.

Example 3.1. (Observation dynamics driven by independent point processes.) Suppose that
there exists a finite set of measurable functions Ki

1(t, y) �= 0 for all (t, y) ∈ [0, T ] × R, i =
1, . . . , n, such that

d1(t, x, y) := {ζ ∈ Z : K1(t, x, y, ζ ) �= 0} =
n⋃

i=1

d1
i (t, x, y)

and

d1
i (t, x, y) ∩ d1

j (t, x, y) = ∅ for all i �= j,

where d1
i (t, x, y) := {ζ ∈ Z : K1(t, x, y, ζ ) = Ki

1(t, y)}. This implies that K1(t, Xt− , Yt− ,

ζ ) = ∑n
i=1 K1

i (t, Yt−) 1Di
t
(ζ ) with Di

t = d1
i (t, Xt− , Yt−). It is not difficult to see that the

observation process Y has the following dynamics:

dYt = b1(t, Xt , Yt ) dt + σ1(t, Yt ) dW 1
t +

n∑
i=1

Ki
1(t, Yt−) dNi

t . (3.14)

Here Ni
t = N((0, t] × Di

t ) for i = 1, . . . , n are independent counting processes with (P, Ft )-
intensities given by λi

t = ν(Di
t ). Let us point out that the signal X influences the drift and the

intensities of the point process driving the observation dynamics but not the jump coefficients
Ki

t (t, Yt−) for i = 1, . . . , n, which are observable. In such a model the counting measure
m(dt, dx) can be written as

m(dt, dx) =
∑

{s : 
Ys �=0}
δ{s,
Ys }(dt, dx) =

n∑
i=1

δKi
1(t,Yt− )(dx) dNi

t ,

and the (P, Ft )-dual predictable projection of m(dt, dx) becomes

λtφt (dx) dt =
∫

Dt

δK1(t,ζ )(dx)ν(dζ ) dt

=
n∑

i=1

δKi
1(t,Yt− )(dx)

∫
Di

t

ν(dζ ) dt

=
n∑

i=1

δKi
1(t,Yt− )(dx)λi

t dt.

Of course, λt = ν(Dt ) = ∑n
i=1 λi

t provides the (P, Ft )-intensity of Nt = m((0, t] × R). We
want to verify that, under the assumption that

λi(t, x, y) = ν(d1
i (t, x, y)) > 0 for all (t, x, y) ∈ [0, T ] × R × R, i = 1, . . . , n, (3.15)

for any F Y
t -adapted, càdlàg, P(R)-valued process µ, the measures µt−(λtφt (dx)) dt and
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πt−(λtφt (dx)) dt are equivalent. Note that we can write

πt−(λtφt (dx)) dt =
n∑

i=1

δKi
1(t,Yt− )(dx)πt−(λi) dt,

µt−(λtφt (dx)) dt =
n∑

i=1

δKi
1(t,Yt− )(dx)µt−(λi) dt,

because δKi
1(t,Yt− )(dx) for i = 1, . . . , n are F Y

t -measurable. Hypothesis (3.15) implies

that πt−(λi) > 0 and µt−(λi) > 0, i = 1, . . . , n, and the Radon–Nikodym derivative of
µt−(λtφt (dx)) dt with respect to πt−(λtφt (dx)) dt becomes

dµt−(λφ)

dπt−(λφ)
(x) =

∑n
i=1 δKi

1(t,Yt− )(x)µt−(λi)∑n
i=1 δKi

1(t,Yt− )(x)πt−(λi)
=

n∑
i=1

1{Ki
1(t,Yt )=x}

µt−(λi)

πt−(λi)
.

On the other hand, there also exists the Radon–Nikodym derivative of πt−(λtφt (dx)) dt with
respect to µt−(λtφt (dx)) dt given by

dπt−(λφ)

dµt−(λφ)
(x) =

n∑
i=1

1{Ki
1(t,Yt )=x}

πt−(λi)

µt−(λi)
,

and this means that these two measures are equivalent.
We now give the KS equation satisfied by the filter for this simplified model:

πt (f ) = f (0, x0) +
∫ t

0
πs(L

Xf ) ds

+
∫ t

0

{
σ1(s)

−1[πs(b1f ) − πs(b1)πs(f )] + ρπs

(
σ0

∂f

∂x

)}
dIs

+
n∑

i=1

∫ t

0
πs−(λi)+[πs−(λif ) − πs−(f ) + πs−(Rif )](dNi

s − πs−(λi) dt). (3.16)

Here a+ := (1/a) 1{a>0} and by Ri we mean the operator

Rif (t, x, Yt−) =
∫

d1
i (t,x,Yt− )

{f (t, x + K0(t, x, ζ )) − f (t, x)}ν(dζ ).

Now we are in the position to state the following result

Proposition 3.1. Let the state X be defined by the first equation of (2.1), and let the observations
Y be defined by (3.14). Assume that (3.15) and uniqueness for FMP(LX,Y , x0, y0) hold. Let
{µt }t∈[0,T ] be a strong solution of the KS equation given by (3.16), replacing π by µ. Then
µt = πt , P-a.s. for all t ≤ T .

Appendix A

In this appendix we give sufficient conditions (see, for instance, [7] and [14]) that ensure
strong existence and strong uniqueness for solutions to system (2.1).

Assumption B. (i) Let b0(t, x), b1(t, x, y), σ0(t, x), and σ1(t, y) be jointly continuous
functions of their arguments, and let K0(t, x, ζ ) and K1(t, x, y, ζ ) be R-valued, jointly
continuous functions in (t, x, y).
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(ii) Suppose that there exists a constant C > 0 such that, for all t ∈ [0, T ],

|b0(t, x)|2 + |σ0(t, x)|2 +
∫

Z

|K0(t, x, ζ )|2ν(dζ ) ≤ C(1 + |x|2),

|b1(t, x, y)|2 + |σ1(t, y)|2 +
∫

Z

|K1(t, x, y, ζ )|2ν(dζ ) ≤ C(1 + |x|2 + |y|2).
(A.1)

(iii) For all r > 0, there exists a constant L = L(r) > 0 such that, for all x, x′, y, y′ ∈
Br(0) := {z ∈ R : |z| ≤ r},

|b0(t, x) − b0(t, x
′)| + |σ0(t, x) − σ0(t, x

′)| ≤ L|x − x′|, (A.2a)

|b1(t, x, y) − b1(t, x
′, y)| + |σ1(t, y) − σ1(t, y

′)| ≤ L(|x − x′| + |y − y′|), (A.2b)∫
Z

|K0(t, x, ζ ) − K0(t, x
′, ζ )|2ν(dζ ) ≤ L|x − x′|2, (A.2c)∫

Z

|K1(t, x, y, ζ ) − K1(t, x
′, y′, ζ )|2ν(dζ ) ≤ L(|x − x′|2 + |y − y′|2). (A.2d)

We respectively refer to (A.1) and (A.2) as the growth conditions and local Lipschitz condi-
tions.

Other classes of conditions which imply strong existence and weak uniqueness of solutions
to system (2.1) without requiring continuity of Ki, i = 0, 1, can be found in [7, Appendix A].

Appendix B

Proof of Theorem 3.2. Let (µ, Ỹ ) be a weak solution to the KS equation. We will prove that
(µ, Ỹ ) solves the stopped FMP(LX,Y , x0, y0). More precisely, we will show that there exists a
sequence ηn of F Ỹ

t -stopping times, where ηn tends to ∞ with n, and probability measures Q̃n

equivalent to P̃ such that

µt∧ηn(F (·, Ỹt∧ηn)) −
∫ t∧ηn

0
µs(L

X,Y F (·, Ỹs∧ηn)) ds (B.1)

is a (Q̃n, F
Ỹ
t )-martingale for each F ∈ C1,2,2

b ([0, T ] × R × R).
It is sufficient to prove (B.1) for functions of the type F(t, x, y) = f (t, x)g(y). Recall that

dỸt = σ1(t) dĨt +
∫

R

xm̃(dt, dx).

By applying Itô’s formula we obtain

dg(Ỹt ) = g′(Ỹt−) dỸt + 1

2
g′′(Ỹt )σ

2
1 (t) dt +

∫
R

[g(Ỹt− + x) − g(Ỹt−) − g′(Ỹt−)x]m̃(dt, dx)

= g′(Ỹt−)σ1(t) dĨt + 1

2
g′′(Ỹt )σ

2
1 (t) dt +

∫
R

[g(Ỹt− + x) − g(Ỹt−)]m̃(dt, dx).

Since (µ, Ỹ ) is a weak solution to the KS equation, then

µt(f ) = f (0, x0) +
∫ t

0
µs(L

Xf ) ds +
∫ t

0

∫
R

wµ
s (f, x)mµ(ds, dx) +

∫ t

0
hµ

s (f ) dIµ
s ,

https://doi.org/10.1239/aap/1346955260 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1346955260


Nonlinear filtering 697

and, by the product rule,

d(µt (f )g(Ỹt ))

= µt−(f )

(
g′(Ỹt )σ1(t) dĨt + 1

2
g′′(Ỹt )σ

2
1 (t) dt +

∫
R

[g(Ỹt− + x) − g(Ỹt−)]m̃(dt, dx)

)

+ g(Ỹt−)

(
µt(L

Xf ) dt +
∫

R

w
µ
t (f, x)mµ(dt, dx) + h

µ
t (f ) dI

µ
t

)

+ σ1(t)h
µ
t (f )g′(Ỹt ) dt +

∫
R

w
µ
t (f, x)(g(Ỹt− + x) − g(Ỹt−))m̃(dt, dx)

= [
g(Ỹt )µt (L

Xf ) + g′(Ỹt )(µt (f )µt (b1) + σ1(t)h
µ
t (f )) + 1

2µt(f )g′′(Ỹt )σ
2
1 (t)

]
dt

+
∫

R

(µt (f ) + w
µ
t (f, x))[g(Ỹt− + x) − g(Ỹt−)]µt(λtφt (dx)) dt + dM

fg
t , (B.2)

where we used the equalities

m̃(dt, dx) = mµ(dt, dx) + µt−(λtφt (dx)) dt, dĨt = dI
µ
t + µt

(
b1

σ1

)
dt,

and by dM
fg
t we mean

dM
fg
t =

∫
R

{(µt−(f ) + w
µ
t (f, x))[g(Ỹt− + x) − g(Ỹt−)] + g(Ỹt−)w

µ
t (f, x)}mµ(dt, dx)

+ {µt(f )σ1(t)g
′(Ỹt ) + g(Ỹt )h

µ
t (f )} dI

µ
t .

Now we want to introduce a probability measure equivalent to P̃ such that M fg is a local martin-
gale. To this end, define L̃t = E(

∫ t

0 µs(b1/σ1) dĨs ). Since b1(t)/σ1(t) may be unbounded, L̃

is only a (̃P, F Ỹ
t )-local martingale. Hence, we need to introduce the sequence of F Ỹ

t -stopping
times

ηn = T ∧ inf

{
t :

∫ t

0

∣∣∣∣µs

(
b1

σ1

)∣∣∣∣ ds ≥ n

}
∧ inf

{
t :

∫ t

0
µs |b2| ds ≥ n

}
,

where b2(t, x, y) is given in Definition 3.2(v).
For any n, we build a new probability measure equivalent to P̃, Q̃n, on (�, F Ỹ

T ) as

L̃ηn = dQ̃n

dP̃
= E

(∫ ηn

0
µs

(
b1

σ1

)
dĨs

)
= exp

{∫ ηn

0
µs

(
b1

σ1

)
dĨs − 1

2

∫ ηn

0
µ2

s

(
b1

σ1

)
ds

}
.

By Girsanov’s theorem,

I
µ
t = Ĩt −

∫ t∧ηn

0
µs

(
b1

σ1

)
ds

is a (Q̃n, F
Ỹ
t )-Brownian motion, and M

fg
t∧ηn

is a (Q̃n, F
Ỹ
t )-martingale since the following

estimations hold (see Remark 3.6):

EQ̃n

∫ T ∧ηn

0

∫
R

|wµ
t (f, x)|µt(λtφt (dx)) dt ≤ 4‖f ‖ EQ̃n

∫ T ∧ηn

0
µt(b2) dt ≤ 4‖f ‖n < ∞,

EQ̃n

∫ T ∧ηn

0
h

µ
t (f )2 dt ≤ Bf EQ̃n

∫ T ∧ηn

0
µt(b2) dt ≤ Bf n < ∞.
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Finally, from the expressions of wµ and hµ, and the generator LX,Y , (B.2) implies that

dµt∧ηn(fg(Ỹt∧ηn)) = µt∧ηn(L
X,Y fg(Ỹt∧ηn)) dt + dM

fg
t∧ηn

,

with M
fg
t∧ηn

a (Q̃n, F
Y
t )-martingale, that is to say, the pair (µ, Ỹ ) solves the stopped FMP(LX,Y ,

x0, y0).
By Corollary 3.4 of [17], if uniqueness holds for the FMP(LX,Y , x0, y0) then there exists a

measurable function Ht : DR[0, T ] → P (R) such that πt = Ht(Y ), P-a.s. and µt 1{t<ηn} =
Ht(Ỹ ) 1{t<ηn}, Q̃n-a.s.

Since Q̃n is equivalent to P̃, the equality above becomes µt 1{t<ηn} = Ht(Ỹ ) 1{t<ηn}, P̃-a.s.,
and taking n → ∞ we obtain µt = Ht(Ỹ ), P̃-a.s.

Finally, since

dYt = σ1(t, Yt ) dW̃ 1
t +

∫
R

xm(dt, dx)

and

dỸt = σ1(t, Ỹt ) dĨt +
∫

R

xm̃(dt, dx)

under P̃, the process Ỹ has the same law as the process Y under P. Thus, (µt , Ỹt ) and (πt , Yt )

have the same law; in particular, µt and πt have the same law.

Proof of Theorem 3.3. With the same arguments used to prove equality (B.2), it can be
shown that

d(µt (f )g(Yt ))

= [g(Yt )µt (L
Xf ) + (σ1(t)h

µ
t (f ) + µt(f )µt (b1))g

′(Yt ) + 1
2µt(f )g′′(Yt )σ

2
1 (t)] dt

+
∫

R

(µt (f ) + w
µ
t (f, x))[g(Yt− + x) − g(Yt−)]µt(λtφt (dx)) dt + dm

fg
t ,

where by m
fg
t we mean

dm
fg
t = {σ1(t)µt (f )g′(Yt ) + g(Yt )h

µ
t (f )} dI

µ
t

+
∫

R

{(µt−(f ) + w
µ
t (f, x))[g(Yt− + x) − g(Yt−)] + g(Yt−)w

µ
t (f, x)}mµ(dt, dx).

We need to define a new probability measure equivalent to P under which mfg is a local
martingale.

From the hypothesis of equivalence of the measures πt−(λtφt (dx)) dt and µt−(λtφt (dx)) dt ,
there exists an F Y

t -predictable process 	(t, x) > −1, πt (λtφt (dx)) dt-almost everywhere such
that

(1 + 	(t, x))πt−(λtφt (dx)) dt = µt−(λtφt (dx)) dt.

Recalling that I
µ
t = It − ∫ t

0 {µs(b1/σ1) − πs(b1/σ1)} ds, we define

τn := inf

{
t ≥ 0 :

∫ t

0

∣∣∣∣µs

(
b1

σ1

)
− πs

(
b1

σ1

)∣∣∣∣2

ds ≥ n

}
∧ inf

{
t ≥ 0 :

∫ t

0
|µs(b2)| ds ≥ n

}

∧ inf

{
t ≥ 0 :

∫ t

0

∫
R

|	(s, x)|2πs(λsφs(dx)) ds ≥ n

}
∧ T
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and the change of measure
dQn

dP

∣∣∣∣
F Y

t

= �t∧τn ,

where

�t∧τn = E

(∫ t∧τn

0

{
µs

(
b1

σ1

)
− πs

(
b1

σ1

)}
dIs +

∫ t∧τn

0

∫
R

	(s, x)mπ(dt, dx)

)
.

Girsanov’s theorem implies that It − ∫ t

0 {µs(b1/σ1) − πs(b1/σ1)} 1{s<τn} ds is a (Qn, F
Y
t )-

Brownian motion and that the (Qn, F
Y
t )-predictable projection of the measure m(dx, dt) on

{t < τn} is µt−(λtφt (dx)) dt .
By performing similar computations as in the proof of Theorem 3.2 we find that m

fg
t∧τn

is
a (Qn, F

Y
t )-martingale and so the pair (µ, Y ) solves the stopped FMP(LX,Y , x0, y0). Finally,

by Corollary 3.4 of [17], there exists a functional H such that

πt = Ht(Y ) P -a.s. and µt 1{t<τn} = Ht(Y ) 1{t<τn} Qn -a.s.

Nevertheless, Qn and P are equivalent measures; therefore,

µt 1{t<τn} = Ht(Y ) 1{t<τn} P -a.s.

with τn an increasing sequence, so there exists, P-a.s., n(ω) such that, for all n > n(ω),
τn(ω) = T . Taking n → ∞, we obtain µt = πt , P-a.s.

In the next proposition we provide sufficient conditions for the uniqueness of the solutions
to FMP(LX,Y , x0, y0).

Proposition B.1. Under Assumption B and either

sup
t,x

ν(d0(t, x)) + sup
t,x,y

ν(d1(t, x, y)) < ∞ (B.3)

or

sup
t,x,y

∫
Z

{|K0(t, x, ζ )| + |K1(t, x, y, ζ )|}ν(dζ ) < ∞, (B.4)

uniqueness holds for FMP(LX,Y x0, y0).

Proof. It is sufficient to apply Theorem 3.3 of [17] after having checked that the
hypotheses are satisfied. By Assumption B, the martingale problem for LX,Y is well posed.
Furthermore, we have to prove that we can choose as a domain for LX,Y , a set of functions
DL ⊂ C1,2,2

b ([0, T ] × R × R) such that, for f ∈ DL, LX,Y f ∈ Cb([0, T ] × R × R). We
choose as DL the set of functions in C1,2,2

b ([0, T ] × R × R) having compact support with
respect to (x, y) uniformly in t ; then there exists Rf > 0 such that, for |x| > Rf and |y| > Rf ,
f (t, x, y) = 0 for all t ∈ [0, T ].

Recalling the structure of the operator LX,Y , i.e.

LX,Y f (t, x, y) = ∂f

∂t
+ b0(t, x)

∂f

∂x
+ b1(t, x, y)

∂f

∂y

+ 1

2

[
σ 2

0 (t, x)
∂2f

∂x2 + 2ρσ0(t, x)σ1(t, y)
∂2f

∂x∂y
+ σ 2

1 (t, y)
∂2f

∂y2

]

+
∫

Z

(f (t, x + K0(t, x, ζ ), y + K1(t, x, y, ζ )) − f (t, x, y))ν(dζ ),
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since ∣∣∣∣
∫

Z

(f (t, x + K0(t, x, ζ ), y + K1(t, x, y, ζ )) − f (t, x, y))ν(dζ )

∣∣∣∣
≤ 2‖f ‖ν(d0(t, x, y) ∪ d1(t, x, y)),

under (B.3) and (A.1), we find that, for all f ∈ DL, there exists a constant Cf > 0 such that

‖LX,Y f ‖ ≤
∥∥∥∥∂f

∂t

∥∥∥∥ + Cf (1 + R2
f ) + 2‖f ‖ sup

t,x,y
ν(d0(t, x, y) ∪ d1(t, x, y)).

Hence, LX,Y f is bounded.
The same result can be obtained under (B.4). In fact,∣∣∣∣

∫
Z

(f (t, x + K0(t, x, , ζ ), y + K1(t, x, y, ζ )) − f (t, x, y))ν(dζ )

∣∣∣∣
≤ max

{∥∥∥∥∂f

∂x

∥∥∥∥,

∥∥∥∥∂f

∂y

∥∥∥∥
} ∫

Z

{|K0(t, x, ζ )| + |K1(t, x, y, ζ )|}ν(dζ ).

Finally, in both cases, the continuity of LX,Y f (t, x, y) can be obtained by the dominated
convergence theorem.
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